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Abstract: The widespread use of structural elements consisting of functionally graded (FG) materials
in advanced technologies has led to extensive research. Due to the difficulties encountered during
modeling and problem solving, the number of studies on the dynamic behavior of structural elements
made of FG viscoelastic materials is quite limited compared to the number examining FG elastic
materials. This study is one of the first attempts to solve the dynamical problem by the mathematical
modeling of functionally graded viscoelastic plates (FG-VE-Ps) and viscoelastic media together with
different initial conditions. FG-VE-Ps on viscoelastic foundations (VE-Fs) are assumed to be under
compressive edge load in the longitudinal direction. The governing equations for FG-VE-Ps on
VE-Fs are derived using Boltzmann and Volterra concepts. The problem is reduced to the solution
of integro-differential equation system using the Galerkin method. Then, by performing Laplace
transforms, new analytical expressions for the time-dependent deflection function and critical time at
different initial conditions are found. The loss of stability of FG-VE-Ps on VE-Fs is modeled to cover
three time-varying ranges: the first is the range in which the deflection function decreases; the second
is the transition interval; the third is the increase range of deflection function, which leads to the loss
of stability. The time corresponding to the sharp increase of the deflection function is defined as the
critical time, and is determined both theoretically and numerically. The results are compared with
the results obtained by various methods to confirm their accuracy. Finally, the effects of VE-Fs, VE
material properties, and FG profiles on the critical time behavior of plates are studied numerically.

Keywords: dynamical problem; FG viscoelastic plates; viscoelastic foundation; buckling; critical time
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1. Introduction

The widespread use of composite materials leads to the need to consider the viscoelas-
tic properties specific to composites with polymers. General questions of the theory of
viscoelasticity are considered in the fundamental works [1–3], including the constructions
of hereditary relations between stresses and strains, the reciprocity of such relations, meth-
ods of analyzing the kernels of creep and relaxation, and methods for solving static and
dynamical problems. The applied problems of the theory of viscoelasticity, including the
construction of continuous and discrete models of homogeneous viscoelastic plates, are
considered in [4–15].

A new class of advanced heterogeneous materials, which are called FGMs, have
great potential in many areas of technology. The study of the behavior of FGM structural
elements under various conditions is very important for the development of mechanical
engineering and aircraft construction. The field of missile technology is also interested in
intensive research of this class of problems [16,17]. In most studies, although FGMs are
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used as elastic materials, their time-dependent behavior should be modeled to fully reveal
their potential. In recent years, there have been some remarkable initiatives for the creation
and application of the viscoelasticity theory of FGMs [18,19]. Some attempts have been
made to examine the static and dynamic behavior of FG-VE structural elements in the past
few years [20–25].

An important problem in many branches of technology is to increase the reliability and
extend the service life of composite structures that interact with viscoelastic foundations.
Fundamental results in the theory of viscoelastic foundations are described in [26,27]. The
review of the literature shows that there are mainly studies of the behavior of homogeneous
viscoelastic structural elements on VE-Fs. Pouresmaeeli et al. [28] analyzed the vibration
behavior of VE orthotropic nanoplates on VE-Fs. Karlicic et al. [29] studied the transverse
vibration of a nonlocal VE-orthotropic multi-nanoplate system embedded in VE medium.
Zhang et al. [30] presented a vibration analysis of VE single-walled carbon nanotubes
resting on VE-Fs. Zamani et al. [31] examined the free vibration of thick VE-Ps on visco-
Pasternak foundations (V-PFs) using higher-order theory. Zeighampour et al. [32] examined
wave propagation in a VE thin nanoshell resting on V-PFs based on nonlocal strain gradient
theory. Zenkour and Sobhy [33] studied the nonlocal piezo-hygrothermal analysis of the
vibration characteristics of a piezoelectric Kelvin–Voigt VE nanoplate embedded in VE
medium. Sophy and Zenkour [34] examined the modified couple stress model for the
bending of normal deformable VE nanobeams resting on visco-Pasternak foundations.
Sobhy and Radwan [35] studied the influence of a 2D magnetic field on the hygrothermal
bending of sandwich CNT-reinforced microplates with VE core embedded in VE medium.
Frahlia et al. [36] examined the vibration response of a functionally graded plate resting
on a viscoelastic foundation. Alazwari and Zenkour [37] developed a quasi-3D refined
theory for the linear vibration of functionally graded plates resting on visco-Winkler-
Pasternak foundations.

