

Article

Relative Controllability and Ulam–Hyers Stability of the Second-Order Linear Time-Delay Systems

Kinda Abuasbeh ^{1,*}, Nazim I. Mahmudov ^{2,*} and Muath Awadalla ¹

- ¹ Department of Mathematics and Statistics, College of Science, King Faisal University, Hafuf 31982, Al Ahsa, Saudi Arabia
- ² Department of Mathematics, Eastern Mediterranean University, T.R. Northen Cyprus, Famagusta 99628, Turkey
- * Correspondence: kabuasbeh@kfu.edu.sa (K.A.); nazim.mahmudov@emu.edu.tr (N.I.M.)

Abstract: We introduce the delayed sine/cosine-type matrix function and use the Laplace transform method to obtain a closed form solution to IVP for a second-order time-delayed linear system with noncommutative matrices A and Ω . We also introduce a delay Gramian matrix and examine a relative controllability linear/semi-linear time delay system. We have obtained the necessary and sufficient condition for the relative controllability of the linear time-delayed second-order system. In addition, we have obtained sufficient conditions for the relative controllability of the semi-linear second-order time-delay system. Finally, we investigate the Ulam–Hyers stability of a second-order semi-linear time-delayed system.

Keywords: stability; controllability; delay systems; fractional calculus

MSC: 93B05; 60H17; 93C25; 34K30; 34K35

1. Introduction

Khusainov et al. [1] studied the IVP problem for a second-order linear pure delay differential equation of the form:

$$\begin{aligned} z''(t) + \Omega^2 z(t-\tau) &= h(t), \ t \ge 0, \ \tau > 0, \\ z(t) &= \varphi(t), \ z'(t) = \varphi'(t), \ -\tau \le t \le 0, \end{aligned}$$
(1)

where $h : [0, \infty) \to \mathbb{R}^n$, Ω is an $n \times n$ invertible matrix, τ is the time delay and φ is an arbitrary two times continuously differentiable function. The solution to (1) has a closed form explicit representation [1] (Theorem 2):

$$\begin{aligned} z(t) &= (\cos_{\tau} \Omega t) \varphi(-\tau) + \Omega^{-1} (\sin_{\tau} \Omega t) \varphi'(-\tau) \\ &+ \Omega^{-1} \int_{-\tau}^{0} \sin_{\tau} \Omega (t-\tau-s) \varphi''(s) ds \\ &+ \Omega^{-1} \int_{0}^{t} \sin_{\tau} \Omega (t-\tau-s) h(s) ds, \end{aligned}$$

where $\cos_{\tau} \Omega : \mathbb{R} \to \mathbb{R}^{n \times n}$ and $\sin_{\tau} \Omega : \mathbb{R} \to \mathbb{R}^{n \times n}$ denote the delayed matrix cosine and the delayed matrix sine, respectively.

It should be emphasized that the pioneer works [1–11] led to many new results in differential equations with a delay of integer and non-integer order and a discrete system with delay; see [1–23]. These models have applications in oscillatory systems [24,25], computational mathematics [26], spatially extended fractional reaction–diffusion models [27], and so on.

Controllability of dynamical systems is one of the most important concept in control theory. In recent years, the controllability of delayed dynamical systems has been

Citation: Abuasbeh, K.; Mahmudov, N.I.; Awadalla, M. Relative Controllability and Ulam–Hyers Stability of the Second-Order Linear Time-Delay Systems. *Mathematics* 2023, *11*, 806. https://doi.org/ 10.3390/math11040806

Academic Editor: Dumitru Baleanu

Received: 6 January 2023 Revised: 30 January 2023 Accepted: 1 February 2023 Published: 5 February 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). investigated by many authors. There are several recent works on controllability/control theory [28–36] and Ulam–Hyers stability [37,38] for delay differential equations in the literature.

However, to the best of our knowledge, there is no study dealing with relative controllability and stability of the following second-order linear differential time-delay equation:

$$\begin{cases} z''(t) + Az(t) + \Omega z(t-h) = Bu(t), & t \in (0,T], \\ z(t) = \varphi(t), & -h \le t \le 0, \\ z(0) = \varphi(t), & z'(0) = \varphi'(0), \end{cases}$$
(2)

and semilinear second-order time-delay systems:

$$\begin{cases} z''(t) + Az(t) + \Omega z(t-h) = Bu(t) + f(t, z(t)), & t \in (0, T], \\ z(t) = \varphi(t), & -h \le t \le 0, \\ z(0) = \varphi(t), & z'(0) = \varphi'(0), \end{cases}$$
(3)

where $A, \Omega \in \mathbb{R}^{d \times d}$, $B \in \mathbb{R}^{d \times r}$, $f \in C([0, T] \times \mathbb{R}^d, \mathbb{R}^d)$, $\varphi \in C^1([-h, 0], \mathbb{R}^d)$. $u : [0, T] \to \mathbb{R}^r$ is a control function.

The main contributions are presented as follows:

- We introduce the delayed sine/cosine-type matrix functions $S^h(A, \Omega; t)$, $C^h(A, \Omega; t)$ by means of the determining function $Q_{k,m}^{A,\Omega}$.
- We give a closed-form solution of problem (2) with nonpermutable matrices A, Ω by using $S^h(A, \Omega; t)$, $C^h(A, \Omega; t)$.
- We give the necessary and sufficient condition for the relative controllability of the system (2).
- We provide a sufficient condition for the relative controllability of the semilinear system (3).
- Finally, we study the Ulam–Hyers stability of problem (3).

The rest of this paper is structured as follows. In Section 2, we introduce delayed sine/cosine-type matrix functions and study some of their properties, Laplace transform delayed sine/cosine-type matrix functions. In Section 3, we obtain an exact analytical solution of the second-order problem (2) using delayed sine/cosine-type matrix functions $C^{h}(t)$ and $S^{h}(t)$. In Section 4, we give a necessary and sufficient condition for the relative controllability of the linear second-order delay systems. In Section 5, we give sufficient conditions for the relative controllability of the second-order systems. Finally, in Section 6 we investigate the Ulam–Hyers-type stability of the second-order semilinear time-delay system. In Section 7, to illustrate the theoretical findings, we provide some examples.

2. Auxiliary Lemmas

We study a concept of delayed sine/cosine-type matrix functions. In this consept, the determining equation and the determining function $Q_{k,m}^{A,\Omega}$ play an important role, see [18,21]. We define the determining function $Q_{k,m}^{A,\Omega}$ by means of the following recurrence (determining) equation:

$$\begin{cases} Q_{2k,m}^{A,\Omega} = -AQ_{2k-2,m}^{A,\Omega} - \Omega Q_{2k-2,m-1'}^{A,\Omega} \\ Q_{-2,m}^{A,\Omega} = Q_{2k,-1}^{A,\Omega} = \Theta, \ Q_{0,0}^{A,\Omega} = I, \ Q_{2k,0}^{A,\Omega} = (-1)^k A^k, \\ k = 0, 1, 2, \dots, m = 0, 1, 2, \dots. \end{cases}$$
(4)

Using the determining equation (4) we can easily obtain an explicit form for $Q_{k,m}^{A,\Omega}$ in terms of *A* and Ω .

Lemma 1. The determining function $Q_{k,m}^{A,\Omega}$ has the following explicit form:

$$\begin{cases} Q_{2k,m} = \sum_{j=0}^{k} (-1)^{j+1} A^{j} \Omega Q_{2k-2-2j,m-1}, \ k \ge 1, \ m \ge 1, \\ Q_{0,0}^{A,\Omega} = I, \ Q_{-2,m}^{A,\Omega} = Q_{2k,-1}^{A,\Omega} = \Theta. \end{cases}$$

Proof. Indeed,

$$Q_{2k,m} = \sum_{j=0}^{k} (-1)^{j+1} A^{j} \Omega Q_{2k-2-2j,m-1}$$

= $\sum_{j=1}^{k} (-1)^{j+1} A^{j} \Omega Q_{2k-2-2j,m-1} - \Omega Q_{2k-2,m-1}$
= $-A \sum_{j=0}^{k-1} (-1)^{j+1} A^{j} \Omega Q_{2k-4-2j,m-1} - \Omega Q_{2k-2,m-1}$
= $-A Q_{2k-2,m} - \Omega Q_{2k-2,m-1}$.

Next, we introduce delayed cosine/sine-type matrix functions C^h , S^h by means of the determining function $Q_{k,m}$.

