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Abstract: We introduce the delayed sine/cosine-type matrix function and use the Laplace transform
method to obtain a closed form solution to IVP for a second-order time-delayed linear system with
noncommutative matrices A and Ω. We also introduce a delay Gramian matrix and examine a relative
controllability linear/semi-linear time delay system. We have obtained the necessary and sufficient
condition for the relative controllability of the linear time-delayed second-order system. In addition,
we have obtained sufficient conditions for the relative controllability of the semi-linear second-order
time-delay system. Finally, we investigate the Ulam–Hyers stability of a second-order semi-linear
time-delayed system.
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1. Introduction

Khusainov et al. [1] studied the IVP problem for a second-order linear pure delay
differential equation of the form:{

z′′(t) + Ω2z(t− τ) = h(t), t ≥ 0, τ > 0,
z(t) = ϕ(t), z′(t) = ϕ′(t), −τ ≤ t ≤ 0,

(1)

where h : [0, ∞) → Rn, Ω is an n× n invertible matrix, τ is the time delay and ϕ is an
arbitrary two times continuously differentiable function. The solution to (1) has a closed
form explicit representation [1] (Theorem 2):

z(t) = (cosτ Ωt)ϕ(−τ) + Ω−1(sinτ Ωt)ϕ′(−τ)

+ Ω−1
∫ 0

−τ
sinτ Ω(t− τ − s)ϕ′′(s)ds

+ Ω−1
∫ t

0
sinτ Ω(t− τ − s)h(s)ds,

where cosτ Ω : R → Rn×n and sinτ Ω : R → Rn×n denote the delayed matrix cosine and
the delayed matrix sine, respectively.

It should be emphasized that the pioneer works [1–11] led to many new results in
differential equations with a delay of integer and non-integer order and a discrete system
with delay; see [1–23]. These models have applications in oscillatory systems [24,25], com-
putational mathematics [26], spatially extended fractional reaction–diffusion models [27],
and so on.

Controllability of dynamical systems is one of the most important concept in con-
trol theory. In recent years, the controllability of delayed dynamical systems has been
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investigated by many authors. There are several recent works on controllability/control
theory [28–36] and Ulam–Hyers stability [37,38] for delay differential equations in the
literature.

However, to the best of our knowledge, there is no study dealing with relative control-
lability and stability of the following second-order linear differential time-delay equation:

z′′(t) + Az(t) + Ωz(t− h) = Bu(t), t ∈ (0, T],
z(t) = ϕ(t), −h ≤ t ≤ 0,

z(0) = ϕ(t), z′(0) = ϕ′(0),
(2)

and semilinear second-order time-delay systems:
z′′(t) + Az(t) + Ωz(t− h) = Bu(t) + f (t, z(t)), t ∈ (0, T],

z(t) = ϕ(t), −h ≤ t ≤ 0,
z(0) = ϕ(t), z′(0) = ϕ′(0),

(3)

where A, Ω ∈ Rd×d, B ∈ Rd×r, f ∈ C
(
[0, T]×Rd,Rd

)
, ϕ ∈ C1

(
[−h, 0],Rd

)
. u : [0, T] →

Rr is a control function.
The main contributions are presented as follows:

• We introduce the delayed sine/cosine-type matrix functions Sh(A, Ω; t), Ch(A, Ω; t)
by means of the determining function QA,Ω

k,m .
• We give a closed-form solution of problem (2) with nonpermutable matrices A, Ω by

using Sh(A, Ω; t), Ch(A, Ω; t).
• We give the necessary and sufficient condition for the relative controllability of the

system (2).
• We provide a sufficient condition for the relative controllability of the semilinear

system (3).
• Finally, we study the Ulam–Hyers stability of problem (3).

The rest of this paper is structured as follows. In Section 2, we introduce delayed
sine/cosine-type matrix functions and study some of their properties, Laplace transform
delayed sine/cosine-type matrix functions. In Section 3, we obtain an exact analytical
solution of the second-order problem (2) using delayed sine/cosine-type matrix functions
Ch(t) and Sh(t). In Section 4, we give a necessary and sufficient condition for the relative
controllability of the linear second-order delay systems. In Section 5, we give sufficient
conditions for the relative controllability of the semilinear delay second-order systems.
Finally, in Section 6 we investigate the Ulam–Hyers-type stability of the second-order
semilinear time-delay system. In Section 7, to illustrate the theoretical findings, we provide
some examples.

2. Auxiliary Lemmas

We study a concept of delayed sine/cosine-type matrix functions. In this consept,
the determining equation and the determining function QA,Ω

k,m play an important role,

see [18,21]. We define the determining function QA,Ω
k,m by means of the following recurrence

(determining) equation:
QA,Ω

2k,m = −AQA,Ω
2k−2,m −ΩQA,Ω

2k−2,m−1,
QA,Ω
−2,m = QA,Ω

2k,−1 = Θ, QA,Ω
0,0 = I, QA,Ω

2k,0 = (−1)k Ak,
k = 0, 1, 2, . . . , m = 0, 1, 2, . . . .

(4)

Using the determining equation (4) we can easily obtain an explicit form for QA,Ω
k,m in

terms of A and Ω.
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Lemma 1. The determining function QA,Ω
k,m has the following explicit form: Q2k,m =

k

∑
j=0

(−1)j+1 AjΩQ2k−2−2j,m−1, k ≥ 1, m ≥ 1,

QA,Ω
0,0 = I, QA,Ω

−2,m = QA,Ω
2k,−1 = Θ.

Proof. Indeed,

Q2k,m =
k

∑
j=0

(−1)j+1 AjΩQ2k−2−2j,m−1

=
k

∑
j=1

(−1)j+1 AjΩQ2k−2−2j,m−1 −ΩQ2k−2,m−1

= −A
k−1

∑
j=0

(−1)j+1 AjΩQ2k−4−2j,m−1 −ΩQ2k−2,m−1

= −AQ2k−2,m −ΩQ2k−2,m−1.

