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1. Introduction

In the last decades, many problems, such as acoustic wave problems [1], ground-
water pollution and groundwater flow problems [2-6], among others [7-10], have been
shown by using fractional calculus. In addition, many engineering and physical problems,
such as problems from control, electrochemistry, rheology, coupling and particle mechan-
ics, viscoelasticity, electromagnetism fluid structure, and porous media (see e.g., [11-14]),
have been mathematically formulated by fractional integro-differential equations (FIDEs).
Recently, numerical methods for solving FIDEs have attracted the attention of many re-
searchers. Taheri et al. [15] solved stochastic FIDEs by using the shifted Legendre spectral
collocation method. Rahimkhani et al. [16] proposed the Bernoulli pseudo-spectral method
for solving nonlinear Volterra FIDEs. Wang et al. [17] developed an approximate scheme
based on fractional-order Euler functions to solve weakly singular FIDEs. Babaei et al. [18]
considered a sixth-kind Chebyshev collocation method to solve a nonlinear quadratic FIDEs
of variable order.

In the presented research, we focus on the following general two-dimensional nonlin-
ear fractional integro-differential Equations (2D-NFIDEs):

afyy(x,y) +bfxx(x,y) + cfyx(x,y) + f(x,y) + A1 f(x,y) = g(x,y) + O(x,y)
+A(xy) +o(x,y) + o(x,y), ¢9)
with the initial conditions of:
f(x,0)=di(x), f(O,y) =da(y), fy(x,0)=d3(x), fx(O,y) =da(y), fe(x,0)=ds5(x), (2)

where (x,y) € © = [0,41) x [0,42); 0 = (01,02) € (0,00) X (0,00); and a, b, ¢, A are
constants, and
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O(x,y) = /Ox /Oykl(X,f,y,S)fpl(t,s)dsdt,

Ax,y) = 1"(@1)11"(@) ./Ox ./: (x — t)Ql—l(y - 5)92—1k2(x, t,y,s)fP2(t,s)dsdt,
o(x,y) = 1"(@1)11"(@2) /(le /052 (61 — t)Q1—1(£2 — 5)92—1k3(x, t,y,s)fP3(t,s)dsdt,

l l
p(x,y) = / T ka(ty,s) P4 s) ds .
0 0

Here, functions d;(.),i = 1,2,3,4,5, k]-(x, t,y,s), j =1,2,3,4, ¢(x,y) are known, and
f(x,y) is unknown; I9f(x,y) is the left-sided mixed Riemann-Liouville integral of order
0= (01,02) € (0,00) x (0,00) of f denoted by [19]

I*f(x,y) = T(01)T(a) // 0y — )27 f(t,5) ds dt;

and p; >1, j=1,2,3,4 are constants.

While several numerical techniques have been proposed for solving many different
problems (see, for instance, [20-35] and references therein), there were few research studies
that developed numerical methods for solving Equations (1) and (2). For example, Na-
jafalizadeh and Ezzati [36] obtained approximate solutions of these equations by using
operational matrices of two-dimensional block pulse functions (2D-BPFs) with the order
of convergence O(%), N € N. Maleknejad et al. [37] applied operational matrices based
on a hybrid of two-dimensional block-pulse functions and shifted Legendre polynomials
(2D-HBPSLSs) to solve the general 2D-NFIDEs. The order of convergence of this method
was O(m)

According to the best of our knowledge, the existence and uniqueness of solutions for
Equations (1) and (2) have not been discussed so far. In this research, we provide sufficient
conditions to prove that there exist local and global solutions for the general 2D-NFIDEs.
Then, we prove that the solutions of these equations are unique. Additionally, we prepare
an efficient numerical approach to approximate solutions of the general 2D-NFIDEs with
high accuracy.

The rest of this paper is organized as follows: in Section 2, some theorems for the
existence and uniqueness of solutions of general 2D-NFIDEs are proved. In Section 3,
an introduction of one- and two-variable shifted Jacobi polynomials (1D-SJPs and 2D-
SJPs) is provided. Additionally, some operational matrices are introduced. In Section 4,
by using the collocation method via these operational matrices, approximate solutions
for Equations (1) and (2) are obtained. In Section 5, error bounds of approximations are
obtained. In Section 6, five test problems are solved to show the accuracy of the proposed
method. In Section 7, a conclusion is presented.

2. Existence and Uniqueness of Solutions

Now, by using Schauder’s fixed-point theorem [38], a local existence of solutions of
general 2D-NIDEFs is proved in a Banach space.

Theorem 1. Suppose that

(CH)0<t<x<0,0<s<y<4tyg s, fveC®OR"),ky,kyks ky € C(D XD x
RHIRTl);

(C2) ||fyy X,Y) — vy xry)H prrt fox(x/y) —oxx (Y| < 355
50 H2f (x,y) — IPo(x,y) || < 541/

(C3) [g(xy) —s1(xy)| < &
(C4) |lki(x, t,y,5, f(t,5)) = Ki(x, t,y,5,0(E )| < g i =140 <a<f1,0 <<ty

fyx(x,y) — UyX(x/y)H <
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(C5) ||kj(x,t,y,5,f(t,5)) _kj(x/t/yIS,U(tzs))H < %/,’ - 2/3/ 0 <a< gl/ O <
:B < ty.

Then, there exists at least one solution for the 2D-NIDEFon 0 <t <a, 0 <s < .

Proof. Suppose that D = {(x,t,y,5,f) : (x,t,y,5) € D x D, [f| < b'}. Let |fyy (x,v)| < %,
x| < 1550 [fx (0 y)| < B 110F ()| < 1 I3y < 5

max{’ki(xlltl]/llslf(tls))|l |ki(x2/ t/]/Z/S/f(t/S))H = gi/ l = 1/2/3/4/

/ Q1 BC; / .

on D. Choose (& + &a)af < b, (EHEICES < B Consider Il = {f : f € C(Dg,R"),

|f| < ¥’} such that || f|| = ( m)ax If(x,y)|, Do = [0,a] x [0, B]. Clearly, Iy is bounded,
x,Y)E€EDo

closed, and convex. Now, for any f € Iy, define the operator

Tf(xy) =—afy(x,y) —bfrx(x,y) — cfyx(x,y) — AI°f(x,y) + g(x,y) + O(x, )
+A(x,y) +po(xy) +9(xy), (xy) € Do. @)

It is clear that

©(x,y)| < E1ap,
CZ“QI,BQZ
A (e
ggaglﬁgz
P S F D@+ 1)

lp(x,y)| < Caap.

Therefore, we obtain
1T y)| <lafyy(x,y)| + [bfexc(,y)| + |cfyx (e, y)| + [ATOf (x, )| 4 18(x, y)| + [©(x, )|
+ A y)] + lo(xy)] + lo(x, )]

v (82 +G3)a®1 g2 /
=g H O i S ) <

which implies that 7 (I1y) C ITy. Furthermore, for any (x1,y1), (x2,12) € Dp, such that
x2 > x1 and y > y1, we obtain

[T f(x2,y2) = Tf(x1,y1)| <alfyy(x2,y2) = fyy(x1,51) | 4 b] frx (X2, 42) = fax(x1,51)]
+ | fyx (%2, y2) = fyx (31, 1) + A1 (x2,y2) — 19 (x1,51)]
+ |8(x2,y2) — g(x1,y1)| + [©(x2, y2) — O(x1,41)]
+ [A(x2, y2) = Alxr, ya) |+ [p(x2, y2) — p(x1,y1)|
+ [@(x2, y2) — @(x1,y1)- @

Additionally, we have
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[18f (x2,y2) = 1°f (x1, 1)

m /(;XZ /(;yz (xz 7 t)Qlfl (yz _ S)inlf(t,s)dsdt

B x1 /Oyl (x1 B t)QT_l(}/l _ S)Qz_lf(t,s)dsdt'

<

o

L[ Gt e - 9 (e syasat

r(Ql) (02)
X2 yz
+ X —1)%” —8)%27 f(t,5)dsdt
/xl /y 2 Y2 —9)" 7 f(Ls)
X1 yl 1 el
/0 /0 (y1—5) f(t,S)dsdt‘
X1 yl B B -
F(Q1 T'(02) / / (=) o —5)2 7 = (x1 — )0 (g1 —5)® 1)f(t,s)dsdt
X2 Y2
+ X —H%” —5)27L£(¢,5)dsdt
L) e ()

< m (/xl /Oyl ((xz — t)qu(yz 7S)Q271 (- t)qu(yl 7S)ngl) dsdt

Xp _
/ / (= D2y, —5)2 1dsdt>
X1
Q1,02 Q1,2

SW((H*M)@(W*%) =X Yy XY *(xzfxl)@(yzfyl)gz)

=0.