Definition 1. Delayed cosine/sine-type matrix functions $C^h, S^h : [0, \infty) \to \mathbb{R}^d$ are defined as follows:

$$C^{h}(A,\Omega;t) = C^{h}(t) := \sum_{m=0}^{\infty} \sum_{k=m}^{\infty} Q_{2k,m}^{A,\Omega} \frac{(t-mh)_{+}^{2k}}{(2k)!},$$

$$S^{h}(A,\Omega;t) = S^{h}(t) := \sum_{m=0}^{\infty} \sum_{k=m}^{\infty} Q_{2k,m}^{A,\Omega} \frac{(t-mh)_{+}^{2k+1}}{(2k+1)!}$$

where $(t)_{+} = \max\{0, t\}.$

It is clear that C^h , S^h can be rewritten in the following way:

$$C^{h}(t) := \begin{cases} \Theta, & -\infty < t < 0, \\ \sum_{k=0}^{\infty} (-1)^{k} A^{k} \frac{t^{2k}}{(2k)!}, & 0 \le t < h, \\ \sum_{k=0}^{\infty} (-1)^{k} A^{k} \frac{t^{2k}}{(2k)!} + \sum_{k=1}^{\infty} Q_{2k,1} \frac{(t-h)_{+}^{2k}}{(2k)!}, & h < t \le 2h, \\ \vdots & \vdots \\ \sum_{k=0}^{\infty} (-1)^{k} A^{k} \frac{t^{2k}}{(2k)!} + \sum_{k=1}^{\infty} Q_{2k,1} \frac{(t-h)_{+}^{2k}}{(2k)!}, & \vdots \\ + \dots + \sum_{k=m}^{\infty} Q_{2k,m} \frac{(t-mh)_{+}^{2k}}{(2k)!}, & mh \le t < (m+1)h, \end{cases}$$

and

$$S^{h}(t) := \begin{cases} \Theta, & -\infty < t < 0, \\ \sum_{k=0}^{\infty} (-1)^{k} A^{k} \frac{t^{2k+1}}{(2k+1)!}, & 0 \le t < h, \\ \sum_{k=0}^{\infty} (-1)^{k} A^{k} \frac{t^{2k+1}}{(2k+1)!} + \sum_{k=1}^{\infty} Q_{2k,1} \frac{(t-h)_{+}^{2k+1}}{(2k+1)!}, & h < t \le 2h, \\ \vdots & \vdots \\ \sum_{k=0}^{\infty} (-1)^{k} A^{k} \frac{t^{2k+1}}{(2k+1)!} + \sum_{k=1}^{\infty} Q_{2k,1} \frac{(t-h)_{+}^{2k+1}}{(2k+1)!} & \\ + \dots + \sum_{k=m}^{\infty} Q_{2k,m} \frac{(t-mh)_{+}^{2k+1}}{(2k+1)!}, & mh \le t < (m+1)h \end{cases}$$

where $m \in \mathbb{Z}_0^{\infty}$, Θ is the $d \times d$ null matrix.

If we introduce the following functions:

$$C_m^h(t-mh) := (-1)^m \sum_{k=m}^{\infty} Q_{2k,m}^{A,\Omega} \frac{(t-mh)_+^{2k}}{(2k)!}, \quad S_m^h(t-mh) := (-1)^m \sum_{k=m}^{\infty} Q_{2k,m}^{A,\Omega} \frac{(t-mh)_+^{2k+1}}{(2k+1)!}.$$

then C^h , S^h can be written in the following compact form:

$$C^{h}(t) := C_{0}^{h}(t) + C_{1}^{h}(t-h) + \ldots + C_{m}^{h}(t-mh), \ mh \le t < (m+1)h,$$

$$S^{h}(t) := S_{0}^{h}(t) + S_{1}^{h}(t-h) + \ldots + S_{m}^{h}(t-mh), \ mh \le t < (m+1).$$

Here are some special cases of C^h , S^h .

• If $\Omega = \Theta$, and $A = \mathcal{A}^2$, then:

٠

$$C^{h}\left(\mathcal{A}^{2},\Theta;t\right) = \sum_{k=0}^{\infty} (-1)^{k} \mathcal{A}^{2k} \frac{t^{2k}}{(2k)!} = \cos(\mathcal{A}t),$$
$$\mathcal{A}S^{h}\left(\mathcal{A}^{2},\Theta;t\right) = \mathcal{A}\sum_{k=0}^{\infty} (-1)^{k} \mathcal{A}^{2k} \frac{t^{2k+1}}{(2k+1)!} = \sin(\mathcal{A}t),$$

where $\cos(At)$ and $\sin(At)$ are matrix cosine and sine functions, respectively. If $A = \Theta$ and $\Omega = B^2$ then we have:

$$C^{h}(\Theta, \mathcal{B}^{2}; t) = \sum_{m=0}^{\infty} (-1)^{m} \mathcal{B}^{2m} \frac{(t-mh)_{+}^{2m}}{(2m)!} = \cos^{h}(\mathcal{B}; t),$$
$$\mathcal{B}S^{h}(\Theta, \mathcal{B}^{2}; t) = \mathcal{B}\sum_{m=0}^{\infty} (-1)^{m} \mathcal{B}^{2m} \frac{(t-mh)_{+}^{2m+1}}{(2m+1)!} = \mathcal{B}\sin^{h}(\mathcal{B}; t),$$

where $\cos^{h}(\mathcal{B};t)$ and $\sin^{h}(\mathcal{B};t)$ are pure delayed matrix cosine and sine functions, respectively.

• If *A* and Ω are permutable, then $Q_{2k,m} = (-1)^k \binom{k}{m} A^{k-m} \Omega^m$, $k \ge m$ and:

$$C^{h}(t) = \sum_{m=0}^{\infty} \sum_{k=m}^{\infty} (-1)^{k} \binom{k}{m} A^{k-m} \Omega^{m} \frac{(t-mh)_{+}^{2k}}{(2k)!},$$

$$S^{h}(t) = \sum_{m=0}^{\infty} \sum_{k=m}^{\infty} (-1)^{k} \binom{k}{m} A^{k-m} \Omega^{m} \frac{(t-mh)_{+}^{2k+1}}{(2k+1)!}.$$

Using the definitions of $C^{h}(t)$ and $S^{h}(t)$ we can easily obtain the following estimations. **?** For any mh < t < (m+1)h, $m \in \mathbb{N}$, the following estimations hold:

Lemma 2. For any
$$mh \le t < (m+1)h$$
, $m \in \mathbb{N}$, the following estimations hold

$$\left\| C^{h}(t) \right\| \leq \cosh\left(\sqrt{\|\Omega\|}t\right) \cosh\left(\sqrt{\|A\|}t\right) := L_{C}(t),$$

$$\left\| S^{h}(t) \right\| \leq t \cosh\left(\sqrt{\|\Omega\|}t\right) \cosh\left(\sqrt{\|A\|}t\right) := tL_{C}(t).$$

Proof. Indeed,

$$\begin{split} \left\| C^{h}(t) \right\| &\leq \sum_{k=0}^{\infty} \|A\|^{k} \frac{t^{2k}}{(2k)!} + \sum_{k=1}^{\infty} \binom{k}{1} \|A\|^{k-1} \|\Omega\| \frac{(t-h)_{+}^{2k}}{(2k)!} \\ &+ \ldots + \sum_{k=m}^{\infty} \binom{k}{m} \|A\|^{k-m} \|\Omega\|^{m} \frac{(t-mh)_{+}^{2k}}{(2k)!} \\ &\leq \sum_{k=0}^{\infty} \|A\|^{k} \frac{t^{2k}}{(2k)!} + \sum_{k=0}^{\infty} \binom{k+1}{1} \|A\|^{k} \|\Omega\| \frac{(t-h)_{+}^{2k+22}}{(2k+2)!} \\ &+ \ldots + \sum_{k=0}^{\infty} \binom{k+m}{m} \|A\|^{k} \|\Omega\|^{m} \frac{(t-mh)_{+}^{2k+2m}}{(2k+2m)!} \\ &< \sum_{k=0}^{\infty} \|A\|^{k} \frac{t^{2k}}{(2k)!} + \|\Omega\| \frac{(t-h)_{+}^{2}}{2!} \sum_{k=0}^{\infty} \|A\|^{k} \frac{(t-h)_{+}^{2k}}{(2k)!} \\ &+ \ldots + \|\Omega\|^{m} \frac{(t-mh)_{+}^{2m}}{(2m)!} \sum_{k=0}^{\infty} \|A\|^{k} \frac{(t-mh)_{+}^{2k}}{(2k)!} \\ &< \cosh\left(\sqrt{\|\Omega\|}t^{2}\right) \cosh\left(\sqrt{\|A\|}t^{2}\right). \end{split}$$