Next, we introduce delayed cosine/sine-type matrix functions Ch, Sh by means of the
determining function Qk,m.

Definition 1. Delayed cosine/sine-type matrix functions Ch, Sh : [0, ∞)→ Rd are defined as follows:

Ch(A, Ω; t) = Ch(t) :=
∞

∑
m=0

∞

∑
k=m

QA,Ω
2k,m

(t−mh)2k
+

(2k)!
,

Sh(A, Ω; t) = Sh(t) :=
∞

∑
m=0

∞

∑
k=m

QA,Ω
2k,m

(t−mh)2k+1
+

(2k + 1)!
,

where (t)+ = max{0, t}.

It is clear that Ch, Sh can be rewritten in the following way:

Ch(t) :=



Θ, −∞ < t < 0,
∞

∑
k=0

(−1)k Ak t2k

(2k)!
, 0 ≤ t < h,

∞

∑
k=0

(−1)k Ak t2k

(2k)!
+

∞

∑
k=1

Q2k,1
(t− h)2k

+

(2k)!,
h < t ≤ 2h,

...
...

∞

∑
k=0

(−1)k Ak t2k

(2k)!
+

∞

∑
k=1

Q2k,1
(t− h)2k

+

(2k)!

+ . . . +
∞

∑
k=m

Q2k,m
(t−mh)2k

+

(2k)!
, mh ≤ t < (m + 1)h,

and
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Sh(t) :=



Θ, −∞ < t < 0,
∞

∑
k=0

(−1)k Ak t2k+1

(2k + 1)!
, 0 ≤ t < h,

∞

∑
k=0

(−1)k Ak t2k+1

(2k + 1)!
+

∞

∑
k=1

Q2k,1
(t− h)2k+1

+

(2k + 1)!,
h < t ≤ 2h,

...
...

∞

∑
k=0

(−1)k Ak t2k+1

(2k + 1)!
+

∞

∑
k=1

Q2k,1
(t− h)2k+1

+

(2k + 1)!

+ . . . +
∞

∑
k=m

Q2k,m
(t−mh)2k+1

+

(2k + 1)!
, mh ≤ t < (m + 1)h,

where m ∈ Z∞
0 , Θ is the d× d null matrix.

If we introduce the following functions:

Ch
m(t−mh) := (−1)m

∞

∑
k=m

QA,Ω
2k,m

(t−mh)2k
+

(2k)!
, Sh

m(t−mh) := (−1)m
∞

∑
k=m

QA,Ω
2k,m

(t−mh)2k+1
+

(2k + 1)!
,

then Ch, Sh can be written in the following compact form:

Ch(t) := Ch
0(t) + Ch

1(t− h) + . . . + Ch
m(t−mh), mh ≤ t < (m + 1)h,

Sh(t) := Sh
0(t) + Sh

1(t− h) + . . . + Sh
m(t−mh), mh ≤ t < (m + 1).

Here are some special cases of Ch, Sh.

• If Ω = Θ, and A = A2, then:

Ch
(
A2, Θ; t

)
=

∞

∑
k=0

(−1)kA2k t2k

(2k)!
= cos(At),

ASh
(
A2, Θ; t

)
= A

∞

∑
k=0

(−1)kA2k t2k+1

(2k + 1)!
= sin(At),

where cos(At) and sin(At) are matrix cosine and sine functions, respectively.
• If A = Θ and Ω = B2 then we have:

Ch
(

Θ,B2; t
)
=

∞

∑
m=0

(−1)mB2m (t−mh)2m
+

(2m)!
= cosh(B; t),

BSh
(

Θ,B2; t
)
= B

∞

∑
m=0

(−1)mB2m (t−mh)2m+1
+

(2m + 1)!
= B sinh(B; t),

where cosh(B; t) and sinh(B; t) are pure delayed matrix cosine and sine functions,
respectively.

• If A and Ω are permutable, then Q2k,m = (−1)k
(

k
m

)
Ak−mΩm, , k ≥ m and:

Ch(t) =
∞

∑
m=0

∞

∑
k=m

(−1)k
(

k
m

)
Ak−mΩm (t−mh)2k

+

(2k)!
,

Sh(t) =
∞

∑
m=0

∞

∑
k=m

(−1)k
(

k
m

)
Ak−mΩm (t−mh)2k+1

+

(2k + 1)!
.
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Using the definitions of Ch(t) and Sh(t) we can easily obtain the following estimations.

Lemma 2. For any mh ≤ t < (m + 1)h, m ∈ N, the following estimations hold:∥∥∥Ch(t)
∥∥∥ ≤ cosh

(√
‖Ω‖t

)
cosh

(√
‖A‖t

)
:= LC(t),∥∥∥Sh(t)

∥∥∥ ≤ t cosh
(√
‖Ω‖t

)
cosh

(√
‖A‖t

)
:= tLC(t).

Proof. Indeed,

∥∥∥Ch(t)
∥∥∥ ≤ ∞

∑
k=0
‖A‖k t2k

(2k)!
+

∞

∑
k=1

(
k
1

)
‖A‖k−1‖Ω‖

(t− h)2k
+

(2k)!

+ . . . +
∞

∑
k=m

(
k
m

)
‖A‖k−m‖Ω‖m (t−mh)2k

+

(2k)!

≤
∞

∑
k=0
‖A‖k t2k

(2k)!
+

∞

∑
k=0

(
k + 1

1

)
‖A‖k‖Ω‖

(t− h)2k+2
+

(2k + 2)!

+ ... +
∞

∑
k=0

(
k + m

m

)
‖A‖k‖Ω‖m (t−mh)2k+2m

+

(2k + 2m)!

