

Article An Investigation on Existence, Uniqueness, and Approximate Solutions for Two-Dimensional Nonlinear Fractional Integro-Differential Equations

Tahereh Eftekhari * D and Jalil Rashidinia

School of Mathematics, Iran University of Science & Technology (IUST), Narmak, Tehran 16846 13114, Iran * Correspondence: t.eftekhari2009@gmail.com

Abstract: In this research, we provide sufficient conditions to prove the existence of local and global solutions for the general two-dimensional nonlinear fractional integro-differential equations. Furthermore, we prove that these solutions are unique. In addition, we use operational matrices of two-variable shifted Jacobi polynomials via the collocation method to reduce the equations into a system of equations. Error bounds of the presented method are obtained. Five test problems are solved. The obtained numerical results show the accuracy, efficiency, and applicability of the proposed approach.

Keywords: the mixed Riemann–Liouville integral; fixed-point theorems; shifted Jacobi polynomials; operational matrices; collocation method; error bound

MSC: 26A33, 33C45, 65N35

Citation: Eftekhari, T.; Rashidinia, J. An Investigation on Existence, Uniqueness, and Approximate Solutions for Two-Dimensional Nonlinear Fractional Integro-Differential Equations. *Mathematics* 2023, *11*, 824. https://doi.org/ 10.3390/math11040824

Academic Editor: Sotiris K. Ntouyas

Received: 17 October 2022 Revised: 30 November 2022 Accepted: 2 December 2022 Published: 6 February 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

In the last decades, many problems, such as acoustic wave problems [1], groundwater pollution and groundwater flow problems [2–6], among others [7–10], have been shown by using fractional calculus. In addition, many engineering and physical problems, such as problems from control, electrochemistry, rheology, coupling and particle mechanics, viscoelasticity, electromagnetism fluid structure, and porous media (see e.g., [11–14]), have been mathematically formulated by fractional integro-differential equations (FIDEs). Recently, numerical methods for solving FIDEs have attracted the attention of many researchers. Taheri et al. [15] solved stochastic FIDEs by using the shifted Legendre spectral collocation method. Rahimkhani et al. [16] proposed the Bernoulli pseudo-spectral method for solving nonlinear Volterra FIDEs. Wang et al. [17] developed an approximate scheme based on fractional-order Euler functions to solve weakly singular FIDEs. Babaei et al. [18] considered a sixth-kind Chebyshev collocation method to solve a nonlinear quadratic FIDEs of variable order.

In the presented research, we focus on the following general two-dimensional nonlinear fractional integro-differential Equations (2D-NFIDEs):

$$af_{yy}(x,y) + bf_{xx}(x,y) + cf_{yx}(x,y) + f(x,y) + \lambda I^{\varrho}f(x,y) = g(x,y) + \Theta(x,y) + \Lambda(x,y) + \rho(x,y) + \varphi(x,y),$$
(1)

with the initial conditions of:

$$f(x,0) = d_1(x), \quad f(0,y) = d_2(y), \quad f_y(x,0) = d_3(x), \quad f_x(0,y) = d_4(y), \quad f_x(x,0) = d_5(x),$$
 (2)

where $(x, y) \in \mathfrak{D} = [0, \ell_1) \times [0, \ell_2)$; $\varrho = (\varrho_1, \varrho_2) \in (0, \infty) \times (0, \infty)$; and a, b, c, λ are constants, and

$$\begin{split} \Theta(x,y) &= \int_0^x \int_0^y k_1(x,t,y,s) f^{p_1}(t,s) \, \mathrm{d}s \, \mathrm{d}t, \\ \Lambda(x,y) &= \frac{1}{\Gamma(\varrho_1)\Gamma(\varrho_2)} \int_0^x \int_0^y (x-t)^{\varrho_1-1} (y-s)^{\varrho_2-1} k_2(x,t,y,s) f^{p_2}(t,s) \, \mathrm{d}s \, \mathrm{d}t, \\ \rho(x,y) &= \frac{1}{\Gamma(\varrho_1)\Gamma(\varrho_2)} \int_0^{\ell_1} \int_0^{\ell_2} (\ell_1-t)^{\varrho_1-1} (\ell_2-s)^{\varrho_2-1} k_3(x,t,y,s) f^{p_3}(t,s) \, \mathrm{d}s \, \mathrm{d}t, \\ \varphi(x,y) &= \int_0^{\ell_1} \int_0^{\ell_2} k_4(x,t,y,s) f^{p_4}(t,s) \, \mathrm{d}s \, \mathrm{d}t. \end{split}$$

Here, functions $d_i(.)$, i = 1, 2, 3, 4, 5, $k_j(x, t, y, s)$, j = 1, 2, 3, 4, g(x, y) are known, and f(x, y) is unknown; $I^{\varrho}f(x, y)$ is the left-sided mixed Riemann–Liouville integral of order $\varrho = (\varrho_1, \varrho_2) \in (0, \infty) \times (0, \infty)$ of f denoted by [19]

$$I^{\varrho}f(x,y) = \frac{1}{\Gamma(\varrho_1)\Gamma(\varrho_2)} \int_0^x \int_0^y (x-t)^{\varrho_1-1} (y-s)^{\varrho_2-1} f(t,s) \,\mathrm{d}s \,\mathrm{d}t;$$

and $p_j \ge 1$, j = 1, 2, 3, 4 are constants.

While several numerical techniques have been proposed for solving many different problems (see, for instance, [20–35] and references therein), there were few research studies that developed numerical methods for solving Equations (1) and (2). For example, Najafalizadeh and Ezzati [36] obtained approximate solutions of these equations by using operational matrices of two-dimensional block pulse functions (2D-BPFs) with the order of convergence $O(\frac{1}{N})$, $N \in \mathbb{N}$. Maleknejad et al. [37] applied operational matrices based on a hybrid of two-dimensional block-pulse functions and shifted Legendre polynomials (2D-HBPSLs) to solve the general 2D-NFIDEs. The order of convergence of this method was $O(\frac{1}{2^{2M-1}N^{M}M!})$.

According to the best of our knowledge, the existence and uniqueness of solutions for Equations (1) and (2) have not been discussed so far. In this research, we provide sufficient conditions to prove that there exist local and global solutions for the general 2D-NFIDEs. Then, we prove that the solutions of these equations are unique. Additionally, we prepare an efficient numerical approach to approximate solutions of the general 2D-NFIDEs with high accuracy.

The rest of this paper is organized as follows: in Section 2, some theorems for the existence and uniqueness of solutions of general 2D-NFIDEs are proved. In Section 3, an introduction of one- and two-variable shifted Jacobi polynomials (1D-SJPs and 2D-SJPs) is provided. Additionally, some operational matrices are introduced. In Section 4, by using the collocation method via these operational matrices, approximate solutions for Equations (1) and (2) are obtained. In Section 5, error bounds of approximations are obtained. In Section 6, five test problems are solved to show the accuracy of the proposed method. In Section 7, a conclusion is presented.

2. Existence and Uniqueness of Solutions

Now, by using Schauder's fixed-point theorem [38], a local existence of solutions of general 2D-NIDEFs is proved in a Banach space.

Theorem 1. Suppose that

- (C1) $0 \le t \le x \le \ell_1, 0 \le s \le y \le \ell_2, g, g_1, f, v \in C(\mathfrak{D}, \mathbb{R}^n), k_1, k_2, k_3, k_4 \in C(\mathfrak{D} \times \mathfrak{D} \times \mathbb{R}^n, \mathbb{R}^n);$
- $(C2) \| f_{yy}(x,y) v_{yy}(x,y) \| < \frac{\varepsilon}{24a}, \| f_{xx}(x,y) v_{xx}(x,y) \| < \frac{\varepsilon}{24b}, \| f_{yx}(x,y) v_{yx}(x,y) \| < \frac{\varepsilon}{24c}, \| I^{\varrho}f(x,y) I^{\varrho}v(x,y) \| < \frac{\varepsilon}{24\lambda};$
- (C3) $\overline{\Vert g}(x,y) g_1(x,y) \Vert < \frac{\varepsilon}{6};$
- (C4) $||k_i(x,t,y,s,f(t,s)) k_i(x,t,y,s,v(t,s))|| < \frac{\varepsilon}{6\alpha\beta}, i = 1, 4, 0 < \alpha < \ell_1, 0 < \beta < \ell_2;$

(C5) $\|k_j(x,t,y,s,f(t,s)) - k_j(x,t,y,s,v(t,s))\| < \frac{\epsilon\Gamma(\varrho_1+1)\Gamma(\varrho_2+1)}{6\alpha^{\varrho_1}\beta^{\varrho_2}}, j = 2,3, 0 < \alpha < \ell_1, 0 < \beta < \ell_2.$

Then, there exists at least one solution for the 2D-NIDEF *on* $0 \le t \le \alpha$, $0 \le s \le \beta$.

Proof. Suppose that $\mathcal{D} = \{(x, t, y, s, f) : (x, t, y, s) \in \mathfrak{D} \times \mathfrak{D}, |f| \leq b'\}$. Let $|f_{yy}(x, y)| \leq \frac{b'}{16a}$, $|f_{xx}(x, y)| \leq \frac{b'}{16b}$, $|f_{yx}(x, y)| \leq \frac{b'}{16c}$, $|I^{\varrho}f(x, y)| \leq \frac{b'}{16\lambda}$, $|g(x, y)| \leq \frac{b'}{4}$,

$$\max\{|k_i(x_1, t, y_1, s, f(t, s))|, |k_i(x_2, t, y_2, s, f(t, s))|\} = \xi_i, \quad i = 1, 2, 3, 4,$$

on \mathcal{D} . Choose $(\xi_1 + \xi_4) \alpha \beta \leq \frac{b'}{4}$, $\frac{(\xi_2 + \xi_3) \alpha^{\varrho_1} \beta^{\varrho_2}}{\Gamma(\varrho_1 + 1) \Gamma(\varrho_2 + 1)} \leq \frac{b'}{4}$. Consider $\Pi_0 = \{f : f \in C(\mathfrak{D}_0, \mathbb{R}^n), |f| \leq b'\}$ such that $||f|| = \max_{(x,y)\in\mathfrak{D}_0} |f(x,y)|, \mathfrak{D}_0 = [0,\alpha] \times [0,\beta]$. Clearly, Π_0 is bounded, closed, and convex. Now, for any $f \in \Pi_0$, define the operator

$$\mathcal{T}f(x,y) = -af_{yy}(x,y) - bf_{xx}(x,y) - cf_{yx}(x,y) - \lambda I^{\varrho}f(x,y) + g(x,y) + \Theta(x,y) + \Lambda(x,y) + \rho(x,y) + \varphi(x,y), \quad (x,y) \in \mathfrak{D}_{0}.$$
(3)

It is clear that

$$\begin{split} |\Theta(x,y)| &\leq \xi_1 \alpha \beta, \\ |\Lambda(x,y)| &\leq \frac{\xi_2 \alpha^{\varrho_1} \beta^{\varrho_2}}{\Gamma(\varrho_1+1) \Gamma(\varrho_2+1)}, \\ |\rho(x,y)| &\leq \frac{\xi_3 \alpha^{\varrho_1} \beta^{\varrho_2}}{\Gamma(\varrho_1+1) \Gamma(\varrho_2+1)}, \\ |\varphi(x,y)| &\leq \xi_4 \alpha \beta. \end{split}$$

Therefore, we obtain

$$\begin{aligned} |\mathcal{T}f(x,y)| &\leq |af_{yy}(x,y)| + |bf_{xx}(x,y)| + |cf_{yx}(x,y)| + |\lambda I^{\varrho}f(x,y)| + |g(x,y)| + |\Theta(x,y)| \\ &+ |\Lambda(x,y)| + |\rho(x,y)| + |\varphi(x,y)| \\ &\leq \frac{b'}{2} + (\xi_1 + \xi_4)\alpha\beta + \frac{(\xi_2 + \xi_3)\alpha^{\varrho_1}\beta^{\varrho_2}}{\Gamma(\varrho_1 + 1)\Gamma(\varrho_2 + 1)} \leq b', \end{aligned}$$

which implies that $\mathcal{T}(\Pi_0) \subset \Pi_0$. Furthermore, for any (x_1, y_1) , $(x_2, y_2) \in \mathfrak{D}_0$, such that $x_2 > x_1$ and $y_2 > y_1$, we obtain

$$\begin{aligned} |\mathcal{T}f(x_{2},y_{2}) - \mathcal{T}f(x_{1},y_{1})| &\leq a |f_{yy}(x_{2},y_{2}) - f_{yy}(x_{1},y_{1})| + b |f_{xx}(x_{2},y_{2}) - f_{xx}(x_{1},y_{1})| \\ &+ c |f_{yx}(x_{2},y_{2}) - f_{yx}(x_{1},y_{1})| + \lambda |I^{\varrho}f(x_{2},y_{2}) - I^{\varrho}f(x_{1},y_{1})| \\ &+ |g(x_{2},y_{2}) - g(x_{1},y_{1})| + |\Theta(x_{2},y_{2}) - \Theta(x_{1},y_{1})| \\ &+ |\Lambda(x_{2},y_{2}) - \Lambda(x_{1},y_{1})| + |\rho(x_{2},y_{2}) - \rho(x_{1},y_{1})| \\ &+ |\varphi(x_{2},y_{2}) - \varphi(x_{1},y_{1})| + |\rho(x_{2},y_{2}) - \rho(x_{1},y_{1})| \end{aligned}$$

$$(4)$$

Additionally, we have

$$\begin{split} |I^{\varrho}f(x_{2},y_{2})-I^{\varrho}f(x_{1},y_{1})| \\ &\leq \frac{1}{\Gamma(\varrho_{1})\Gamma(\varrho_{2})} \left| \int_{0}^{x_{2}} \int_{0}^{y_{2}} (x_{2}-t)^{\varrho_{1}-1}(y_{2}-s)^{\varrho_{2}-1}f(t,s)\mathrm{d}s\mathrm{d}t \right| \\ &- \int_{0}^{x_{1}} \int_{0}^{y_{1}} (x_{1}-t)^{\varrho_{1}-1}(y_{1}-s)^{\varrho_{2}-1}f(t,s)\mathrm{d}s\mathrm{d}t \right| \\ &\leq \frac{1}{\Gamma(\varrho_{1})\Gamma(\varrho_{2})} \left| \int_{0}^{x_{1}} \int_{0}^{y_{1}} (x_{2}-t)^{\varrho_{1}-1}(y_{2}-s)^{\varrho_{2}-1}f(t,s)\mathrm{d}s\mathrm{d}t \right| \\ &+ \int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} (x_{2}-t)^{\varrho_{1}-1}(y_{2}-s)^{\varrho_{2}-1}f(t,s)\mathrm{d}s\mathrm{d}t \\ &- \int_{0}^{x_{1}} \int_{0}^{y_{1}} (x_{1}-t)^{\varrho_{1}-1}(y_{1}-s)^{\varrho_{2}-1}f(t,s)\mathrm{d}s\mathrm{d}t \right| \\ &\leq \frac{1}{\Gamma(\varrho_{1})\Gamma(\varrho_{2})} \left| \int_{0}^{x_{1}} \int_{0}^{y_{1}} \left((x_{2}-t)^{\varrho_{1}-1}(y_{2}-s)^{\varrho_{2}-1} - (x_{1}-t)^{\varrho_{1}-1}(y_{1}-s)^{\varrho_{2}-1} \right) f(t,s)\mathrm{d}s\mathrm{d}t \right| \\ &\leq \frac{1}{\Gamma(\varrho_{1}+1)\Gamma(\varrho_{2}+1)} \left(\int_{0}^{x_{1}} \int_{0}^{y_{1}} \left((x_{2}-t)^{\varrho_{1}-1}(y_{2}-s)^{\varrho_{2}-1} - (x_{1}-t)^{\varrho_{1}-1}(y_{1}-s)^{\varrho_{2}-1} \right) \mathrm{d}s\mathrm{d}t \\ &+ \int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} (x_{2}-t)^{\varrho_{1}-1}(y_{2}-s)^{\varrho_{2}-1}\mathrm{d}s\mathrm{d}t \right| \\ &\leq \frac{b'}{\Gamma(\varrho_{1}+1)\Gamma(\varrho_{2}+1)} \left(\int_{0}^{x_{1}} \int_{0}^{y_{1}} \left((x_{2}-t)^{\varrho_{1}-1}(y_{2}-s)^{\varrho_{2}-1} - (x_{1}-t)^{\varrho_{1}-1}(y_{1}-s)^{\varrho_{2}-1} \right) \mathrm{d}s\mathrm{d}t \\ &+ \int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} (x_{2}-t)^{\varrho_{1}-1}(y_{2}-s)^{\varrho_{2}-1}\mathrm{d}s\mathrm{d}t \right) \\ &\leq \frac{b'}{\Gamma(\varrho_{1}+1)\Gamma(\varrho_{2}+1)} \left((x_{2}-x_{1})^{\varrho_{1}}(y_{2}-y_{1})^{\varrho_{2}} - x_{2}^{\varrho_{1}}y_{2}^{\varrho_{2}} + x_{1}^{\varrho_{1}}y_{1}^{\varrho_{2}} - (x_{2}-x_{1})^{\varrho_{1}}(y_{2}-y_{1})^{\varrho_{2}} \right) \\ &= 0. \end{split}$$

Therefore,

$$|\mathcal{T}f(x_2, y_2) - \mathcal{T}f(x_1, y_1)| = 0.$$
(5)