For the delayed sine matrix function $S^h(t)$, we have:

$$\begin{split} \left\|S^{h}(t)\right\| &\leq \sum_{k=0}^{\infty} \|A\|^{k} \frac{t^{2k+1}}{(2k+1)!} + \sum_{k=1}^{\infty} \binom{k}{1} \|A\|^{k-1} \|\Omega\| \frac{(t-h)_{+}^{2k+1}}{(2k+1)!} \\ &+ \ldots + \sum_{k=m}^{\infty} \binom{k}{m} \|A\|^{k-m} \|\Omega\|^{m} \frac{(t-mh)_{+}^{2k+1}}{(2k+1)!} \\ &\leq \sum_{k=0}^{\infty} \|A\|^{k} \frac{t^{2k+1}}{(2k+1)!} + \sum_{k=0}^{\infty} \binom{k+1}{1} \|A\|^{k} \|\Omega\| \frac{(t-h)_{+}^{2k+3}}{(2k+3)!} \\ &+ \ldots + \sum_{k=0}^{\infty} \binom{k+m}{m} \|A\|^{k} \|\Omega\|^{m} \frac{(t-mh)_{+}^{2k+2m+1}}{(2k+2m+1)!} \\ &< \sum_{k=0}^{\infty} \|A\|^{k} \frac{t^{2k+1}}{(2k+1)!} + \|\Omega\| \frac{(t-h)_{+}^{2}}{2!} \sum_{k=0}^{\infty} \|A\|^{k} \frac{(t-h)_{+}^{2k+1}}{(2k+1)!} \\ &+ \ldots + \|\Omega\|^{m} \frac{(t-mh)_{+}^{2m}}{(2m)!} \sum_{k=0}^{\infty} \|A\|^{k} \frac{(t-mh)_{+}^{2k+1}}{(2k+1)!} \\ &< t \cosh\left(\sqrt{\|\Omega\|t}\right) \cosh\left(\sqrt{\|A\|t}\right). \end{split}$$

Definition 2. *System* (2) *is stable on* [0, T] *in the Ulam–Hyers sense, if there exists* C > 0 *such* that for any $\varepsilon > 0$ and for any function $z^*(t)$ satisfying inequality

$$\left\|\frac{d}{dt}z^{*}(t) + Az^{*}(t) + \Omega z^{*}(t-h) - f(t)\right\| \leq \varepsilon$$
(5)

and the initial conditions in (2), there is a solution z(t) of (2) such that:

$$\|z^*(t) - z(t)\| \le C\varepsilon$$

for every $t \in [0, T]$.

Theorem 1. *The following formulae hold:*

- *The function* $C^{h}(\cdot)$ *and* $S^{h}(\cdot)$ *are continuous on* $(0, +\infty)$ *. (a)*
- (b)
- $\frac{d}{dt}C^{h}(t) = -AS^{h}(t) \Omega S^{h}(t-h), \quad \frac{d}{dt}S^{h}(t) = C^{h}(t) \text{ for all } t \in \mathbb{R}.$ $\frac{d^{2}}{dt^{2}}C^{h}(t) = -AC^{h}(t) \Omega C^{h}(t-h), \quad \frac{d^{2}}{dt^{2}}S^{h}(t) = -AS^{h}(t) \Omega S^{h}(t-h).$ (c)

Proof. The proofs of items (*a*) and (*c*) are obvious. In fact, the proof of item (*c*) is based on property (*b*):

$$\begin{split} \frac{d}{dt}C^{h}(t) &= \frac{d}{dt}\sum_{m=0}^{\infty}\sum_{k=m}^{\infty}Q_{2k,m}^{A,\Omega}\frac{(t-mh)_{+}^{2k}}{(2k)!} \\ &= \sum_{m=0}^{\infty}\sum_{k=m}^{\infty}Q_{2k,m}^{A,\Omega}\frac{(t-mh)_{+}^{2k-1}}{(2k-1)!} \\ &= \sum_{m=0k=m}^{\infty}\sum_{k=m}^{\infty}Q_{2k+2,m}^{A,\Omega}\frac{(t-mh)_{+}^{2k+1}}{(2k+1)!} \\ &= -\sum_{m=0k=m}^{\infty}\sum_{k=m}^{\infty}AQ_{2k,m}^{A,\Omega}\frac{(t-mh)_{+}^{2k+1}}{(2k+1)!} - \sum_{m=1k=m}^{\infty}\sum_{k=m}^{\infty}\Omega Q_{2k,m-1}^{A,\Omega}\frac{(t-mh)_{+}^{2k+1}}{(2k+1)!} \\ &= -A\sum_{m=0k=m}^{\infty}\sum_{k=m}^{\infty}Q_{2k,m}^{A,\Omega}\frac{(t-mh)_{+}^{2k+1}}{(2k+1)!} - \Omega\sum_{m=0k=m}^{\infty}\sum_{k=m}^{\infty}Q_{2k,m}^{A,\Omega}\frac{(t-h-mh)_{+}^{2k+1}}{(2k+1)!} \\ &= -AS^{h}(t) - \Omega S^{h}(t-h), \end{split}$$

and

$$\frac{d}{dt}S^{h}(t) = \frac{d}{dt}\sum_{m=0}^{\infty}\sum_{k=0}^{\infty}Q_{2k,m}^{A,\Omega}\frac{(t-mh)_{+}^{2k+1}}{(2k+1)!}$$
$$=\sum_{m=0}^{\infty}\sum_{k=0}^{\infty}Q_{2k,m}^{A,\Omega}\frac{(t-mh)_{+}^{2k}}{(2k)!} = C^{h}(t).$$

The main tool that is used in this section is LT $F(s) := L\{f(t)\} = \int_0^\infty e^{-st} f(t) dt$, $\operatorname{Re} s > a$. It is known that LT is defined for a function *f* that is exponentially bounded.

Lemma 3. We have:

$$L^{-1}\left\{(-1)^{m}\left(e^{-hs}\left(s^{2}I+A\right)^{-1}\Omega\right)^{m}s\left(s^{2}I+A\right)^{-1}\right\} = \sum_{k=m}^{\infty}Q_{2k,m}\frac{(t-mh)_{+}^{2k}}{(2k)!} = C_{m}^{h}(t),$$
$$L^{-1}\left\{(-1)^{m}\left(e^{-hs}\left(s^{2}I+A\right)^{-1}\Omega\right)^{m}\left(s^{2}I+A\right)^{-1}\right\} = \sum_{k=m}^{\infty}Q_{2k,m}\frac{(t-mh)_{+}^{2k+1}}{(2k+1)!} = S_{m}^{h}(t),$$

where $Q_{2k,m}$ is defined in (4).

Proof. For n = 0 by the well-known formulas, we have:

$$L^{-1}\left\{s\left(s^{2}I+A\right)^{-1}\right\} = C^{h}\left(-At^{2}\right),$$
$$L^{-1}\left\{e^{-sh}\left(s^{2}I+A\right)^{-1}\right\} = S^{h}\left(-A(t-h)^{2}\right), \quad t \ge h.$$

Let $Q_{2k,0} = (-A)^k$. For n = 1, one can use the convolution property of the LT to obtain:

$$-L^{-1}\left\{e^{-hs}\left(s^{2}I+A\right)^{-1}\Omega s\left(s^{2}I+A\right)^{-1}\right\}$$

$$=-\left\{e^{-hs}\left(s^{2}I+A\right)^{-1}\Omega\right\}*\left\{s\left(s^{2}I+A\right)^{-1}\right\}$$

$$=-\int_{0}^{t}S^{h}\left(-A(s-h)^{2}\right)\Omega C^{h}\left(-A(t-s)^{2}\right)ds$$

$$=-\sum_{k=0}^{\infty}\sum_{j=0}^{\infty}\frac{(-A)^{j}\Omega(-A)^{k}}{(2j+1)!(2k)!}\int_{h}^{t}(s-h)^{2j+1}(t-s)^{2k}ds$$

$$=-\sum_{k=0}^{\infty}\sum_{j=0}^{\infty}(-A)^{j}\Omega(-A)^{k}\frac{(t-h)^{2k+2j+2}}{(2k+2j+2)!}$$

$$=\sum_{k=0}^{\infty}\sum_{j=0}^{k}(-1)^{j+1}A^{j}\Omega(-A)^{k-j}\frac{(t-h)^{2k+2}}{(2k+2)!}$$

$$=\sum_{k=1}^{\infty}\sum_{j=0}^{k-1}(-1)^{j+1}A^{j}\Omega(-A)^{k-1-j}\frac{(t-h)^{2k}}{(2k)!},$$