The recent emergence of new-generation functionally graded viscoelastic materials
and the introduction of their structural elements, which are often used in viscoelastic media,
require the study of their dynamical problems. Zenkour et al. [38] presented a bending
analysis of FG-VE beams resting on Pasternak elastic foundations. Shariyat and Alipor [39]
analyzed the damping effect on the behavior of FG-VE-Ps on elastic foundations with
variable thickness. Liu et al. [40] investigated the vibration of FG-VE magneto-electro
porous nanobeams on V-PFs. Sofiyev et al. [41] examined the stability behavior of hetero-
geneous viscoelastic plates resting on two-parameter elastic foundations. Zenkour and
El-Shahrany [42] presented the active control of a sandwich plate with reinforced mag-
netostrictive faces and a viscoelastic core resting on an elastic foundation. Li et al. [43]
investigated the vibration behavior of a fiber-reinforced polymer composite plate with vis-
coelastic damping boundary conditions resting on a viscoelastic foundation. Yuan et al. [44]
presented a magneto-hygro-thermal vibration analysis of viscoelastic nanobeams reinforced
with carbon nanotubes resting on Kerr elastic foundations.

To the author’s knowledge, the dynamic buckling and vibrational behavior of function-
ally graded viscoelastic plates on a viscoelastic foundation have not yet been analytically
reported due to difficulties in modeling and problem solving. The novelty of the present
work is the proposal of an analytical solution for the dynamical problem under various
initial conditions of a functionally graded plate and soil having viscoelastic property in
contact with each other. The rest of this paper is structured as follows: in Section 2, the
basic relations and equations are derived after modelling of the material and soil properties;
in Section 3, the solution of the problem under various initial conditions is presented by
applying the Galerkin and Laplace methods; Section 4 consists of comparisons and an
original numerical analysis; Section 5 summarizes conclusions.
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2. Mathematical Modeling of the Problem
2.1. Basic Relationships

An FG-VE plate with length a, width b and thickness h on a VE-F and the coordinate
system in the midplane is shown in Figure 1. It is subjected to compressive edge load, N, in
the x direction and is resting on the VE-F. Displacement w is in the positive direction of the
z axis, and is assumed to be quite small compared to the thickness. It is also assumed that
the normal stresses acting on the midplane are negligible compared to other forces.
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Figure 1. FG-VE plate subjected to compressive edge load N in the x direction, and resting on a VE-F.

The effective FGM properties change exponentially depending on the thickness coor-
dinate [16]:

E f = Eme(
z+0.5h

h )ln( Ec
Em ), ν f = νme(

z+0.5h
h )ln( νc

νm ), ρ f = ρme(
z+0.5h

h )ln( ρc

ρm ) (1)

where the Young moduli of metal and ceramic surfaces of FGM are shown with Em and Ec,
Poisson ratios with νm and νc, and the densities with ρm and ρc.

The viscoelastic foundations are modelled as [27,35]:

K(w, t) = K0w + K1
∂w
∂t

+ . . . + Kn−1
∂n−1w
∂tn−1 + Kn

∂nw
∂tn (2)

in which Ki, (i = 0, 1, . . . , n) are constants for the VE-Fs and can be obtained from the
experiments.