Therefore,

[T f(x2,y2) =T f(x1,41)| = 0. (5)
Moreover, we can obtain

X2 yz
[A(x2,y2) — A(x1,y1)| / / (g — )9~ y —5)2” kz(xz,t y2,8, f(t,s))dsdt

QZ
X1 [ 1 _
7/ / (x1 =) (yp —5)* kz(xl,t,yl,s,f(t,s))dsdt
o Jo

X1 1 1
= / / (x2 — )% (y2 — 8)% ka(x2, t,y2,8, f(t,5))dsdt
Ql (02)
/ xp —1)¢ y 2 —8)2 ey (20,8, y2,s, f(t,s))dsdt
n
X1 !/1
/ / (x1 — )9~ y1 —5)2 ey (a8, 1,8, f(t, s))dsdt‘
X1 y1 Q
/ / (2 — 8 yp —5)%2~ kz(xz,tyz,s f(t,9))
Ql (02)
—(x — )% 1(y1 —5)2” kz(xl,t,yl,s,f(t,s)))dsdt

X
/ 2/ (xp — 1)~ 1 s)qz*lkz(xz,t,yz,s,f(t,s))dsdt‘
X 1./1

<t h b (=007 G s 109)
+(x1 — t)gl*l(yl — s)‘*’rl\kz(xl,t,yl,s,f(t,s))|>dsdt

1 X2 Y2
*W/n S =08 =) Nz s, f,9)) sl

e ?;(Q </x1 /yl (xo— f) 01— ) 02— + (1 — t)qu (y1 — S)er)dsdt
1) (e2)
y
+/x /yz (x2 =) (y2 ) 2’1dsdt>
1 1
= m ((x2 = x1) (2 —y1)® — x3'y32 + 23y + (x2 — x1)% (2 — 11)?)
22

< W(m —x1)% (y2 —y1). (6)



Mathematics 2023, 11, 824 50f 29

Similarly,
1O(x2,y2) — O(x1,y1)| < &1(x2y2 — x191), @)
- (le‘BQZ B anngZ _
lo(x2,y2) — p(x1, 1) < &3 (F(Q1 TDO)I(02+1) T(oi+ DI (02+ 1)) =0, (¥
|p(x2,y2) — @(x1,y1)| < Ealap —ap) = 0. ©)
Applying inequalities (5)-(9) in (4) gives
T f(x2,92) = T f(x1,y1)| S|(Ff)(x2,92) = (Ff)(x1,y1)| + AT f(x2,y2) — I°f (x1, 1)
+18(x2,y2) — g(x1,y1)| + &1 (x2y2 — x141)
26 . 2
Mo g+ 2~ 2 =)™ 10

where

(Zf)(x,y) = —afyy(x,y) = bfex(x,y) — cfyx(x, ).

It is clear that the right-hand side of (10) tends to zero as x — x1, y2 — y1. Thus,
T : IIg — Iy is equicontinuous. Therefore, by using the Arzela—Ascoli theorem [39],
the compactness of the closure of 7 (ITy) can be concluded.

Now, we need to show that 7 is continuous. For this propose, define

To(x,y) = (Fo)(x,y) — M(x,y) + g1(x,y) + Ou(x,¥) + Au(x,y) + 0u(x,y) + ¢o(x,y),

v(x,0) = dy(x), v(0,y) = da(y), vy(x,0) = d3(x), vx(0,y) = da(y), vx(x,0) = ds5(x),
where (x,y) € D, v € Iy, and

(Fo)(x,y) = _m’yy(x/y) —boxx(x,y) — vax(X,y),
X ry
Ou(x,y) = / / ki(x,t,y,s,0(ts))dsdt,

Ap(x,y) = (o) / / He 1 )erkz(x,t,y,s,v(t,s))dsdt,
_ 1—1 n—1
po(x,y) = m/o /0 (a =) (B—9)2 "ka(x,t,y,s,0(t,s))dsdt,

a rp
Po(x,y) = / / ky(x,t,y,s,0(ts))dsdt.
0o Jo
Since k;, i = 1,2,3,4, are uniformly continuous, we can write
Ve>0,36>0: |f(xy)—o(x,y)| <.

Suppose that the assumptions (C1)-(C5) hold; therefore,

ITf(xy) —Tolx,y)| <|(Ff)(xy) — (Fo)(x,y)| + A1 f(x,y) — Pv(x,y)|
+1g(x,y) —81(x, y)| +[O(x,y) — Ou(x,y)|
+|A(x,y)— Ao(x,y)| + [p(x,y) — po(x,y)]
+|o(x,y) — ¢o(x,y)|-

Furthermore, we can easily obtain the following inequalities:
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£ X ry €
— < — < Z
|®(x,y) — Op(x,y)| < 6B o /0 dsdt < 2,

1 (o +1Dl(e2+1) a1 1 €

— < 1— 02— < <

[AGY) = 8591 < T 5T 0 621 p2 / / —s)® ldsdt < o,
1 el(o1+ D2+ 1) -

S () “ 6a@1,BQzQZ / / DB —s)® Ndsdt =

€ a rp
- < —_— = —
l9(x,y) — 9o(x,)| < 6&/3/0 /0 dsdt

Thus, we have
Tf(x,y) —To(x,y)| <e

and the proof is completed. O

In the following theorem, by using Tychonoff’s fixed-point theorem [38], the global
existence of solutions of the general 2D-NFIDEs will be discussed.

Theorem 2. Suppose that

(D1) G; € C(R>,R"), k; € C(R4 x R*,R"),i=1,2,3,4;

(D2) Foreach (x,t,y,s) € R‘i, Gi(x,t,y,s,u(t,s)),i =1,2,3,4, are monotonically non-decreasing
in u;

(D3) |ki(x,t,y,s, f(t,5))] < Gi(x,t,y,s, |f(t,5)]), (x,t,y,s, f(ts)) € ]Ri xR" i=1,2,3,4;

(D4) |(7f)(x,y)| < (Fu)(x,y).

Then, for every x,y > 0, the generalized two-dimensional nonlinear fractional integro-differential

equation

u(x,y) = (Fu)(x,y) + A 1u(x,y) + 9(x,y) + Ou(x,y) + Au(x, y) + pu(x,y) + @u(x,y), (11)

has a solution u(x,y) with initial conditions

u(x,0) = di(x), u(0,y) = da(y), uy(x,0) = ds(x), ux(0,y) = da(y), ux(x,0) = ds(x), (12)

and

(ﬁu)(x,y) = —a “yy(xfy) - b”xx(x/y) - Cuyx(x,y),
Fulxy) = r(Ql)lF(QZ) | [ =07 =9 e s)asde,

X ry
Ou(x,y) :/ / Gi(x,t,y,s,u(t,s))dsdt,
Au(x,y) = ol (@) / / Ha1( )QZ_le(x,t,y,s,u(t,s))dsdt,
b rb -1 01
pu(x,y) = W/O /0 (b — 1)1 (lp — 5)*7 " Ga(x, t,y,s,u(t,s))dsdt,
0o b
ou(x,y) :/0 ; Gy(x,t,y,s,u(t,s))dsdt.

Additionally, for every x,y > 0and q(x,y) € RZ, such that |g(x,y)| < q(x,y), there exists
a solution f(x,y) for Equations (1) and (2) satisfying |f(x,y)| < u(x,y) and |A] < A'.

Proof. Let Q be a real space of all continuous functions from (0,00) x (0, c0) into R".
The topology on Q is that induced by the family of pseudo-norms {Q, ,,(f)}5

m!' ,m=1’
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f(x,0) = di(x),

where Qs ,,(f) = sup |f(x,y)| for f € Q. Consider {S,s .}y, ,_; as a set of

neighborhoods with S, ,, = {f € Q: Qv ,(f) < 1}. Under this topology, Q is complete,
locally convex, and a linear space.
Let

Q={feQ: [f(xy)| <ulxy), x,y>0}CQ,

where u(x,y) is a solution of Equations (11) and (12). Obviously, in the topology of Q, Qg
is closed, convex, and bounded.