$$\begin{split} &L^{-1} \left\{ e^{-hs} \left(s^{2}I + A \right)^{-1} \Omega e^{-hs} \left(s^{2}I + A \right)^{-1} \Omega s \left(s^{2}I + A \right)^{-1} \right\} \\ &= \left\{ e^{-hs} \left(s^{2}I + A \right)^{-1} \Omega \right\} * \left\{ e^{-hs} \left(s^{2}I + A \right)^{-1} \Omega s \left(s^{2}I + A \right)^{-1} \right\} \\ &= -\int_{0}^{t} S^{h} \left(-A(s-h)^{2} \right) \Omega C_{1}^{h} \left(-A(t-h-s)^{2} \right) ds \\ &= -\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(-A)^{k} \Omega Q_{2j,1}}{(2k+1)! (2j)!} \int_{h}^{t-h} (s-h)^{2k+1} (t-h-s)^{2j} ds \\ &= -\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} (-A)^{j} \Omega^{j} Q_{2k,1} \frac{(t-2h)^{2k+2j+2}_{+}}{(2k+2j+2)!} \\ &= \sum_{k=0}^{\infty} \sum_{j=0}^{k} (-1)^{j+1} A^{j} \Omega Q_{2k-2j,1} \frac{(t-2h)^{2k+2}_{+}}{(2k+2)!} \\ &= \sum_{k=2}^{\infty} \sum_{j=0}^{k-1} (-1)^{j+1} A^{j} \Omega Q_{2k-2-2j,1} \frac{(t-2h)^{2k}_{+}}{(2k)!}. \end{split}$$

$$\begin{split} L^{-1} \bigg\{ (-1)^{m+1} \Big(e^{-hs} \Big(s^2 I + A \Big)^{-1} \Omega \Big)^{m+1} s \Big(s^2 I + A \Big)^{-1} \bigg\} \\ &= L^{-1} \bigg\{ (-1) e^{-hs} \Big(s^2 I + A \Big)^{-1} \Omega \bigg\} * L^{-1} \bigg\{ (-1)^m \Big(e^{-hs} \Big(s^2 I + A \Big)^{-1} \Omega \Big)^m s \Big(s^2 I + A \Big)^{-1} \bigg\} \\ &= - \int_0^t S^h \Big(-A(s-h)^2 \Big) \Omega C_m^h \Big(-A(t-s)^2 \Big) ds \\ &= - \sum_{k=0}^\infty \sum_{j=0}^\infty \frac{(-1)^j A^j \Omega (-1)^k Q_{2k,m}}{(2j+1)! (2k)!} \int_h^{t-mh} (s-h)^{2j+1} (t-mh-s)^{2k} ds \\ &= - \sum_{k=0}^\infty \sum_{j=0}^\infty (-1)^j A^j \Omega (-1)^k Q_{2k,m} \frac{(t-(m+1)h)_+^{2k+2j+2}}{(2k+2j+2)!} \\ &= - \sum_{k=0j=0}^\infty \sum_{j=0}^k (-1)^j A^j \Omega Q_{2k-2j,m} \frac{(t-(m+1)h)_+^{2k}}{(2k)!} \\ &= \sum_{k=0j=m+1}^\infty \sum_{j=0}^{k+1} (-1)^{j+1} A^j \Omega Q_{2k-2j-2,m} \frac{(t-(m+1)h)_+^{2k}}{(2k)!} \\ &= \sum_{k=0}^\infty Q_{2k,m+1} \frac{(t-(m+1)h)_+^{2k}}{(2k)!}. \end{split}$$

Lemma 4. We have:

$$S^{h}(t) = L^{-1} \left\{ \left(s^{2}I + A + \Omega e^{-hs} \right)^{-1} \right\} = \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} Q_{2k,m} \frac{(t - mh)_{+}^{2k+1}}{(2k+1)!}.$$
$$C^{h}(t) = L^{-1} \left\{ s \left(s^{2}I + A + \Omega e^{-hs} \right)^{-1} \right\} = \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} Q_{2k,m} \frac{(t - mh)_{+}^{2k}}{(2k)!}.$$

Proof. It is easy to make the following calculations:

$$L^{-1}\left\{s\left(s^{2}I + A + \Omega e^{-hs}\right)^{-1}\right\}$$

= $L^{-1}\left\{s\left(\left(s^{2}I + A\right)I + \left(s^{2}I + A\right)\left(s^{2}I + A\right)^{-1}\Omega e^{-hs}\right)^{-1}\right\}$
= $L^{-1}\left\{\left(I + \left(s^{2}I + A\right)^{-1}\Omega e^{-hs}\right)^{-1}s\left(s^{2}I + A\right)^{-1}\right\}$
= $L^{-1}\left\{\sum_{m=0}^{\infty} e^{-mhs}(-1)^{m}\left(\left(s^{2}I + A\right)^{-1}\Omega\right)^{m}s\left(s^{2}I + A\right)^{-1}\right\}$
= $\sum_{m=0}^{\infty}(-1)^{m}L^{-1}\left\{e^{-mhs}\left(\left(s^{2}I + A\right)^{-1}\Omega\right)^{m}s\left(s^{2}I + A\right)^{-1}\right\}.$

Hence, by the Lemma 3 we obtain:

$$L^{-1}\left\{s\left(s^{2}I+A+\Omega e^{-hs}\right)^{-1}\right\} = \sum_{m=0}^{\infty}\sum_{k=m}^{\infty}Q_{2k,m}\frac{(t-mh)_{+}^{2k}}{(2k)!}.$$

3. Exact Analytical Solution

We present the closed form of the analytical solution of the second-order problem (2) using delayed sine/cosine-type matrix functions $C^{h}(t)$ and $S^{h}(t)$.

Theorem 2. The exact analytical solution of the IVP (2) can be represented as follows:

$$z(t) = C^{h}(t)\varphi(0) + S^{h}(t)\varphi'(0) - \int_{-h}^{0} S^{h}(t-s-h)\Omega\varphi(s)ds + \int_{0}^{t} S^{h}(t-s)f(s)ds$$

Proof. Suppose that the function f and the solution of (2) are bounded exponentially. By applying the LT to (2), we obtain the following equation:

$$L\{z''(t)\} + AL\{z(t)\} + \Omega L\{z(t-h)\} = L\{f(t)\}$$

It follows that:

$$\left(s^2 I + A + \Omega e^{-hs}\right) Z(s) = s\varphi(0) + \varphi'(0)$$
$$-\Omega \int_0^\infty e^{-st} z(t-h) dt + F(s),$$

where $Z(s) = L\{z(t)\}$, $F(s) = L\{f(t)\}$. For sufficiently large *s*, such that

 $\left\|A + \Omega e^{-hs}\right\| < s^{\mu},$

the matrix $s^2I + A + \Omega e^{-hs}$ is invertible and

$$Z(s) = s \left(s^2 I + A + \Omega e^{-hs}\right)^{-1} \varphi(0)$$

+ $\left(s^2 I + A + \Omega e^{-hs}\right)^{-1} \varphi'(0)$
- $\left(s^2 I + A + \Omega e^{-hs}\right)^{-1} \Omega \Psi(s)$
+ $\left(s^2 I + A + \Omega e^{-hs}\right)^{-1} F(s).$

By Lemma 4:

$$z(t) = C^{h}(t)\varphi(0) + S^{h}(t)\varphi'(0) - \int_{-h}^{0} S^{h}(t-s-h)\Omega\varphi(s)ds + \int_{0}^{t} S^{h}(t-s)f(s)ds,$$
(6)

since:

$$\begin{split} L^{-1}\bigg\{ \left(s^2I + A + \Omega e^{-hs}\right)^{-1} \Omega \Psi(s) \bigg\} &= L^{-1}\bigg\{ \left(s^2I + A + \Omega e^{-hs}\right)^{-1} \bigg\} * L^{-1} \{ \Omega \Psi(s) \} \\ &= \int_0^t S^h(t-s) \Omega \psi(s-h) ds = \int_0^h S^h(t-s) \Omega \varphi(s-h) ds \\ &= \int_{-h}^0 S^h(t-s-h) \Omega \varphi(s) ds. \end{split}$$

Now the assumption on the exponential boundedness can easily be removed by checking that (6) is a solution of (2). \Box

10 of 19

4. Controllability of Linear Delay System

Definition 3. *System (2) is called relatively controllable if for an arbitrary initial function* $\varphi \in$ $C^1([0,T],\mathbb{R}^d)$, in the terminal state $z_f \in \mathbb{R}^d$, there exists a control $u \in L^2([0,T],\mathbb{R}^r)$ such that a solution of (2) z(t) := z(t;u) satisfies the condition $z(T) = z_f$.