If the relaxation core of the integral operator is denoted as R(t− τ), the constitutive
equations of FG-VE-Ps in the framework of the Boltzmann–Volterra principle are modeled
as follows [1,5,41]:
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τ11 = E f

1−(ν f )
2

[
ε11 + ν f ε22 −

t∫
0

R(t− τ)
(

ε11 + ν f ε22

)
dτ

]
,

τ22 = E f

1−(ν f )
2

[
ε22 + ν f ε11 −

t∫
0

R(t− τ)
(

ε22 + ν f ε11

)
dτ

]
,

τ12 = E f

2(1+ν f )

[
γ12 −

t∫
0

R(t− τ)γ12dτ

] (3)

The forces and moments are found from the following integrals [1]:

[(N11, N12, N22), (M11, M12, M22)] =

h/2∫
−h/2

(1, z)(τ11, τ12, τ22)dz (4)

The relationships between Airy stress function (F) and forces are formed as follows [1,23,24]:

(N11, N12, N22) =
(
hF,yy , −hF,xy , hF,xx

)
(5)

2.2. Governing Equations

Using the relations of (3)–(5), the force and moment components are expressed by the
functions of w and F, then these expressions and relation (2) are taken into account in the
basic equations, the following system of integro-differential equations for dynamic stability
and compatibility equations of FG-VE-Ps on VE-Fs is obtained:

L11F(x, y, t) + (L12 + L13)w(x, y, t)−
t∫

0
[L11F(x, y, τ) + L12w(x, y, τ)]R(t− τ)dτ = 0

L21F(x, y, t) + L22w(x, y, t)−
t∫

0
[L21F(x, y, τ) + L22w(x, y, τ)]R(t− τ)dτ = 0

(6)
where Lij(i = 1, 2, j = 1, 2, 3) are expressed as:

L11 = hq2
∂4

∂x4 + 2h(q1 − q5)
∂4

∂x2∂y2 + hq2
∂4

∂y4

L12 = −q3
∂4

∂x4 − 2(q4 + q6)
∂4

∂x2∂y2 − q4
∂4

∂y4

L13 = −N
∂2

∂x2 − K0 − K1
∂
∂t − K2

∂2

∂t2 − ρ f ∂2

∂t2

L21 = hp1
∂4

∂x4 + h(2p2 + p5)
∂4

∂x2∂y2 + hp1
∂4

∂y4

L22 = −p4
∂4

∂x4 − (2p3 − p6)
∂4

∂x2∂y2 − p4
∂4

∂y4

(7)

in which

q1 = e1
1 p1 + e1

2 p2, q2 = e1
1 p2 + e1

2 p1, q3 = e1
1 p3 + e1

2 p4 + e2
1, q4 = e1

1 p4 + e1
2 p3 + e2

2, q5 = e1
6 p5, q6 = e1

6 p6 + 2e2
6,

p1 =
e0

1
η

, p2 = −
e0

2
η

, p3 =
e0

2e1
1 − e1

1e0
1

η
, p4 =

e0
2e1

1 − e1
2e0

1
η

, p5 =
1
e0

6
, p6 = −

2e1
6

e0
6

, η =
(
e0

1
)2 −

(
e0

2
)2,

ek
1 =

h/2∫
−h/2

E f

1−
(
ν f
)2 zkdz, ek

2 =
h/2∫
−h/2

ν f E f

1−
(
ν f
)2 zkdz, ek

6 =
h/2∫
−h/2

E f

2
(
1 + ν f

) zkdz, k = 0, 1, 2.

(8)
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It should be emphasized that in the viscoelastic foundation model, higher-order
derivatives than the 2nd-order derivative have little effect on the behavior of the plate, so
they can be neglected and those terms are not taken into account in the next steps. Therefore,

K(w, t) = K0w + K1
∂w
∂t

+ K2
∂2w
∂t2 is used in the basic equations instead of Equation (2).

3. Solution Procedure

Assuming that the edges of an FG-VE plate on a VE-F are simply supported, the
solution of the basic equations is sought as follows [1,5,41]:

w = w1(t) sin(mx) cos(ny), F = F1(t) sin(mx) cos(ny) (9)

where w1(t) and F1(t) are the functions depending on the time, (m, n) =
(m

a
,

n
b

)
π, where

m and n are the modes.
Substituting (9) into the set of Equation (6), performing the Galerkin procedure and

removing F1(t) from the system, the following integro-differential equation is obtained:

(
ρ f + K2

)d2w1(t)
dt2 + K1

dw1(t)
dt

+
[

Q + K0 − Nm2
]
w1(t)− Q

t∫
0

R(t− τ)w1(τ)dτ = 0 (10)

where

Q = q3m4 + 2(q4 + q6)m2n2 + q3n4 − [q2m4+2(q1−q5)m2n2+q2n4]
p1m4+(2p2+p5)m2n2+p1n4

[
p4m4 + (2p3 − p6)m2n2 + p4n4

]
ρ f =

h/2∫
−h/2

ρ f dz
(11)

The following initial conditions (ICs) are taken into account:

w1(0) 6= 0, w′1(0) 6= 0, at t = 0 (12)

By using the Laplace transform in Equation (10) for the ICs in (12), the following
equation is obtained in the images:

W1(s1) =
(1 + s1)

[
(s1 + K̃11)w10 + w11

]
s3

1 + (1 + K̃11)s2
1 + r1(1− pVF)s1 − r1(pVF − qVF)

(13)

where R(t− τ) = γ e−γ(t−τ) (0 < γ < 1), W1(s) =
∞∫
0

w1(t)e−stdt, s = s1γ , in which W1(s)

is the Laplace transformation of the original function w1(t), γ denotes the viscoelasticity
parameter, s is the variable, and the following symbols are used [1]:

w10 = w1(0)
γ , w11 = w′1(0)

γ2 , r1 = r
γ2 , K̃11 = K̃1

γ , pVF = N
NVF

cr
, qVF = K0

m2 NVF
cr

,

r = m2 NVF
cr

ρ f +K2
=
(
ωVF)2, K̃1 = K1

K2+ρ f , NVF
cr = Q+K0+γK1

m2

(14)

Since pVF > qVF and r1 >> 1, one of the positive values that converts the denominator
of Equation (13) to zero is indicated by uVF

0 , and the other two roots are easily found
as follows:

u2,3 = −
1 + K̃11 + uVF

0
2

± iΛ (15)

where

uVF
0 =

r1(pVF − qVF)

r1(1− pVF) + uVF
0 (1 + K̃11 + uVF

0 )
, Λ =

√
rVF

2 − 0.25
(

1 + K̃11 − uVF
0

)2
(16)



Mathematics 2023, 11, 823 6 of 14

in which

rVF
2 =

(
uVF

0

)2
+ r1(1− pVF) and rVF

2 − 0.25
(

1 + K̃11 − uVF
0

)2
> 0

When the following symbols are replaced in Equation (13),

B1 =
1 + K̃11 + uVF

0
2

, B2 =
1 + K̃11 − uVF

0
2

, B3 = K̃11, A =
1 + K̃11 + 3uVF

0
2

, s2 = s1 +
1 + K̃11 + uVF

0
2

(17)

after some mathematical operations, it takes the following standard form:

W1(s2) =

[
A(B2 − B1) + A2 − B1B2 + B3

]
w10 + (A + B2)w11

A2 + Λ2
1

s2 − A

+

[
Λ2 − A(B2 − B1) + B1B2 + B3

]
w10 − (A + B2)w11

A2 + Λ2
s2

s2
2 + Λ2

+
[A + (B2 − B1)]Λ2w10 + A(B1B2 − B3)w10 − A(Λ2 − AB2)w11

A2 + Λ2
Λ

s2
2 + Λ2

1
Λ

(18)

By using the inverse Laplace transform, the original function of W1(s2) from Equation
(18) turns into the following form:

w1(t1) = (d1 + d4)euVF
0 t1 + [(d2 + d5) cos(Λt1) + (d3 + d6) sin(Λt1)]e−

1+K̃11+uVF
0

2 t1 (19)

where

d1 =

[
A(B2 − B1) + A2 − B1B2 + B3

]
w10

A2 + Λ2 , d2 =

[
Λ2 − A(B2 − B1) + B1B2 + B3

]
w10

A2 + Λ2 ,

d3 =

[
AΛ2 + Λ2(B2 − B1) + A(B1B2 − B3

]
w10

A2 + Λ2
1
Λ

, d4 =
A + B2

A2 + Λ2 w11,

d5 = − A + B2

A2 + Λ2 w11, d6 =
Λ2 − AB2

A2 + Λ2
w11

Λ

(20)

The loss of stability of FG-VE-Ps is a time-dependent process that develops over time.
This process covers three ranges: the first is the range of decreasing the deflection function;
the second is the transition interval; the third is the range of the deflection function, which
leads to the loss of stability. The time corresponding to a sharp increase of the deflection
function is defined as the critical time, and, in this study, it is determined both theoretically
and numerically.