Moreover, we can obtain

$$\begin{split} |\Lambda(x_{2},y_{2}) - \Lambda(x_{1},y_{1})| &\leq \frac{1}{\Gamma(q_{1})}\Gamma(q_{2})} \left| \int_{0}^{y_{2}} \int_{0}^{y_{2}} (x_{2}-t)^{q_{1}-1}(y_{2}-s)^{q_{2}-1}k_{2}(x_{2},t,y_{2},s,f(t,s))dsdt \right| \\ &= \frac{1}{\Gamma(q_{1})}\Gamma(q_{2})} \left| \int_{0}^{x_{1}} \int_{0}^{y_{1}} (x_{2}-t)^{q_{1}-1}(y_{2}-s)^{q_{2}-1}k_{2}(x_{1},t,y_{1},s,f(t,s))dsdt \right| \\ &= \frac{1}{\Gamma(q_{1})}\Gamma(q_{2})} \left| \int_{0}^{x_{1}} \int_{0}^{y_{1}} (x_{2}-t)^{q_{1}-1}(y_{2}-s)^{q_{2}-1}k_{2}(x_{2},t,y_{2},s,f(t,s))dsdt \\ &+ \int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} (x_{2}-t)^{q_{1}-1}(y_{1}-s)^{q_{2}-1}k_{2}(x_{2},t,y_{2},s,f(t,s))dsdt \\ &= \frac{1}{\Gamma(q_{1})} \int_{0}^{y_{1}} \int_{0}^{x_{1}} \int_{0}^{y_{1}} ((x_{2}-t)^{q_{1}-1}(y_{2}-s)^{q_{2}-1}k_{2}(x_{2},t,y_{2},s,f(t,s))dsdt \\ &= \frac{1}{\Gamma(q_{1})} \int_{0}^{x_{1}} \int_{0}^{y_{1}} ((x_{2}-t)^{q_{1}-1}(y_{2}-s)^{q_{2}-1}k_{2}(x_{2},t,y_{2},s,f(t,s)) \\ &- (x_{1}-t)^{q_{1}-1}(y_{1}-s)^{q_{2}-1}k_{2}(x_{1},t,y_{1},s,f(t,s)) \right| dsdt \\ &+ \int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} (x_{2}-t)^{q_{1}-1}(y_{2}-s)^{q_{2}-1}k_{2}(x_{2},t,y_{2},s,f(t,s)) | \\ &+ (x_{1}-t)^{q_{1}-1}(y_{1}-s)^{q_{2}-1}k_{2}(x_{1},t,y_{1},s,f(t,s)) | \\ &+ (x_{1}-t)^{q_{1}-1}(y_{1}-s)^{q_{2}-1}k_{2}(x_{1},t,y_{1},s,f(t,s)) | \\ &+ (x_{1}-t)^{q_{1}-1}(y_{1}-s)^{q_{2}-1}|k_{2}(x_{2},t,y_{2},s,f(t,s)) | \\ &\leq \frac{\zeta_{2}}{\Gamma(q_{1})\Gamma(q_{2})} \int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} (x_{2}-t)^{q_{1}-1}(y_{2}-s)^{q_{2}-1}|k_{2}(x_{2},t,y_{2},s,f(t,s)) | \\ &dst \\ &\leq \frac{\zeta_{2}}{\Gamma(q_{1})\Gamma(q_{2})} \int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} (x_{2}-t)^{q_{1}-1}(y_{2}-s)^{q_{2}-1}|k_{2}(x_{2},t,y_{2},s,f(t,s)) | \\ &dst \\ &\leq \frac{\zeta_{2}}{\Gamma(q_{1}+1)\Gamma(q_{2}-1)} ((x_{2}-x_{1})^{q_{1}}(y_{2}-y_{1})^{q_{2}} - x_{2}^{q_{1}}y_{2}^{q_{2}} + x_{1}^{q_{1}}y_{1}^{q_{2}} + (x_{2}-x_{1})^{q_{1}}(y_{2}-y_{1})^{q_{2}}) \\ &\leq \frac{\zeta_{2}}{\Gamma(q_{1}+1)\Gamma(q_{2}+1)} ((x_{2}-x_{1})^{q_{1}}(y_{2}-y_{1})^{q_{2}} - x_{2}^{q_{1}}y_{2}^{q_{2}} + x_{1}^{q_{1}}y_{1}^{q_{2}} + (x_{2}-x_{1})^{q_{1}}(y_{2}-y_{1})^{q_{2}}) \\ &\leq \frac{\zeta_{2}}{\Gamma(q_{1}+1)\Gamma(q_{2}+1)} (x_{2}-x_{1})^{q_{1}}(y_{2}-y_{1})^{q_{2}} - x_{2}^{q_{1}}y_{2}^{q_{2}} + x_{1}^{q_{1}}y_{1}^{q_{2}} + (x_{2}-x_{1})^{q_{1}}(y_{2$$

Similarly,

$$|\Theta(x_2, y_2) - \Theta(x_1, y_1)| \le \xi_1(x_2y_2 - x_1y_1), \tag{7}$$

$$\begin{aligned} |\rho(x_2, y_2) - \rho(x_1, y_1)| &\leq \xi_3 \left(\frac{\alpha^{\varrho_1} \beta^{\varrho_2}}{\Gamma(\varrho_1 + 1) \Gamma(\varrho_2 + 1)} - \frac{\alpha^{\varrho_1} \beta^{\varrho_2}}{\Gamma(\varrho_1 + 1) \Gamma(\varrho_2 + 1)} \right) = 0, \quad (8) \\ |\varphi(x_2, y_2) - \varphi(x_1, y_1)| &\leq \xi_4 (\alpha \beta - \alpha \beta) = 0. \end{aligned}$$

$$|x_2, y_2) - \varphi(x_1, y_1)| \le \xi_4(\alpha \beta - \alpha \beta) = 0.$$
 (9)

Applying inequalities (5)-(9) in (4) gives

$$\begin{aligned} |\mathcal{T}f(x_{2},y_{2}) - \mathcal{T}f(x_{1},y_{1})| &\leq |(\mathscr{F}f)(x_{2},y_{2}) - (\mathscr{F}f)(x_{1},y_{1})| + \lambda |I^{\varrho}f(x_{2},y_{2}) - I^{\varrho}f(x_{1},y_{1})| \\ &+ |g(x_{2},y_{2}) - g(x_{1},y_{1})| + \xi_{1}(x_{2}y_{2} - x_{1}y_{1}) \\ &+ \frac{2\xi_{2}}{\Gamma(\varrho_{1}+1)\Gamma(\varrho_{2}+1)}(x_{2} - x_{1})^{\varrho_{1}}(y_{2} - y_{1})^{\varrho_{2}}, \end{aligned}$$
(10)

where

$$(\mathscr{F}f)(x,y) = -af_{yy}(x,y) - bf_{xx}(x,y) - cf_{yx}(x,y).$$

It is clear that the right-hand side of (10) tends to zero as $x_2 \rightarrow x_1, y_2 \rightarrow y_1$. Thus, $\mathcal{T}: \Pi_0 \rightarrow \Pi_0$ is equicontinuous. Therefore, by using the Arzela–Ascoli theorem [39], the compactness of the closure of $\mathcal{T}(\Pi_0)$ can be concluded.

Now, we need to show that \mathcal{T} is continuous. For this propose, define

$$\mathcal{T}v(x,y) = (\mathscr{F}v)(x,y) - \lambda I^{\varrho}v(x,y) + g_1(x,y) + \Theta_v(x,y) + \Lambda_v(x,y) + \rho_v(x,y) + \varphi_v(x,y),$$
$$v(x,0) = d_1(x), \ v(0,y) = d_2(y), \ v_y(x,0) = d_3(x), \ v_x(0,y) = d_4(y), \ v_x(x,0) = d_5(x),$$

where $(x, y) \in \mathfrak{D}_0$, $v \in \Pi_0$, and

$$\begin{aligned} (\mathscr{F}v)(x,y) &= -av_{yy}(x,y) - bv_{xx}(x,y) - cv_{yx}(x,y), \\ \Theta_v(x,y) &= \int_0^x \int_0^y k_1(x,t,y,s,v(t,s)) ds dt, \\ \Lambda_v(x,y) &= \frac{1}{\Gamma(\varrho_1)\Gamma(\varrho_2)} \int_0^x \int_0^y (x-t)^{\varrho_1-1} (y-s)^{\varrho_2-1} k_2(x,t,y,s,v(t,s)) ds dt, \\ \rho_v(x,y) &= \frac{1}{\Gamma(\varrho_1)\Gamma(\varrho_2)} \int_0^x \int_0^\beta (\alpha-t)^{\varrho_1-1} (\beta-s)^{\varrho_2-1} k_3(x,t,y,s,v(t,s)) ds dt, \\ \varphi_v(x,y) &= \int_0^x \int_0^\beta k_4(x,t,y,s,v(t,s)) ds dt. \end{aligned}$$

Since k_i , i = 1, 2, 3, 4, are uniformly continuous, we can write

$$\forall \varepsilon > 0, \ \exists \delta > 0: \quad |f(x,y) - v(x,y)| < \delta.$$

Suppose that the assumptions (C1)-(C5) hold; therefore,

$$\begin{split} |\mathcal{T}f(x,y) - \mathcal{T}v(x,y)| &\leq |(\mathscr{F}f)(x,y) - (\mathscr{F}v)(x,y)| + \lambda |I^{\varrho}f(x,y) - I^{\varrho}v(x,y)| \\ &+ |g(x,y) - g_{1}(x,y)| + |\Theta(x,y) - \Theta_{v}(x,y)| \\ &+ |\Lambda(x,y) - \Lambda_{v}(x,y)| + |\rho(x,y) - \rho_{v}(x,y)| \\ &+ |\varphi(x,y) - \varphi_{v}(x,y)|. \end{split}$$

Furthermore, we can easily obtain the following inequalities:

$$\begin{split} |\Theta(x,y) - \Theta_v(x,y)| &\leq \frac{\varepsilon}{6\alpha\beta} \int_0^x \int_0^y \mathrm{d}s \mathrm{d}t \leq \frac{\varepsilon}{6}, \\ |\Lambda(x,y) - \Lambda_v(x,y)| &\leq \frac{1}{\Gamma(\varrho_1)\Gamma(\varrho_2)} \frac{\varepsilon\Gamma(\varrho_1+1)\Gamma(\varrho_2+1)}{6\alpha^{\varrho_1}\beta^{\varrho_2}} \int_0^x \int_0^y (x-t)^{\varrho_1-1} (y-s)^{\varrho_2-1} \mathrm{d}s \mathrm{d}t \leq \frac{\varepsilon}{6}, \\ |\rho(x,y) - \rho_v(x,y)| &\leq \frac{1}{\Gamma(\varrho_1)\Gamma(\varrho_2)} \frac{\varepsilon\Gamma(\varrho_1+1)\Gamma(\varrho_2+1)}{6\alpha^{\varrho_1}\beta^{\varrho_2}} \int_0^\alpha \int_0^\beta (\alpha-t)^{\varrho_1-1} (\beta-s)^{\varrho_2-1} \mathrm{d}s \mathrm{d}t = \frac{\varepsilon}{6}, \\ |\varphi(x,y) - \varphi_v(x,y)| &\leq \frac{\varepsilon}{6\alpha\beta} \int_0^\alpha \int_0^\beta \mathrm{d}s \mathrm{d}t = \frac{\varepsilon}{6}. \end{split}$$

Thus, we have

$$|\mathcal{T}f(x,y) - \mathcal{T}v(x,y)| \leq \varepsilon,$$

and the proof is completed. \Box

In the following theorem, by using Tychonoff's fixed-point theorem [38], the global existence of solutions of the general 2D-NFIDEs will be discussed.

Theorem 2. Suppose that

- (**D1**) $G_i \in C(\mathbb{R}^5_+, \mathbb{R}^n), k_i \in C(\mathbb{R}^4_+ \times \mathbb{R}^n, \mathbb{R}^n), i = 1, 2, 3, 4;$
- (D2) For each $(x, t, y, s) \in \mathbb{R}^4_+$, $G_i(x, t, y, s, u(t, s))$, i = 1, 2, 3, 4, are monotonically non-decreasing *in u*;

$$\begin{aligned} & (\textbf{D3}) |k_i(x,t,y,s,f(t,s))| \leq G_i(x,t,y,s,|f(t,s)|), (x,t,y,s,f(t,s)) \in \mathbb{R}^4_+ \times \mathbb{R}^n, i = 1,2,3,4; \\ & (\textbf{D4}) |(\mathscr{F}f)(x,y)| \leq (\mathscr{F}u)(x,y). \end{aligned}$$

Then, for every $x, y \ge 0$, *the generalized two-dimensional nonlinear fractional integro-differential equation*

$$u(x,y) = (\mathscr{F}u)(x,y) + \lambda' I^{\varrho} u(x,y) + q(x,y) + \Theta_u(x,y) + \Lambda_u(x,y) + \rho_u(x,y) + \varphi_u(x,y),$$
(11)

has a solution u(x, y) with initial conditions

$$u(x,0) = d_1(x), \ u(0,y) = d_2(y), \ u_y(x,0) = d_3(x), \ u_x(0,y) = d_4(y), \ u_x(x,0) = d_5(x),$$
(12)

and

$$\begin{aligned} (\mathscr{F}u)(x,y) &= -a \, u_{yy}(x,y) - b \, u_{xx}(x,y) - c \, u_{yx}(x,y), \\ I^{\varrho}u(x,y) &= \frac{1}{\Gamma(\varrho_1)\Gamma(\varrho_2)} \int_0^x \int_0^y (x-t)^{\varrho_1-1} (y-s)^{\varrho_2-1} u(t,s) ds dt, \\ \Theta_u(x,y) &= \int_0^x \int_0^y G_1(x,t,y,s,u(t,s)) ds dt, \\ \Lambda_u(x,y) &= \frac{1}{\Gamma(\varrho_1)\Gamma(\varrho_2)} \int_0^x \int_0^y (x-t)^{\varrho_1-1} (y-s)^{\varrho_2-1} G_2(x,t,y,s,u(t,s)) ds dt, \\ \rho_u(x,y) &= \frac{1}{\Gamma(\varrho_1)\Gamma(\varrho_2)} \int_0^{\ell_1} \int_0^{\ell_2} (\ell_1-t)^{\varrho_1-1} (\ell_2-s)^{\varrho_2-1} G_3(x,t,y,s,u(t,s)) ds dt, \\ \varphi_u(x,y) &= \int_0^{\ell_1} \int_0^{\ell_2} G_4(x,t,y,s,u(t,s)) ds dt. \end{aligned}$$

Additionally, for every $x, y \ge 0$ and $q(x, y) \in \mathbb{R}^2_+$, such that $|g(x, y)| \le q(x, y)$, there exists a solution f(x, y) for Equations (1) and (2) satisfying $|f(x, y)| \le u(x, y)$ and $|\lambda| \le \lambda'$.

Proof. Let Q be a real space of all continuous functions from $(0, \infty) \times (0, \infty)$ into \mathbb{R}^n . The topology on Q is that induced by the family of pseudo-norms $\{Q_{m',m}(f)\}_{m',m=1}^{\infty}$, where $\mathcal{Q}_{m',m}(f) = \sup_{0 \le x \le m', 0 \le y \le m} |f(x,y)|$ for $f \in \mathcal{Q}$. Consider $\{\mathcal{S}_{m',m}\}_{m',m=1}^{\infty}$ as a set of neighborhoods with $\mathcal{S}_{m',m} = \{f \in \mathcal{Q} : \mathcal{Q}_{m',m}(f) \le 1\}$. Under this topology, \mathcal{Q} is complete, locally convex, and a linear space.

Let

$$\mathcal{Q}_0 = \{ f \in \mathcal{Q} : |f(x,y)| \le u(x,y), x, y \ge 0 \} \subseteq \mathcal{Q},$$

where u(x, y) is a solution of Equations (11) and (12). Obviously, in the topology of Q, Q_0 is closed, convex, and bounded.

Note that a fixed point of Equations (11) and (12) corresponds to a solution of Equations (1) and (2). Since, in the topology of Q, T is compact and Q_0 is bounded, therefore, the closure of $T(Q_0)$ is compact.

Considering assumptions (D1)-(D4) yields

$$\begin{aligned} |\Theta(x,y)| &\leq \int_0^x \int_0^y |k_1(x,t,y,s,f(t,s))| ds dt \leq \int_0^x \int_0^y G_1(x,t,y,s,|f(t,s)|) ds dt \\ &\leq \int_0^x \int_0^y G_1(x,t,y,s,u(t,s)) ds dt = \Theta_u(x,y). \end{aligned}$$

Similarly,

$$|\Lambda(x,y)| \le \Lambda_u(x,y), \quad |\rho(x,y)| \le \rho_u(x,y), \quad |\varphi(x,y)| \le \varphi_u(x,y), \quad |I^{\varrho}f(x,y)| \le u(x,y).$$

Since u(x, y) is a solution of Equations (11) and (12), the definition of Q_0 yields $|\mathcal{T}f(x,y)| \leq u(x,y)$. Therefore, $\mathcal{T}(Q_0) \subset Q_0$. Now, by using Tychonoff's fixed-point theorem [38], we can deduce that \mathcal{T} has a fixed point in Q_0 , and this completes the proof. \Box

In the following theorem, we prove that the general 2D-NFIDE has a unique solution.