According to Theorem 2, a solution of (2) has the form:

$$z(t) = \begin{cases} C^{h}(t)\varphi(0) + S^{h}(t)\varphi'(0) - \int_{-h}^{0} S^{h}(t-s-h)\Omega\varphi(s)ds \\ + \int_{0}^{t} S^{h}(t-s)Bu(s)ds, \ t \ge 0, \\ \varphi(t), \ -h \le t \le 0. \end{cases}$$

We establish some sufficient and necessary condition for the relative controllability of (2) by using a delay Gramian matrix defined by:

$$\Gamma_0^T := \int_0^T S^h(T-s)BB^{\mathsf{T}} \left(S^h\right)^{\mathsf{T}} (T-s)ds.$$

It follows from the symmetric form of the matrix Γ_0^T that it is always non-negative.

Theorem 3. The linear system (2) is controllable if and only if Γ_0^T is positive.

Proof. Necessity. Assume that the linear system (2) is relatively controllable. Contrarily, suppose that Γ_0^T is not positive and definite; there is at least a nonzero vector $z \in \mathbb{R}^d$ such that $z^{\intercal}\Gamma_0^T z = 0$, which implies that:

$$0 = z^{\mathsf{T}} \Gamma_0^T z$$

= $\int_0^T z^{\mathsf{T}} S^h(T-s) B B^{\mathsf{T}} \left(S^h\right)^{\mathsf{T}} (T-s) z ds$
= $\int_0^T \left\| B^{\mathsf{T}} \left(S^h\right)^{\mathsf{T}} (T-s) z \right\|^2 ds = \int_0^T \left\| z^{\mathsf{T}} S^h(T-s) B \right\|^2 ds.$

It follows that:

$$z^{\mathsf{T}}S^h(T-s)B = 0$$
, for all $0 \le s \le T$

Since (2) is relatively controllable, from Definition 3, there is a control function $u_1(t)$ that steers the response from 0 to z. Then,

$$z = \int_0^T S^h(T-s)Bu_1(s)ds,$$

$$z^{\mathsf{T}}z = \int_0^T z^{\mathsf{T}}S^h(T-s)Bu_1(s)ds = 0.$$

This contradicts $z \neq 0$. Thus, Γ_0^T is positive. **Sufficiency.** Assume that Γ_0^T is positive. Then it is an invertible matrix. Hence, we can choose:

$$\begin{split} u(t) &= B^{\mathsf{T}} \Big(S^h \Big)^{\mathsf{T}} (T-t) \Big(\Gamma_0^T \Big)^{-1} p, \\ p &:= z_f - C^h(T) \varphi(0) - S^h(T) \varphi'(0) + \int_{-h}^0 S^h(T-s-h) \Omega \varphi(s) ds, \end{split}$$

$$\begin{aligned} z(T) &= C^{h}(T)\varphi(0) + S^{h}(T)\varphi'(0) - \int_{-h}^{0} S^{h}(T-s-h)\Omega\varphi(s)ds \\ &+ \int_{0}^{T} S^{h}(T-s)BB^{\mathsf{T}} \Big(S^{h}\Big)^{\mathsf{T}}(T-s) \Big(\Gamma_{0}^{T}\Big)^{-1}pds \\ &= C^{h}(T)\varphi(0) + S^{h}(T)\varphi'(0) - \int_{-h}^{0} S^{h}(T-s-h)\Omega\varphi(s)ds + p \\ &= z_{f}. \end{aligned}$$

Thus, (2) is controllable. \Box

5. Controllability of Semilinear Delay Differential System

In this section, we prove the sufficient condition for the relative controllability of (3) using Krasnoselskii's FT theorem.

We impose the following assumptions:

(A₁) The function $f : [0, T] \times \mathbb{R}^d \to \mathbb{R}^d$ is continuous and $L_f(t) \in L^1([0, T], \mathbb{R}^+)$ such that:

$$\|f(t,y) - f(t,z)\| \le L_f(t) \|y - z\|, \ y, z \in \mathbb{R}^d,$$

 $f(t,0) \in C([0,T], \mathbb{R}^d).$

(A₂) The linear system is relatively controllable.

Theorem 4. Suppose that (A_1) and (A_2) are satisfied. Then System (3) is relatively controllable provided that

$$||B||T^{3}L_{C}^{2}(T)M||L_{f}||_{L^{1}} < 1.$$

Proof. To examine the conditions for the Krasnoselskii theorem, we divide our proof into several steps.

Step 1. The control function

$$u(t;z) = B^{\mathsf{T}} \left(S^h(T-t) \right)^{\mathsf{T}} \left(\Gamma_0^T \right)^{-1} \left(z_f - C^h(T)\varphi(0) - S^h(T)\varphi'(0) \right)$$
$$+ \int_{-h}^0 S^h(T-s-h)\Omega\varphi(s)ds - \int_0^T S^h(T-s)f(s,z(s))ds \right)$$

satisfies the Lipschitz and linear growth conditions.

Indeed, in light of (A_1) , we obtain that:

$$\begin{aligned} \|u(t;z)\| &\leq \|B\| \left\| \left(\Gamma_0^T\right)^{-1} \right\| (T-t)L_C(T-t) \left(\left\| z_f \right\| + L_C(T) \|\varphi(0)\| + TL_C(T) \|\varphi'(0)\| \\ &+ TL_C(T) \|\Omega\| \int_{-h}^0 \|\varphi(s)\| ds + TL_C(T) \int_0^T (\|f(s,z(s)) - f(s,0)\| + \|f(s,0)\|) ds \right) \\ &\leq M_u + L_u \|z\|_{\infty}, \end{aligned}$$

where:

$$\begin{split} M_{u} &:= \|B\| \left\| \left(\Gamma_{0}^{T} \right)^{-1} \left\| (T-t) L_{C}(T-t) \left(\left\| z_{f} \right\| + L_{C}(T) \| \varphi(0) \| + TL_{C}(T) \| \varphi'(0) \| \right. \\ &+ TL_{C}(T) \|\Omega\| \int_{-h}^{0} \| \varphi(s) \| ds + T^{2} L_{C}(T) \max_{0 \le s \le T} \| f(s,0) \| \right), \\ L_{u} &:= MTL_{C}(T) \left\| L_{f} \right\|_{L^{1}}. \end{split}$$

Similarly,

$$\begin{aligned} \|u(t;z) - u(t;z)\| &\leq \int_0^T \left\| S^h(T-s) \right\| \|f(s,z(s)) - f(s,y(s))\| ds \\ &\leq \int_0^T \left\| S^h(T-s) \right\| L_f(s) ds \|z-y\|_{\infty} \\ &\leq L_u \|z-y\|_{\infty}. \end{aligned}$$

.

Step 2: Define:

$$P_{1}z(t) := C^{h}(t)\varphi(0) + S^{h}(t)\varphi'(0)$$

$$- \int_{-h}^{0} S^{h}(t-s-h)\Omega\varphi(s)ds + \int_{0}^{t} S^{h}(t-s)Bu(s;z)ds,$$

$$P_{2}z(t) := \int_{0}^{t} S^{h}(t-s)f(s,z(s))ds.$$
(8)

Show that $P_1z + P_2y \in B_r$ for all $z, y \in B_r$.

.

$$\begin{split} \|P_{1}z(t) + P_{2}y(t)\| \\ &\leq \left\|C^{h}(t)\right\| \|\varphi(0)\| + \left\|S^{h}(t)\right\| \|\varphi'(0)\| \\ &+ \int_{-h}^{0} \left\|S^{h}(t-s-h)\right\| \|\Omega\| \|\varphi(s)\| ds \\ &+ \int_{0}^{t} \left\|S^{h}(t-s)\right\| \|B\| \|u(s;z)\| ds \\ &+ \int_{0}^{t} \left\|S^{h}(t-s)\right\| \|B\| \|f(s,y(s))\| ds \\ &\leq L_{C}(t) \|\varphi(0)\| + tL_{C}(t) \|\varphi'(0)\| \\ &+ hTL_{C}(T) \|\Omega\| \|\varphi\|_{\infty} \\ &+ \|B\|T^{2}L_{C}(T)(M_{u} + L_{u}r) \\ &+ TL_{C}(T)(r + \|f(\cdot,0)\|_{L^{1}}). \end{split}$$

Step 3: We prove that P_1 is a contraction.

$$\begin{aligned} \|P_{1}z(t) - P_{1}y(t)\| \\ &\leq \int_{0}^{t} \left\| S^{h}(t-s) \right\| \|B\| \|u(s;z) - u(s;y)\| ds \\ &\leq \|B\| T^{2}L_{C}(T)L_{u}\| |z-y\|_{\infty}. \end{aligned}$$

Step 4: We prove that P_2 is a continuous compact operator.