(a) In the particular case, as w1(0) 6= 0, w′1(0) = 0 or the first initial condition (FIC) and
rVF

2 >> 1 are satisfied, d4 = d5 = d6 = 0, d3 << d2, (19) is transformed as:

w11(t1) = d11euVF
0 t1 + d12e−

1+K̃11+uVF
0

2 t1 (21)

where

d11 =
A(B2 − B1) + A2 − B1B2 + B3

A2 + Λ2 , d12 =
Λ2 − A(B2 − B1) + B1B2 + B3

A2 + Λ2 , w11(t1) =
w1(t1)

w10
(22)

The critical time of FG-VE-Ps on VE-Fs is found from the solution of w′11(t1) = 0
as follows:

tVF
11cr =

2
1 + K̃11 + 3uVF

0

ln

[
1 + K̃11 + uVF

0

2uVF
0

d12

d11

]
(23)



Mathematics 2023, 11, 823 7 of 14

(b) In the particular case, as w1(0) = 0, w′1(0) 6= 0 or second initial conditions (SICs)
and rVF

2 >> 1 are satisfied, d1 = d2 = d3 = 0, d5 << d6, Equation (19) turns into the
following form:

w12(t1) = d14euVF
0 t1 + d16e−

1+uVF
0

2 t1 (24)

where

d14 =
A + B2

A2 + Λ2 , d16 =
Λ2 − AB2

A2 + Λ2
1
Λ

, w12(t1) =
w1(t1)

w11
(25)

The critical time of FG-VE-Ps on VE-Fs is defined as:

tVF
12cr =

2
1 + K̃11 + 3uVF

0

ln

[
1 + K̃11 + uVF

0

2uVF
0

d16

d14

]
(26)

In particular, at N = 0, Equation (19) is converted to the equation for the deflection
function of the vibration of FG-VE-Ps on VE-Fs. Equations (23) and (26) are converted to
the formulas for unconstrained FG-VE-Ps, with Ki = 0 (i = 0, 1, 2).

4. Numerical Analysis

To demonstrate the accuracy of the analytical expressions obtained in this study, our
results are compared with the results of [4], which solves the free vibration problem of
homogeneous isotropic VE shells without VE-Fs using the average method. In the current
study, at N = 0, the first equation of the system (10) becomes the motion equation, and
Equation (19) becomes the vibration equation of the FG-VE-Ps. The comparison is made for
the following initial conditions: w1(0) 6= 0, w′1(0) = 0 or FIC. For comparison, the obtained
Equation (26) for the vibration of homogenous isotropic VE shells is converted to the
formula for the vibration of homogeneous isotropic VE-Ps (taking into account that b = πR).
In our study, the influences of the compressive load and VE-Fs are ignored, and calculations
are made by converting FGM into the homogeneous material (Vc = 0). The following
data are used in the comparison:a = 40h, b = 0.4a, Em = 2.05098× 105(Mpa), ρm =
8.9× 103 kg/m3, νm = 0.3262, n = 4, w10 = 10−3 and γ = 0.05. As can be seen from
Figure 2, the results of our study are in harmony with the results of [4].
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In the next step, the specific numerical analyses are presented for the CTs of FG-VE-Ps
resting on VE-Fs. The FGM consists of a mixture of silicon nitride (Si3N4) and Ni (Ni), and
its properties are as follows [16]: Ec = 3.22271× 105(Mpa), Em = 2.05098× 105(Mpa), νc =
0.24, νm = 0.31, ρc = 2370 kg/m3, ρm = 8900 kg/m3, where the above properties are
calculated at room temperature, that is, for T = 300 K [16]. The viscoelastic parameter is
γ = 1/2, and initial conditions are w1(0) 6= 0, w′1(0) = 0 and w1(0) = 0, w′1(0) 6= 0.
In the tables and graphics created for the analysis, the width-to-length and the height-
to-thickness ratios of VE plates, as well as the soil coefficients, are varied. The numbers
of transverse and longitudinal modes corresponding to the critical times are obtained as
(m, n) = (1, 1) in all tables and graphs.