<
∞

∑
k=0
‖A‖k t2k

(2k)!
+ ‖Ω‖

(t− h)2
+

2!

∞

∑
k=0
‖A‖k (t− h)2k

+

(2k)!

+ . . . + ‖Ω‖m (t−mh)2m
+

(2m)!

∞

∑
k=0
‖A‖k (t−mh)2k

+

(2k)!

< cosh
(√
‖Ω‖t2

)
cosh

(√
‖A‖t2

)
.

For the delayed sine matrix function Sh(t), we have:

∥∥∥Sh(t)
∥∥∥ ≤ ∞

∑
k=0
‖A‖k t2k+1

(2k + 1)!
+

∞

∑
k=1

(
k
1

)
‖A‖k−1‖Ω‖

(t− h)2k+1
+

(2k + 1)!

+ . . . +
∞

∑
k=m

(
k
m

)
‖A‖k−m‖Ω‖m (t−mh)2k+1

+

(2k + 1)!

≤
∞

∑
k=0
‖A‖k t2k+1

(2k + 1)!
+

∞

∑
k=0

(
k + 1

1

)
‖A‖k‖Ω‖

(t− h)2k+3
+

(2k + 3)!

+ . . . +
∞

∑
k=0

(
k + m

m

)
‖A‖k‖Ω‖m (t−mh)2k+2m+1

+

(2k + 2m + 1)!

<
∞

∑
k=0
‖A‖k t2k+1

(2k + 1)!
+ ‖Ω‖

(t− h)2
+

2!

∞

∑
k=0
‖A‖k (t− h)2k+1

+

(2k + 1)!

+ . . . + ‖Ω‖m (t−mh)2m
+

(2m)!

∞

∑
k=0
‖A‖k (t−mh)2k+1

+

(2k + 1)!

< t cosh
(√
‖Ω‖t

)
cosh

(√
‖A‖t

)
.
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Definition 2. System (2) is stable on [0, T] in the Ulam–Hyers sense, if there exists C > 0 such
that for any ε > 0 and for any function z∗(t) satisfying inequality∥∥∥∥ d

dt
z∗(t) + Az∗(t) + Ωz∗(t− h)− f (t)

∥∥∥∥ ≤ ε (5)

and the initial conditions in (2), there is a solution z(t)of (2) such that:

‖z∗(t)− z(t)‖ ≤ Cε

for every t ∈ [0, T].

Theorem 1. The following formulae hold:

(a) The function Ch(·) and Sh(·) are continuous on (0,+∞).
(b) d

dt Ch(t) = −ASh(t)−ΩSh(t− h), d
dt Sh(t) = Ch(t) for all t ∈ R.

(c) d2

dt2 Ch(t) = −ACh(t)−ΩCh(t− h), d2

dt2 Sh(t) = −ASh(t)−ΩSh(t− h).

Proof. The proofs of items (a) and (c) are obvious. In fact, the proof of item (c) is based on
property (b):

d
dt

Ch(t) =
d
dt

∞

∑
m=0

∞

∑
k=m

QA,Ω
2k,m

(t−mh)2k
+

(2k)!

=
∞

∑
m=0

∞

∑
k=m

QA,Ω
2k,m

(t−mh)2k−1
+

(2k− 1)!

=
∞

∑
m=0

∞

∑
k=m−1

QA,Ω
2k+2,m

(t−mh)2k+1
+

(2k + 1)!

= −
∞

∑
m=0

∞

∑
k=m

AQA,Ω
2k,m

(t−mh)2k+1
+

(2k + 1)!
−

∞

∑
m=1

∞

∑
k=m

ΩQA,Ω
2k,m−1

(t−mh)2k+1
+

(2k + 1)!

= −A
∞

∑
m=0

∞

∑
k=m

QA,Ω
2k,m

(t−mh)2k+1
+

(2k + 1)!
−Ω

∞

∑
m=0

∞

∑
k=m

QA,Ω
2k,m

(t− h−mh)2k+1
+

(2k + 1)!

= −ASh(t)−ΩSh(t− h),

and

d
dt

Sh(t) =
d
dt

∞

∑
m=0

∞

∑
k=0

QA,Ω
2k,m

(t−mh)2k+1
+

(2k + 1)!

=
∞

∑
m=0

∞

∑
k=0

QA,Ω
2k,m

(t−mh)2k
+

(2k)!
= Ch(t).

The main tool that is used in this section is LT F(s) := L{ f (t)} =
∫ ∞

0 e−st f (t)dt,
Re s > a. It is known that LT is defined for a function f that is exponentially bounded.

Lemma 3. We have:

L−1
{
(−1)m

(
e−hs

(
s2 I + A

)−1
Ω
)m

s
(

s2 I + A
)−1

}
=

∞

∑
k=m

Q2k,m
(t−mh)2k

+

(2k)!
= Ch

m(t),

L−1
{
(−1)m

(
e−hs

(
s2 I + A

)−1
Ω
)m(

s2 I + A
)−1

}
=

∞

∑
k=m

Q2k,m
(t−mh)2k+1

+

(2k + 1)!
= Sh

m(t),
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where Q2k,m is defined in (4).

Proof. For n = 0 by the well-known formulas, we have:

L−1
{

s
(

s2 I + A
)−1

}
= Ch

(
−At2

)
,

L−1
{

e−sh
(

s2 I + A
)−1

}
= Sh

(
−A(t− h)2

)
, t ≥ h.

Let Q2k,0 = (−A)k. For n = 1, one can use the convolution property of the LT to obtain:

− L−1
{

e−hs
(

s2 I + A
)−1

Ωs
(

s2 I + A
)−1

}
= −

{
e−hs

(
s2 I + A

)−1
Ω
}
∗
{

s
(

s2 I + A
)−1

}
= −

∫ t

0
Sh
(
−A(s− h)2

)
ΩCh

(
−A(t− s)2

)
ds

= −
∞

∑
k=0

∞

∑
j=0

(−A)jΩ(−A)k

(2j + 1)!(2k)!