First, we prove that P_2 is continuous. To prove this, let $\{z_n\}$ be a sequence in $C([-h, T], \mathbb{R}^d)$ such that $z_n \to z$ as $n \to \infty$. Then:

$$\begin{aligned} \|P_2 z_n(t) - P_2 z(t)\| \\ &\leq \int_0^t \left\| S^h(t-s) \right\| \|f(s, z_n(s)) - f(s, z(s))\| ds \\ &\leq T L_C(T) \left\| L_f \right\|_{L^1} \|z_n - z\|_{\infty}. \end{aligned}$$

Taking the supremum of the left-hand side and letting $n \to \infty$, we obtain the continuity of P_2 .

Second, we show that P_2 is uniformly bounded on B_r . For any $z \in B_r$, we have:

$$\begin{aligned} \|P_{2}z(t)\| &\leq \int_{0}^{t} \left\| S^{h}(t-s) \right\| \|f(s,z(s))\| ds \\ &\leq TL_{C}(T) \int_{0}^{t} L_{f}(s)(r+\|f(s,0)\|) ds \\ &\leq TL_{C}(T) \left\| L_{f} \right\|_{L^{1}} (r+\|f(\cdot,0)\|_{\infty}), \end{aligned}$$

in other words, P_2 is uniformly bounded on B_r .

Third, we show that P_2 is equicontinuous. Indeed,

$$\begin{split} \|P_{2}z(t_{2}) - P_{2}z(t_{1})\| \\ &\leq \left\| \int_{0}^{t_{2}} S^{h}(t_{2} - s)f(s, z(s))ds - \int_{0}^{t_{1}} S^{h}(t_{1} - s)f(s, z(s))ds \right\| \\ &\leq \left\| \int_{t_{1}}^{t_{2}} S^{h}(t_{2} - s)f(s, z(s))ds \right\| \\ &+ \left\| \int_{0}^{t_{1}} \left[S^{h}(t_{2} - s) - S^{h}(t_{1} - s) \right] f(s, z(s))ds \right\| \\ &=: I_{1} + I_{2}. \end{split}$$

For I_1 we have:

$$I_1 \leq TL_C(T) \int_{t_1}^{t_2} \left(L_f(s)r + \|f(s,0)\| \right) ds$$

$$\to 0$$

as $t_2 \rightarrow t_1$.

For I_2 we have:

$$I_{2} \leq \int_{0}^{t_{1}} \left\| S^{h}(t_{2}-s) - S^{h}(t_{1}-s) \right\| \left(L_{f}(s)r + \|f(s,0)\| \right) ds$$

 $\to 0,$

as $S^h(t)$ is uniformly convergent on [0, T]. Therefore:

$$||P_2 z(t_2) - P_2 z(t_1)|| \to 0 \text{ as } t_2 \to t_1.$$

The Arzela–Ascoli theorem says that P_2 is compact on B_r .

Steps 1-4 say that:

(i) $P_1z + P_2y \in B_r$ for any $z, y \in B_r$;

(ii) P_1 is a contraction;

(iii) P_2 is continuous and compact.

Thus, by the Krasnoselskii theorem there exists a fixed point $z \in B_r$ such that $P_1z + P_2z = z$. Moreover, $P_1z(T) + P_2z(T) = z(T)$, that is, the system (3) is exact and controllable on [0, T]. \Box

6. Hyers-Ulam Stability of Semilinear Delay Differential System

In this section, we discuss stability in the Hyers–Ulam sense of (3) on the interval [0, T].

Definition 4. *System* (3) *is said to be stable in the Hyers-Ulam sense on* [0, T] *if there exists, for a given* $\varepsilon > 0$, *a function* $\psi \in C([0, T], \mathbb{R}^d)$ *satisfying the inequality*

$$\left\|\psi''(t) + A\psi(t) + \Omega\psi(t-h) - f(t,\psi(t))\right\| \le \varepsilon, \quad t \in [0,T],\tag{9}$$

and there exists a solution $z \in C([0,T], \mathbb{R}^d)$ of (3) and a constant M > 0 such that

$$\|\psi(t)-z(t)\|\leq M\varepsilon, \ t\in[0,T].$$

Remark 1. A function $\psi \in C([0, T], \mathbb{R}^d)$ is a solution of Inequality (9) if and only if there exists a function $g \in C([0, T], \mathbb{R}^d)$ such that:

 $\begin{array}{ll} 1. & \|g(t)\| \leq \varepsilon, \ t \in [0,T]. \\ 2. & \psi''(t) = -A\psi(t) - \Omega\psi(t-h) + f(t,\psi(t)) + g(t), \ t \in [0,T]. \end{array}$

Lemma 5. Let $\psi \in C([0,T], \mathbb{R}^d)$ be a solution of Inequality (9). Then, ψ is a solution of the inequality:

$$\|\psi(t) - \psi^*(t)\| \le \frac{\varepsilon t^2}{2} L_C(t),$$
 (10)

where:

$$\psi^{*}(t) = C^{h}(t)\varphi(0) + S^{h}(t)\varphi'(0) - \int_{-h}^{0} S^{h}(t-s-h)\Omega\varphi(s)ds + \int_{0}^{t} S^{h}(t-s)f(s,\psi(s))ds$$

Proof. From Remark 1, the solution of the equation

$$\psi''(t) = -A\psi(t) - \Omega\psi(t-h) + f(t,\psi(t)) + g(t), \ t \in [0,T],$$

can be written as:

$$\begin{split} \psi(t) &= C^h(t)\varphi(0) + S^h(t)\varphi'(0) \\ &- \int_{-h}^0 S^h(t-s-h)\Omega\varphi(s)ds + \int_0^t S^h(t-s)f(s,\psi(s))ds \\ &+ \int_0^t S^h(t-s)g(s)ds. \end{split}$$

From Lemma 5, we obtain for all $t \in [0, T]$:

$$\|\psi(t) - \psi^*(t)\| \le \int_0^t \left\| S^h(t-s) \right\| \|g(s)\| ds \le \frac{\varepsilon t^2}{2} L_C(t).$$

Theorem 5. Let (A_1) be satisfied. Then, System (3) is Hyers–Ulam stable. In other words:

$$\|\psi - z\|_{\infty} \le M\varepsilon$$

where

$$M := \frac{T^2}{2} \frac{L_C(T)}{1 - TL_C(T) \left\| L_f \right\|_{L^1}}.$$

Proof. Assume that ψ is a solution of Inequality (9) and *z* is the unique solution of (3), that is,

$$\begin{aligned} z(t) &= C^{h}(t)\varphi(0) + S^{h}(t)\varphi'(0) \\ &- \int_{-h}^{0} S^{h}(t-s-h)\Omega\varphi(s)ds + \int_{0}^{t} S^{h}(t-s)f(s,z(s))ds. \end{aligned}$$

From Lemma 5, similar to the proof of Theorem 4, and by virtue of (10), we obtain:

$$\begin{split} \|\psi(t) - z(t)\| &\leq \|\psi(t) - \psi^*(t)\| + \|\psi^*(t) - z(t)\| \\ &\leq \frac{\varepsilon t^2}{2} L_C(t) \\ &+ \int_0^t \left\| S^h(t-s) \right\| \|f(s,\psi(s)) - f(s,z(s))\| ds \\ &\leq \frac{\varepsilon t^2}{2} L_C(t) \\ &+ t L_C(t) \left\| L_f \right\|_{L^1} \|\psi - z\|_{\infty}. \end{split}$$

Therefore,

$$\|\psi - z\|_{\infty} \leq \frac{\varepsilon T^2}{2} \frac{L_C(T)}{1 - TL_C(T) \left\|L_f\right\|_{L^1}}.$$

Thus:

$$\|\psi-z\|_{\infty}\leq M\varepsilon.$$

7. Examples

Example 1. We study a linear delayed dynamical second-order control system of the form

$$\begin{cases} \zeta''(t) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \zeta(t) + \begin{bmatrix} -1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \zeta(t-h) \\ + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} u(t) + f(t, \zeta(t)), \\ \zeta(t) = \varphi(t), \quad -h \le t \le 0, \end{cases}$$
(11)

defined in a time interval [0,T], T > 1, with one constant time delay h = 1. Hence, d = 3, r = 2 and

$$Q(T) := \{Q_{0,t}, Q_{1,t}, Q_{2,t} : t \in [0,T)\}.$$

Moreover, using the determining function given in [39], we have:

$$Q(T) = [Q_1(0) Q_2(0) Q_2(h) Q_3(0) Q_3(h) Q_3(2h)]$$

= $[B AB \Omega B A^2 B (A\Omega + \Omega A) B \Omega^2 B].$

Substituting matrices A, Ω , and B in to Q(T), we easily obtain:

$$rankQ(T) = rank \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 2 & 0 & -1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 2 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 2 & 4 & 2 & 1 \end{bmatrix} = 3.$$

Hence, by [40] the linear dynamical system associated with (11) is relatively controllable in each [0, T] for T > 1. Consequently, by Theorem 4 System (11) is relatively controllable under the condition that the function $f(t, \zeta)$ satisfies the Lipschitz condition and is uniformly bounded.