Theorem 3. Consider $k_i \in C(\mathfrak{D} \times \mathfrak{D} \times \mathbb{R}^n, \mathbb{R}^n)$ (i = 1, 2, 3, 4), $f \in C(\mathfrak{D}, \mathbb{R}^n)$. Assume that there exist $0 < L_i < 1$ (j = 1, 2, 3) such that:

$$\left| f_{yy}(x,y) - \overline{f}_{yy}(x,y) \right| \le L_1 \left| f(x,y) - \overline{f}(x,y) \right|,\tag{13}$$

$$\left| f_{xx}(x,y) - \overline{f}_{xx}(x,y) \right| \le L_2 \left| f(x,y) - \overline{f}(x,y) \right|,\tag{14}$$

$$\left| f_{yx}(x,y) - \overline{f}_{yx}(x,y) \right| \le L_3 \left| f(x,y) - \overline{f}(x,y) \right|,\tag{15}$$

$$\left|k_i(x,t,y,s,f(t,s)) - k_i(x,t,y,s,\overline{f}(t,s))\right| \le \eta_i \left|f(t,s) - \overline{f}(t,s)\right|, \quad i = 1, 2, 3, 4.$$

$$(16)$$

If

$$\left((aL_1 + bL_2 + cL_3) + \frac{\ell_1^{\varrho_1} \ell_2^{\varrho_2}}{\Gamma(\varrho_1 + 1)\Gamma(\varrho_2 + 1)} (\lambda + \eta_1 + \eta_2 + \eta_3 + \eta_4) \right) < 1,$$
(17)

then the general 2D-NIDEF has a unique solution.

Proof. Let

$$\mathcal{T}\overline{f}(x,y) = (\mathscr{F}\overline{f})(x,y) - \lambda I^{\varrho}\overline{f}(x,y) + g(x,y) + \overline{\Theta}(x,y) + \overline{\Lambda}(x,y) + \overline{\rho}(x,y) + \overline{\phi}(x,y)$$

with

$$\overline{f}(x,0) = d_1(x), \quad \overline{f}(0,y) = d_2(y), \quad \overline{f}_y(x,0) = d_3(x), \quad \overline{f}_x(0,y) = d_4(y), \quad \overline{f}_x(x,0) = d_5(x),$$

and

$$\begin{aligned} (\mathscr{F}\overline{f})(x,y) &= -a\overline{f}_{yy}(x,y) - b\overline{f}_{xx}(x,y) - c\overline{f}_{yx}(x,y), \\ \overline{\Theta}(x,y) &= \int_0^x \int_0^y k_1(x,t,y,s)\overline{f}^{p_1}(t,s) ds dt, \\ \overline{\Lambda}(x,y) &= \frac{1}{\Gamma(\varrho_1)\Gamma(\varrho_2)} \int_0^x \int_0^y (x-t)^{\varrho_1-1} (y-s)^{\varrho_2-1} k_2(x,t,y,s)\overline{f}^{p_2}(t,s) ds dt, \\ \overline{\rho}(x,y) &= \frac{1}{\Gamma(\varrho_1)\Gamma(\varrho_2)} \int_0^{\ell_1} \int_0^{\ell_2} (\ell_1-t)^{\varrho_1-1} (\ell_2-s)^{\varrho_2-1} k_3(x,t,y,s)\overline{f}^{p_3}(t,s) ds dt, \\ \overline{\varphi}(x,y) &= \int_0^{\ell_1} \int_0^{\ell_2} k_4(x,t,y,s)\overline{f}^{p_4}(t,s) ds dt. \end{aligned}$$

for $(x, y) \in \mathfrak{D}$. Using (13)–(16) yields

$$\begin{split} \left| (\mathscr{F}f)(x,y) - (\mathscr{F}\overline{f})(x,y) \right| &\leq (aL_1 + bL_2 + cL_3) \left\| f - \overline{f} \right\|, \\ \left| I^{\varrho}f(x,y) - \lambda I^{\varrho}\overline{f}(x,y) \right| &\leq \frac{\ell_1^{\varrho_1}\ell_2^{\varrho_2}}{\Gamma(\varrho_1 + 1)\Gamma(\varrho_2 + 1)} \left\| f - \overline{f} \right\|, \\ \left| \Theta(x,y) - \overline{\Theta}(x,y) \right| &\leq \frac{\eta_1\ell_1^{\varrho_1}\ell_2^{\varrho_2}}{\Gamma(\varrho_1 + 1)\Gamma(\varrho_2 + 1)} \left\| f - \overline{f} \right\|, \\ \left| \Lambda(x,y) - \overline{\Lambda}(x,y) \right| &\leq \frac{\eta_2\ell_1^{\varrho_1}\ell_2^{\varrho_2}}{\Gamma(\varrho_1 + 1)\Gamma(\varrho_2 + 1)} \left\| f - \overline{f} \right\|, \\ \left| \rho(x,y) - \overline{\rho}(x,y) \right| &\leq \frac{\eta_3\ell_1^{\varrho_1}\ell_2^{\varrho_2}}{\Gamma(\varrho_1 + 1)\Gamma(\varrho_2 + 1)} \left\| f - \overline{f} \right\|, \\ \left| \varphi(x,y) - \overline{\varphi}(x,y) \right| &\leq \frac{\eta_4\ell_1^{\varrho_1}\ell_2^{\varrho_2}}{\Gamma(\varrho_1 + 1)\Gamma(\varrho_2 + 1)} \left\| f - \overline{f} \right\|. \end{split}$$

Now, we can write

$$\begin{aligned} \left| \mathcal{T}f(x,y) - \mathcal{T}\overline{f}(x,y) \right| &\leq \left| (\mathscr{F}f)(x,y) - (\mathscr{F}\overline{f})(x,y) \right| + \lambda \left| I^{\varrho}f(x,y) - \lambda I^{\varrho}\overline{f}(x,y) \right| \\ &+ \left| \Theta(x,y) - \overline{\Theta}(x,y) \right| + \left| \Lambda(x,y) - \overline{\Lambda}(x,y) \right| \\ &+ \left| \rho(x,y) - \overline{\rho}(x,y) \right| + \left| \varphi(x,y) - \overline{\varphi}(x,y) \right| \\ &\leq \left(aL_1 + bL_2 + cL_3 + \frac{\ell_1^{\varrho_1}\ell_2^{\varrho_2}}{\Gamma(\varrho_1 + 1)\Gamma(\varrho_2 + 1)} (\lambda + \eta_1 + \eta_2 + \eta_3 + \eta_4) \right) \left\| f - \overline{f} \right\|, \end{aligned}$$

for any $(x, y) \in \mathfrak{D}$ and $f, \overline{f} \in C(\mathfrak{D}, \mathbb{R}^n)$. Therefore,

$$\left\|\mathcal{T}f - \mathcal{T}\overline{f}\right\| \le \left(aL_1 + bL_2 + cL_3 + \frac{\ell_1^{\varrho_1}\ell_2^{\varrho_2}}{\Gamma(\varrho_1 + 1)\Gamma(\varrho_2 + 1)}(\lambda + \eta_1 + \eta_2 + \eta_3 + \eta_4)\right) \left\|f - \overline{f}\right\|.$$

From (17), \mathcal{T} is a contraction map in $C(\mathfrak{D}, \mathbb{R}^n)$, and thus, it has a unique fixed point. Therefore, $f \in C(\mathfrak{D}, \mathbb{R}^n)$ is a unique solution for the general 2D-NIDEF. \Box

3. The 1D-SJPs and 2D-SJPs and Their Operational Matrices

$3.1. \ The \ 1D\text{-}SJPs$

The 1D-SJPs are defined on the interval $[0, \ell)$ by

$$\mathcal{J}_{\ell,l}^{(\tau,\varsigma)}(x) = \sum_{j=0}^{l} (-1)^{l-j} \frac{\Gamma(l+\varsigma+1)\Gamma(l+j+\tau+\varsigma+1)}{\Gamma(j+\varsigma+1)\Gamma(l+\tau+\varsigma+1)(l-j)! j! \ell^j} x^j.$$

These polynomials are orthogonal on the interval $[0, \ell)$; therefore,

$$\int_0^{\ell_1} \mathcal{J}_{\ell,i}^{(\tau,\varsigma)}(x) \mathcal{J}_{\ell,i'}^{(\tau,\varsigma)}(x) w_\ell^{(\tau,\varsigma)}(x) \,\mathrm{d}x = \delta_{ii'} h_{\ell,i}^{(\tau,\varsigma)},$$

where $w_{\ell}^{(\tau,\varsigma)}(x) = x^{\varsigma}(\ell-x)^{\tau}$ is a weight function, $\delta_{ii'}$ is Kronecker delta, and

$$h_{\ell,l}^{(\tau,\varsigma)} = \frac{\ell^{\tau+\varsigma+1}\Gamma(l+\tau+1)\Gamma(l+\varsigma+1)}{(2l+\tau+\varsigma+1)l!\Gamma(l+\tau+\varsigma+1)}$$

Additionally, these polynomials have the following property:

$$\frac{d^{i}}{dx^{i}}\mathcal{J}_{\ell,l}^{(\tau,\varsigma)}(x) = \frac{\Gamma(l+\tau+\varsigma+i+1)}{\Gamma(l+\tau+\varsigma+1)}\mathcal{J}_{\ell,l-i}^{(\tau+i,\varsigma+i)}(x).$$
(18)

The vector of 1D-SJPs is as follows:

$$\Psi(x) = \left(\begin{array}{ccc} \mathcal{J}_{\ell,0}^{(\tau,\varsigma)}(x) & \mathcal{J}_{\ell,1}^{(\tau,\varsigma)}(x) & \dots & \mathcal{J}_{\ell,N}^{(\tau,\varsigma)}(x) \end{array}\right)^T.$$
(19)

3.2. 2D-SJPs and Function Approximation

The 2D-SJPs are defined on the domain $\mathfrak{D} = [0, \ell_1) \times [0, \ell_2)$ by

$$\mathcal{J}_{i,j}^{(\tau,\varsigma)}(x,y) = \mathcal{J}_{\ell_1,i}^{(\tau,\varsigma)}(x)\mathcal{J}_{\ell_2,j}^{(\tau,\varsigma)}(y), \quad i,j=0,1,\ldots,N.$$

These polynomials are orthogonal on \mathfrak{D} ; therefore,

$$\int_{0}^{\ell_{1}} \int_{0}^{\ell_{2}} \mathcal{J}_{i,j}^{(\tau,\varsigma)}(x,y) \mathcal{J}_{i',j'}^{(\tau,\varsigma)}(x,y) \omega^{(\tau,\varsigma)}(x,y) \,\mathrm{d}y \,\mathrm{d}x = \delta_{ii'} \delta_{jj'} h_{\ell_{1},i}^{(\tau,\varsigma)} h_{\ell_{2},j}^{(\tau,\varsigma)},$$

where $\omega^{(\tau,\varsigma)}(x,y) = w_{\ell_1}^{(\tau,\varsigma)}(x)w_{\ell_2}^{(\tau,\varsigma)}(y)$ is a weight function. By using 2D-SJPs, we can approximate a continuous function f(x,y) on the domain $\mathfrak{D} = [0, \ell_1) \times [0, \ell_2)$ as follows:

$$f(x,y) \simeq f_N(x,y) = \sum_{i=0}^N \sum_{j=0}^N \hat{f}_{ij} \mathcal{J}_{i,j}^{(\tau,\varsigma)}(x,y) = \Psi^T(x,y) \hat{F} = \hat{F}^T \Psi(x,y),$$
(20)

where

$$\hat{F} = (\hat{f}_{00} \ \hat{f}_{01} \ \dots \hat{f}_{0N} \ \hat{f}_{10} \ \hat{f}_{11} \ \dots \ \hat{f}_{1N} \ \dots \ \hat{f}_{N0} \ \hat{f}_{N1} \ \dots \ \hat{f}_{NN})^T$$

with entries

$$\hat{f}_{ij} = \frac{1}{h_{\ell_1,i}^{(\tau,\varsigma)} h_{\ell_2,j}^{(\tau,\varsigma)}} \int_0^{\ell_1} \int_0^{\ell_2} f(x,y) \mathcal{J}_{i,j}^{(\tau,\varsigma)}(x,y) \omega^{(\tau,\varsigma)}(x,y) \, \mathrm{d}y \, \mathrm{d}x, \quad i,j = 0, 1, \dots, N,$$

and

$$\Psi(x,y) = \left(\mathcal{J}_{0,0}^{(\tau,\varsigma)}(x,y), \dots \mathcal{J}_{0,N}^{(\tau,\varsigma)}(x,y), \mathcal{J}_{1,0}^{(\tau,\varsigma)}(x,y), \dots \mathcal{J}_{1,N}^{(\tau,\varsigma)}(x,y) \\ \dots, \mathcal{J}_{N,0}^{(\tau,\varsigma)}(x,y), \dots \mathcal{J}_{N,N}^{(\tau,\varsigma)}(x,y)\right)^{T},$$
(21)

are $(N+1)^2 \times 1$ vectors.

Additionally, we can expand a function k(x, t, y, s) on the domain $\mathfrak{D} \times \mathfrak{D}$ with respect to 2D-SJPs as follows:

$$k(x,t,y,s) \simeq \Psi^T(x,y) K \Psi(t,s).$$
⁽²²⁾

Here, *K* is a matrix with entries

$$K_{i,j} = \frac{\int_{0}^{\ell_{1}} \int_{0}^{\ell_{2}} \int_{0}^{\ell_{1}} \int_{0}^{\ell_{2}} \mathcal{J}_{q'[i],q''[i]}^{(\tau,\varsigma)}(x,y)k(x,t,y,s)\mathcal{J}_{q'[j],q''[j]}^{(\tau,\varsigma)}(t,s)\omega^{(\tau,\varsigma)}(x,y)\omega^{(\tau,\varsigma)}(t,s)dsdtdydx}{h_{\ell_{1},q'[i]}^{(\tau,\varsigma)} h_{\ell_{2},q''[i]}^{(\tau,\varsigma)} h_{\ell_{1},q'[j]}^{(\tau,\varsigma)} h_{\ell_{2},q''[j]}^{(\tau,\varsigma)}}$$

where

$$q' = [0, \dots, 0, 1, \dots, 1, \dots, N, \dots, N],$$

 $q'' = [0, \dots, N, 0, \dots, N, \dots, 0, \dots, N],$

and $i, j = 1, \dots, (N+1)^2$.

3.3. Operational Matrices of Two-Dimensional Integration

In [40], the authors computed the one-dimensional integration of $\Psi(t)$ for $t \in [0, 1)$. Similarly, we compute the one-dimensional integration of this vector for $t \in [0, \ell)$, as follows:

$$\int_0^x \Psi(t) \, \mathrm{d}t \simeq \mathbf{P}_x \, \Psi(x),$$

where \mathbf{P}_x is a one-dimensional operational matrix of integration, defined in the following form:

$$\mathbf{P}_{x} = \begin{pmatrix} p_{00} & p_{01} & \dots & p_{0N} \\ p_{10} & p_{11} & \dots & p_{1N} \\ \vdots & \vdots & \ddots & \vdots \\ p_{N0} & p_{N1} & \dots & p_{NN} \end{pmatrix},$$
(23)

with the following entries:

$$\begin{split} p_{kl} &= \sum_{j=0}^k \left(\frac{(-1)^{k-j} \Gamma(l+\varsigma+1) \Gamma(k+\varsigma+1) \Gamma(k+j+\tau+\varsigma+1) \Gamma(\tau+1)}{h_l \Gamma(l+\tau+\varsigma+1) \Gamma(j+\varsigma+1) \Gamma(k+\tau+\varsigma+1) (j+1)! (k-j)! \ell^j} \right) \\ &\times \sum_{i=0}^l \frac{(-1)^{l-i} \Gamma(l+i+\tau+\varsigma+1) \Gamma(i+j+\varsigma+2) \ell}{\Gamma(i+\varsigma+1) \Gamma(i+j+\tau+\varsigma+3) i! (l-i)!} \right), \quad k,l = 0, 1, \dots, N. \end{split}$$

Since $\Psi(x, y) = \Psi(x) \otimes \Psi(y)$, the two-dimensional integration of $\Psi(t, s)$ can be obtained as follows:

$$\int_0^x \int_0^y \Psi(t,s) \, \mathrm{d}s \, \mathrm{d}t \simeq (\mathbf{P}_x \otimes \mathbf{P}_y) \, \Psi(x,y), \qquad x \in [0,\ell_1), \, y \in [0,\ell_2), \tag{24}$$

where \otimes denotes the Kronecker product; $\mathbf{P}_x \otimes \mathbf{P}_y$ is the $(N+1)^2 \times (N+1)^2$ operational matrix of the two-dimensional integration; and \mathbf{P}_x , \mathbf{P}_y are $(N+1) \times (N+1)$ one-dimensional operational matrices of integration, defined in Equation (23).

Additionally, it is easy to conclude the following result:

$$\int_{0}^{\ell_{1}} \int_{0}^{\ell_{2}} \Psi(t,s) \,\mathrm{d}s \,\mathrm{d}t = A_{1} \otimes A_{2},\tag{25}$$

where

$$A_1 = (a_0 \ a_1 \ \dots \ a_N)^T, \qquad A_2 = (a'_0 \ a'_1 \ \dots \ a'_N)^T,$$

with the entries:

$$a_{r} = \sum_{j=0}^{r} (-1)^{r-j} \frac{\Gamma(r+\varsigma+1)\Gamma(r+j+\tau+\varsigma+1)\ell_{1}}{\Gamma(j+\varsigma+1)\Gamma(r+\tau+\varsigma+1)(r-j)!(j+1)!},$$

$$a_{r}' = \sum_{j=0}^{r} (-1)^{r-j} \frac{\Gamma(r+\varsigma+1)\Gamma(r+j+\tau+\varsigma+1)\ell_{2}}{\Gamma(j+\varsigma+1)\Gamma(r+\tau+\varsigma+1)(r-j)!(j+1)!},$$

for r = 0, 1, ..., N.