Note that a fixed point of Equations (11) and (12) corresponds to a solution of Equa-
tions (1) and (2). Since, in the topology of Q, T is compact and Qy is bounded, therefore,
the closure of T(Qp) is compact.

Considering assumptions (D1)—(D4) yields

X ry X ry
O(x,y)| §/ / |k1(x,t,y,s,f(t,s))|dsdtS/ / Gi(x, t,y,s,|f(t,s)])dsdt
0 Jo 0 Jo
x oy
g/ / Gi(x, by, s, u(ts))dsdt = @y (x, ).
0 JO

Similarly,

A,y < Aulxy), le(xy)] <pu(xy), oyl < eulxy), [I°f(xy)] <u(xy).

Since u(x,y) is a solution of Equations (11) and (12), the definition of Qy yields
|Tf(x,y)] < u(x,y). Therefore, T(Qp) C Qp. Now, by using Tychonoff’s fixed-point
theorem [38], we can deduce that 7 has a fixed point in Qp, and this completes the
proof. O

In the following theorem, we prove that the general 2D-NFIDE has a unique solution.

Theorem 3. Consider k; € C(D x © x R",R") (i = 1,2,3,4), f € C(D,R"). Assume that
there exist 0 < Li<1 (j =1,2,3) such that:

furey) = Foy (x| < Ll fGey) = Flxw)|, (13)
fux(t,y) = Faa(y)| < La|f(x,y) = Flxw), (14)
fuxey) = Fa )| < L[ fxy) = Fx,)], (15)
ki(x,t s £(4,5) = ki s, f(Es)| < i fts) = F(ts)|, i=1234.  (6)

If

g(l?legz
I'(o1+1)I'(e2 +1

<(aL1 +bLy +cL3) + )(A +1m1 13+ 174)> <1, 17)

then the general 2D-NIDEF has a unique solution.

Proof. Let

TF(xy) = (FF)(xy) — A% (x,y) +8(x,y) + O(x,y) + Alx,y) +p(x,y) + ¢(x,y),

with

fOy)=da(y), f,(x,0)=ds(x), [f.(0,y)=dus(y), fyi(x0)=ds(x),
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and
(Zf)(xy) = —af,,(x,y) - bfxx(x,y) —cfe(xy),
O(x,y) / / ky(x,t,,8)F (¢, 5)dsdt,
A(x,y) = / / Dy — )2 Ty (x, ,y,5) F2 (1, 5)dsdt,
Ql (02)
bt 1 -1 ZP3
p(x,y) / / (0 — 1) (ly — 5)® “ka(x, t,y,8)f (t,5)dsdt,
I'(01)T(02)
0y ly
?(x,y) / ka(x,t,y,s)f 4 (t,5)dsdt.

for (x,y) € D.
Using (13)—-(16) yields

(ZH(y) = (FH )| < (aly +bL + cL3>\

. 91692
12f(x,y) — AL (x,y)| <
ey =AM <t
B 171€Q1€Q2
O(x,y) — O(x, <
O y) =0y < 1 D T D)
_ qzﬂglﬂgz
Alx,y) — Alx, <
|A(x,y) ()| T(o1+ 1)(02 + 1)
) ;73£Q1502
7 - 7 S
PG y) =P < T ) o 1)
. H4£01£QZ
- <
9o y) = el < o Pl - fH

Now, we can write

Tfxy) =Ty <[(Z ) xy) - < 7))+ A|1f (x,y) = AT (x,)|
+|0(x,y) — O(x,y)| + |Alx,y) — A(x,y)]
+lp(x,y) —p (, N+ le(xy) — o(x,y)]
€§1€§2
(o1 +1)T (02 +1

< (aLl +0bLy +cLs +

)(7\+171+172+773+174)>’

forany (x,y) € D and f, f € C(D,R"). Therefore,

g@l €Q2

\TF-7F| < <0L1+bLz+cL3+F(Ql+i)r2(gz+1)(/\+771+772+773+774)>Hf—fH-

From (17), T is a contraction map in C(®,R"), and thus, it has a unique fixed point.

Therefore, f € C(D,R") is a unique solution for the general 2D-NIDEF. [J

3. The 1D-SJPs and 2D-SJPs and Their Operational Matrices
3.1. The 1D-S]Ps

The 1D-SJPs are defined on the interval [0, ) by

! .
(T8 oy vy LU+ e+ DI(+j+T+6+1)
Tt 0 = L Y G S e+ D0 g
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These polynomials are orthogonal on the interval [0, £); therefore,

/ T () 7179 ()™ (x) dx = {7,

(t,6)

where w, "’ (x) = x(¢ — x)7 is a weight function, ; is Kronecker delta, and

(w6) _ AT+t + DT +¢+1)
tl QI+T+c+DIT(I+T+c+1)

Additionally, these polynomials have the following property:

d’ (T6) _ F(l+T+g+i+1) T+l ,G+i)
ﬁj&l (x) - F(l+r+g+1) ‘jf (x) (18)
The vector of 1D-SJPs is as follows:
T
¥ = (7590 590 . IS W ) (19)

3.2. 2D-S]Ps and Function Approximation
The 2D-SJPs are defined on the domain ® = [0, ¢1) x [0, /) by

T ) = T 0T ), i j=01,..,N.

These polynomials are orthogonal on ©; therefore,

l l
/1 ’ j Tg ).Zf;;g)(x,y)w(T/G)(x,y) dydx = ;6 /hyf) g].g),

where w(7%) (x,y) = wg’G) (x)wg’g) (y) is a weight function.

By using 2D-SJPs, we can approximate a continuous function f(x,y) on the domain
D =[0,¢1) x [0,¢) as follows:

N N
Fooy) = fuley) =Y Y fiaire =¥ (x,y)F = FT¥(x,y), (20)

i=0j=0

where

A:(fOO fOl --~fON flO fll le fNO le fNN )T/

with entries

byl o

fi= oo e f ), )(xy) (W) (x,y)dydx, i,j=0,1,...,N,
h[ G g9
14 2]

and
¥(xy) =(Jo57 ow), e TR oy, TG (y) e T (5,)
T, T, T
ST ), T ) 1)

are (N +1)% x 1 vectors.
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Additionally, we can expand a function k(x, t, 1, s) on the domain © x D with respect
to 2D-SJPs as follows:

k(x,t,y,5) ~ ¥ (x,y)K¥(t,s). (22)
Here, K is a matrix with entries

b ol by pla £(16) (T6) (1,6) (1,6)
K — 0 Jo fO 0 jq’[i],q”[j](x/y)k(x/ t/y/ S)jq’[j],q”[j](t’s)w (x,y)w (t,s)dsdtdydx
bl 1) p(Te) p(Te) 4 (Te)
O[]0 1 g [ 42" [f]

7

where

andi,j=1,...,(N+1)>2

3.3. Operational Matrices of Two-Dimensional Integration

In [40], the authors computed the one-dimensional integration of ¥ (t) for t € [0,1).
Similarly, we compute the one-dimensional integration of this vector for t € [0, ¢), as follows:

/OX‘I’(t) dt ~ Py ¥(x),

where P, is a one-dimensional operational matrix of integration, defined in the follow-

ing form:
pOO pOl ttt pON
. @
pNO le tee pNN

with the following entries:

. i( (D" T+ g+ DP(k+ g+ DI(k+j+T+c+DI(T+1)

S \mT(I+T+6+ DI+ o+ DI(k+T+g+1)( + 1!k —f)/

1 o\ . 1 1
><Z( 1) F(l+z+T+g+1)r(l+]+€+2)€>, k,1=0,1,...,N.

= T(i+g+DI(i+j+1+¢+3)il(l—1i)!
Since ¥(x,y) = ¥Y(x) ® ¥(y), the two-dimensional integration of ¥ (¢,s) can be ob-
tained as follows:

/Ox /Oy‘l’(f/s) dsdt ~ (Px ® Py) ‘I’(x,y), P= [0,51), ye [0,52), (24)

where ® denotes the Kronecker product; Px @ Py is the (N 4 1) x (N + 1) operational ma-
trix of the two-dimensional integration; and Py, Py are (N + 1) x (N + 1) one-dimensional
operational matrices of integration, defined in Equation (23).