∫ t

h
(s− h)2j+1(t− s)2kds

= −
∞

∑
k=0

∞

∑
j=0

(−A)jΩ(−A)k (t− h)2k+2j+2
+

(2k + 2j + 2)!

=
∞

∑
k=0

k

∑
j=0

(−1)j+1 AjΩ(−A)k−j (t− h)2k+2
+

(2k + 2)!

=
∞

∑
k=1

k−1

∑
j=0

(−1)j+1 AjΩ(−A)k−1−j

︸ ︷︷ ︸
Q2k,1

(t− h)2k
+

(2k)!
,

L−1
{

e−hs
(

s2 I + A
)−1

Ωe−hs
(

s2 I + A
)−1

Ωs
(

s2 I + A
)−1

}
=

{
e−hs

(
s2 I + A

)−1
Ω
}
∗
{

e−hs
(

s2 I + A
)−1

Ωs
(

s2 I + A
)−1

}
= −

∫ t

0
Sh
(
−A(s− h)2

)
ΩCh

1

(
−A(t− h− s)2

)
ds

= −
∞

∑
k=0

∞

∑
j=0

(−A)kΩQ2j,1

(2k + 1)!(2j)!

∫ t−h

h
(s− h)2k+1(t− h− s)2jds

= −
∞

∑
k=0

∞

∑
j=0

(−A)jΩjQ2k,1
(t− 2h)2k+2j+2

+

(2k + 2j + 2)!

=
∞

∑
k=0

k

∑
j=0

(−1)j+1 AjΩQ2k−2j,1
(t− 2h)2k+2

+

(2k + 2)!

=
∞

∑
k=2

k−1

∑
j=0

(−1)j+1 AjΩQ2k−2−2j,1︸ ︷︷ ︸
Q2k,2

(t− 2h)2k
+

(2k)!
.
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Now, we are ready to use the mathematical induction. To do so, suppose that it holds for
n = m. Then the convolution property of LT yields:

L−1

{
(−1)m+1

(
e−hs

(
s2 I + A

)−1
Ω
)m+1

s
(

s2 I + A
)−1

}

= L−1
{
(−1)e−hs

(
s2 I + A

)−1
Ω
}
∗ L−1

{
(−1)m

(
e−hs

(
s2 I + A

)−1
Ω
)m

s
(

s2 I + A
)−1

}
= −

∫ t

0
Sh
(
−A(s− h)2

)
ΩCh

m

(
−A(t− s)2

)
ds

= −
∞

∑
k=0

∞

∑
j=0

(−1)j AjΩ(−1)kQ2k,m

(2j + 1)!(2k)!

∫ t−mh

h
(s− h)2j+1(t−mh− s)2kds

= −
∞

∑
k=0

∞

∑
j=0

(−1)j AjΩ(−1)kQ2k,m
(t− (m + 1)h)2k+2j+2

+

(2k + 2j + 2)!

= −
∞

∑
k=0

k

∑
j=0

(−1)j AjΩQ2k−2j,m
(t− (m + 1)h)2k

+

(2k)!

=
∞

∑
k=0

k+1

∑
j=m+1

(−1)j+1 AjΩQ2k−2j−2,m
(t− (m + 1)h)2k

+

(2k)!

=
∞

∑
k=0

Q2k,m+1
(t− (m + 1)h)2k

+

(2k)!
.

Lemma 4. We have:

Sh(t) = L−1
{(

s2 I + A + Ωe−hs
)−1

}
=

∞

∑
m=0

∞

∑
k=0

Q2k,m
(t−mh)2k+1

+

(2k + 1)!
.

Ch(t) = L−1
{

s
(

s2 I + A + Ωe−hs
)−1

}
=

∞

∑
m=0

∞

∑
k=0

Q2k,m
(t−mh)2k

+

(2k)!
.

Proof. It is easy to make the following calculations:

L−1
{

s
(

s2 I + A + Ωe−hs
)−1

}
= L−1

{
s
((

s2 I + A
)

I +
(

s2 I + A
)(

s2 I + A
)−1

Ωe−hs
)−1

}

= L−1

{(
I +

(
s2 I + A

)−1
Ωe−hs

)−1
s
(

s2 I + A
)−1

}

= L−1

{
∞

∑
m=0

e−mhs(−1)m
((

s2 I + A
)−1

Ω
)m

s
(

s2 I + A
)−1

}

=
∞

∑
m=0

(−1)mL−1
{

e−mhs
((

s2 I + A
)−1

Ω
)m

s
(

s2 I + A
)−1

}
.

Hence, by the Lemma 3 we obtain:

L−1
{

s
(

s2 I + A + Ωe−hs
)−1

}
=

∞

∑
m=0

∞

∑
k=m

Q2k,m
(t−mh)2k

+

(2k)!
.
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3. Exact Analytical Solution

We present the closed form of the analytical solution of the second-order problem (2)
using delayed sine/cosine-type matrix functions Ch(t) and Sh(t).

Theorem 2. The exact analytical solution of the IVP (2) can be represented as follows:

z(t) = Ch(t)ϕ(0) + Sh(t)ϕ′(0)−
∫ 0

−h
Sh(t− s− h)Ωϕ(s)ds +

∫ t

0
Sh(t− s) f (s)ds.

Proof. Suppose that the function f and the solution of (2) are bounded exponentially. By
applying the LT to (2), we obtain the following equation:

L
{

z′′(t)
}
+ AL{z(t)}+ ΩL{z(t− h)} = L{ f (t)}.