3.4. Operational Matrices of Fractional-Order Integration

In [27], the authors defined an operational matrix of the Riemann–Liouville integral operator of order κ by

$$\mathbf{I}^{\ell,\kappa} = \begin{pmatrix} S_{00} & S_{01} & \dots & S_{0N} \\ S_{10} & S_{11} & \dots & S_{1N} \\ \vdots & \vdots & \ddots & \vdots \\ S_{N0} & S_{N1} & \dots & S_{NN} \end{pmatrix},$$

with the entries

$$\begin{split} S_{lr} &= \sum_{m=0}^{l} \left(\frac{(-1)^{l-m} \Gamma(l+\varsigma+1) \Gamma(l+m+\tau+\varsigma+1) \Gamma(m+1)}{\Gamma(m+\varsigma+1) \Gamma(l+\tau+\varsigma+1) (l-m)! m! \Gamma(m+\kappa+1) \ell^{m}} \right. \\ &\times \sum_{m'=0}^{r} \frac{(-1)^{r-m'} (2r+\tau+\varsigma+1) \Gamma(r+1) \Gamma(r+m'+\tau+\varsigma+1) \Gamma(m+\kappa+m'+\varsigma+1) \Gamma(\kappa+1) \ell^{\kappa}}{\Gamma(r+\tau+1) \Gamma(m'+\varsigma+1) (r-m')! m'! \Gamma(m+\kappa+m'+\varsigma+\tau+2)} \right), \end{split}$$

for l, r = 0, 1, ..., N.

Theorem 4 (see [34]). Let $\varrho = (\varrho_1, \varrho_2) \in (0, \infty) \times (0, \infty)$ and $\Psi(x, y)$ be the vector of 2D-SJPs. Then

$$I^{\varrho}\Psi(x,y) \simeq (I^{\ell_1,\varrho_1} \otimes I^{\ell_2,\varrho_2})\Psi(x,y), \qquad (x,y) \in [0,\ell_1) \times [0,\ell_2).$$
(26)

Here, $\mathbf{I}^{\ell_1,\varrho_1}$ and $\mathbf{I}^{\ell_2,\varrho_2}$ are operational matrices of a fractional Riemann–Liouville integration of orders ϱ_1 and ϱ_2 , respectively.

Theorem 5 (see [34]). Let $\kappa > 0$. Assume that $\Psi(s)$, defined in (19), is the vector of 1D-SJPs. Then,

$$\frac{1}{\Gamma(\kappa)} \int_0^\ell \left(\ell - s\right)^{\kappa - 1} \Psi(s) \, \mathrm{d}s = \Upsilon,\tag{27}$$

where $\mathbf{Y} = \left(\begin{array}{ccc} \gamma_0 & \gamma_1 & \ldots & \gamma_N \end{array} \right)^T$ and

$$\gamma_r = \sum_{j=0}^r (-1)^{r-j} \frac{\Gamma(r+\varsigma+1)\Gamma(r+j+\tau+\varsigma+1)\ell^{\kappa-1}}{\Gamma(j+\varsigma+1)\Gamma(r+\tau+\varsigma+1)(r-j)!\Gamma(j+\kappa+1)}, \qquad r = 0, 1, \dots, N.$$
(28)

Theorem 6 (see [34]). Let ϱ_1 , $\varrho_2 > 0$. Assume that $\Psi(t,s)$, defined in (21), is the vector of 2D-SJPs. Then

$$\frac{1}{\Gamma(\varrho_1)\Gamma(\varrho_2)} \int_0^{\ell_1} \int_0^{\ell_2} (\ell_1 - t)^{\varrho_1 - 1} (\ell_2 - s)^{\varrho_2 - 1} \Psi(t, s) \, \mathrm{d}s \, \mathrm{d}t = \mathrm{Y}_1 \otimes \mathrm{Y}_2, \tag{29}$$

where

$$\mathbf{Y}_1 = \left(\begin{array}{ccc} \gamma \mathbf{1}_0 & \gamma \mathbf{1}_1 & \dots & \gamma \mathbf{1}_N \end{array}\right)^T, \qquad \mathbf{Y}_2 = \left(\begin{array}{ccc} \gamma \mathbf{2}_0 & \gamma \mathbf{2}_1 & \dots & \gamma \mathbf{2}_N \end{array}\right)^T,$$

and

$$\begin{split} \gamma \mathbf{1}_r &= \sum_{j=0}^r \left(-1\right)^{r-j} \frac{\Gamma(r+\varsigma+1)\Gamma(r+j+\tau+\varsigma+1)\ell_1^{\varrho_1}}{\Gamma(j+\varsigma+1)\Gamma(r+\tau+\varsigma+1)(r-j)!\Gamma(j+\varrho_1+1)},\\ \gamma \mathbf{2}_r &= \sum_{j=0}^r \left(-1\right)^{r-j} \frac{\Gamma(r+\varsigma+1)\Gamma(r+j+\tau+\varsigma+1)\ell_2^{\varrho_2}}{\Gamma(j+\varsigma+1)\Gamma(r+\tau+\varsigma+1)(r-j)!\Gamma(j+\varrho_2+1)}, \end{split}$$

for $r = 0, 1, \ldots, N$.

3.5. Operational Matrix of Product

Assume that $\Psi(x, y)$, defined in (21), is the vector of 2D-SJPs. In [34], Rashidinia et al. introduced the operational matrix of the product as follows:

~

_

$$\Psi(x,y)\Psi^{T}(x,y)\hat{F}\simeq\hat{F}\Psi(x,y),$$
(30)

for $(x, y) \in [0, \ell_1) \times [0, \ell_2)$. Here, \tilde{F} is the operational matrix of the product with the entries

$$\tilde{F}_{m_1(N+1)+n_1+1,m_2(N+1)+n_2+1} = \frac{1}{h_{\ell_1,m_2}^{(\tau,\varsigma)}h_{\ell_2,n_2}^{(\tau,\varsigma)}} \sum_{j=0}^N \sum_{k=0}^N \hat{f}_{jk} v_{m_1jm_2} v_{n_1kn_2},$$

where

$$v_{m_1 j m_2} = \int_0^{\ell_1} \mathcal{J}_{\ell_1, m_1}^{(\tau, \varsigma)}(x) \mathcal{J}_{\ell_1, j}^{(\tau, \varsigma)}(x) \mathcal{J}_{\ell_1, m_2}^{(\tau, \varsigma)}(x) w_{\ell_1}^{(\tau, \varsigma)}(x) \, \mathrm{d}x,$$

$$v_{n_1 k n_2} = \int_0^{\ell_2} \mathcal{J}_{\ell_2, n_1}^{(\tau, \varsigma)}(y) \mathcal{J}_{\ell_2, k}^{(\tau, \varsigma)}(y) \mathcal{J}_{\ell_2, n_2}^{(\tau, \varsigma)}(y) w_{\ell_2}^{(\tau, \varsigma)}(y) \, \mathrm{d}y,$$

for $m_1, n_1, m_2, n_2 = 0, 1, \dots, N$.

4. Method of Solution

Here, by using the method proposed in Section 3, we solve the general 2D-NFIDEs. First of all, we define

$$f_{yy}(x,y) \simeq f_{yy}^T \Psi(x,y), \tag{31}$$

$$f_{xx}(x,y) \simeq f_{xx}^T \Psi(x,y), \tag{32}$$

$$f_{yx}(x,y) \simeq f_{yx}^{1} \Psi(x,y), \tag{33}$$

$$g(x,y) \simeq \Psi^{I}(x,y)G, \tag{34}$$

$$k_i(x,t,y,s) \simeq \Psi^I(x,y)k_i\Psi(t,s), \quad i = 1,2,3,4,$$
(35)

$$d_2(y) = f(0, y) \simeq F_{0y}^T \Psi(x, y),$$
(37)

$$d_3(x) = f_y(x,0) \simeq F_{yx0}^T \Psi(x,y),$$
(38)

$$d_4(y) = f_x(0, y) \simeq F_{x0y}^T \Psi(x, y),$$
(39)

$$d_5(x) = f_x(x,0) \simeq F_{xx0}^T \Psi(x,y).$$
(40)

Now, from the Appendix in [36], we can obtain:

$$f_{yy}^{T} = ((f^{T} - F_{x0}^{T})(I \otimes \mathbf{P}_{y})^{-1} - F_{yx0}^{T})(I \otimes \mathbf{P}_{y})^{-1},$$
(41)

$$f_{xx}^{T} = ((f^{T} - F_{0y}^{T})(\mathbf{P}_{x} \otimes I)^{-1} - F_{x0y}^{T})(\mathbf{P}_{x} \otimes I)^{-1},$$
(42)

$$f_{yx}^{T} = ((f^{T} - F_{0y}^{T})(\mathbf{P}_{x} \otimes I)^{-1} - F_{xx0}^{T})(I \otimes \mathbf{P}_{y})^{-1}.$$
(43)

Using (26) for $I^{\varrho}f(x, y)$ yields

$$I^{\varrho}f(x,y) \simeq I^{\varrho}\hat{F}^{T}\Psi(x,y) = \hat{F}^{T}I^{\varrho}\Psi(x,y) = \hat{F}^{T}\left(\mathbf{I}^{\ell_{1},\varrho_{1}} \otimes \mathbf{I}^{\ell_{2},\varrho_{2}}\right)\Psi(x,y).$$
(44)

Additionally, by using (20) and (30), we have

$$f^{2}(x,y) \simeq \hat{F}^{T}\Psi(x,y)\Psi^{T}(x,y)\hat{F} = \underbrace{\hat{F}^{T}}_{\hat{F}_{2}}\Psi(x,y) = \hat{F}_{2}\Psi(x,y),$$

$$f^{3}(x,y) \simeq \hat{F}^{T}\Psi(x,y)\hat{F}_{2}\Psi(x,y) = \hat{F}^{T}\Psi(x,y)\Psi^{T}(x,y)\hat{F}_{2}^{T} = \underbrace{\hat{F}^{T}}_{\hat{F}_{2}}\Psi(x,y) = \hat{F}_{3}\Psi(x,y).$$

Similarly, we obtain

$$f^p(x,y) \simeq \hat{F}_p \Psi(x,y). \tag{45}$$

Now, using (24), (35), and (45) gives

$$\Theta(x,y) = \int_0^x \int_0^y k_1(x,t,y,s) f^{p_1}(t,s) \, ds \, dt$$

$$\simeq \int_0^x \int_0^y \Psi^T(x,y) k_1 \Psi(t,s) \hat{F}_{p_1} \Psi(t,s) \, ds \, dt$$

$$= \int_0^x \int_0^y \Psi^T(x,y) k_1 \widetilde{\hat{F}_{p_1}^T} \Psi(t,s) \, ds \, dt$$

$$= \Psi^T(x,y) k_1 \widetilde{\hat{F}_{p_1}^T} \int_0^x \int_0^y \Psi(t,s) \, ds \, dt$$

$$= \Psi^T(x,y) k_1 \widetilde{\hat{F}_{p_1}^T} (\mathbf{P}_x \otimes \mathbf{P}_y) \Psi(x,y).$$
(46)

Similarly, using (25), (35), and (45) for $\varphi(x, y)$, we can write

$$\varphi(x,y) = \int_{0}^{\ell_{1}} \int_{0}^{\ell_{2}} k_{4}(x,t,y,s) f^{p_{4}}(t,s) \, ds \, dt$$

$$\simeq \int_{0}^{\ell_{1}} \int_{0}^{\ell_{2}} \Psi^{T}(x,y) k_{4} \Psi(t,s) \hat{F}_{p_{4}} \Psi(t,s) \, ds \, dt$$

$$= \int_{0}^{\ell_{1}} \int_{0}^{\ell_{2}} \Psi^{T}(x,y) k_{4} \tilde{F}_{p_{4}}^{T} \Psi(t,s) \, ds \, dt$$

$$= \Psi^{T}(x,y) k_{4} \tilde{F}_{p_{4}}^{T} \int_{0}^{\ell_{2}} \Psi(t,s) \, ds \, dt$$

$$= \Psi^{T}(x,y) k_{4} \tilde{F}_{p_{4}}^{T} (A_{1} \otimes A_{2}).$$
(47)

Additionally, using (26), (35), and (45), $\Lambda(x, y)$ can be determined as:

$$\begin{split} \Lambda(x,y) &= \frac{1}{\Gamma(\varrho_1)\Gamma(\varrho_2)} \int_0^x \int_0^y (x-t)^{\varrho_1-1} (y-s)^{\varrho_2-1} k_2(x,t,y,s) f^{p_2}(t,s) \, \mathrm{d}s \, \mathrm{d}t \\ &\simeq \frac{1}{\Gamma(\varrho_1)\Gamma(\varrho_2)} \int_0^x \int_0^y (x-t)^{\varrho_1-1} (y-s)^{\varrho_2-1} \Psi^T(x,y) k_2 \Psi(t,s) \hat{F}_{p_2} \Psi(t,s) \, \mathrm{d}s \, \mathrm{d}t \\ &= \frac{1}{\Gamma(\varrho_1)\Gamma(\varrho_2)} \int_0^x \int_0^y (x-t)^{\varrho_1-1} (y-s)^{\varrho_2-1} \Psi^T(x,y) k_2 \tilde{F}_{p_2}^T \Psi(t,s) \, \mathrm{d}s \, \mathrm{d}t \\ &= \Psi^T(x,y) k_2 \tilde{F}_{p_2}^T \left(\frac{1}{\Gamma(\varrho_1)\Gamma(\varrho_2)} \int_0^x \int_0^y (x-t)^{\varrho_1-1} (y-s)^{\varrho_2-1} \Psi(t,s) \, \mathrm{d}s \, \mathrm{d}t \right) \\ &= \Psi^T(x,y) k_2 \tilde{F}_{p_2}^T \left(\mathbf{I}_{(1,\varrho_1)}^{\ell_1,\varrho_1} \otimes \mathbf{I}_{(2,\varrho_2)}^{\ell_2,\varrho_2} \right) \Psi(x,y). \end{split}$$

Using (29), (35), and (45) for $\rho(x, y)$, we obtain

$$\rho(x,y) = \frac{1}{\Gamma(\varrho_1)\Gamma(\varrho_2)} \int_0^{\ell_1} \int_0^{\ell_2} (\ell_1 - t)^{\varrho_1 - 1} (\ell_2 - s)^{\varrho_2 - 1} k_3(x,t,y,s) f^{p_3}(t,s) \, \mathrm{d}s \, \mathrm{d}t
\simeq \frac{1}{\Gamma(\varrho_1)\Gamma(\varrho_2)} \int_0^{\ell_1} \int_0^{\ell_2} (\ell_1 - t)^{\varrho_1 - 1} (\ell_2 - s)^{\varrho_2 - 1} \Psi^T(x,y) k_3 \Psi(t,s) \hat{F}_{p_3} \Psi(t,s) \, \mathrm{d}s \, \mathrm{d}t
= \frac{1}{\Gamma(\varrho_1)\Gamma(\varrho_2)} \int_0^{\ell_1} \int_0^{\ell_2} (\ell_1 - t)^{\varrho_1 - 1} (\ell_2 - s)^{\varrho_2 - 1} \Psi^T(x,y) k_3 \tilde{F}_{p_3}^T \Psi(t,s) \, \mathrm{d}s \, \mathrm{d}t
= \Psi^T(x,y) k_3 \tilde{F}_{p_3}^T \left(\frac{1}{\Gamma(\varrho_1)\Gamma(\varrho_2)} \int_0^{\ell_1} \int_0^{\ell_2} (\ell_1 - t)^{\varrho_1 - 1} (\ell_2 - s)^{\varrho_2 - 1} \Psi(t,s) \, \mathrm{d}s \, \mathrm{d}t \right)
= \Psi^T(x,y) k_3 \tilde{F}_{p_3}^T (Y_1 \otimes Y_2).$$
(49)

Now, by substituting (31)–(34), (36)–(44), and (46)–(49) into (1), a system of equations can be obtained as follows:

$$af_{yy}^{T}\Psi(x,y) + bf_{xx}^{T}\Psi(x,y) + cf_{yx}^{T}\Psi(x,y) + \hat{F}^{T}\Psi(x,y) + \lambda \hat{F}^{T}\left(\mathbf{I}^{\ell_{1},\varrho_{1}} \otimes \mathbf{I}^{\ell_{2},\varrho_{2}}\right)\Psi(x,y)$$

$$\simeq \Psi^{T}(x,y)G + \Psi^{T}(x,y)k_{1}\hat{F}_{p_{1}}^{T}(\mathbf{P}_{x} \otimes \mathbf{P}_{y})\Psi(x,y) + \Psi^{T}(x,y)k_{2}\hat{F}_{p_{2}}^{T}\left(\mathbf{I}^{\ell_{1},\varrho_{1}} \otimes \mathbf{I}^{\ell_{2},\varrho_{2}}\right)\Psi(x,y)$$

$$+ \Psi^{T}(x,y)k_{3}\hat{F}_{p_{3}}^{T}(Y_{1} \otimes Y_{2}) + \Psi^{T}(x,y)k_{4}\hat{F}_{p_{4}}^{T}(A_{1} \otimes A_{2}).$$
(50)

In the above system, the coefficients $\hat{f}_{mm'}$, m, m' = 0, 1, ..., N are unknown. Using the roots of $\mathcal{J}_{\ell_1,N+1}^{(\tau,\varsigma)}(x)$ and $\mathcal{J}_{\ell_2,N+1}^{(\tau,\varsigma)}(y)$ for an appropriate N determines these unknown coefficients. By collocating Equation (50) at points $\{(x_m, y'_m)\}_{m,m'=0}^N$, we obtain $(N + 1)^2$ equations and solve this system using the Newton method. Therefore, we obtain the unknown coefficients and determine an approximate solution from (20).