In Figures 3 and 4, the time-dependent change of w1(t1) is calculated numerically
using the Maple program for Equation (19) to verify the accuracy of Equations (23) and (26),
where the critical time values are obtained. In numerical calculations, the following data are
used: a = 50h, a = 2b, γ = 0.5, pVF = 0.7, K0 = 4.2× 107(N/m3), K1 = 10 (N× sec /m3)
and K2 = 5 (N× sec2 /m3) [1,3–5,27,33,41]. The units for the VE-Fs are also valid for the
subsequent tables and figures. These calculations use FG-VE-Ps consisting of the mixture of
materials presented above. The time-dependent variation of w1(t1) of FG-VE-Ps on VE-Fs
according to Equation (19), and the critical time corresponding to the moment of increasing
w1(t1) for the initial conditions w1(0) 6= 0, w′1(0) = 0 and w1(0) = 0, w′1(0) 6= 0,
respectively, are presented in Figures 3 and 4. The moment when w1(t1) begins to increase
is defined as the critical time. When the abovementioned data are used in Equations
(23) and (26), the following values are obtained for the critical time: tVF

11cr = 3.6733 and
tVF
12cr = 1.755, respectively. In Figures 3 and 4, the critical times corresponding to an increase

in w1(t1) maintain the accuracy of the critical times obtained by Equations (23) and (26).
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Figure 4. Variation of the deflection of FG-VE-Ps on VE-Fs according to Equation (19) for the initial
conditions w1(0) = 0, w′1(0) 6= 0.

The changes of the critical times of FG-VE-Ps on VE-Fs depending on the viscoelasticity
parameter γ with FIC and SIC are tabulated in Table 1. Additional data required for the
numerical analysis are presented in Table 1. As can be seen, the critical time values decrease
with and without VE-Fs with increasing γ. It is noted that the critical time has the largest
value when K0 6= 0, while it has the smallest value when K2 = 0. In addition, if the case of
Ki 6= 0(i = 0, 1, 2) is compared with the case of K2 = 0, although the critical time values
increase, these values are less than those of unconstrained FG-VE-Ps for the small values of
γ. The greatest influences of VE-Fs occur when K2 = 0, and these effects are −16.4% and
−15.22% for FIC and SIC, respectively, at γ = 0.1. When the VE-Fs’ effects are compared to
the critical times of FG-VE-Ps for the first and second initial conditions, the effect of the
soil is great in the SIC for K0 6= 0 only, while the other effects are higher in the FCI. When
the CTs of an FG-VE-P and Ni-VE-P are compared, the influence of the FG-exp. profile
on the critical time parameter increases in both initial conditions due to the increase of γ
in the groundless state. When K0 6= 0 and other VE-F coefficients are zero, although the
influence of the FG-exp. profile decreases to the critical time, the increase continues due to
the increase of γ. In both boundary conditions, the influence of the FG profile on the critical
times for K0 6= 0 and K1 6= 0 varies irregularly depending on γ, while it is considerable.
Compared with FG-VE-P and Si3N4-VE-P, the greatest effect of the FG profile occurs at
K2 = 0, and is approximately +18% for both initial conditions.

The changes of the critical times of FG-VE-Ps on VE-Fs depending on K1 with FIC
and SIC for different K2 are tabulated in Figure 5. The data required for numerical analysis
are: a = 50h, a = 2b, pVF = 0.7 , γ = 0.5, K = 108(N/m3). In both initial conditions,
the critical time values increase weakly with increasing K1, while the critical time values
decrease weakly as K1 increases. In addition, it is observed that the influences of the VE-F
on the critical time increase as K1 and K2 increase, the effect of the FG profile on the critical
time increases weakly as K1 increases, and this effect decreases with the increase of K2.