It follows that: (
s2 I + A + Ωe−hs

)
Z(s) = sϕ(0) + ϕ′(0)

−Ω
∫ ∞

0
e−stz(t− h)dt + F(s),

where Z(s) = L{z(t)}, F(s) = L{ f (t)}. For sufficiently large s, such that∥∥∥A + Ωe−hs
∥∥∥ < sµ,

the matrix s2 I + A + Ωe−hs is invertible and

Z(s) = s
(

s2 I + A + Ωe−hs
)−1

ϕ(0)

+
(

s2 I + A + Ωe−hs
)−1

ϕ′(0)

−
(

s2 I + A + Ωe−hs
)−1

ΩΨ(s)

+
(

s2 I + A + Ωe−hs
)−1

F(s).

By Lemma 4:

z(t) = Ch(t)ϕ(0) + Sh(t)ϕ′(0)

−
∫ 0

−h
Sh(t− s− h)Ωϕ(s)ds +

∫ t

0
Sh(t− s) f (s)ds, (6)

since:

L−1
{(

s2 I + A + Ωe−hs
)−1

ΩΨ(s)
}

= L−1
{(

s2 I + A + Ωe−hs
)−1

}
∗ L−1{ΩΨ(s)}

=
∫ t

0
Sh(t− s)Ωψ(s− h)ds =

∫ h

0
Sh(t− s)Ωϕ(s− h)ds

=
∫ 0

−h
Sh(t− s− h)Ωϕ(s)ds.

Now the assumption on the exponential boundedness can easily be removed by checking
that (6) is a solution of (2).
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4. Controllability of Linear Delay System

Definition 3. System (2) is called relatively controllable if for an arbitrary initial function ϕ ∈
C1
(
[0, T],Rd

)
, in the terminal state z f ∈ Rd, there exists a control u ∈ L2([0, T],Rr) such that a

solution of (2) z(t) := z(t; u) satisfies the condition z(T) = z f .

According to Theorem 2, a solution of (2) has the form:

z(t) =


Ch(t)ϕ(0) + Sh(t)ϕ′(0)−

∫ 0
−h Sh(t− s− h)Ωϕ(s)ds

+
∫ t

0 Sh(t− s)Bu(s)ds, t ≥ 0,
ϕ(t), −h ≤ t ≤ 0.

We establish some sufficient and necessary condition for the relative controllability
of (2) by using a delay Gramian matrix defined by:

ΓT
0 :=

∫ T

0
Sh(T − s)BBᵀ

(
Sh
)ᵀ

(T − s)ds.

It follows from the symmetric form of the matrix ΓT
0 that it is always non-negative.

Theorem 3. The linear system (2) is controllable if and only if ΓT
0 is positive.

Proof. Necessity. Assume that the linear system (2) is relatively controllable. Contrarily,
suppose that ΓT

0 is not positive and definite; there is at least a nonzero vector z ∈ Rd such
that zᵀΓT

0 z = 0, which implies that:

0 = zᵀΓT
0 z

=
∫ T

0
zᵀSh(T − s)BBᵀ

(
Sh
)ᵀ

(T − s)zds

=
∫ T

0

∥∥∥Bᵀ
(

Sh
)ᵀ

(T − s)z
∥∥∥2

ds =
∫ T

0

∥∥∥zᵀSh(T − s)B
∥∥∥2

ds.

It follows that:
zᵀSh(T − s)B = 0, for all 0 ≤ s ≤ T.

Since (2) is relatively controllable, from Definition 3, there is a control function u1(t) that
steers the response from 0 to z. Then,

z =
∫ T

0
Sh(T − s)Bu1(s)ds,

zᵀz =
∫ T

0
zᵀSh(T − s)Bu1(s)ds = 0.

This contradicts z 6= 0. Thus, ΓT
0 is positive.

Sufficiency. Assume that ΓT
0 is positive. Then it is an invertible matrix. Hence, we

can choose:

u(t) = Bᵀ
(

Sh
)ᵀ

(T − t)
(

ΓT
0

)−1
p,

p := z f − Ch(T)ϕ(0)− Sh(T)ϕ′(0) +
∫ 0

−h
Sh(T − s− h)Ωϕ(s)ds,
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z(T) = Ch(T)ϕ(0) + Sh(T)ϕ′(0)−
∫ 0

−h
Sh(T − s− h)Ωϕ(s)ds

+
∫ T

0
Sh(T − s)BBᵀ

(
Sh
)ᵀ

(T − s)
(

ΓT
0

)−1
pds

= Ch(T)ϕ(0) + Sh(T)ϕ′(0)−
∫ 0

−h
Sh(T − s− h)Ωϕ(s)ds + p

= z f .

Thus, (2) is controllable.

5. Controllability of Semilinear Delay Differential System

In this section, we prove the sufficient condition for the relative controllability of (3)
using Krasnoselskii’s FT theorem.

We impose the following assumptions:

(A1) The function f : [0, T]×Rd → Rd is continuous and L f (t) ∈ L1([0, T],R+) such that:

‖ f (t, y)− f (t, z)‖ ≤ L f (t)‖y− z‖, y, z ∈ Rd,

f (t, 0) ∈ C
(
[0, T],Rd

)
.

(A2) The linear system is relatively controllable.

Theorem 4. Suppose that (A1) and (A2) are satisfied. Then System (3) is relatively controllable
provided that

‖B‖T3L2
C(T)M

∥∥∥L f

∥∥∥
L1

< 1.

Proof. To examine the conditions for the Krasnoselskii theorem, we divide our proof into
several steps.

Step 1. The control function

u(t; z) = Bᵀ
(

Sh(T − t)
)ᵀ(

ΓT
0

)−1(
z f − Ch(T)ϕ(0)− Sh(T)ϕ′(0)

+
∫ 0

−h
Sh(T − s− h)Ωϕ(s)ds−

∫ T

0
Sh(T − s) f (s, z(s))ds

)
satisfies the Lipschitz and linear growth conditions.