Example 2. Now, we study a deterministic model of population dynamics with delayed birth rates and delayed logistic terms. The following system was used in [41] to model the growth in population:

$$\begin{aligned} \zeta''(t) &= \begin{bmatrix} -a_1 & 0\\ 0 & -a_2 \end{bmatrix} \begin{bmatrix} \zeta_1(t)\\ \zeta_2(t) \end{bmatrix} + \begin{bmatrix} d_1 & 0\\ 0 & d_2 \end{bmatrix} \begin{bmatrix} \zeta_1(t-h)\\ \zeta_2(t-h) \end{bmatrix} \\ &+ \begin{bmatrix} P_1(t,\zeta_1(t),\zeta_2(t-h))\\ P_2(t,\zeta_2(t),\zeta_1(t-h)) \end{bmatrix}, \ 0 \le t \le T. \end{aligned}$$
(12)

Then, (12) *can be turned into:*

$$\zeta''(t) = A\zeta(t) + B\zeta(t-h) + P(t, \preccurlyeq(t), \zeta(t-h)).$$

The linear system

$$\zeta''(t) = A\zeta(t) + B\zeta(t-h)$$

associated with (12) is controllable; see [41]. Thus, for any Lipschitz continuous and uniformly bounded P, by Theorem 4 System (12) is relatively controllable on [0, T].

Example 3. Assume that d = 2, h = 0.2, and T = 0.8. Consider the problem of the relative controllability of the time-delay linear dynamical control system:

$$\begin{cases} y''(t) = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} y(t - 0.2) + \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix} u(t), \ 0 \le t \le 0.8 \\ y(t) = \begin{pmatrix} t \\ 2t \end{pmatrix}, \ -0.2 \le t \le 0. \end{cases}$$
(13)

In this case $S_h(t) = e_h^{B(t-h)}$, which is defined in Definition 3. The delayed Grammian matrix of System (13) has the following explicit form:

$$\begin{split} W_0^{0.8} &= \int_0^{0.8} S_h(0.8-s) B B^\intercal S_h^\intercal(0.8-s) ds = \int_0^{0.8} e_h^{\Omega(0.6-s)} B B^\intercal e_h^{\Omega^\intercal(0.6-s)} ds \\ &= \int_0^{0.8} e_h^{\Omega(0.6-s)} B^2 e_h^{\Omega^\intercal(0.6-s)} ds \\ &= W_1 + W_2 + W_3 + W_4. \end{split}$$

Here,

$$\begin{split} W_1 &= \int_0^{0.2} \left(I + \Omega \frac{(0.6 - s)}{1!} + \Omega^2 \frac{(0.4 - s)^2}{2!} + \Omega^3 \frac{(0.2 - s)^3}{3!} \right) \\ &\times B^2 \left(I + \Omega^T \frac{(0.6 - s)}{1!} + (\Omega^T)^2 \frac{(0.4 - s)^2}{2!} + (\Omega^T)^3 \frac{(0.2 - s)^3}{3!} \right) ds, \\ W_2 &= \int_{0.2}^{0.4} \left(I + \Omega \frac{(0.6 - s)}{1!} + \Omega^2 \frac{(0.4 - s)^2}{2!} \right) \\ &\times B^2 \left(I + \Omega^T \frac{(0.6 - s)}{1!} + (\Omega^T)^2 \frac{(0.4 - s)^2}{2!} \right) ds, \\ W_3 &= \int_{0.4}^{0.6} \left(I + \Omega \frac{(0.6 - s)}{1!} \right) B^2 \left(I + \Omega^T \frac{(0.6 - s)}{1!} \right) ds, \\ W_4 &= \int_{0.6}^{0.8} B^2 ds. \end{split}$$

By elementary computation, one can obtain:

$$\begin{split} W_1 &= \begin{pmatrix} 0.1923 & 9.2648 \times 10^{-2} \\ 9.2648 \times 10^{-2} & 6.9945 \times 10^{-2} \end{pmatrix}, \quad W_2 = \begin{pmatrix} 0.10617 & 4.1383 \times 10^{-2} \\ 4.1383 \times 10^{-2} & 8.5571 \times 10^{-2} \end{pmatrix} \\ W_3 &= \begin{pmatrix} 6.3333 \times 10^{-2} & 1.1333 \times 10^{-2} \\ 1.1333 \times 10^{-2} & 6.0667 \times 10^{-2} \end{pmatrix}, \quad W_4 = \begin{pmatrix} 0.05 & 0 \\ 0 & 0.05 \end{pmatrix}. \end{split}$$

Therefore, we obtain:

$$W = \begin{pmatrix} 0.4118 & 0.14536 \\ 0.14536 & 0.26618 \end{pmatrix}, \quad W^{-1} = \begin{pmatrix} 3.0082 & -1.6428 \\ -1.6428 & 4.6539 \end{pmatrix}.$$

By Theorem 3 this implies that the linear time delay system (13) is relatively controllable on [0, 0.8].

Example 4. Let h = 0.5, T = 1, and d = 2. Consider the relative controllability of the following linear time-delay differential controlled system:

$$\begin{cases} y''(t) = \begin{pmatrix} 0.2 & 0 \\ 0 & 0.2 \end{pmatrix} y(t) + \begin{pmatrix} 0.2 & 0.1 \\ 0 & 0.3 \end{pmatrix} y(t-0.2) + \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix} u(t), \ 0 \le t \le 1 \\ y(t) = \begin{pmatrix} t \\ 2t \end{pmatrix}, \ -0.2 \le t \le 0. \end{cases}$$
(14)

In this case, $S_h(t) = e^{At}e_h^{\hat{\Omega}(t-h)}$, which is defined in Definition 3. The delayed Grammian matrix of System (13) has the following explicit form:

1 1 0001

2 **2** () ()

$$\widehat{\Omega} = e^{-Ah} \Omega = \begin{pmatrix} 1.8221 & 0.3644 \\ 0 & 1.4577 \end{pmatrix}$$
$$W_0^1 = \int_0^1 S_h(t) B B^{\mathsf{T}} S_h^{\mathsf{T}}(t) ds = \int_0^1 e^{A(1-s)} e_h^{\widehat{\Omega}(1-s-h)} B B^{\mathsf{T}} e_h^{\widehat{\Omega}^{\mathsf{T}}(1-s-h)} e^{A^{\mathsf{T}}(1-s)} ds$$
$$= W_1 + W_2.$$

Here,

$$W_{1} = \frac{1}{4} \int_{0}^{0.5} e^{A(1-s)} \left(I + \widehat{\Omega}(0.5-s) \right) \left(I + \widehat{\Omega}^{\mathsf{T}}(0.5-s) \right) e^{A^{\mathsf{T}}(1-s)} ds$$
$$W_{2} = \frac{1}{4} \int_{0.5}^{1} e^{A(1-s)} e^{A^{\mathsf{T}}(1-s)} ds$$

Simple calculations show that:

$$W_1 = \begin{pmatrix} 0.4555 & 0.0307 \\ 0.0307 & 0.3656 \end{pmatrix}, W_2 = \begin{pmatrix} 0.1384 & 0 \\ 0 & 0.1384 \end{pmatrix}, W_0^1 = \begin{pmatrix} 0.5939 & 0.0307 \\ 0.0307 & 0.35040 \end{pmatrix}.$$

Therefore, we obtain that W_0^1 is invertible. This means that the linear determinisitic delay system corresponding to (13) is relatively exact and controllable on [0,1]. By Theorem 4, System (13) is relatively controllable [0,0.8].

8. Conclusions

In this article we

• Studied a problem of finding the exact analytical solution of continuous linear timedelay systems using the delayed sine/cosine-type matrix functions;

- Established sufficient and necessary conditions for the relative controllability of linear time-delay differential systems in terms of a delay Grammian matrix;
- Obtained sufficient conditions of the relative controllability and Hyers–Ulam stability of semilinear time-delay differential systems.

A possible direction in which to extend the results of this paper is toward fractional linear/semilinear impulsive systems of order $1 < \alpha < 2$. On the other hand, in the future, the same approach can be used for various types of random noises or disturbances in second-order dynamical stochastic systems.