Additionally, it is easy to conclude the following result:

b
/ / Y(ts)dsdt = A; @ Ay, (25)
0 0
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where
T T
A= (ay m an ), Ay=(ay a) ... ay),
with the entries:
. :i(_l)r_j IFr+¢+1)I(r+j+t+¢+1)
T FG+c+D(r+t4+c+1)(r—)G+1)"
a = i(*l)ri} F(r+g+1)r(r+]+r+g+1)€2
"5 C(j+c+DI(r+7t+c+1)(r—)IG+1)"

forr=0,1,...,N.

3.4. Operational Matrices of Fractional-Order Integration

In [27], the authors defined an operational matrix of the Riemann-Liouville integral
operator of order x by

S0 Son Son
or — S0 Su Sin
Swo Sm Sun

with the entries

()" (A + ¢+ DT+ m+7+¢+ )T (m+1)

S, =L <r(m+g+1)l"(l+r+g+1)(l—m)!m!l"(m+1c+1)€m

m=0

M+ T4 ¢+ DT+ DI(r+m' + T+ ¢+ DI (m+x+m' + ¢+ 1)T(k + 1)6¢

¥ D
m'=0

(P e 1 (e [ (R

Fr+7t+1)I(m' +¢+1)(r—m")m'T(m+x+m' +¢+1+2) )’
forl,r=0,1,...,N.

Theorem 4 (see [34]). Let 0 = (01,02) €
SJPs. Then

(0,00) x (0,00) and ¥(x,y) be the vector of 2D-

1°Y (x,y) ~ (151'91 ®I€2'92)‘I’(x,y), (x,y) €[0,¢1) x [0, £). (26)

Here, 1%t and I are operational matrices of a fractional Riemann—Liouville integration of
orders 01 and gy, respectively.

Theorem 5 (see [34]). Let k > 0. Assume that ¥(s), defined in (19), is the vector of 1D-
SJPs. Then,

1 . -
W/o (6 —s) ¥ (s)ds = Y, 27)

whereY = (v, 1, vy ) and

T(r+¢+DI(r+j+1+g+1)e1

r=0,1,...,N. (28)
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Theorem 6 (see [34]). Let 01, 02 > 0. Assume that Y(t,s), defined in (21), is the vector of
2D-S]Ps. Then

1 b by -1 or—1
W/O /0 (6 =)l =) ¥(t,5)dsdt = Y1 @Y, (29)
where
T T
Yi=(91, 71, .. 7)., Ya=(192, 2, ... 92, ),
and
i Q
=y (1) o+et DI +j et
= I'j+c+1D)I(r+7+c+1)(r—)HT(j+01+1)
Zr: T(r+¢+DI(r+j+7+¢+1)03

IFG+¢+D)I(r+t+¢+1)(r—)NT(+02+1)
forr=20,1,...,N.

3.5. Operational Matrix of Product

Assume that ¥(x, y), defined in (21), is the vector of 2D-SJPs. In [34], Rashidinia et al.
introduced the operational matrix of the product as follows:

X

¥ (x,y) ¥ (0 y)F =~ F¥(x,y), (30)

for (x,y) € [0,¢1) x [0,¢7). Here, Fis the operational matrix of the product with the entries

zZ

N

le(N+1)+n1+1,m2(N+l)+n2+l = Z Z fkvmljmzvnlknzl

(16 .
hfl mo fz 7’12 ]:0 k=0

where
omims = [ T T (Tl 1)
Onytons = / T NITEE T (y)wl™ (y) dy,
for mqy,nq,mp,n, =0,1,...,N.

4. Method of Solution

Here, by using the method proposed in Section 3, we solve the general 2D-NFIDEs.
First of all, we define

fay(y) = f, ¥ (x,y), (31)
fax(x,y) = fxTx (x,y), (32)
fyx(x,y) =~ fyx (x,y), (33)
g(xy) =¥ (x,y)G, (34)
ki(x,t,y,s) ~ ¥ (x,y)k;¥(t,s), i=1,234, (35)
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d(x) = f(x,0) = ¥ (x,y), (36)
dy(y) = f(Oy) =~ Fg, ¥ (x,y), (37)
d3(x) = fy(x,0) = Fo¥(x,y), (38)
dy(y) = f+(0,y) =~ Fo, ¥ (x,y), (39)
ds(x) = fe(x,0) = Fio¥ (x, ). (40)

Now, from the Appendix in [36], we can obtain:
fyTy: ((fT_PxT())(I@Py)_l_FyTxo)U@Py)_lf (41)
for = (fT = Fg) (Px @ 1) ™! = Fig, ) (Px ® )7, (42)
fie = (T = B (Pe@ )7 = ELo) (1@ Py) 1. (43)

Using (26) for If(x,y) yields

1 (x,y) = IFET¥ (x,y) = FTI%¥ (x,y) = ET (100 @ 120 ) ¥ (x,y). (44)

Additionally, by using (20) and (30), we have

frly) = E¥ ()T (xy)F = ETE¥ (x,y) = B¥(x,y),
3]

Floy) =2 FT¥(x,y)BY(xy) = FT¥(x,y)Y (x,y)F = ﬁiﬁi‘f’(x,y) =5Y¥(x,y).

£
Similarly, we obtain
fP(xy) = BY¥ (xy).
Now, using (24), (35), and (45) gives
X ry
@(x,y):/ / ki(x,t,y,s)fP1(t,s)dsdt
0 Jo
X ry A
~ / / ¥ (x, y)ky ¥ (1, 5)E, ¥ (1, 5) ds dt
0 Jo
x oy ~
:/ / ‘I’T(x,y)k1PpTl‘P(t,s)dsdt
0 Jo
= (Y (Y
—y7(x, kFT//‘Pt, dsdt
], [ [ s ds
=¥ (x, )k Ef (Px @ P)) ¥ (x,).
Similarly, using (25), (35), and (45) for ¢(x,y), we can write
04l
q)(x,y):/ / ky(x,t,y,s)fP4(t,s) dsdt
0 Jo
b b N
~ / / ¥ (x, y)ks¥ (2, 5) B, ¥ (1, 5) ds dt
0 0
4ol o =
:/0 /0 Y (x,y)ka ), ¥ (8, 5) ds dt

T e b by
— W7 (x, y)kab], /O /0 ¥(t,5) ds dt

=¥ (x, )k F], (A1 @ Ay).

(45)

(46)

(47)
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Additionally, using (26), (35), and (45), A(x,y) can be determined as:
1 _ e 1 01 P2
A(x,y) (e T(e)) / / X —t) —8)2 ko (x,t,y,8)fP2(¢t,s) dsdt
~ 1 a1, No—1gT f
~ N Qz)/ / (x — 1)y — )2 T (2, y)ka ¥ (£, 5) By, ¥ (£, 5) ds dt
1 Ha(y — 5)% TyT PT
(e )T(e) / / =) Y (x, y)ko FL Y (1, 5) ds dt
—y (x,y)kZFpTz<m/o /0 (xft)gl*l(yfs)grl‘}’(t,s)dsdt)
= ‘I’T(x,y)kzlgp?2 <If1"?1 ® 152’92>‘I’(x,y). (48)
Using (29), (35), and (45) for p(x,y), we obtain
o) = o [ [l -0 G 9P sl by ) 1 5) ds
7 T(en)T(e2) Jo Jo Y '
1 [1 fz _ _ n
~ O — D0l — )2 T (x, y)ks ¥ (1, 5) By, ¥ (t,5) ds dt
F(Ql)r(Q2)~/0 /O (1 ) (2 S) (x y) 3 ( S) p3 ( S) S
1 bl _ _ ~
- - _ -l Ne—lgT T
- TS / /0 (0 — %7 (L — )27 T (x,y ks B ¥ (1, 5) ds dt
=~ 1 bl _ _
A T _pa-lo el
—y (x,y)k3Fp3(r(Ql)r(Qz) /0 /0 (6 — )20y —5) ‘I’(t,s)dsdt)
= ‘I’T(x,y)kgl:"g; (Y1 ®Y2). (49)

Now, by substituting (31)—-(34), (36)-(44), and (46)—(49) into (1), a system of equations

can be obtained as follows:

afyy ¥ (5,y) + bFEF (5, ) + cfL ¥ (xy) + FT¥ (v, ) + AFT (10 @ 120 ) ¥ (x,y)

~ ¥ (x,y)G + ¥ (x, y)k1 EL, (P © Py ) ¥ (x,y) + ¥7 (x,y)ko B, (141@1 ® IZ2r92>‘P(x, y)

+ ¥ (x, y)ks B (Y1 @ Yo) + ¥ (x, y)ka B (A1 ® Ay).