5. Error Bounds

Let $\mathfrak{D} = [0, \ell_1) \times [0, \ell_2)$ and $L^2_{\omega^{(\tau, \zeta)}}(\mathfrak{D})$ be a weighted space of square integrable functions on \mathfrak{D} . We recall the following inner product and norm on $L^2_{\omega^{(\tau, \zeta)}}(\mathfrak{D})$ to discuss the convergence of the new method:

$$\langle f,g \rangle_{\omega^{(\tau,\varsigma)}} = \int_0^{\ell_1} \int_0^{\ell_2} f(x,y)g(x,y)\omega^{(\tau,\varsigma)}(x,y)\,\mathrm{d}y\,\mathrm{d}x, \qquad \forall f,g \in L^2_{\omega^{(\tau,\varsigma)}}(\mathfrak{D}), \\ \|f\|_{\omega^{(\tau,\varsigma)}} = \left(\int_0^{\ell_1} \int_0^{\ell_2} (f(x,y))^2 \omega^{(\tau,\varsigma)}(x,y)\,\mathrm{d}y\,\mathrm{d}x\right)^{\frac{1}{2}}, \qquad \forall f \in L^2_{\omega^{(\tau,\varsigma)}}(\mathfrak{D}).$$

Theorem 7. Consider the following finite-dimensional polynomial space:

$$\mathscr{P}_N = span\{\mathcal{J}_{m.m'}^{(\tau,\varsigma)}(x,y), \quad 0 \le m, m' \le N\}$$

Suppose that

$$\frac{\partial^i}{\partial x^{i_1}\partial y^{i_2}}f(x,y)\in C(\mathfrak{D}), \quad i_1+i_2=i, \ i=0,1,\ldots,N.$$

If $f_N(x, y)$ is the best approximation from \mathscr{P}_N to f(x, y) and $\tilde{f}_N(x, y)$ is the Taylor expansion of f(x, y) of order N with respect to each variables x and y, then

$$\|f - f_N\|_{\omega^{(\tau,\varsigma)}} \le \frac{\mu 2^{N+1}}{(N+1)!} \sqrt{(\ell_1 \ell_2)^{\tau+\varsigma+1}} B(\tau+1,\varsigma+1),$$
(51)

where

$$\mu = \max_{i=0,1,\dots,N} \left\{ \ell_1^{N+1-i} \ell_2^i \max_{(x,y)\in\mathfrak{D}} \left| \frac{\partial^{N+1}}{\partial x^{N+1-i} \partial y^i} f(x,y) \right| \right\},\tag{52}$$

and B(.,.) is a beta function.

Proof. Since $f_N(x, y)$ is the best approximation to f(x, y), it is obvious that from the definition of best approximation, we have

$$\|f - f_N\|_{\omega^{(\tau,\varsigma)}} \le \left\|f - \widetilde{f}_N\right\|_{\omega^{(\tau,\varsigma)}}.$$
(53)

The Taylor expansion of f(x, y) about $(0^+, 0^+)$ yields

$$\begin{split} \left| f(x,y) - \tilde{f}_{N}(x,y) \right| &= \left| f(x,y) - \sum_{r=0}^{N} \sum_{m=0}^{r} \frac{x^{r-m}y^{m}}{(r-m)!m!} \frac{\partial^{r}}{\partial x^{r-m}\partial y^{m}} f(0^{+},0^{+}) \right| \\ &= \left| \sum_{r=0}^{N+1} \frac{x^{N+1-r}y^{r}}{(N+1-r)!r!} \frac{\partial^{N+1}}{\partial x^{N+1-r}\partial y^{i}} f(\eta_{x},\eta_{y}) \right| \\ &\leq \sum_{r=0}^{N+1} \frac{\ell_{1}^{N+1-r}\ell_{2}^{r}}{(N+1-r)!r!} \max_{(x,y)\in\mathfrak{D}} \left| \frac{\partial^{N+1}}{\partial x^{N+1-r}\partial y^{r}} f(x,y) \right| \\ &\leq \mu \sum_{r=0}^{N+1} \frac{1}{(N+1-r)!r!} \max_{(x,y)\in\mathfrak{D}} \left| \frac{\partial^{N+1}}{\partial x^{N+1-r}\partial y^{r}} f(x,y) \right| \\ &= \frac{\mu}{(N+1)!} \sum_{r=0}^{N+1} \left(\frac{N+1}{r} \right) \\ &= \frac{\mu 2^{N+1}}{(N+1)!}, \end{split}$$

where $(\eta_x, \eta_y) \in [0, x] \times [0, y]$ and $(x, y) \in \mathfrak{D}$. Since $\tilde{f}_N \in \mathscr{P}_N$, we can write

$$\begin{split} \|f - f_N\|_{\omega^{(\tau,\varsigma)}}^2 &\leq \int_0^{\ell_1} \int_0^{\ell_2} \left(\frac{\mu 2^{N+1}}{(N+1)!}\right)^2 \omega^{(\tau,\varsigma)}(x,y) \, \mathrm{d}y \, \mathrm{d}x \\ &= \left(\frac{\mu 2^{N+1}}{(N+1)!}\right)^2 (\ell_1 \ell_2)^{\tau+\varsigma+1} (B(\tau+1,\varsigma+1))^2. \end{split}$$

Taking the square roots of the above inequality gives the inequality (51). \Box

Definition 1. A Jacobi-weighted Sobolev space of measurable functions is denoted by $\mathscr{P}^{\varepsilon}_{\omega^{(\tau,\xi)}}(\mathfrak{D})$ and is defined with the following norm and semi-norm:

$$\begin{split} \|f\|_{\varepsilon,\omega^{(\tau,\zeta)}} &= \left(\sum_{l=0}^{\varepsilon} \left\|\partial_{\Delta}^{l}f\right\|_{\omega^{(\tau+l,\zeta+l)}}^{2}\right)^{\frac{1}{2}} < \infty, \quad \Delta = (x,y), \quad \varepsilon \in \mathbb{N}, \\ |f|_{\varepsilon,\omega^{(\tau,\zeta)}} &= \|\partial_{\Delta}^{\varepsilon}f\|_{\omega^{(\tau+\varepsilon,\zeta+\varepsilon)}}, \end{split}$$

where

$$\partial^l_{\Delta}f = rac{\partial^l}{\partial x^{l_1}\partial y^{l_2}}f, \quad l_1+l_2=l,$$

$$\omega^{(\tau+l,\varsigma+l)}(x,y) = \omega^{(\tau+l_1,\varsigma+l_1)}(x)\omega^{(\tau+l_2,\varsigma+l_2)}(y).$$

Theorem 8. For any $f \in \mathscr{P}^{\varepsilon}_{\omega^{(\tau,\varsigma)}}(\mathfrak{D})$, $\varepsilon \in \mathbb{N}$, and $0 \leq \varepsilon \leq \varepsilon$, we have

$$\|f - f_N\|_{\varepsilon,\omega^{(\tau,\varsigma)}} \le \eta (N(N + \tau + \varsigma)(1 + \tau + \varsigma))^{\frac{\varepsilon - \varepsilon}{2}} |f|_{\varepsilon,\omega^{(\tau,\varsigma)}},$$
(54)

where η is a positive constant.

Proof. From (18), we can write

$$\partial_{\Delta}^{l}(f(x,y) - f_{N}(x,y)) = \sum_{j=0}^{\infty} \sum_{k=N+1}^{\infty} \hat{f}_{jk} \partial_{\Delta}^{l} \mathcal{J}_{\ell_{1},j}^{(\tau,\zeta)}(x) \mathcal{J}_{\ell_{2},k}^{(\tau,\zeta)}(y) + \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} \hat{f}_{jk} \partial_{\Delta}^{l} \mathcal{J}_{\ell_{1},j}^{(\tau,\zeta)}(x) \mathcal{J}_{\ell_{2},k}^{(\tau,\zeta)}(y) = \sum_{j=0}^{\infty} \sum_{k=N+1}^{\infty} \hat{f}_{jk} \nu_{j,l_{1}} \nu_{k,l_{2}} \mathcal{J}_{\ell_{1},j-l_{1}}^{(\tau+l_{1},\zeta+l_{1})}(x) \mathcal{J}_{\ell_{2},k-l_{2}}^{(\tau+l_{2},\zeta+l_{2})}(y) + \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} \hat{f}_{jk} \nu_{j,l_{1}} \nu_{k,l_{2}} \mathcal{J}_{\ell_{1},j-l_{1}}^{(\tau+l_{1},\zeta+l_{1})}(x) \mathcal{J}_{\ell_{2},k-l_{2}}^{(\tau+l_{2},\zeta+l_{2})}(y),$$
(55)

where

$$\nu_{j,l_1} = \frac{\Gamma(j + \tau + \varsigma + l_1 + 1)}{\Gamma(j + \tau + \varsigma + 1)}, \qquad \nu_{k,l_2} = \frac{\Gamma(k + \tau + \varsigma + l_2 + 1)}{\Gamma(k + \tau + \varsigma + 1)}.$$
(56)

Taking the $L^2_{\omega^{(\tau,\varsigma)}}-\!\mathrm{norm}$ of Equation (55) yields

$$\left\|\partial_{\Delta}^{l}(f-f_{N})\right\|_{\omega^{(\tau+l,\zeta+l)}}^{2} = \sum_{j=0}^{\infty}\sum_{k=N+1}^{\infty}\hat{f}_{jk}^{2}a_{j,k} + \sum_{j=N+1}^{\infty}\sum_{k=0}^{\infty}\hat{f}_{jk}^{2}a_{j,k} + 2\sum_{j=N+1}^{\infty}\sum_{k=N+1}^{\infty}\hat{f}_{jk}^{2}a_{j,k},$$
 (57)

where

$$a_{j,k} = v_{j,l_1}^2 v_{k,l_2}^2 h_{\ell_1,j-l_1}^{(\tau+l_1,\varsigma+l_1)}(x) h_{\ell_2,k-l_2}^{(\tau+l_2,\varsigma+l_2)}(y).$$

Similarly,

$$\left\|\partial_{\Delta}^{l}f\right\|_{\omega^{(\tau+\varepsilon,\varsigma+\varepsilon)}}^{2} = \sum_{j=0}^{\infty}\sum_{k=N+1}^{\infty}\hat{f}_{jk}^{2}b_{j,k} + \sum_{j=N+1}^{\infty}\sum_{k=0}^{\infty}\hat{f}_{jk}^{2}b_{j,k} + 2\sum_{j=N+1}^{\infty}\sum_{k=N+1}^{\infty}\hat{f}_{jk}^{2}b_{j,k}, \quad (58)$$

where

$$b_{j,k} = v_{j,\varepsilon_1}^2 v_{k,\varepsilon_2}^2 h_{\ell_1,j-\varepsilon_1}^{(\tau+\varepsilon_1,\varsigma+\varepsilon_1)}(x) h_{\ell_2,k-\varepsilon_2}^{(\tau+\varepsilon_2,\varsigma+\varepsilon_2)}(y).$$

Using (18) and the Stirling formula

$$\Gamma(z+1) = \sqrt{2\pi z} z^{z} e^{-z} \left(1 + O\left(z^{-\frac{1}{5}}\right) \right),$$
(59)

and from

$$(m+\kappa)^{m+\kappa} = m^{m+\kappa} \mathbf{e}^{(m+\kappa)\sum_{i=1}^{\infty} \frac{(-1)^i}{i} \left(\frac{\kappa}{m}\right)^i},\tag{60}$$

we have

$$\frac{a_{j,k}}{b_{j,k}} \le \eta j^{l_1 - \varepsilon_1} k^{l_2 - \varepsilon_2} (j + \tau + \varsigma)^{l_1 - \varepsilon_1} (k + \tau + \varsigma)^{l_2 - \varepsilon_2}.$$
(61)

From the relations (63)–(65), we obtain

$$\begin{split} |f(x,y) - f_{N}(x,y)|_{l,\omega}^{2}(\tau,\epsilon) &= \left\| \partial_{\Delta}^{l}(f - f_{N}) \right\|_{\omega}^{2}(\tau+l_{\epsilon}+l)}^{2} \\ &= \sum_{j=0}^{\infty} \sum_{k=N+1}^{\infty} \frac{a_{j,k}}{b_{j,k}} b_{j,k} f_{jk}^{2} + \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} \frac{a_{j,k}}{b_{j,k}} b_{j,k} f_{jk}^{2} + 2 \sum_{j=N+1}^{\infty} \sum_{k=N+1}^{\infty} \frac{a_{j,k}}{b_{j,k}} b_{j,k} f_{jk}^{2} \\ &\leq \sum_{j=0}^{\infty} \sum_{k=N+1}^{\infty} \eta^{j^{l}-\epsilon_{1}} k^{l_{2}-\epsilon_{2}} (j + \tau + \varsigma)^{l_{1}-\epsilon_{1}} (k + \tau + \varsigma)^{l_{2}-\epsilon_{2}} b_{j,k} f_{jk}^{2} \\ &+ \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} \eta^{j^{l}-\epsilon_{1}} k^{l_{2}-\epsilon_{2}} (j + \tau + \varsigma)^{l_{1}-\epsilon_{1}} (k + \tau + \varsigma)^{l_{2}-\epsilon_{2}} b_{j,k} f_{jk}^{2} \\ &\leq \eta N^{l_{2}-\epsilon_{2}} (1 + \tau + \varsigma)^{l_{1}-\epsilon_{1}} k^{l_{2}-\epsilon_{2}} (j + \tau + \varsigma)^{l_{1}-\epsilon_{1}} (k + \tau + \varsigma)^{l_{2}-\epsilon_{2}} b_{j,k} f_{jk}^{2} \\ &\leq \eta N^{l_{2}-\epsilon_{2}} (1 + \tau + \varsigma)^{l_{1}-\epsilon_{1}} (N + \tau + \varsigma)^{l_{2}-\epsilon_{2}} \sum_{j=0}^{\infty} \sum_{k=N+1}^{\infty} b_{j,k} f_{jk}^{2} \\ &+ \eta N^{l_{1}-\epsilon_{1}} (N + \tau + \varsigma)^{l_{1}-\epsilon_{1}} (N + \tau + \varsigma)^{l_{2}-\epsilon_{2}} \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} b_{j,k} f_{jk}^{2} \\ &\leq \eta N^{l_{2}-\epsilon_{2}} (N + \tau + \varsigma)^{l_{1}-\epsilon_{1}} (N + \tau + \varsigma)^{l_{2}-\epsilon_{2}} \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} b_{j,k} f_{jk}^{2} \\ &\leq \eta N^{l_{1}-\epsilon_{1}} (N + \tau + \varsigma)^{l_{1}-\epsilon_{1}} (N + \tau + \varsigma)^{l_{2}-\epsilon_{2}} \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} b_{j,k} f_{jk}^{2} \\ &\leq \eta N^{l_{1}-\epsilon_{1}} (N + \tau + \varsigma)^{l_{1}-\epsilon_{1}} (N + \tau + \varsigma)^{l_{2}-\epsilon_{2}} \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} b_{j,k} f_{jk}^{2} \\ &\leq \eta N^{l_{1}-\epsilon_{1}} (N + \tau + \varsigma)^{l_{1}-\epsilon_{1}} (N + \tau + \varsigma)^{l_{1}-\epsilon_{1}} (N + \tau + \varsigma)^{l_{2}-\epsilon_{2}} \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} b_{j,k} f_{jk}^{2} + 2 \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} b_{j,k} f_{jk}^{2} \\ &\leq \eta N^{l_{1}-\epsilon_{1}} (N + \tau + \varsigma)^{l_{1}-\epsilon_{1}} (1 + \tau + \varsigma)^{l_{1}-\epsilon_{1}} \left(\sum_{j=0}^{\infty} \sum_{k=N+1}^{\infty} b_{j,k} f_{jk}^{2} + 2 \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} b_{j,k} f_{jk}^{2} + 2 \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} b_{j,k} f_{jk}^{2} + 2 \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} b_{j,k} f_{jk}^{2} \\ &\leq \eta N^{l_{1}-\epsilon_{1}} (N + \tau + \varsigma)^{l_{1}-\epsilon_{1}} (1 + \tau + \varsigma)^{l_{1}-\epsilon_{1}} \left(\sum_{j=0}^{\infty} \sum_{k=N+1}^{\infty} b_{j,k} f_{jk}^{2} + 2 \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} b_{j,k} f_{jk}^{2} + 2 \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} b_{j,k} f_{jk}^{2} + 2 \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} b_{j,k} f_{jk}^{2} + 2$$

for any $l_n \leq \varepsilon_n$, where

$$l_n - \varepsilon_n = \min_{i=1,2} \{l_i - \varepsilon_i\}, \quad 0 \le l_i \le \varepsilon_i \le \varepsilon, \ i = 1, 2.$$

Therefore, we obtain

$$\|f - f_N\|_{\varepsilon,\omega^{(\tau,\varsigma)}} \le \eta (N(N + \tau + \varsigma)(1 + \tau + \varsigma))^{\frac{\varepsilon-\varepsilon}{2}} |f|_{\varepsilon,\omega^{(\tau,\varsigma)}}, \quad 0 \le \varepsilon \le \varepsilon.$$

Theorem 9. For any $f \in \mathscr{P}^{\varepsilon}_{\omega^{(\tau,\varsigma)}}(\mathfrak{D})$, $\varepsilon \in \mathbb{N}$, and $0 \leq \varepsilon \leq \varepsilon$, we have

$$\left\|\frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial y^2}\right)_N\right\|_{\epsilon,\omega^{(\tau,\varsigma)}} \le \eta_1 (N(N+\tau+\varsigma)(1+\tau+\varsigma))^{\frac{\epsilon-\epsilon}{2}} |f|_{\epsilon,\omega^{(\tau,\varsigma)}},\tag{62}$$

where η_1 is a positive constant.