Indeed, in light of (A1), we obtain that:

‖u(t; z)‖ ≤ ‖B‖
∥∥∥∥(ΓT

0

)−1
∥∥∥∥(T − t)LC(T − t)

(∥∥∥z f

∥∥∥+ LC(T)‖ϕ(0)‖+ TLC(T)
∥∥ϕ′(0)

∥∥
+TLC(T)‖Ω‖

∫ 0

−h
‖ϕ(s)‖ds + TLC(T)

∫ T

0
(‖ f (s, z(s))− f (s, 0)‖+ ‖ f (s, 0)‖)ds

)
≤ Mu + Lu‖z‖∞,

where:

Mu := ‖B‖
∥∥∥∥(ΓT

0

)−1
∥∥∥∥(T − t)LC(T − t)

(∥∥∥z f

∥∥∥+ LC(T)‖ϕ(0)‖+ TLC(T)
∥∥ϕ′(0)

∥∥
+TLC(T)‖Ω‖

∫ 0

−h
‖ϕ(s)‖ds + T2LC(T) max

0≤s≤T
‖ f (s, 0)‖

)
,

Lu := MTLC(T)
∥∥∥L f

∥∥∥
L1

.
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Similarly,

‖u(t; z)− u(t; z)‖ ≤
∫ T

0

∥∥∥Sh(T − s)
∥∥∥‖ f (s, z(s))− f (s, y(s))‖ds

≤
∫ T

0

∥∥∥Sh(T − s)
∥∥∥L f (s)ds‖z− y‖∞

≤ Lu‖z− y‖∞.

Step 2: Define:

P1z(t) := Ch(t)ϕ(0) + Sh(t)ϕ′(0) (7)

−
∫ 0

−h
Sh(t− s− h)Ωϕ(s)ds +

∫ t

0
Sh(t− s)Bu(s; z)ds,

P2z(t) :=
∫ t

0
Sh(t− s) f (s, z(s))ds. (8)

Show that P1z + P2y ∈ Br for all z, y ∈ Br.

‖P1z(t) + P2y(t)‖

≤
∥∥∥Ch(t)

∥∥∥‖ϕ(0)‖+
∥∥∥Sh(t)

∥∥∥∥∥ϕ′(0)
∥∥

+
∫ 0

−h

∥∥∥Sh(t− s− h)
∥∥∥‖Ω‖‖ϕ(s)‖ds

+
∫ t

0

∥∥∥Sh(t− s)
∥∥∥‖B‖‖u(s; z)‖ds

+
∫ t

0

∥∥∥Sh(t− s)
∥∥∥‖B‖‖ f (s, y(s))‖ds

≤ LC(t)‖ϕ(0)‖+ tLC(t)
∥∥ϕ′(0)

∥∥
+ hTLC(T)‖Ω‖‖ϕ‖∞

+ ‖B‖T2LC(T)(Mu + Lur)
+ TLC(T)(r + ‖ f (·, 0)‖L1).

Step 3: We prove that P1 is a contraction.

‖P1z(t)− P1y(t)‖

≤
∫ t

0

∥∥∥Sh(t− s)
∥∥∥‖B‖‖u(s; z)− u(s; y)‖ds

≤ ‖B‖T2LC(T)Lu‖z− y‖∞.

Step 4: We prove that P2 is a continuous compact operator.
First, we prove that P2 is continuous. To prove this, let {zn} be a sequence in

C
(
[−h, T],Rd

)
such that zn → z as n→ ∞. Then:

‖P2zn(t)− P2z(t)‖

≤
∫ t

0

∥∥∥Sh(t− s)
∥∥∥‖ f (s, zn(s))− f (s, z(s))‖ds

≤ TLC(T)
∥∥∥L f

∥∥∥
L1
‖zn − z‖∞.

Taking the supremum of the left-hand side and letting n→ ∞, we obtain the continuity of P2.
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Second, we show that P2 is uniformly bounded on Br. For any z ∈ Br, we have:

‖P2z(t)‖ ≤
∫ t

0

∥∥∥Sh(t− s)
∥∥∥‖ f (s, z(s))‖ds

≤ TLC(T)
∫ t

0
L f (s)(r + ‖ f (s, 0)‖)ds

≤ TLC(T)
∥∥∥L f

∥∥∥
L1
(r + ‖ f (·, 0)‖∞),

in other words, P2 is uniformly bounded on Br.
Third, we show that P2 is equicontinuous. Indeed,

‖P2z(t2)− P2z(t1)‖

≤
∥∥∥∥∫ t2

0
Sh(t2 − s) f (s, z(s))ds−

∫ t1

0
Sh(t1 − s) f (s, z(s))ds

∥∥∥∥
≤
∥∥∥∥∫ t2

t1

Sh(t2 − s) f (s, z(s))ds
∥∥∥∥

+

∥∥∥∥∫ t1

0

[
Sh(t2 − s)− Sh(t1 − s)

]
f (s, z(s))ds

∥∥∥∥
=: I1 + I2.

For I1 we have:

I1 ≤ TLC(T)
∫ t2

t1

(
L f (s)r + ‖ f (s, 0)‖

)
ds

→ 0

as t2 → t1.
For I2 we have:

I2 ≤
∫ t1

0

∥∥∥Sh(t2 − s)− Sh(t1 − s)
∥∥∥(L f (s)r + ‖ f (s, 0)‖

)
ds

→ 0,

as Sh(t) is uniformly convergent on [0, T]. Therefore:

‖P2z(t2)− P2z(t1)‖ → 0 as t2 → t1.