(50)

In the above system, the coefficients fmml, m,m" =0,1,...,N are unknown. Using

the roots of 7.7, N +1( x) and T N +1( ) for an appropriate N determines these unknown

coefficients. By collocating Equation (50) at points {(x, y,)}Y ./_, we obtain (N + 1)

m,

equations and solve this system using the Newton method. Therefore, we obtain the

unknown coefficients and determine an approximate solution from (20).

5. Error Bounds

Let ® = [0,¢1) x [0,¢;) and Li) (0 (D) be a weighted space of square integrable
functions on ©. We recall the following inner product and norm on Li} (o) (D) to discuss

the convergence of the new method:

b by
oo = [ [ FEygene™ @y dyds,  Vf.ge L2, (D),

e = (7 F)? T@(xy)dydx)l, Vf € Ly (D).

Theorem 7. Consider the following finite-dimensional polynomial space:

PN = SPﬂn{J,,Sf,;f/)(x,y), 0<mm <N}
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Suppose that

i

axilayizf(x'y)ec(g)' ih+i=1i1i=0,1,...,N.

If fn (x,y) is the best approximation from Py to f(x,y) and fn(x,vy) is the Taylor expansion
of f(x,y) of order N with respect to each variables x and y, then

oN+1
1f = il e = (Zpilfl)' (b16r)THeHB(T+1,6+1), (51)
where
= max { NI max Lf(x ) (52)
N 2 (ryyem | 9xN Ty Y| o

and B(.,.) is a beta function.

Proof. Since fx(x,y) is the best approximation to f(x,y), it is obvious that from the defini-
tion of best approximation, we have

1f = fnllpme < Hf—fNHw“g)- (53)
The Taylor expansion of f(x,y) about (07,07") yields
~ —mym o
)P = [fm- 1 £ 00
NAL N4l gN+1

—0 (N +1-— 1’)!1’! axN+lfrayif(77x/ ’7y)

N+1 é{\l-ﬁ-l—r% oN+1
- — 01 | 3eNi=rar ) (o ty)
—0 (N + 1 7’) r. ax ay
N+1 £N+l ror aNJrl

< 1 72
= (N+1-1)ir! (xy)e@

axl\l—l—lrayf(x/y)‘
N+1 1

< -

= EO (N+1—r)r

w5 ()

V2N+1
(N4

where (77x,17y) € [0,x] x [0,y] and (x,y) € D. Since fn € P, we can write

52 2N+1 2
I =il < [ 7 () @™ ayas

2
= (U’ffll),) (U16) TN (B(T +1,6+1))%

Taking the square roots of the above inequality gives the inequality (51). O
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Definition 1. A Jacobi-weighted Sobolev space of measurable functions is denoted by Z¢ | (D)
and is defined with the following norm and semi-norm:

1
3 2 2
I
1 lleotmer = (Z ‘aAwahﬂ,gm) s Azl eeh

|f|£w (T6) ||aAf|| (t+ec+e) s

where

al
I _
aAf = 7axllaylz f, Lh+hL =],

w(T+l'g+l) (x, y) — w(T+ll/g+ll) (x)w(r+12r€+12) (y) .

Theorem 8. Forany f € ‘@2;(%) (D), e e N, and 0 < e < ¢, we have
1f = fnllewimo < HININ+T+)A+T+6) T |f, v, (54)
where 1] is a positive constant.

Proof. From (18), we can write

[e9) [e9)

Wy - ) =Y ¥ dhd @I W)
j=0k=N+1

£ Y Y RAIT @I W)
=N+1k=0

2 (t+11,6+1) (T+lp,6+1
Fievin v S () 7 5 ()

I
e
=
ng QMS

+1

- (t+,6-+] et
E kVJllvklzjle] zllg“)(x)jz(;k_fﬂ)(y)f (55)

where

Ij+t+¢+h+1) y _Tlk+t+c+hb+1)
Tj+t+g+1) ’ Kl T(k+T+¢+1)

Vi = (56)

Taking the L2 ,—norm of Equation (55) yields

o =] e =& L Rt ¥ Zf,kﬂk+2 Y Y fia ®7)

j=0k=N+1 J=N+1k= j=N—+1k=N+1
where
) 2y (T+le+) (t+l,6+12)
Bjk = ]llvklzhp” I (X)hgz,k,b )
Similarly,

Ha fH (teg+e) _Z Z ka ik + Z Zf]kakJ“z Z 2 f]k]k/ (58)

j=0k=N+1 j=N+1k= j=N-+1k=N+1
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where

22 g (treygter) (t+ez,6+e2)
b]rk = VierVker ey j—eq (x) Ly k—eo (y)-

Using (18) and the Stirling formula
[(z+1)=V2nzz*e * (1 + O(z*%)),

and from

we have

bjx

From the relations (63)—(65), we obtain
2 I 2
FGey) = A e = HaA<f—fN>H
ik, g ]k
), %b]‘rkf]%( Z Z bk lﬂL2 Z Z ]k]k
k=N bk bjk

I
Lr1e

j=0k=N+1 "J, =N+1k= j=N+1k= N1
SRR ! ! z
<)Y X vj11*€1k12*€2<j+r+g)1*el(k+r+g)2’”bf,kf]%c
j=0k=N+1
+ Y YRR () T (kT4 g) 2 bR
j=N+1k=0
[ee]
I I
42 Z 2 17]11 Elklz 52(]+T+g)1 El(k—}-T—f—g)z Ezb], f]k

j=N+1k=N+1

<N+ T4+ I (N+T+0)2 2 Y Y bfd
j=0k=N+1

HNITE(N T4+ 1+t 46)272 Y Y bufi
j=N+1k=0

+217N117£1N12782(N—|—T—l—g)l]iel(N‘i‘T-i-g)lZfez Z Z bj,kf]%c
j=N+1k=N+1

K < gk (T ) (k4 T4 g)2

§17Nl"S(N+T+g)l"€(l+r+g)l”5<2 Y obufat Y Lbufi+2 Y Y bj,kf]%{>

j=0k=N+1 j=N+1k=0 j=N+1k=N+1

_an” E(N—i—’f—}—g)l" 8(1+T+g)l” €

1
a fH (T+e,6+e)
= gN" S (N+ T+ ¢)" (1 +T+¢) " ¢[f

£,w(T6)7

for any I, < ¢, where

ln—en :mil}{lifei}, OS li SEI' SS, i:1,2.
=1,

Therefore, we obtain

If = fnlleee S TININ+T+6)(1+T+6)) 2 |fl, ce

0<e<e.
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Theorem 9. Forany f € 3”8( (D), e € N,and 0 < € < ¢, we have
w T,6)

(5,

where 111 is a positive constant.