Proof. From (18) and (56), we have

$$\begin{aligned} \partial_{\Delta}^{l} \left(\frac{\partial^{2} f(x,y)}{\partial y^{2}} - \left(\frac{\partial^{2} f(x,y)}{\partial y^{2}} \right)_{N} \right) &= \sum_{j=0}^{\infty} \sum_{k=N+1}^{\infty} \hat{f}_{jk} \partial_{\Delta}^{l_{1}+l_{2}+2} \mathcal{J}_{\ell_{1},j}^{(\tau,\zeta)}(x) \mathcal{J}_{\ell_{2},k}^{(\tau,\zeta)}(y) \\ &+ \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} \hat{f}_{jk} \partial_{\Delta}^{l_{1}+l_{2}+2} \mathcal{J}_{\ell_{1},j}^{(\tau,\zeta)}(x) \mathcal{J}_{\ell_{2},k}^{(\tau,\zeta)}(y) \\ &= \sum_{j=0}^{\infty} \sum_{k=N+1}^{\infty} \hat{f}_{jk} \nu_{j,l_{1}} \nu_{k,l_{2}+2} \mathcal{J}_{\ell_{1},j-l_{1}}^{(\tau+l_{1},\zeta+l_{1})}(x) \mathcal{J}_{\ell_{2},k-l_{2}-2}^{(\tau+l_{2}+2,\zeta+l_{2}+2)}(y) \\ &+ \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} \hat{f}_{jk} \nu_{j,l_{1}} \nu_{k,l_{2}+2} \mathcal{J}_{\ell_{1},j-l_{1}}^{(\tau+l_{1},\zeta+l_{1})}(x) \mathcal{J}_{\ell_{2},k-l_{2}-2}^{(\tau+l_{2}+2,\zeta+l_{2}+2)}(y). \end{aligned}$$

By taking the $L^2_{\omega^{(\tau,\varsigma)}}-\!\mathrm{norm}$ of the above equation, we obtain

$$\left\|\partial_{\Delta}^{l}\left(\frac{\partial^{2}f}{\partial y^{2}}-\left(\frac{\partial^{2}f}{\partial y^{2}}\right)_{N}\right)\right\|_{\omega^{(\tau+l,\varsigma+l)}}^{2} = \sum_{j=0}^{\infty}\sum_{k=N+1}^{\infty}\hat{f}_{jk}^{2}c_{j,k} + \sum_{j=N+1}^{\infty}\sum_{k=0}^{\infty}\hat{f}_{jk}^{2}c_{j,k} + 2\sum_{j=N+1}^{\infty}\sum_{k=N+1}^{\infty}\hat{f}_{jk}^{2}c_{j,k},\tag{63}$$

where

$$c_{j,k} = \nu_{j,l_1}^2 \nu_{k,l_2+2}^2 h_{\ell_1,j-l_1}^{(\tau+l_1,\varsigma+l_1)}(x) h_{\ell_2,k-l_2-2}^{(\tau+l_2+2,\varsigma+l_2+2)}(y).$$

Similarly,

$$\left\|\partial_{\Delta}^{l}\left(\frac{\partial^{2}f}{\partial y^{2}}\right)\right\|_{\omega^{(\tau+\varepsilon,\varsigma+\varepsilon)}}^{2} = \sum_{j=0}^{\infty}\sum_{k=N+1}^{\infty}\hat{f}_{jk}^{2}d_{j,k} + \sum_{j=N+1}^{\infty}\sum_{k=0}^{\infty}\hat{f}_{jk}^{2}d_{j,k} + 2\sum_{j=N+1}^{\infty}\sum_{k=N+1}^{\infty}\hat{f}_{jk}^{2}d_{j,k}, \quad (64)$$

where

$$d_{j,k} = \nu_{j,\varepsilon_1}^2 \nu_{k,\varepsilon_2+2}^2 h_{\ell_1,j-\varepsilon_1}^{(\tau+\varepsilon_1,\zeta+\varepsilon_1)}(x) h_{\ell_2,k-\varepsilon_2-2}^{(\tau+\varepsilon_2+2,\zeta+\varepsilon_2+2)}(y).$$

Using (18), (59), and (60), we obtain

$$\frac{c_{j,k}}{d_{j,k}} \le \eta_1 j^{l_1 - \varepsilon_1} k^{l_2 - \varepsilon_2 - 2} (j + \tau + \varsigma)^{l_1 - \varepsilon_1} (k + \tau + \varsigma)^{l_2 - \varepsilon_2 - 2}.$$
(65)

From the relations (63)–(65), we can write

$$\begin{split} \left| \frac{\partial^2 f(x,y)}{\partial y^2} - \left(\frac{\partial^2 f(x,y)}{\partial y^2} \right)_N \right|_{l,\omega^{(\tau,\xi)}}^2 &= \left\| \partial_{\Delta}^l \left(\frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial y^2} \right)_N \right) \right\|_{\omega^{(\tau+l,\xi+l)}}^2 \\ &= \sum_{j=0}^{\infty} \sum_{k=N+1}^{\infty} \frac{c_{j,k}}{d_{j,k}} d_{j,k} f_{jk}^2 + \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} \frac{c_{j,k}}{d_{j,k}} d_{j,k} f_{jk}^2 + 2 \sum_{j=N+1}^{\infty} \sum_{k=N+1}^{\infty} \frac{c_{j,k}}{d_{j,k}} d_{j,k} f_{jk}^2 \\ &\leq \sum_{j=0}^{\infty} \sum_{k=N+1}^{\infty} \eta_1 j^{l_1 - \epsilon_1} k^{l_2 - \epsilon_2 - 2} (j + \tau + \varsigma)^{l_1 - \epsilon_1} (k + \tau + \varsigma)^{l_2 - \epsilon_2 - 2} d_{j,k} f_{jk}^2 \\ &+ \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} \eta_1 j^{l_1 - \epsilon_1} k^{l_2 - \epsilon_2 - 2} (j + \tau + \varsigma)^{l_1 - \epsilon_1} (k + \tau + \varsigma)^{l_2 - \epsilon_2 - 2} d_{j,k} f_{jk}^2 \\ &\leq 2 \sum_{j=N+1}^{\infty} \sum_{k=N+1}^{\infty} \eta_1 j^{l_1 - \epsilon_1} k^{l_2 - \epsilon_2 - 2} (j + \tau + \varsigma)^{l_1 - \epsilon_1} (k + \tau + \varsigma)^{l_2 - \epsilon_2 - 2} d_{j,k} f_{jk}^2 \\ &\leq 2 \sum_{j=N+1}^{\infty} \sum_{k=N+1}^{\infty} \eta_1 j^{l_1 - \epsilon_1} k^{l_2 - \epsilon_2 - 2} (j + \tau + \varsigma)^{l_1 - \epsilon_1} (k + \tau + \varsigma)^{l_2 - \epsilon_2 - 2} d_{j,k} f_{jk}^2 \\ &\leq \eta_1 N^{l_2 - \epsilon_2 - 2} (1 + \tau + \varsigma)^{l_1 - \epsilon_1} (N + \tau + \varsigma)^{l_2 - \epsilon_2 - 2} \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} d_{j,k} f_{jk}^2 \\ &+ \eta_1 N^{l_1 - \epsilon_1} (N + \tau + \varsigma)^{l_1 - \epsilon_1} (1 + \tau + \varsigma)^{l_2 - \epsilon_2 - 2} \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} d_{j,k} f_{jk}^2 \\ &\leq \eta_1 N^{l_1 - \epsilon_1} (N + \tau + \varsigma)^{l_1 - \epsilon_1} (1 + \tau + \varsigma)^{l_1 - \epsilon_1} (N + \tau + \varsigma)^{l_2 - \epsilon_2 - 2} \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} d_{j,k} f_{jk}^2 \\ &\leq \eta_1 N^{l_1 - \epsilon_1} (N + \tau + \varsigma)^{l_1 - \epsilon_1} (1 + \tau + \varsigma)^{l_1 - \epsilon_1} (N + \tau + \varsigma)^{l_2 - \epsilon_2 - 2} \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} d_{j,k} f_{jk}^2 + 2 \sum_{j=N+1}^{\infty} \sum_{k=N+1}^{\infty} d_{j,k} f_{jk}^2 \\ &\leq \eta_1 N^{l_1 - \epsilon} (N + \tau + \varsigma)^{l_1 - \epsilon_1} (1 + \tau + \varsigma)^{l_1 - \epsilon} \left(\sum_{j=0}^{\infty} \sum_{k=N+1}^{\infty} d_{j,k} f_{jk}^2 + 2 \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} d_{j,k} f_{jk}^2 \right) \\ &= \eta_1 N^{l_1 - \epsilon} (N + \tau + \varsigma)^{l_1 - \epsilon} (1 + \tau + \varsigma)^{l_1 - \epsilon} \left\| \partial_{\Delta} f \right\|_{\omega^{(\tau + \epsilon, \epsilon)}}^2 \\ &= \eta_1 N^{l_1 - \epsilon} (N + \tau + \varsigma)^{l_1 - \epsilon} (1 + \tau + \varsigma)^{l_1 - \epsilon} \| \partial_{\Delta} f \right\|_{\omega^{(\tau + \epsilon, \epsilon)}}^2 \end{split}$$

where

$$l_n - \varepsilon_n = \min_{i=1,2} \{l_i - \varepsilon_i\}, \quad 0 \le l_i \le \varepsilon_i \le \varepsilon, \ i = 1, 2$$

for any $l_n \leq \varepsilon_n$. Therefore,

$$\left\|\frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial y^2}\right)_N\right\|_{\epsilon,\omega^{(\tau,\varsigma)}} \leq \eta \left(N(N+\tau+\varsigma)(1+\tau+\varsigma)\right)^{\frac{\epsilon-\varepsilon}{2}} |f|_{\epsilon,\omega^{(\tau,\varsigma)}}, \quad 0 \leq \epsilon \leq \varepsilon.$$

Theorem 10. For any $f \in \mathscr{P}^{\varepsilon}_{\omega^{(\tau,\varepsilon)}}(\mathfrak{D})$, $\varepsilon \in \mathbb{N}$, and $0 \leq \varepsilon \leq \varepsilon$, we can conclude that

$$\left\|\frac{\partial^2 f}{\partial x^2} - \left(\frac{\partial^2 f}{\partial x^2}\right)_N\right\|_{\epsilon,\omega^{(\tau,\varsigma)}} \le \eta_2 (N(N+\tau+\varsigma)(1+\tau+\varsigma))^{\frac{\epsilon-\epsilon}{2}} |f|_{\epsilon,\omega^{(\tau,\varsigma)}},\tag{66}$$

where η_2 is a positive constant.

Proof. The proof of this theorem is similar to the proof of Theorem 9. \Box

Theorem 11. *For any* $f \in \mathscr{P}^{\varepsilon}_{\omega^{(\tau,\varsigma)}}(\mathfrak{D})$, $\varepsilon \in \mathbb{N}$, and $0 \leq \varepsilon \leq \varepsilon$, we have

$$\left\|\frac{\partial^2 f}{\partial y \partial x} - \left(\frac{\partial^2 f}{\partial y \partial x}\right)_N\right\|_{\epsilon, \omega^{(\tau, \varsigma)}} \le \eta_3 (N(N + \tau + \varsigma)(1 + \tau + \varsigma))^{\frac{\epsilon - \varepsilon}{2}} |f|_{\epsilon, \omega^{(\tau, \varsigma)}}, \tag{67}$$

where η_3 is a positive constant.

Proof. The proof of this theorem is similar to the proof of Theorem 9. \Box

Remark 1. Inequality (54) implies that if N tends to infinity, then $f - f_N \rightarrow 0$.

6. Numerical Results

Here, we solve five examples tested by Maple 2018. The number of bases are denoted by \mathfrak{B} . The absolute errors and maximum absolute errors are obtained by

$$|f(x,y) - f_N(x,y)|, \quad (x,y) \in [0,\ell_1) \times [0,\ell_2), N \in \mathbb{N}, MAE := \max_{i,j=0,1,\dots,N} \{ |f(x_i,y_j) - f_N(x_i,y_j)| \},$$

respectively, where (x_i, y_j) are roots of 2D-SJPs in $\mathfrak{D} = [0, \ell_1) \times [0, \ell_2)$ for different values of τ and ς .

Moreover, using

$$\max_{j=0,1,\dots,N} \{ |f(x,y_j) - f_N(x,y_j)| \}, \qquad x \in [0,\ell_1),$$

we plot maximum absolute errors where y_i are roots of 1D-SJPs in $[0, \ell_2)$ for j = 0, 1, ..., N.

Example 1. Consider the following 2D-NFIDE studied by [36]:

$$f_{yx}(x,y) + f(x,y) + I^{(\frac{7}{2},\frac{11}{2})}f(x,y) = g(x,y) + \Theta(x,y) + \Lambda(x,y) + \rho(x,y) + \varphi(x,y),$$

with the initial conditions

$$f(x,0) = f(0,y) = f_y(y,0) = 0, \ f_x(0,y) = y, \ f_y(x,0) = x,$$

where $(x, y) \in [0, 1) \times [0, 1)$ *and*

$$\begin{split} \Theta(x,y) &= \int_0^x \int_0^y (yt - xs) f^2(t,s) \, \mathrm{d}s \, \mathrm{d}t, \\ \Lambda(x,y) &= \frac{1}{\Gamma(\frac{7}{2})\Gamma(\frac{11}{2})} \int_0^x \int_0^y (x-t)^{\frac{5}{2}} (y-s)^{\frac{9}{2}} \log(s-t) f(t,s) \, \mathrm{d}s \, \mathrm{d}t, \\ \rho(x,y) &= \frac{1}{\Gamma(\frac{7}{2})\Gamma(\frac{11}{2})} \int_0^1 \int_0^1 (1-t)^{\frac{5}{2}} (1-s)^{\frac{9}{2}} y(t-s) f^2(t,s) \, \mathrm{d}s \, \mathrm{d}t, \\ \varphi(x,y) &= \int_0^1 \int_0^1 (1+y) (t^2 - s^2) f^2(t,s) \, \mathrm{d}s \, \mathrm{d}t, \\ g(x,y) &= \frac{4096}{127702575\pi} x^{\frac{9}{2}} y^{\frac{13}{2}} + xy - \frac{524288}{1552224799125\pi} y + 1. \end{split}$$

The exact solution is f(x, y) = yx.

Tables 1 and 2 report the obtained numerical results and absolute errors, respectively, using the new approach and choosing $\tau = \varsigma = 0$ and N = 2, 3. Additionally, Table 3 reports maximum absolute errors by selecting various values of τ , ς and N = 2. These tables show that by choosing $\mathfrak{B} = (N+1)^2 = 16$ numbers of 2D-SJPs, our obtained results are more accurate than the results reported in [36,37] and use $\mathfrak{B} = N^2 M^2 = 16$ and $\mathfrak{B} = m^2 = 4096$ numbers of 2D-HBPSLs and 2D-BPFs, respectively, for solving this problem. From Figure 1, the accuracy and efficiency of proposed method is illustrated.

		2D-	2D-SJPs		2D-BPFs [36]
x = y	Exact Solution	N = 2 m = 9	$N = 3$ $\mathfrak{M} = 16$	M = N = 2 $\mathfrak{B} = 16$	N = 64 m = 4096
		$\Sigma = J$	$\mathcal{L} = 10$	$\mathcal{D} = 10$	$\mathcal{L} = 4000$
0	0	$-1.45834 imes 10^{-8}$	$-1.93165 imes 10^{-9}$	$-5.39368 imes 10^{-10}$	$6.06689 imes 10^{-5}$
0.2	0.04	0.04	0.04	0.04	0.0379181
0.4	0.16	0.16	0.16	0.16	0.1578
0.6	0.36	0.36	0.36	0.36	0.359706
0.8	0.64	0.64	0.64	0.640001	0.643637
0.99	0.9801	0.980099	0.9801	0.980101	0.978529
Max error	0	$1.908184 imes 10^{-5}$	$2.081128 imes 10^{-7}$	$1.185071 imes 10^{-5}$	$2.09569 imes 10^{-3}$

Table 1. Numerical results with $\tau = \varsigma = 0$ for Example 1.

Table 2. Absolute errors with $\tau = \zeta = 0$ for Example 1.