Author Contributions: Conceptualization, N.I.M.; Formal analysis, K.A. and N.I.M.; Investigation, K.A. and N.I.M. Methodology, K.A. and N.I.M. Project administration, K.A.; Resources, K.A. and N.I.M.; Supervision, N.I.M.; Validation, K.A. and N.I.M.; Writing—original draft, N.I.M.; Writing—review and editing, M.A. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (Grant No. 2240).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This study did not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Khusainov, D.Y.; Diblík, J.; Ružicková, M.; Lukxaxcová, J. Representation of a solution of the cauchy problem for an oscillating system with pure delay. *Nonlinear Oscil.* **2008**, *11*, 276–285. [CrossRef]
- Boichuk, A.; Diblík, J.; Khusainov, D.; Ružicková, M. Fredholm's boundary-value problems for differential systems with a single delay. Nonlinear Anal. Theory Methods Appl. 2010, 72, 2251–2258. [CrossRef]
- 3. Bonilla, B.; Rivero, M.; Trujillo, J.J. On systems of linear fractional differential equations with constant coefficients. *Appl. Math. Comput.* **2007**, *187*, 68–78. [CrossRef]
- Diblík, J.; Fečkan, M.; Pospíšil, M. Representation of a solution of the cauchy problem for an oscillating system with two delays and permutable matrices. Ukr. Math. J. 2013, 65, 64–76. [CrossRef]
- Diblík, J.; Khusainov, D.Y.; Lukáčova, J.; Ružicková, M. Control of oscillating systems with a single delay. Adv. Differ. Equ. 2010, 2010, 1–15. [CrossRef]
- Diblík, J.; Khusainov, D.Y.; Ružicková, M. Controllability of linear discrete systems with constant coefficients and pure delay. SIAM J. Control Optim. 2008, 47, 1140–1149. [CrossRef]
- 7. Diblík, J.; Khusainov, D.Y. Representation of solutions of discrete delayed system x(k + 1) = ax(k) + bx(k m) + f(k) with commutative matrices. *J. Math. Anal. Appl.* **2006**, *318*, 63–76. 2006. [CrossRef]
- Diblík, J.; Khusainov, D.Y. Representation of solutions of linear discrete systems with constant coefficients and pure delay. *Adv. Differ. Equ.* 2006, 2006, 1–13. [CrossRef]
- Diblík, J.; Khusainov, D.Y.; Baštinec, J.; Sirenko, A.S. Exponential stability of linear discrete systems with constant coefficients and single delay. *Appl. Math. Lett.* 2016, 51, 68–73. [CrossRef]
- Diblík, J.; Morávková, B. Discrete matrix delayed exponential for two delays and its property. *Adv. Differ. Equ.* 2013, 2013, 139. [CrossRef]
- 11. Diblík, J.; Morávková, B. Representation of the solutions of linear discrete systems with constant coefficients and two delays. *Abstr. Appl. Anal.* **2014**, 2014, 320476. [CrossRef]
- Khusainov, D.Y.; Shuklin, G.V. Linear autonomous time-delay system with permutation matrices solving. *Stud. Univ. Zilina Math.* 2003, 17, 101–108.
- 13. Li, M.; Wang, J. Finite time stability of fractional delay differential equations. Appl. Math. Lett. 2016, 64, 170–176. [CrossRef]
- 14. Liu, L.; Dong, Q.; Li, G. Exact solutions and Hyers–Ulam stability for fractional oscillation equations with pure delay. *Appl. Math. Lett.* **2021**, *112*, 106666. [CrossRef]
- 15. Liu, L.; Dong, Q.; Li, G. Exact solutions of fractional oscillation systems with pure delay. *Fract. Calc. Appl. Anal.* 2022, 25, 1688–1712. [CrossRef]
- Liang, C.; Wang, J.; O'Regan, D. Controllability of nonlinear delay oscillating systems. J. Qual. Theory Differ. Equ. 2017, 2017, 1–18. [CrossRef]
- 17. Liang, C.; Wang, J.R.; O'Regan, D. Representation of a solution for a fractional linear system with pure delay. *Appl. Math. Lett.* **2017**, *77*, 72–78. [CrossRef]

- 18. Mahmudov, N.I. Delayed perturbation of mittag-leffler functions and their applications to fractional linear delay differential equations. *Math. Methods Appl. Sci.* **2018**, *42*, 5489–5497. [CrossRef]
- 19. Mahmudov, N.I. Representation of solutions of discrete linear delay systems with non permutable matrices. *Appl. Math. Lett.* **2018**, *85*, 8–14. [CrossRef]
- Mahmudov, N.I. A novel fractional delayed matrix cosine and sine. *Appl. Math.* 2019, 92, 41–48. j.aml.2019.01.001. [CrossRef]
- 21. Mahmudov, N.I. Delayed linear difference equations: The method of z-transform. J. Qual. Theory Differ. Equ. 2020, 53. [CrossRef]
- 22. Pospíšil, M. Representation of solutions of delayed difference equations with linear parts given by pairwise permutable matrices via z-transform. *Appl. Math. Comput.* **2017**, 294, 180–194. [CrossRef]
- 23. Mahmudov, N.I.; Almatarneh, M.A. Stability of Ulam–Hyers and Existence of Solutions for Impulsive Time-Delay Semi-Linear Systems with Non-Permutable Matrices. *Mathematics* 2020, *9*, 1493. [CrossRef]
- Mahmudov, N.I.; Huseynov, I.T.; Aliev, N.A.; Aliev, F.A. Analytical approach to a class of Bagley-Torvik equations. TWMS J. Pure Appl. Math. 2020, 11, 238–258
- Aliev, A.F.; Aliyev, N.A.; Hajiyeva, N.S.; Mahmudov, N.I. Some Mathematical Problems and Their Solutions for the Oscillating Systems with Liquid Dampers: A Review. *Appl. Comput. Math.* 2021, 30, 339–365.
- Srivastava, H.M.; Saad, K.M.; Hamanah, W.M. Certain New Models of the Multi-Space Fractal-Fractionauramoto-Sivashinsky and Korteweg-de Vries Equations. *Mathematics* 2022, 10, 1089. [CrossRef]
- Alqhtani, M.; Owolabi, K.M.; Saad, K.M. Spatiotemporal (target) patterns in sub-diffusive predator-prey system with the Caputo operator. *Chaos Solitons Fractals* 2021, 160, 112267. [CrossRef]
- Elshenhab, A.M.; Wang, X.T. Controllability and Hyers–Ulam Stability of Differential Systems with Pure Delay. *Mathematics* 2022, 10, 1248. [CrossRef]
- 29. Diblík, J.; Feckan, M.; Pospíšil, M. Representation of a solution of the Cauchy problem for an oscillating system with multiple delays and pairwise permutable matrices. *Abstr. Appl. Anal.* **2013**, 2013, 931493. [CrossRef]
- Diblík, J.; Mencáková, K. Representation of solutions to delayed linear discrete systems with constant coefficients and with second-order differences. *Appl. Math. Lett.* 2020, 105, 106309. [CrossRef]
- Diblík, J.; Feckan, M.; Pospíšil, M. On the new control functions for linear discrete delay systems. SIAM J. Control Optim. 2014, 52, 1745–1760. [CrossRef]
- 32. Yi, S.; Nelson, P.W.; Ulsoy, A.G. Controllability and observability of systems of linear delay differential equation via the matrix Lambert W function. *IEEE Trans. Automat. Control* 2008, *53*, 854–860. [CrossRef]
- 33. Wang, J.; Luo, Z.; Feckan, M. Relative controllability of semilinear delay differential systems with linear parts defined by permutable matrices. *Eur. J. Control* 2017, *38*, 39–46. [CrossRef]
- 34. Khusainov, D.Y.; Shuklin, G.V. Relative controllability in systems with pure delay. Int. J. Appl. Math. 2005, 2, 210–221. [CrossRef]
- Karthikeyan, K.; Tamizharasan, D.; Nieto, J.J.; Nisar, K.S. Controllability of second-order differential equations with statedependent delay. *IMA J. Math. Control Inform.* 2021, 38, 1072–1083. [CrossRef]
- 36. Klamka, J. Controllability of Dynamical Systems; Kluwer Academic: Dordrecht, The Netherlands, 1993.
- Jung, S.M. Ulam–Hyers-Rassias Stability of Functional Equations in Mathematical Analysis; Hadronic Press: Palm Harbor, FL, USA, 2001.
- Aruldass, A.R.; Pachaiyappan, D.; Park, C. Hyers–Ulam stability of second-order differential equations using Mahgoub transform. *Adv. Differ. Equ.* 2021, 2021, 23. [CrossRef]
- 39. Klamka, J. Stochastic controllability of linear systems with state delays. Int. J. Appl. Math. Comput. Sci. 2007, 17, 5–13. [CrossRef]
- 40. Gabasov, R.F.; Kirilova, F.M. Qualitative Theory of Optimal Processes; Nauka: Moskva, Russia, 1971; p. 508. (In Russian)
- 41. Kuang, Y. Delay Differential Equations with Applications in Population Dynamics; Academic Press: Boston, MA, USA, 1993.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.