SMININ+ T+ +T+6) T [f] o (62)

e,w('flg)

Proof. From (18) and (56), we have

2 2 o
alA(a fx,y) _ (a f(%]/)) ) _ Z Z f] all+lz+2j£ ( )jg(;}f)(y)
N

9y 9y j=0k=N+1
+ 2 Zf all+lz+2j[ ( )je(szQ)( )
j=N+1k=
S (t4+h,c+h) (t+h 42,6+ +2
-1 L fu iV 2 T (0 7 )
SR H ) (T+h 42,6+l +2
; 2 kV]thzerzj(lT] e Y (x )~7[2Tk A ).
By takmg the L . —norm of the above equation, we obtain
al aZf aZf [eS] [eS) (¢S] [eS] 2 [eS] [eS] 2
a3z (52 Z Y f]ka,kf Yo Y fieet2 X Y ficik (63)
Y Y W) 20 k=N+ j=N-+1k=0 j=N+1k=N+1
where
2 +11,6+1 +h42,6+b+2
Cjk = ]l1 Vil +2 Z] 115 ])<x)h2,kfzrz€ ’ )(y).
Similarly,
. aZf (¢S] (o] 00 (¢S] » [eS) (¢S] »
Il 372 Z E Rdie+ Y Y fd+2 Y Y fidi (64)
Y=/ lwrrecte 20 k=N+ j=N+1k=0 j=N+1k=N+1
where

2 .2 (t+e1,6+e1) (t+er+2,6+ex+2)
ik = Ve Viey ol jey (DM, 2,5 ¥)-

Using (18), (59), and (60), we obtain

c

L A (RS L (65)
ik

From the relations (63)—(65), we can write
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2

azj;(xz,y) _ (E)Z];(x y)) ‘a
y y? w0)

—ZZ dixfii+ ZZ

(3~ (G2), )

]k]k+2 Z Z dixfi

w(THg+)

j=0k=N+1 ]r j=N+1k=0 j=N+1k=N+1 ]/
< 'll—Slklz—Sz—Z H I1—¢&1 k lz—ez—zd' 2
72 Z mj (GHT+e)" (k+T+¢) kS
j=0k=N+1

o0 [e¢]
+ Z Zmjllfelklzfesz(j+T+g)l1*£1 (k_‘_T_’_g)lz*fz*Zdj,kAjZk
j=N+1k=0

+2 Z Z lell—slklz—sz—Z(]-_‘_T+€)l1—€1 (k+T+€)lz_€2_2dj,kf;%c
j=N+1k=N+1

[ee] (e}
gr;lNZZ*EZ*Z(l+r+g)’1*61(N+r+g)lHZ*2Z Y dj,kfﬁc
j=0k=N+1

+MNTE(N+ T4 T (1T Y Y dpfh
j=N+1k=0

+2171N117€1N127£272(N+T_’_g)llfel (N+T+g)127£272 2 2 d],kf,?k

j=N+1k=N+1
sle"-€<N+r+g>l"-€<1+r+g>l"—€<2 Y odufit Y Ldufat2 Y% dfrkf]%c>
j=0k=N+1 j=N+1k=0 j=N+1k=N+1

=N TE(N+T4+¢) " (1+T+¢)h

a fH (T+e,c+e)
= MNP (N 4T+ ) (1 4+ T4 ) C f 2

g,w(T6)7

where

In — €n :,m%r;{li—si}, 0<;<¢<ei=12
=1,

for any I, < &,. Therefore,
Pf (&f
ay? CIRAY

Theorem 10. Forany f € @;(m) (D), e e N,and 0 < e < ¢, we can conclude that

- (58),

where 11, is a positive constant.

<HIN(N+T+6)(1+T+6) 7 [flopeo, 0<e<e

e,a}('ﬂ’é)

O

<INN+T+0)(1+T+6) 7T |fl, e (66)

e/w('ﬂ@

Proof. The proof of this theorem is similar to the proof of Theorem 9. O
Theorem 11. Forany f € @e( (D), eeN,and 0 < e < ¢, we have
w T,6)

o (2 <H(N(N+T+¢)(1+7+¢) T |f] (67)
dydx  \ dyox =13 © 6 £w(T6)7

Nlle,w(T6)
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where 113 is a positive constant.
Proof. The proof of this theorem is similar to the proof of Theorem 9. [J

Remark 1. Inequality (54) implies that if N tends to infinity, then f — fny — 0.

6. Numerical Results

Here, we solve five examples tested by Maple 2018. The number of bases are denoted
by B. The absolute errors and maximum absolute errors are obtained by

fy) = fn(xy)l, (oy) €[0,4) x[0,6), NeN,

MAE:fl]%llaX {|f(xi,y) — fn(xiy))

respectively, where (x;, y;) are roots of 2D-S]Ps in ® = [0, £1) x [0, £2) for different values
of Tand ¢.
Moreover, using

max {|f x,y;) — fn(x )]} x €10,41),

j=0,1,..
we plot maximum absolute errors where y; are roots of 1D-S]Ps in [0, (2) for j = 0,1,...,N.

Example 1. Consider the following 2D-NFIDE studied by [36]:

1

NN
N\"

foe (e y) + foy) + 122 f(x,y) = g(x,y) + O(x,y) + A(x,y) + p(x,y) + ¢(x,y),

with the initial conditions
f(x,0)=£(0y) =fy(v,0) =0, £x(0,y) =y, fy(x,0) =x,
where (x,y) € [0,1) x [0,1) and

O(x,y) :/x /y (yt — xs) f2(t,s) ds dt,
Ax,y) = 7 e / / (x —t) % —s)%log(s—t)f(t,s)dsdt,
(7)

f
p(xy) = — 121// (1— 031 =) 2y(t—s)f(t,5) dsdt,
cp(x,y):/O /0 (1+9)(2 = 2)(t,s) ds dt,

()= 06 gw 52088
WY = 177005750 Y Y~ 1552224799125/

The exact solution is f(x,y) = yx.

Tables 1 and 2 report the obtained numerical results and absolute errors, respectively, using
the new approach and choosing T = ¢ = 0 and N = 2,3. Additionally, Table 3 reports maximum
absolute errors by selecting various values of T, ¢ and N = 2. These tables show that by choosing
B = (N + 1)? = 16 numbers of 2D-S]Ps, our obtained results are more accurate than the results
reported in [36,37] and use B = N?’M? = 16 and B = m? = 4096 numbers of 2D-HBPSLs
and 2D-BPFs, respectively, for solving this problem. From Figure 1, the accuracy and efficiency of
proposed method is illustrated.
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Table 1. Numerical results with T = ¢ = 0 for Example 1.

2D-SJPs 2D-HBPSLs [37] 2D-BPFs [36]
xX=y Exact Solution N=2 N=3 M=N=2 N = 64
B=9 B =16 B =16 B = 409
0 0 —1.45834 x 1078 —1.93165 x 10~? —5.39368 x 10710 6.06689 x 1075
0.2 0.04 0.04 0.04 0.04 0.0379181
0.4 0.16 0.16 0.16 0.16 0.1578
0.6 0.36 0.36 0.36 0.36 0.359706
0.8 0.64 0.64 0.64 0.640001 0.643637
0.99 0.9801 0.980099 0.9801 0.980101 0.978529

Maxerror 0 1.908184 x 105

2.081128 x 10~7

1.185071 x 107>

2.09569 x 1073

Table 2. Absolute errors with T = ¢ = 0 for Example 1.

2D-S]JPs 2D-HBPSLs [37]

x=y N=2 N=3 M=N=2
\—=9 B =16 B =16

0 1.458338 x 108 1.931649 x 10~ 5.393684 x 10710
0.1 4.839152 x 107° 2.920296 x 10~11 1.049377 x 108
0.2 1.620866 x 1078 3.409101 x 1010 4.526134 x 108
0.3 3.955156 x 108 5.296828 x 10~ 11 1.037633 x 10~7
0.4 7.048566 x 108 1.150183 x 10~10 1.859998 x 10~7
0.5 1.093869 x 107 2.445786 x 10710 2.674698 x 1077
0.6 1.613894 x 107 5.844627 x 10710 4343939 x 107
0.7 2.363855 x 1077 4.051722 x 1077 5.646382 x 107
0.8 3.490255 x 107 3.485633 x 1078 6.582027 x 107
0.9 5.187180 x 107 1.445669 x 10~7 7.150874 x 107

Table 3. Maximum absolute errors with N = 2 for Example 1.

(t,¢) MAE (7,0) MAE

(0,0) 1.908184 x 10~° (1,1) 5.525558 x 107>
(1,2) 1.657651 x 10~4 (2,1) 1.682304 x 107°
(2,2) 6.110782 x 1075 (3,2) 2426797 x 107°

© L(x03)

03

25x1077
2.x1077
02
15x 1077

o1 Lx107

5.x10

0.4 0.6 0.8 1
x

Figure 1. Plots of the exact and approximate solutions (left), maximum absolute error (middle) at
y = 0.3, and absolute error (right) obtained by the 2D-S]JPs with N = 3 and 7 = ¢ = 0 for Example 1.