	2D-	SJPs	2D-HBPSLs [37]
x = y	N = 2 $\mathfrak{B} = 9$	N = 3 $\mathfrak{B} = 16$	M = N = 2 $\mathfrak{B} = 16$
0	$1.458338 imes 10^{-8}$	1.931649×10^{-9}	$5.393684 imes 10^{-10}$
0.1	$4.839152 imes 10^{-9}$	$2.920296 imes 10^{-11}$	$1.049377 imes 10^{-8}$
0.2	$1.620866 imes 10^{-8}$	$3.409101 imes 10^{-10}$	$4.526134 imes 10^{-8}$
0.3	$3.955156 imes 10^{-8}$	$5.296828 imes 10^{-11}$	$1.037633 imes 10^{-7}$
0.4	$7.048566 imes 10^{-8}$	$1.150183 imes 10^{-10}$	$1.859998 imes 10^{-7}$
0.5	$1.093869 imes 10^{-7}$	$2.445786 imes 10^{-10}$	$2.674698 imes 10^{-7}$
0.6	$1.613894 imes 10^{-7}$	$5.844627 imes 10^{-10}$	$4.343939 imes 10^{-7}$
0.7	$2.363855 imes 10^{-7}$	$4.051722 imes 10^{-9}$	$5.646382 imes 10^{-7}$
0.8	$3.490255 imes 10^{-7}$	$3.485633 imes 10^{-8}$	$6.582027 imes 10^{-7}$
0.9	$5.187180 imes 10^{-7}$	1.445669×10^{-7}	$7.150874 imes 10^{-7}$

Table 3. Maximum absolute errors with N = 2 for Example 1.

(τ,ς)	MAE	(au, arsigma)	MAE
(0,0)	$1.908184 imes 10^{-5}$	(1,1)	$5.525558 imes 10^{-5}$
(1,2)	$1.657651 imes 10^{-4}$	(2,1)	$1.682304 imes 10^{-5}$
(2,2)	$6.110782 imes 10^{-5}$	(3,2)	$2.426797 imes 10^{-5}$

Figure 1. Plots of the exact and approximate solutions (**left**), maximum absolute error (**middle**) at y = 0.3, and absolute error (**right**) obtained by the 2D-SJPs with N = 3 and $\tau = \varsigma = 0$ for Example 1.

Example 2. Consider the following 2D-NFIDE studied by [36]:

$$f_{yy}(x,y) + f_{yx}(x,y) + f(x,y) + I^{(\frac{5}{2},1)}f(x,y) = g(x,y) + \rho(x,y) + \varphi(x,y),$$

with initial conditions

$$f(x,0) = f_x(x,0) = f_y(x,0) = f_x(0,y) = 0, \ f(0,y) = \frac{y^2}{4},$$

where $(x, y) \in [0, 1) \times [0, 1)$ *and*

$$\begin{split} \rho(x,y) &= \frac{1}{\Gamma(\frac{5}{2})\Gamma(1)} \int_0^1 \int_0^1 (1-t)^{\frac{3}{2}} y^{\frac{8}{3}} x^{\frac{7}{2}} t^3 f(t,s) \, \mathrm{d}s \, \mathrm{d}t, \\ \varphi(x,y) &= \int_0^1 \int_0^1 \frac{3360}{46} xy(x+y) f^2(t,s) \, \mathrm{d}s \, \mathrm{d}t, \\ g(x,y) &= -\frac{608}{153153\sqrt{\pi}} x^{\frac{7}{2}} y^{\frac{8}{3}} + \frac{1}{4} (x^3+1) y^2 + \frac{1}{2} (x^3+1) - \frac{3}{2} xy^2 + \frac{2(16x^3+231)x^{\frac{5}{2}}y^3}{10395\sqrt{\pi}}. \end{split}$$

The exact solution is $f(x, y) = \frac{y^2}{4}(x^3 + 1)$. Tables 4 and 5 report the obtained numerical results and absolute errors, respectively, using the new approach and choosing $\tau = \zeta = 0$ and N = 2, 3. Additionally, Table 6 reports maximum absolute errors by selecting various values of τ , ς and N = 2. These tables show that by choosing $\mathfrak{B} = (N+1)^2 = 16$ numbers of 2D-SJPs, our obtained results are more accurate than the results reported in [36,37] and use $\mathfrak{B} = N^2 M^2 = 36$ and $\mathfrak{B} = m^2 = 1024$ numbers of 2D-HBPSLs and 2D-BPFs, respectively, for solving this problem. In Figure 2, the accuracy and efficiency of proposed *method is illustrated.*

Table 4. Numerical results with $\tau = \varsigma = 0$ for Example 2.

		2D	-SJPs	2D-HBPSLs [37]	2D-BPFs [36]
x = y	Exact Solution	N = 2 $\mathfrak{B} = 9$	N = 3 $\mathfrak{B} = 16$	$N = 2, M = 3$ $\mathfrak{B} = 36$	m = 32 $\mathfrak{B} = 1024$
0	0	3.50087×10^{-8}	-1.75105×10^{-11}	$-1.70722 imes 10^{-8}$	5.31008×10^{-5}
0.2	0.01008	0.00990005	0.01008	0.0100625	$9.04921 imes 10^{-3}$
0.4	0.04256	0.0419991	0.04256	0.0426493	0.035166
0.6	0.10944	0.110691	0.10944	0.109233	0.099042
0.8	0.24192	0.244764	0.24192	0.242178	0.208004
0.99	0.482773	0.471861	0.482772	0.481524	0.411787
Max error	0	$5.746197 imes 10^{-5}$	$4.748580 imes 10^{-8}$	$3.570347 imes 10^{-4}$	7.0986×10^{-2}

Table 5. Absolute errors with $\tau = \varsigma = 0$ for Example 2.

	2D-	·SJPs	2D-HBPSLs [37]
x = y	N = 2 $\mathfrak{B} = 9$	N = 3 $\mathfrak{B} = 16$	N = 2, M = 3 $\mathfrak{B} = 36$
0	$3.500869 imes 10^{-8}$	$1.751047 imes 10^{-11}$	$1.707223 imes 10^{-8}$
0.1	$9.992949 imes 10^{-6}$	$1.282426 imes 10^{-12}$	$5.623240 imes 10^{-6}$
0.2	$1.799480 imes 10^{-4}$	$1.250557 imes 10^{-11}$	$1.752097 imes 10^{-5}$
0.3	$4.950320 imes 10^{-4}$	$7.129280 imes 10^{-11}$	$3.919885 imes 10^{-5}$
0.4	$5.608532 imes 10^{-4}$	$3.100506 imes 10^{-10}$	$8.934775 imes 10^{-5}$
0.5	$3.355656 imes 10^{-6}$	$1.029452 imes 10^{-9}$	$3.884051 imes 10^{-4}$
0.6	$1.251167 imes 10^{-3}$	$2.924318 imes 10^{-9}$	$2.071935 imes 10^{-4}$
0.7	$2.676069 imes 10^{-3}$	$7.479405 imes 10^{-9}$	$2.249140 imes 10^{-4}$
0.8	$2.844359 imes 10^{-3}$	$1.753510 imes 10^{-8}$	$2.583723 imes 10^{-4}$
0.9	$8.713086 imes 10^{-4}$	$7.185571 imes 10^{-8}$	$4.152332 imes 10^{-4}$

(τ,ς)	MAE	(τ, ς)	MAE
(0,0) (1,2) (2,2)	$\begin{array}{c} 5.746197 \times 10^{-5} \\ 2.374060 \times 10^{-2} \\ 3.419813 \times 10^{-3} \end{array}$	(1,1) (2,1) (3,2)	$\begin{array}{c} 2.502457\times 10^{-3}\\ 1.116405\times 10^{-2}\\ 9.826693\times 10^{-3} \end{array}$
• f _N (x, 0.3) -	f(x, 0.3) Maximum absolute error	/ 7. × 10 ⁻⁸	

Table 6. Maximum absolute errors with N = 2 for Example 2.

Figure 2. Plots of the exact and approximate solutions (**left**), maximum absolute error (**middle**) at y = 0.3, and absolute error (**right**) obtained by the 2D-SJPs with N = 3 and $\tau = \varsigma = 0$ for Example 2.

Example 3. Consider the following 2D-NFIDE:

$$f_{yy}(x,y) + f_{yx}(x,y) + f(x,y) = g(x,y) + \rho(x,y),$$

with initial conditions

$$f(x,0) = f_x(x,0) = f_y(x,0) = e^x, f(0,y) = e^y,$$

where $(x, y) \in [0, 2) \times [0, 2)$

$$\rho(x,y) = \frac{1}{\Gamma(\frac{3}{2})\Gamma(\frac{3}{2})} \int_0^2 \int_0^2 (2-t)^{\frac{1}{2}} (2-s)^{\frac{1}{2}} (x+y)(t^2+s^2) f(t,s) \, \mathrm{d}s \, \mathrm{d}t,$$

$$g(x,y) = 3\mathrm{e}^{x+y} - 4(x+y) \left(\frac{11}{\pi} - \frac{9\mathrm{e}^2\sqrt{2}\mathrm{erf}(\sqrt{2})}{\sqrt{\pi}} + \frac{7\mathrm{e}^4(\mathrm{erf}(\sqrt{2}))^2}{8}\right).$$

The exact solution is $f(x, y) = e^{x+y}$. Note that $\operatorname{erf}(x) = \frac{2\int_0^x e^{-x^2} dx}{\sqrt{\pi}}$.

Tables 7 and 8 report the obtained numerical results and absolute errors, respectively, using the new approach and choosing $\tau = \varsigma = 0$ and N = 4,5. These tables show that by choosing $\mathfrak{B} = (N+1)^2 = 36$ numbers of 2D-SJPs, our obtained results are more accurate than the results reported in [37] and use $\mathfrak{B} = N^2 M^2 = 64$ numbers of 2D-HBPSLs for solving this problem. From Figure 3, the accuracy and efficiency of the proposed method is illustrated.

		2D-	SJPs	2D-HBPSLs [37]
x = y	Exact Solution	N = 4 $\mathfrak{B} = 25$	N = 5 $\mathfrak{B} = 36$	N = 2, M = 4 $\mathfrak{B} = 64$
0	1	0.999498	1.00004	0.99811
0.2	1.49182	1.49209	1.49181	1.49284
0.4	2.22554	2.22543	2.22556	2.22493
0.6	3.32012	3.31979	3.32012	3.31909
0.8	4.95303	4.95305	4.953	4.95461
1	7.38906	7.38946	7.38905	7.37414
1.2	11.0232	11.0233	11.0232	11.0301
1.4	16.4446	16.4439	16.4446	16.4394
1.6	24.5325	24.5318	24.5325	24.5242
1.8	36.5982	36.5992	36.5983	36.6095
Max error	0	$3.352898 imes 10^{-4}$	$2.293543 imes 10^{-5}$	$1.118645 imes 10^{-2}$

Table 7. Numerical results with $\tau = \zeta = 0$ for Example 3.

Table 8. Absolute errors with $\tau = \zeta = 0$ for Example 3.

	2D-	SJPs	2D-HBPSLs [37]
x = y	N = 4 $\mathfrak{B} = 25$	N = 5 $\mathfrak{B} = 36$	$N = 2, M = 4$ $\mathfrak{B} = 64$
0	$5.018269 imes 10^{-4}$	$3.878596 imes 10^{-5}$	$1.890271 imes 10^{-3}$
0.2	$2.646095 imes 10^{-4}$	$1.323019 imes 10^{-5}$	$1.016898 imes 10^{-3}$
0.4	$1.156163 imes 10^{-4}$	$1.971321 imes 10^{-5}$	$6.116798 imes 10^{-4}$
0.6	$3.222169 imes 10^{-4}$	$1.006197 imes 10^{-6}$	$1.030940 imes 10^{-3}$
0.8	$1.401881 imes 10^{-5}$	$2.886721 imes 10^{-5}$	$1.578274 imes 10^{-3}$
1	$4.053898 imes 10^{-4}$	$7.535908 imes 10^{-6}$	$1.491810 imes 10^{-2}$
1.2	$1.410474 imes 10^{-4}$	$3.456475 imes 10^{-5}$	$6.949542 imes 10^{-3}$
1.4	$7.246987 imes 10^{-4}$	$6.085008 imes 10^{-7}$	$5.233810 imes 10^{-3}$
1.6	$7.533610 imes 10^{-4}$	$7.863965 imes 10^{-5}$	$8.312774 imes 10^{-3}$
1.8	$9.833575 imes 10^{-4}$	$3.723796 imes 10^{-5}$	$1.126113 imes 10^{-2}$

Figure 3. Plots of the exact and approximate solutions (**left**), maximum absolute error (**middle**) at y = 0.3, and absolute error (**right**) obtained by the 2D-SJPs with N = 5 and $\tau = \varsigma = 0$ for Example 3.

Example 4. Consider the following 2D-NFIDE:

$$f_{xx}(x,y) + f(x,y) + I^{(\frac{3}{2},1)}f(x,y) = g(x,y) + \Theta(x,y),$$

with initial conditions

$$f(x,0) = f(0,y) = f_y(x,0) = f_x(0,y) = f_x(x,0) = 0,$$

where $(x, y) \in [0, 1) \times [0, 1)$ *and*

$$\begin{split} \Theta(x,y) &= \int_0^x \int_0^y \left(yt - xs\right) f^2(t,s) \, \mathrm{d}s \, \mathrm{d}t, \\ g(x,y) &= -\frac{1}{360\pi^{\frac{9}{2}}} \left(y((-360x^2 - 720)\sin(\pi y) + x^6y^3)\pi^{\frac{9}{2}} + 24y^2 \left(\cos\left(\pi y\right)^2 - \frac{1}{2}\right) x^6 \pi^{\frac{5}{2}} \right. \\ &+ \frac{768\pi^2(\pi y\cos(\pi y) - \sin(\pi y))x^{\frac{7}{2}}}{7} \\ &- 27x^6 \left(\frac{1}{9}\pi^{\frac{3}{2}}y\sin(\pi y)\cos(\pi y)\left(-2\pi^2y^2 + 13\right) + \cos\left(\pi y\right)^2 \sqrt{\pi} - \sqrt{\pi} \right). \end{split}$$

The exact solution is $f(x, y) = x^2 y \sin(\pi y)$.

Tables 9 and 10 report the obtained numerical results and absolute errors, respectively, using the new approach and choosing $\tau = \varsigma = 0$ and N = 3, 4. Additionally, Table 11 reports maximum absolute errors by selecting various values of τ , ς and N = 2. These tables show that by choosing $\mathfrak{B} = (N + 1)^2 = 25$ numbers of 2D-SJPs, our obtained results are more accurate than the results obtained by the 2D-HBPSL method [37] and use $\mathfrak{B} = N^2 M^2 = 36$ bases for solving this problem. In Figure 4, the accuracy and efficiency of the proposed method is illustrated.

Table 9. Numerical results with $\tau = \varsigma = 0$ for Example 4.

		2D-SJPs		2D-HB	2D-HBPSLs [37]	
x = y	Exact Solution	N = 3 $\mathfrak{B} = 16$	N = 4 $\mathfrak{B} = 25$	M = N = 2 $\mathfrak{B} = 16$	N = 2, M = 3 $\mathfrak{B} = 36$	
0	0	$1.42563 imes 10^{-6}$	$-1.53250 imes 10^{-7}$	0.00304418	$-5.40176 imes 10^{-8}$	
0.2	0.00470228	0.00503905	0.00461625	0.00860387	0.00502286	
0.4	0.0608676	0.0606074	0.0615685	0.0582732	0.0592075	
0.6	0.205428	0.201651	0.203813	0.2084	0.206665	
0.8	0.300946	0.309229	0.302467	0.253177	0.299392	
Max error	0	$4.183049 imes 10^{-3}$	$2.691559 imes 10^{-4}$	$1.686288 imes 10^{-2}$	$6.519558 imes 10^{-3}$	

Table 10. Absolute errors with $\tau = \varsigma = 0$ for Example 4.

	2D-SJPs		2D-HBPSLs [37]		
x = y	N = 3 $\mathfrak{B} = 16$	N = 4 $\mathfrak{B} = 25$	M = N = 2 $\mathfrak{B} = 16$	$N = 2, M = 3$ $\mathfrak{B} = 36$	
0	$1.425634 imes 10^{-6}$	$1.532497 imes 10^{-7}$	$3.044182 imes 10^{-3}$	$5.401763 imes 10^{-8}$	
0.1	$2.359796 imes 10^{-6}$	$5.799964 imes 10^{-5}$	$1.304790 imes 10^{-6}$	$8.310324 imes 10^{-5}$	
0.2	$3.367631 imes 10^{-4}$	$8.603064 imes 10^{-5}$	$3.901591 imes 10^{-3}$	$3.205808 imes 10^{-4}$	
0.3	$6.244970 imes 10^{-4}$	$3.609740 imes 10^{-4}$	$6.081376 imes 10^{-3}$	$6.170073 imes 10^{-4}$	
0.4	$2.601698 imes 10^{-4}$	$7.008446 imes 10^{-4}$	$2.594409 imes 10^{-3}$	$1.660119 imes 10^{-3}$	
0.5	$2.479625 imes 10^{-3}$	$5.263376 imes 10^{-5}$	$1.670057 imes 10^{-2}$	$2.207590 imes 10^{-3}$	
0.6	$3.776819 imes 10^{-3}$	$1.615412 imes 10^{-3}$	$2.972021 imes 10^{-3}$	$1.236545 imes 10^{-3}$	
0.7	$3.370614 imes 10^{-4}$	$1.772158 imes 10^{-3}$	$3.193363 imes 10^{-2}$	$1.625204 imes 10^{-5}$	
0.8	$8.282794 imes 10^{-3}$	$1.521422 imes 10^{-3}$	$4.776857 imes 10^{-2}$	$1.553977 imes 10^{-3}$	
0.9	$9.162584 imes 10^{-3}$	$4.275932 imes 10^{-3}$	$5.981687 imes 10^{-3}$	$4.222491 imes 10^{-4}$	

Table 11. Maximum absolute errors with N = 2 for Example 4.