The changes of critical times of FG-VE-Ps on VE-Fs (with various Ki(i = 0, 1, 2))
against a/h for FIC and SIC are shown in Figure 6. The critical times of FG-VE-Ps for
various FIC and SIC decrease as a/h increases. The data for the numerical analysis are:
a/b = 2, pVF = 0.7, γ = 0.5 and Ki(i = 0, 1, 2), as shown in Figure 6. With increasing
a/h ratio, the influence of the VE-F (for K0 = 4.5× 107, K1 = K2 = 0) on the values of the
critical time increases, while the effect of the VE-F (for K0 = 4.5× 107, K1 = 40, K2 = 0) on
the critical time is significantly greater than the effect of the previous VE-F type, although
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the influence of the VE-F is quickly decreasing. In addition, it is found that the influence
of the VE-F (for K0 = 4.5× 107, K1 = 40 , K2 = 35) on the critical time is smaller than the
previous VE-F, and this effect also decreases with increasing a/h. Note that the effects of
the FG profile on the critical time decrease for all soil types as a/h increases.

The distributions of critical times of FG-VE-Ps on VE-Fs versus a/b for FIC and SIC
are plotted in Figure 7. The data required for the numerical analysis are: a/h = 50,
pVF = 0.7, γ = 0.5 and K0 = 2.5× 106, K1 = 40, K2 = 30. The influence of VE-F (for
K0 = 2.5× 106, K1 = K2 = 0) on the critical time decreases with increasing a/b, whereas
the influence of the VE-F (for K0 = 2.5× 106, K1 = 40, K2 = 0) on the critical time is
significantly greater than the influence of the previous VE-F type, and the influence of
the VE-F increases as a/b increases. In addition, it is found that the influence of the VE-F
(for K0 = 2.5 × 106, K1 = 40, K2 = 30) on the critical time is small compared to the
previous VE-F, and this effect increases with increasing a/b. The influences of the FG
profile on the critical time decrease for K0 = 2.5× 106, K1 = K2 = 0, while they increase for
K0 = 2.5× 106, K1 = 40, K2 = 0 and K0 = 2.5× 106, K1 = 40, K2 = 30 as a/b increases.

Table 1. Changes of critical times of FG-VE-Ps on VE-Fs depending on the viscoelastic parameter γ

with FIC and SIC (h/a = 0.02, b = 0.5a, pVF = 0.7).

tVF
11cr tVF

12cr

Ni FG-exp. Si3N4 Ni FG-exp. Si3N4

γ K0 = K1 = K2 = 0

0.1 4.236 4.434 4.669 2.031 2.13 2.248
0.3 3.686 3.884 4.12 1.757 1.856 1.973
0.5 3.431 3.629 3.864 1.629 1.728 1.845
0.7 3.263 3.461 3.696 1.545 1.644 1.761

γ K0 = 4.2× 107, K1 = K2 = 0

0.1 4.6 4.742 4.93 2.207 2.279 2.374
0.3 4.011 4.16 4.354 1.912 1.988 2.086
0.5 3.737 3.889 4.086 1.775 1.853 1.952
0.7 3.556 3.711 3.91 1.685 1.764 1.864

γ K0 = 4.2× 107, K1 = 10, K2 = 0

0.1 3.971 3.705 3.136 1.918 1.797 1.529
0.3 3.807 3.8 3.648 1.821 1.825 1.762
0.5 3.62 3.679 3.659 1.724 1.759 1.758
0.7 3.476 3.565 3.607 1.65 1.699 1.728

γ K0 = 4.2× 107, K1 = 10, K2 = 5

0.1 3.987 3.759 3.313 1.925 1.822 1.613
0.3 3.803 3.806 3.71 1.819 1.827 1.789
0.5 3.611 3.673 3.68 1.719 1.755 1.766
0.7 3.465 3.553 3.609 1.644 1.692 1.727
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