Example 2. Consider the following 2D-NFIDE studied by [36]:

For (%) + Fre(oy) + fxy) + 16D F(x,) = g(x,y) + p(x,y) + 9(x,),
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with initial conditions

flx,

[0,1) x

where (x,y) €

p(x,y) =

0) = fx(x,O)

[0,1) and

ny(X,O)

/ / H2y3x 23 f (L s) dsdt,

13360
7 y) // TRRIAC (x+y)f3(t,s)dsdt,

g(xy) =

The exact solution is f(x,y) =

1 3 2
1
153153~/ xiyd +4(x 1y +

2
yZ(x3 +1).

=f:(0,y) =0, f(0,y) =

%(xg—i—l) -

v

4 7
3 o, 20160 +231)x2y3
2 10395,/7

Tables 4 and 5 report the obtained numerical results and absolute errors, respectively, using
the new approach and choosing T = ¢ = 0 and N = 2,3. Additionally, Table 6 reports maximum
absolute errors by selecting various values of T, ¢ and N = 2. These tables show that by choosing
9B = (N + 1)? = 16 numbers of 2D-S]Ps, our obtained results are more accurate than the results
reported in [36,37] and use B = N>M? = 36 and B = m?> = 1024 numbers of 2D-HBPSLs and
2D-BPFs, respectively, for solving this problem. In Figure 2, the accuracy and efficiency of proposed

method is illustrated.

Table 4. Numerical results with T = ¢ = 0 for Example 2.

2D-SJPs 2D-HBPSLs [37] 2D-BPFs [36]

xX=y Exact Solution N=2 N=3 N=2M=3 m =32
B=9 B =16 B =36 B = 1024

0 0 350087 x 1078 —1.75105 x 10~ —1.70722 x 108 5.31008 x 10~
0.2 0.01008 0.00990005 0.01008 0.0100625 9.04921 x 1073
0.4 0.04256 0.0419991 0.04256 0.0426493 0.035166
0.6 0.10944 0.110691 0.10944 0.109233 0.099042
0.8 0.24192 0.244764 0.24192 0.242178 0.208004
0.99 0.482773 0.471861 0.482772 0.481524 0.411787
Max error 0 5.746197 x 1075 4.748580 x 10~8 3.570347 x 10™* 7.0986 x 102

Table 5. Absolute errors with T = ¢ = 0 for Example 2.

2D-SJPs 2D-HBPSLs [37]

xX=y N=2 N=3 N=2M=3
B\ =9 B =16 B =36

0 3.500869 x 108 1.751047 x 1011 1.707223 x 108
0.1 9.992949 x 10~° 1.282426 x 1012 5.623240 x 10~
0.2 1.799480 x 10~* 1.250557 x 10~ 11 1.752097 x 105
0.3 4950320 x 10~4 7.129280 x 10~ 1 3.919885 x 10~
0.4 5.608532 x 104 3.100506 x 1010 8.934775 x 107°
0.5 3.355656 x 1070 1.029452 x 10~ 3.884051 x 104
0.6 1.251167 x 1073 2924318 x 10?2 2.071935 x 104
0.7 2.676069 x 10~3 7.479405 x 1072 2.249140 x 104
0.8 2.844359 x 103 1.753510 x 108 2.583723 x 1074

8.713086 x 104

7.185571 x 108

4152332 x 1074
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Table 6. Maximum absolute errors with N = 2 for Example 2.

(t,6) MAE (t,6) MAE
(0,0) 5.746197 x 10~° (1,1) 2.502457 x 1073
(1,2) 2.374060 x 1072 (2,1) 1.116405 x 1072
(2,2) 3.419813 x 1073 (3,2) 9.826693 x 1073
T Am0Y) — (.09 .
0.045 7. % 1084
5.%x10° 6. x 10'8—.
0.040 5 %107
4xa0” 4 %107
0.035 1108 3% 10'3—:
2.x 1074
0.030 2.x10°% 1.x 10'8—_
o]
0.025 1x10 0
6 s Y 0.

N
0 02 0.4 0.6 0.8 1 0 02 04 0.6 0.8 1 ’ ! *
x

Figure 2. Plots of the exact and approximate solutions (left), maximum absolute error (middle) at
y = 0.3, and absolute error (right) obtained by the 2D-S]JPs with N = 3 and T = ¢ = 0 for Example 2.

Example 3. Consider the following 2D-NFIDE:

Fu(x,y) + fux(x,y) + f(x,y) = g(x,y) + p(x,y),

with initial conditions

f(x,0) = fx(x,0) = fy(x,0) =%, f(O,y) =€,
where (x,y) € [0,2) x [0,2)

P(x’y) = r(s)lr(S) /(;2 /02 (2*t)%(z*S)%(x+y)(t2+52)f(t,5)dsdt,
2 2 :
e*V/2er et (er 2
g(x,y) :3ex+y_4(x+y) (1;_9 \/%an(\ﬁ) +7 ( 1;(\6)) )

2

The exact solution is f(x,y) = e**V. Note that erf(x) = Wde.

Tables 7 and 8 report the obtained numerical results and absolute errors, respectively, using
the new approach and choosing T = ¢ = 0 and N = 4,5. These tables show that by choosing
B = (N + 1)? = 36 numbers of 2D-S]Ps, our obtained results are more accurate than the results
reported in [37] and use B = N2M? = 64 numbers of 2D-HBPSLs for solving this problem.

From Figure 3, the accuracy and efficiency of the proposed method is illustrated.
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Table 7. Numerical results with T = ¢ = 0 for Example 3.

2D-SJPs 2D-HBPSLs [37]
xX=y Exact Solution N =14 N=5 N=2M=414
B =25 B =36 B =64
0 1 0.999498 1.00004 0.99811
0.2 1.49182 1.49209 1.49181 1.49284
04 2.22554 2.22543 2.22556 2.22493
0.6 3.32012 3.31979 3.32012 3.31909
0.8 4.95303 4.95305 4.953 4.95461
1 7.38906 7.38946 7.38905 7.37414
1.2 11.0232 11.0233 11.0232 11.0301
14 16.4446 16.4439 16.4446 16.4394
1.6 24.5325 24.5318 24.5325 24.5242
1.8 36.5982 36.5992 36.5983 36.6095

Max error 0 3.352898 x 10™4  2.293543 x 10> 1.118645 x 102

Table 8. Absolute errors with T = ¢ = 0 for Example 3.

2D-SJPs 2D-HBPSLs [37]

x=y N=4 N=5 N=2M=4
B =25 B =36 B = 64

0 5.018269 x 104 3.878596 x 107> 1.890271 x 103
0.2 2.646095 x 104 1.323019 x 1075 1.016898 x 1073
0.4 1.156163 x 10~* 1.971321 x 105 6.116798 x 10~*
0.6 3.222169 x 104 1.006197 x 10~ 1.030940 x 1073
0.8 1.401881 x 10~° 2.886721 x 107> 1.578274 x 1073
1 4.053898 x 10~* 7.535908 x 106 1.491810 x 102
1.2 1.410474 x 10~4 3.456475 x 107> 6.949542 % 1073
14 7.246987 x 10~* 6.085008 x 10~ 5.233810 x 1073
1.6 7.533610 x 10~* 7.863965 x 10~° 8.312774 x 1073
1.8 9.833575 x 104 3.723796 x 10~ 1.126113 x 102

Maximum absolute error

0.0020+
0.0018
0.0016
0.0014
0.0012+
0.00104
0.0008
0.0006
0.0004

0.0002+

Figure 3. Plots of the exact and approximate solutions (left), maximum absolute error (middle) at
y = 0.3, and absolute error (right) obtained by the 2D-SJPs with N = 5 and 7 = ¢ = 0 for Example 3.

0.5

2 0

Example 4. Consider the following 2D-NFIDE:

Fer(,y) + F(x,9) + 13D f(x,y) = g(x,y) +O(x,y),

with initial conditions

f(x,0) = f(0,y) = fy(x,0) = fx(0,y) = fa(x,0) =0,
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where (x,y) € [0,1) x [0,1) and

O(x,y) = /Ox /Oy (yt — xs) f2(t,s) dsdt,

(]/((—360362 —720) sin(7ty) + x6y3)n% + 241 (cos (my)* — ) X073

g(x,y) =— 3
36072

n 768> (1ry cos(my) — sin(ny))x%
7

—27x° <;7rgy sin(7ty) cos(7ty) (—2712y2 + 13) + cos (7ty)?\/7T — \/E) )

The exact solution is f(x,y) = x?ysin(my).