The Arzela–Ascoli theorem says that P2 is compact on Br.
Steps 1-4 say that:
(i) P1z + P2y ∈ Br for any z, y ∈ Br;
(ii) P1 is a contraction;
(iii) P2 is continuous and compact.
Thus, by the Krasnoselskii theorem there exists a fixed point z ∈ Br such that P1z +

P2z = z. Moreover, P1z(T) + P2z(T) = z(T), that is, the system (3) is exact and controllable
on [0, T].

6. Hyers–Ulam Stability of Semilinear Delay Differential System

In this section, we discuss stability in the Hyers–Ulam sense of (3) on the interval
[0, T].

Definition 4. System (3) is said to be stable in the Hyers-Ulam sense on [0, T] if there exists, for a
given ε > 0, a function ψ ∈ C

(
[0, T],Rd

)
satisfying the inequality∥∥ψ′′(t) + Aψ(t) + Ωψ(t− h)− f (t, ψ(t))

∥∥ ≤ ε, t ∈ [0, T], (9)
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and there exists a solution z ∈ C
(
[0, T],Rd

)
of (3) and a constant M > 0 such that

‖ψ(t)− z(t)‖ ≤ Mε, t ∈ [0, T].

Remark 1. A function ψ ∈ C
(
[0, T],Rd

)
is a solution of Inequality (9) if and only if there exists

a function g ∈ C
(
[0, T],Rd

)
such that:

1. ‖g(t)‖ ≤ ε, t ∈ [0, T].
2. ψ′′(t) = −Aψ(t)−Ωψ(t− h) + f (t, ψ(t)) + g(t), t ∈ [0, T].

Lemma 5. Let ψ ∈ C
(
[0, T],Rd

)
be a solution of Inequality (9). Then, ψ is a solution of the

inequality:

‖ψ(t)− ψ∗(t)‖ ≤ εt2

2
LC(t), (10)

where:

ψ∗(t) = Ch(t)ϕ(0) + Sh(t)ϕ′(0)

−
∫ 0

−h
Sh(t− s− h)Ωϕ(s)ds +

∫ t

0
Sh(t− s) f (s, ψ(s))ds.

Proof. From Remark 1, the solution of the equation

ψ′′(t) = −Aψ(t)−Ωψ(t− h) + f (t, ψ(t)) + g(t), t ∈ [0, T],

can be written as:

ψ(t) = Ch(t)ϕ(0) + Sh(t)ϕ′(0)

−
∫ 0

−h
Sh(t− s− h)Ωϕ(s)ds +

∫ t

0
Sh(t− s) f (s, ψ(s))ds

+
∫ t

0
Sh(t− s)g(s)ds.

From Lemma 5, we obtain for all t ∈ [0, T]:

‖ψ(t)− ψ∗(t)‖ ≤
∫ t

0

∥∥∥Sh(t− s)
∥∥∥‖g(s)‖ds ≤ εt2

2
LC(t).

Theorem 5. Let (A1) be satisfied. Then, System (3) is Hyers–Ulam stable. In other words:

‖ψ− z‖∞ ≤ Mε,

where

M :=
T2

2
LC(T)

1− TLC(T)
∥∥∥L f

∥∥∥
L1

.

Proof. Assume that ψ is a solution of Inequality (9) and z is the unique solution of (3),
that is,

z(t) = Ch(t)ϕ(0) + Sh(t)ϕ′(0)

−
∫ 0

−h
Sh(t− s− h)Ωϕ(s)ds +

∫ t

0
Sh(t− s) f (s, z(s))ds.
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From Lemma 5, similar to the proof of Theorem 4, and by virtue of (10), we obtain:

‖ψ(t)− z(t)‖ ≤ ‖ψ(t)− ψ∗(t)‖+ ‖ψ∗(t)− z(t)‖

≤ εt2

2
LC(t)

+
∫ t

0

∥∥∥Sh(t− s)
∥∥∥‖ f (s, ψ(s))− f (s, z(s))‖ds

≤ εt2

2
LC(t)

+ tLC(t)
∥∥∥L f

∥∥∥
L1
‖ψ− z‖∞.

Therefore,

‖ψ− z‖∞ ≤
εT2

2
LC(T)

1− TLC(T)
∥∥∥L f

∥∥∥
L1

.

Thus:
‖ψ− z‖∞ ≤ Mε.

7. Examples

Example 1. We study a linear delayed dynamical second-order control system of the form

ζ ′′(t) =

 1 0 0
0 1 0
0 0 1

ζ(t) +

 −1 1 0
1 0 1
0 1 1

ζ(t− h)

+

 0 0
1 0
0 1

u(t) + f (t, ζ(t)),

ζ(t) = ϕ(t), −h ≤ t ≤ 0,

(11)

defined in a time interval [0, T], T > 1, with one constant time delay h = 1. Hence, d = 3,
r = 2 and

Q(T) := {Q0,t, Q1,t, Q2,t : t ∈ [0, T)}.

Moreover, using the determining function given in [39], we have:

Q(T) = [Q1(0) Q2(0) Q2(h) Q3(0) Q3(h) Q3(2h)]

=
[

B AB ΩB A2B (AΩ + ΩA)B Ω2B
]
.

Substituting matrices A, Ω, and B in to Q(T), we easily obtain:

rankQ(T) = rank

 0 0 0 0 1 0 0 0 2 0 −1 1
1 0 1 0 0 1 1 0 0 2 0 1
0 1 0 1 1 1 0 1 2 4 2 1

 = 3.

Hence, by [40] the linear dynamical system associated with (11) is relatively controllable in each
[0, T] for T > 1. Consequently, by Theorem 4 System (11) is relatively controllable under the
condition that the function f (t, ζ) satisfies the Lipschitz condition and is uniformly bounded.
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Example 2. Now, we study a deterministic model of population dynamics with delayed birth rates
and delayed logistic terms. The following system was used in [41] to model the growth in population:

ζ ′′(t) =
[
−a1 0
0 −a2

][
ζ1(t)
ζ2(t)

]
+

[
d1 0
0 d2

][
ζ1(t− h)
ζ2(t− h)

]
+

[
P1(t, ζ1(t), ζ2(t− h))
P2(t, ζ2(t), ζ1(t− h))

]
, 0 ≤ t ≤ T. (12)

Then, (12) can be turned into:

ζ ′′(t) = Aζ(t) + Bζ(t− h) + P(t,�(t), ζ(t− h)).