(τ,ς)	MAE	(au, arsigma)	MAE
(0,0) (1,2) (2,2)	$\begin{array}{l} 4.183049 \times 10^{-3} \\ 6.743181 \times 10^{-3} \\ 4.903053 \times 10^{-3} \end{array}$	(1,1) (2,1) (3,2)	$\begin{array}{c} 7.254076 \times 10^{-3} \\ 4.492349 \times 10^{-3} \\ 3.081034 \times 10^{-3} \end{array}$

Figure 4. Plots of the exact and approximate solutions (**left**), maximum absolute error (**middle**) at y = 0.3, and absolute error (**right**) obtained by the 2D-SJPs with N = 4 and $\tau = \varsigma = 0$ for Example 4.

Example 5. Consider the following 2D-NFIDE:

$$f_{yy}(x,y) + f_{yx}(x,y) + f(x,y) + I^{(\frac{3}{2},1)}f(x,y) = g(x,y) + \Theta(x,y) + \varphi(x,y),$$

with initial conditions

$$f(x,0) = 0, f(0,y) = \sin(\pi y), f_y(x,0) = \pi e^x, f_x(0,y) = \sin(\pi y), f_x(x,0) = 0,$$

where $(x, y) \in [0, 1) \times [0, 1)$ *and*

$$\begin{split} \Theta(x,y) &= \int_0^x \int_0^y xysf^2(t,s) \, \mathrm{d}s \, \mathrm{d}t, \\ \varphi(x,y) &= \int_0^1 \int_0^1 x^2 y^3 t^2 f^2(t,s) \, \mathrm{d}s \, \mathrm{d}t, \\ g(x,y) &= -\frac{1}{8\pi^{\frac{5}{2}}} \left(\left(xy^2 \left(x - \frac{1}{2} \right) \mathrm{e}^{2x} + \mathrm{e}^2 x^2 y^3 - x^2 y^3 + \frac{1}{2} xy^2 - 8\mathrm{e}^x \sin(\pi y) \right) \pi^{\frac{5}{2}} \\ &+ \left(\left(-2\sin(\pi y) yx \left(x - \frac{1}{2} \right) \mathrm{e}^{2x} - \sin(\pi y) yx + 8\mathrm{e}^x \mathrm{erf}(\sqrt{x}) \right) \cos(\pi y) - 8\mathrm{e}^x \mathrm{erf}(\sqrt{x}) \right) \pi^{\frac{3}{2}} \\ &- 8\pi^{\frac{7}{2}} \mathrm{e}^x \cos(\pi y) + 8\pi^{\frac{9}{2}} \mathrm{e}^x \sin(\pi y) - (-1 + \cos(\pi y)) \left(x \left(\frac{1}{2} + \left(x - \frac{1}{2} \right) \mathrm{e}^{2x} \right) \sqrt{\pi} \cos(\pi y) \right) \\ &+ x\sqrt{\pi} \left(x - \frac{1}{2} \right) \mathrm{e}^{2x} + \frac{1}{2} x\sqrt{\pi} + 16\pi\sqrt{x} \right) \end{split}$$

The exact solution is $f(x, y) = e^x \sin(\pi y)$.

Tables 12 and 13 report the obtained numerical results and absolute errors, respectively, using the new approach and choosing $\tau = \varsigma = 0$ and N = 3, 4. Additionally, Table 14 reports maximum absolute errors by selecting various values of τ , ς and N = 3. These tables show that by choosing $\mathfrak{B} = (N+1)^2 = 25$ numbers of 2D-SJPs, our obtained results are more accurate than the results obtained by the 2D-HBPSL method [37] and use $\mathfrak{B} = N^2 M^2 = 36$ bases for solving this problem. In Figure 5, the accuracy and efficiency of proposed method is illustrated.

		2D-	2D-SJPs		2D-HBPSLs [37]	
x = y	Exact Solution	N = 3 $\mathfrak{B} = 16$	N = 4 $\mathfrak{B} = 25$	M = N = 2 $\mathfrak{B} = 16$	$N = 2, M = 3$ $\mathfrak{B} = 36$	
0	0	-0.0498894	0.00126408	0.106466	-0.0269479	
0.2	0.717923	0.743648	0.718851	0.644168	0.713975	
0.4	1.41881	1.39875	1.41815	1.33223	1.3479	
0.6	1.73294	1.70905	1.73227	1.43579	1.40505	
0.8	1.30814	1.35737	1.31117	0.694829	0.506292	
Max error	0	$4.900771 imes 10^{-3}$	$2.890626 imes 10^{-3}$	$7.161353 imes 10^{-1}$	1.625743	

Table 12. Numerical results with $\tau = \zeta = 0$ for Example 5.

Table 13. Absolute errors with $\tau = \zeta = 0$ for Example 5.

	2D-SJPs		2D-HBPSLs [37]	
x = y	N = 3 $\mathfrak{B} = 16$	N = 4 $\mathfrak{B} = 25$	M = N = 2 $\mathfrak{B} = 16$	$N = 2, M = 3$ $\mathfrak{B} = 36$
0	$4.988938 imes 10^{-2}$	$1.264079 imes 10^{-3}$	$1.064657 imes 10^{-1}$	$2.694793 imes 10^{-2}$
0.1	$1.314614 imes 10^{-2}$	$2.544488 imes 10^{-4}$	$1.500519 imes 10^{-2}$	$7.810507 imes 10^{-3}$
0.2	$2.572567 imes 10^{-2}$	$9.282027 imes 10^{-4}$	$7.375466 imes 10^{-2}$	$3.947639 imes 10^{-3}$
0.3	$7.178138 imes 10^{-3}$	$6.978147 imes 10^{-4}$	$1.226548 imes 10^{-1}$	$3.448407 imes 10^{-2}$
0.4	$2.005857 imes 10^{-2}$	$6.560525 imes 10^{-4}$	$8.657965 imes 10^{-2}$	$7.090727 imes 10^{-2}$
0.5	$3.495032 imes 10^{-2}$	$1.518547 imes 10^{-3}$	$1.553134 imes 10^{-1}$	$3.482695 imes 10^{-1}$
0.6	$2.389001 imes 10^{-2}$	$6.632893 imes 10^{-4}$	$2.971477 imes 10^{-1}$	$3.278872 imes 10^{-1}$
0.7	$1.206528 imes 10^{-2}$	$1.561235 imes 10^{-3}$	$4.595629 imes 10^{-1}$	$5.951170 imes 10^{-1}$
0.8	$4.922751 imes 10^{-2}$	$3.025826 imes 10^{-3}$	$6.133115 imes 10^{-1}$	$8.018483 imes 10^{-1}$
0.9	$3.323691 imes 10^{-2}$	$2.322792 imes 10^{-3}$	$7.485747 imes 10^{-1}$	1.408296

Table 14. Maximum absolute errors with N = 3 for Example 5.

(τ,ς)	MAE	(au, arsigma)	MAE
(0,0) (1,2) (2,2)	$\begin{array}{c} 4.90077 \times 10^{-3} \\ 1.159618 \times 10^{-1} \\ 6.089228 \times 10^{-2} \end{array}$	$(1,1) \\ (2,1) \\ (3,2)$	$\begin{array}{c} 3.494379 \times 10^{-2} \\ 1.718043 \times 10^{-2} \\ 3.330454 \times 10^{-2} \end{array}$

Figure 5. Plots of the exact and approximate solutions (**left**), maximum absolute error (**middle**) at y = 0.3, and absolute error (**right**) obtained by the 2D-SJPs with N = 4 and $\tau = \varsigma = 0$ for Example 5.

7. Conclusions

In this research, sufficient conditions for the existence and uniqueness of local and global solutions of general 2D-NFIDEs were provided. Additionally, the collocation method and operational matrices based on 2D-SJPs were used for solving these equations. Moreover, error bounds of the proposed method were obtained. We showed that the order of convergence of the method is $O\left(\frac{1}{(N(N+\tau+\varsigma))^{\frac{\varepsilon-\varepsilon}{2}}}\right)$ in the Jacobi-weighted Sobolev space. Finally, we evaluated the presented method by solving five test problems. The obtained numerical results showed that a favorable approximate solution can be obtained by using lower numbers of basis functions.

Author Contributions: Conceptualization, T.E.; methodology, T.E.; software, T.E.; validation, T.E. and J.R.; investigation, T.E.; resources, T.E.; writing—original draft preparation, T.E.; writing—review and editing, T.E. and J.R.; supervision, J.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors express their sincere thanks to anonymous reviewers for their valuable comments and suggestions that improved the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Atangana, A.; Kılıçman, A. A possible generalization of acoustic wave equation using the concept of perturbed derivative order. *Math. Probl. Eng.* 2013, 2013, 696597. [CrossRef]
- Atangana, A.; Kılıçman, A. Analytical solutions of the spacetime fractional derivative of advection dispersion equation. *Math. Probl. Eng.* 2013, 2013, 853127. [CrossRef]
- Benson, D.A.; Wheatcraft, S.W.; Meerschaert, M.M. Application of a fractional advection-dispersion equation. *Water Resour. Res.* 2000, 36, 1403–1412. [CrossRef]
- 4. Caputo, M. Linear models of dissipation whose Q is almost frequency independent-part II. *Geophys. J. Int.* **1967**, *13*, 529–539. [CrossRef]
- Cloot, A.; Botha, J.F. A generalised groundwater flow equation using the concept of non-integer order derivatives. *Water SA* 2006, 32, 55–78. [CrossRef]
- 6. Meerschaert, M.M.; Tadjeran, C. Finite difference approximations for fractional advection-dispersion flow equations. *J. Comput. Appl. Math.* **2004**, *172*, 65–77. [CrossRef]
- Chen, C.M.; Liu, F.; Turner, I.; Anh, V. A Fourier method for the fractional diffusion equation describing sub-diffusion. *J. Comput. Phys.* 2007, 227, 886–897. [CrossRef]
- 8. Mainardi, F. Fractional calculus: Some basic problems in continuum and statistical mechanics. In *Fractals and Fractional Calculus in Continuum Mechanics;* Carpinteri, A., Mainardi, F., Eds.; Springer: New York, NY, USA, 1997; pp. 291–348.
- 9. Yuste, S.B.; Acedo, L. An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. *SIAM J. Numer. Anal.* 2005, *42*, 1862–1874. [CrossRef]
- 10. Zhuang, P.; Liu, F.; Anh, V.; Turner, I. Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. *SIAM J. Numer. Anal.* **2009**, *47*, 1760–1781. [CrossRef]
- 11. Carpinteri, A.; Mainardi, F. Fractals and Fractional Calculus in Continuum Mechanics; Springer: New York, NY, USA, 1997; pp. 223–276.
- 12. Metzler, F.; Schick, W.; Kilian, H.G.; Nonnenmacher, T.F. Relaxation in filled polymers: A fractional calculus approach. *J. Chem. Phys.* **1995**, *103*, 7180–7186. [CrossRef]
- 13. Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA; London, UK, 1974.
- 14. Thomas, R.; Fehmi, C. An immersed finite element method with integral equation correction. *Int. J. Numer. Methods Eng.* **2010**, *86*, 93–114.
- 15. Taheri, Z.; Javadi, S.; Babolian, E. Numerical solution of stochastic fractional integro-differential equation by the spectral collocation method. *J. Comput. Appl. Math.* **2017**, *321*, 336–347. [CrossRef]
- 16. Rahimkhania, P.; Ordokhani, Y.; Babolian, E. A numerical scheme for solving nonlinear fractional Volterra integro-differential equations. *Iran. J. Math. Sci. Inform.* **2018**, *13*, 111–132.
- 17. Wang, Y.; Zhu, L.; Wang, Z. Fractional-order Euler functions for solving fractional integro-differential equations with weakly singular kernel. *Adv. Differ. Equ.* **2018**, 2018, 254. [CrossRef]
- 18. Babaei, A.; Jafari, H.; Banihashemi, S. Numerical solution of variable order fractional nonlinear quadratic integro-differential equations based on the sixth-kind Chebyshev collocation method. *J. Comput. Appl. Math.* **2020**, *377*, 112908. [CrossRef]
- 19. Abbas, S.; Benchohra, M. Fractional order integral equations of two independent variables. *Appl. Math. Comput.* **2014**, 227, 755–761. [CrossRef]
- Asgari, M.; Ezzati, R.; Jafari, H. Solution of 2D Fractional Order Integral Equations by Bernstein Polynomials Operational Matrices. Nonlinear Dyn. Syst. Theory 2019, 19, 10–20.

- 21. Babolian, E.; Maleknejad, K.; Roodaki, M.; Almasieh, H. Two-dimensional triangular functions and their applications to nonlinear 2d Volterra-Fredholm integral equations. *Comput. Math. Appl.* **2010**, *60*, 1711–1722. [CrossRef]
- Eftekhari, T.; Hosseini, S.M. A new and efficient approach for solving linear and nonlinear time-fractional diffusion equations of distributed-order. *Comput. Appl. Math.* 2022, 41, 281. [CrossRef]
- 23. Eftekhari, T.; Rashidinia, J. A novel and efficient operational matrix for solving nonlinear stochastic differential equations driven by multi-fractional Gaussian noise. *Appl. Math. Comput.* **2022**, *429*, 127218. [CrossRef]
- 24. Eftekhari, T.; Rashidinia, J. A new operational vector approach for time-fractional subdiffusion equations of distributed order based on hybrid functions. *Math. Methods Appl. Sci.* **2022**. [CrossRef]
- 25. Eftekhari, T.; Rashidinia, J.; Maleknejad, K. Existence, uniqueness, and approximate solutions for the general nonlinear distributedorder fractional differential equations in a Banach space. *Adv. Differ. Equ.* **2021**, 2021, 461. [CrossRef]
- 26. Hesameddini, E.; Shahbazi, M. Two-dimensional shifted Legendre polynomials operational matrix method for solving the two-dimensional integral equations of fractional order. *Appl. Math. Comput.* **2018**, 322, 40–54. [CrossRef]
- 27. Khalil, H.; Khan, R.A. The use of Jacobi polynomials in the numerical solution of coupled system of fractional differential equations. *Int. J. Comput. Math.* **2015**, *92*, 1452–1472. [CrossRef]
- Maleknejad, K.; Rashidinia, J.; Eftekhari, T. A new and efficient numerical method based on shifted fractional-order Jacobi operational matrices for solving some classes of two-dimensional nonlinear fractional integral equations. *Numer. Methods Partial Differ. Equ.* 2021, 37, 2687–2713. [CrossRef]
- 29. Maleknejad, K.; Rashidinia, J.; Eftekhari, T. Numerical solutions of distributed order fractional differential equations in the time domain using the Müntz-Legendre wavelets approach. *Numer. Methods Partial Differ. Equ.* **2021**, *37*, 707–731. [CrossRef]
- 30. Maleknejad, K.; Rashidinia, J.; Eftekhari, T. Existence, uniqueness, and numerical analysis of solutions for some classes of two-dimensional nonlinear fractional integral equations in a Banach space. *Comput. Appl. Math.* **2020**, *39*, 271. [CrossRef]
- 31. Maleknejad, K.; Rashidinia, J.; Eftekhari, T. Numerical solution of three-dimensional Volterra-Fredholm integral equations of the first and second kinds based on Bernstein's approximation. *Appl. Math. Comput.* **2018**, *339*, 272–285. [CrossRef]
- Mirzaee, F.; Samadyar, N. Numerical solution based on two-dimensional orthonormal Bernstein polynomials for solving some classes of two-dimensional nonlinear integral equations of fractional order. *Appl. Math. Comput.* 2019, 344, 191–203. [CrossRef]
- 33. Najafalizadeh, S.; Ezzati, R. Numerical methods for solving two-dimensional nonlinear integral equations of fractional order by using two-dimensional block pulse operational matrix. *Appl. Math. Comput.* **2016**, *280*, 46–56. [CrossRef]
- Rashidinia, J.; Eftekhari, T.; Maleknejad, K. Numerical solutions of two-dimensional nonlinear fractional Volterra and Fredholm integral equations using shifted Jacobi operational matrices via collocation method. J. King Saud Univ.-Sci. 2021, 33, 101244. [CrossRef]
- Rashidinia, J.; Eftekhari, T.; Maleknejad, K. A novel operational vector for solving the general form of distributed order fractional differential equations in the time domain based on the second kind Chebyshev wavelets. *Numer. Algorithms* 2021, *88*, 1617–1639. [CrossRef]
- 36. Najafalizadeh, S.; Ezzati, R. A block pulse operational matrix method for solving two-dimensional nonlinear integro-differential equations of fractional order. *J. Comput. Appl. Math.* **2017**, *326*, 159–170. [CrossRef]
- Maleknejad, K.; Rashidinia, J.; Eftekhari, T. Operational matrices based on hybrid functions for solving general nonlinear two-dimensional fractional integro-differential equations. *Comp. Appl. Math.* 2020, 39, 103. [CrossRef]
- 38. Zeidler, E. Applied Functional Analysis: Applications to Mathematical Physics. Appl. Math. Sci. 1995, 108.
- 39. Conway, J.B. A Course in Functional Analysis; Springer: Berlin/Heidelberg, Germany, 2007.
- Borhanifar, A.; Sadri, K. A Generalized Operational Method for Solving Integro-Partial Differential Equations Based on Jacobi Polynomials. *Hacet. J. Math. Stat.* 2016, 45, 311–335.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.