Tables 9 and 10 report the obtained numerical results and absolute errors, respectively, using
the new approach and choosing T = ¢ = 0 and N = 3,4. Additionally, Table 11 reports maximum
absolute errors by selecting various values of T, c and N = 2. These tables show that by choosing
B = (N + 1)? = 25 numbers of 2D-S]Ps, our obtained results are more accurate than the results
obtained by the 2D-HBPSL method [37] and use B8 = N?M? = 36 bases for solving this problem.
In Figure 4, the accuracy and efficiency of the proposed method is illustrated.

Table 9. Numerical results with T = ¢ = 0 for Example 4.

2D-SJPs 2D-HBPSLs [37]

xX=yvy Exact Solution N=3 N=4 M=N=2 N=2 M=3

B =16 B =125 B =16 B =36
0 0 1.42563 x 1076 —1.53250 x 107 0.00304418 —5.40176 x 108
0.2 0.00470228 0.00503905 0.00461625 0.00860387 0.00502286
0.4 0.0608676 0.0606074 0.0615685 0.0582732 0.0592075
0.6 0.205428 0.201651 0.203813 0.2084 0.206665
0.8 0.300946 0.309229 0.302467 0.253177 0.299392

Max error 0 4183049 x 1073 2.691559 x 10~* 1.686288 x 1072 6.519558 x 103

Table 10. Absolute errors with T = ¢ = 0 for Example 4.

2D-SJPs 2D-HBPSLs [37]
x=y N=3 N=4 M=N=2 N=2 M=3
B =16 B =25 B =16 B =36
0 1.425634 x 10~°  1.532497 x 107 3.044182 x 1073  5.401763 x 108
0.1 2.359796 x 107  5.799964 x 10~° 1.304790 x 10~®  8.310324 x 10>
0.2 3.367631 x 107*  8.603064 x 10~° 3.901591 x 1073 3.205808 x 10—+
0.3 6.244970 x 10~*  3.609740 x 104 6.081376 x 1073 6.170073 x 10~*
0.4 2.601698 x 1074  7.008446 x 10~* 2.594409 x 1073 1.660119 x 103
0.5 2479625 x 1073 5.263376 x 10~° 1.670057 x 1072 2.207590 x 103
0.6 3.776819 x 1073 1.615412 x 103 2972021 x 1073 1.236545 x 103
0.7 3.370614 x 10~% 1.772158 x 103 3.193363 x 1072 1.625204 x 10~°
0.8 8.282794 x 1073  1.521422 x 1073 4.776857 x 1072 1.553977 x 1073
0.9 9.162584 x 1073 4.275932 x 1073 5.981687 x 1073  4.222491 x 104

Table 11. Maximum absolute errors with N = 2 for Example 4.

(t,¢) MAE (t,¢) MAE

(0,0) 4.183049 x 1073 (1,1) 7.254076 x 103
(1,2) 6.743181 x 1073 (2,1) 4.492349 x 1073
(2,2) 4903053 x 1073 (3,2) 3.081034 x 1073
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0.00025

0.00020

0.00015

0.00010

0.00005
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Figure 4. Plots of the exact and approximate solutions (left), maximum absolute error (middle) at
y = 0.3, and absolute error (right) obtained by the 2D-S]JPs with N = 4 and T = ¢ = 0 for Example 4.

Example 5. Consider the following 2D-NFIDE:
3
Fu(y) + fux () + fx,y) + 12D f(x,y) = g(x,y) + O(x,y) + 9(x,y),
with initial conditions
f(x,0) =0, f(0,y) = sin(rty), fy(x,0) = 7e*, fx(0,y) = sin(7y), fx(x,0) =0,

where (x,y) € [0,1) x [0,1) and

xory
O(x,y) = / / xysf2(t,s)dsdt,

0 Jo

11
o(x,y) = /0 /0 Py f2(t,s) ds dt,

((xy2 (x - 1) e +e?x’y® — x%y° + %xy2 — 8e" sin(ny)) e

1
g(x’y)__s 2

7T

+ ( (—2 sin(7ty)yx <x - ;) e¥ —sin(7my)yx + 8exerf(\/§)) cos(my) — Sexerf(ﬁ)) T

5
2

NIw

—8miet cos(rty) + 8mie* sin(7ty) — (—1 + cos(7ty)) <x (; + (x - ;>e2x> V7T cos(my)
+x\/E<x — ;) e 4 %x\/E + 16nﬁ> >

The exact solution is f(x,y) = e*sin(7y).

Tables 12 and 13 report the obtained numerical results and absolute errors, respectively, using
the new approach and choosing T = ¢ = 0 and N = 3,4. Additionally, Table 14 reports maximum
absolute errors by selecting various values of T, ¢ and N = 3. These tables show that by choosing
B = (N + 1)? = 25 numbers of 2D-S]Ps, our obtained results are more accurate than the results
obtained by the 2D-HBPSL method [37] and use B = N?M? = 36 bases for solving this problem.
In Figure 5, the accuracy and efficiency of proposed method is illustrated.
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Table 12. Numerical results with T = ¢ = 0 for Example 5.
2D-SJPs 2D-HBPSLs [37]
xX=y Exact Solution N=3 N=4 M=N=2 N=2 M=3
B =16 B =25 B =16 B =36
0 0 —0.0498894 0.00126408 0.106466 —0.0269479
0.2 0.717923 0.743648 0.718851 0.644168 0.713975
0.4 1.41881 1.39875 1.41815 1.33223 1.3479
0.6 1.73294 1.70905 1.73227 1.43579 1.40505
0.8 1.30814 1.35737 1.31117 0.694829 0.506292
Max error 0 4900771 x 1073 2.890626 x 103 7.161353 x 1071 1.625743
Table 13. Absolute errors with T = ¢ = 0 for Example 5.
2D-SJPs 2D-HBPSLs [37]
x=y N=3 N=4 M=N=2 N=2 M=3
B =16 B =25 B =16 B =36
0 4988938 x 1072 1.264079 x 1073 1.064657 x 10~1  2.694793 x 102
0.1 1.314614 x 1072 2.544488 x 10~* 1.500519 x 10~2  7.810507 x 1073
0.2 2.572567 x 1072 9.282027 x 10~ 7.375466 x 1072 3.947639 x 1073
0.3 7178138 x 1073 6.978147 x 10~* 1.226548 x 10~1  3.448407 x 102
0.4 2.005857 x 102 6.560525 x 104 8.657965 x 10~2  7.090727 x 102
0.5 3.495032 x 1072 1.518547 x 1073 1.553134 x 10~1  3.482695 x 10!
0.6 2.389001 x 1072  6.632893 x 104 2971477 x 1071 3.278872 x 101
0.7 1.206528 x 1072 1.561235 x 1073 4595629 x 10~! 5951170 x 10!
0.8 4922751 x 1072 3.025826 x 1073 6.133115 x 10~1  8.018483 x 101
0.9 3.323691 x 1072 2.322792 x 103 7.485747 x 10~1  1.408296
Table 14. Maximum absolute errors with N = 3 for Example 5.
(t,¢) MAE (t,¢) MAE
(0,0) 4.90077 x 1073 (1,1) 3.494379 x 1072
(1,2) 1.159618 x 10~! (2,1) 1.718043 x 102
(2,2) 6.089228 x 1072 (3,2) 3.330454 x 1072

Maximum absolute error

— f(x,03) ° fy(x03)

0.0030

0.0025+

0.0020

0.0015+

0

02
04 O
s 06

y 10 .

Figure 5. Plots of the exact and approximate solutions (left), maximum absolute error (middle) at
y = 0.3, and absolute error (right) obtained by the 2D-S]Ps with N = 4 and T = ¢ = 0 for Example 5.

7. Conclusions

In this research, sufficient conditions for the existence and uniqueness of local and
global solutions of general 2D-NFIDEs were provided. Additionally, the collocation method
and operational matrices based on 2D-S]Ps were used for solving these equations. More-
over, error bounds of the proposed method were obtained. We showed that the order
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1
(N(N+T+¢))T
space. Finally, we evaluated the presented method by solving five test problems. The ob-
tained numerical results showed that a favorable approximate solution can be obtained
by using lower numbers of basis functions.

of convergence of the method is O ( ) in the Jacobi-weighted Sobolev
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