The linear system
ζ ′′(t) = Aζ(t) + Bζ(t− h)

associated with (12) is controllable; see [41]. Thus, for any Lipschitz continuous and uniformly
bounded P, by Theorem 4 System (12) is relatively controllable on [0, T].

Example 3. Assume that d = 2, h = 0.2, and T = 0.8. Consider the problem of the relative
controllability of the time-delay linear dynamical control system:

y′′(t) =
(

1 2
0 1

)
y(t− 0.2) +

(
1/2 0
0 1/2

)
u(t), 0 ≤ t ≤ 0.8

y(t) =
(

t
2t

)
, −0.2 ≤ t ≤ 0.

(13)

In this case Sh(t) = eB(t−h)
h , which is defined in Definition 3. The delayed Grammian matrix of

System (13) has the following explicit form:

W0.8
0 =

∫ 0.8

0
Sh(0.8− s)BBᵀSᵀ

h(0.8− s)ds =
∫ 0.8

0
eΩ(0.6−s)

h BBᵀeΩᵀ(0.6−s)
h ds

=
∫ 0.8

0
eΩ(0.6−s)

h B2eΩᵀ(0.6−s)
h ds

= W1 + W2 + W3 + W4.

Here,

W1 =
∫ 0.2

0

(
I + Ω

(0.6− s)
1!

+ Ω2 (0.4− s)2

2!
+ Ω3 (0.2− s)3

3!

)

× B2

(
I + Ωᵀ (0.6− s)

1!
+ (Ωᵀ)2 (0.4− s)2

2!
+ (Ωᵀ)3 (0.2− s)3

3!

)
ds,

W2 =
∫ 0.4

0.2

(
I + Ω

(0.6− s)
1!

+ Ω2 (0.4− s)2

2!

)

× B2

(
I + Ωᵀ (0.6− s)

1!
+ (Ωᵀ)2 (0.4− s)2

2!

)
ds,

W3 =
∫ 0.6

0.4

(
I + Ω

(0.6− s)
1!

)
B2
(

I + Ωᵀ (0.6− s)
1!

)
ds,

W4 =
∫ 0.8

0.6
B2ds.
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By elementary computation, one can obtain:

W1 =

(
0.192 3 9.264 8× 10−2

9.264 8× 10−2 6. 994 5× 10−2

)
, W2 =

(
0.106 17 4.138 3× 10−2

4.138 3× 10−2 8.557 1× 10−2

)
W3 =

(
6.333 3× 10−2 1.133 3× 10−2

1.133 3× 10−2 6.066 7× 10−2

)
, W4 =

(
0.05 0
0 0.05

)
.

Therefore, we obtain:

W =

(
0.411 8 0.145 36
0.145 36 0.266 18

)
, W−1 =

(
3.0082 −1.6428
−1.6428 4.6539

)
.

By Theorem 3 this implies that the linear time delay system (13) is relatively controllable on [0, 0.8].

Example 4. Let h = 0.5, T = 1, and d = 2. Consider the relative controllability of the following
linear time-delay differential controlled system:


y′′(t) =

(
0.2 0
0 0.2

)
y(t) +

(
0.2 0.1
0 0.3

)
y(t− 0.2) +

(
1/2 0
0 1/2

)
u(t), 0 ≤ t ≤ 1

y(t) =
(

t
2t

)
, −0.2 ≤ t ≤ 0.

(14)

In this case, Sh(t) = eAteΩ̂(t−h)
h , which is defined in Definition 3. The delayed Grammian matrix of

System (13) has the following explicit form:

Ω̂ = e−AhΩ =

(
1.8221 0.3644
0 1.4577

)

W1
0 =

∫ 1

0
Sh(t)BBᵀSᵀ

h(t)ds =
∫ 1

0
eA(1−s)eΩ̂(1−s−h)

h BBᵀeΩ̂ᵀ(1−s−h)
h eAᵀ(1−s)ds

= W1 + W2.

Here,

W1 =
1
4

∫ 0.5

0
eA(1−s)

(
I + Ω̂(0.5− s)

)(
I + Ω̂ᵀ(0.5− s)

)
eAᵀ(1−s)ds,

W2 =
1
4

∫ 1

0.5
eA(1−s)eAᵀ(1−s)ds

Simple calculations show that:

W1 =

(
0.4555 0.0307
0.0307 0.3656

)
, W2 =

(
0.1384 0
0 0.1384

)
,

W1
0 =

(
0.5939 0.0307
0.0307 0.35040

)
.

Therefore, we obtain that W1
0 is invertible. This means that the linear determinisitic delay system

corresponding to (13) is relatively exact and controllable on [0, 1]. By Theorem 4, System (13) is
relatively controllable [0, 0.8].

8. Conclusions

In this article we

• Studied a problem of finding the exact analytical solution of continuous linear time-
delay systems using the delayed sine/cosine-type matrix functions;
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• Established sufficient and necessary conditions for the relative controllability of linear
time-delay differential systems in terms of a delay Grammian matrix;

• Obtained sufficient conditions of the relative controllability and Hyers–Ulam stability
of semilinear time-delay differential systems.

A possible direction in which to extend the results of this paper is toward fractional
linear/semilinear impulsive systems of order 1 < α < 2. On the other hand, in the future,
the same approach can be used for various types of random noises or disturbances in
second-order dynamical stochastic systems.
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