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Abstract: We introduce the delayed sine/cosine-type matrix function and use the Laplace transform
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controllability linear/semi-linear time delay system. We have obtained the necessary and sufficient
condition for the relative controllability of the linear time-delayed second-order system. In addition,
we have obtained sufficient conditions for the relative controllability of the semi-linear second-order
time-delay system. Finally, we investigate the Ulam-Hyers stability of a second-order semi-linear
time-delayed system.
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1. Introduction

Khusainov et al. [1] studied the IVP problem for a second-order linear pure delay
differential equation of the form:

Z'() + Q%z(t— 1) =h(t), t>0,7>0, 1)

2(t) = g(t), Z(H) = @'(t), —T<t <0,

where 11 : [0,00) — R", Q) is an n X n invertible matrix, T is the time delay and ¢ is an
arbitrary two times continuously differentiable function. The solution to (1) has a closed
form explicit representation [1] (Theorem 2):

z(t) = (cost Q) p(—7) + Q L(sin; Q) ¢/ (—7)
0

+otf sing Q(t — 7 —s)¢" (s)ds

J—=T

t
+Q_1/ sing Q(t — T —s)h(s)ds,
0

where cos; Q) : R — R™" and sin Q) : R — R™*" denote the delayed matrix cosine and
the delayed matrix sine, respectively.

It should be emphasized that the pioneer works [1-11] led to many new results in
differential equations with a delay of integer and non-integer order and a discrete system
with delay; see [1-23]. These models have applications in oscillatory systems [24,25], com-
putational mathematics [26], spatially extended fractional reaction—diffusion models [27],
and so on.

Controllability of dynamical systems is one of the most important concept in con-
trol theory. In recent years, the controllability of delayed dynamical systems has been
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investigated by many authors. There are several recent works on controllability /control
theory [28-36] and Ulam-Hyers stability [37,38] for delay differential equations in the
literature.

However, to the best of our knowledge, there is no study dealing with relative control-
lability and stability of the following second-order linear differential time-delay equation:

{ 2" (t) + Az(t) + Qz(t — h) = Bu(t), t€ (0,T],
z(t) = ¢(t), —h <t <0, )

+f(tz

t <0, 3)
) () ¢'(0),
where A,Q € Ri*4, B ¢ RIXT, f ¢ c([o T] x RY, Rd) e cl( h,O],Rd).u [0, T] —

R” is a control function.
The main contributions are presented as follows:

:‘/—\
I/\v
-

{ 2 (1) + Az(t) + Qz(t — h

e We introduce the delayed sine/cosine-type matrix functions S"(A, O; t), C"(A, Q; t)
by means of the determining function Qf;}?

*  We give a closed-form solution of problem (2) with nonpermutable matrices A, () by
using S"(A, Q;t), CH(A, O t).

*  We give the necessary and sufficient condition for the relative controllability of the
system (2).

¢ We provide a sufficient condition for the relative controllability of the semilinear
system (3).

¢  Finally, we study the Ulam-Hyers stability of problem (3).

The rest of this paper is structured as follows. In Section 2, we introduce delayed
sine/ cosine-type matrix functions and study some of their properties, Laplace transform
delayed sine/cosine-type matrix functions. In Section 3, we obtain an exact analytical
solution of the second-order problem (2) using delayed sine/cosine-type matrix functions
C"'(t) and S"(t). In Section 4, we give a necessary and sufficient condition for the relative
controllability of the linear second-order delay systems. In Section 5, we give sufficient
conditions for the relative controllability of the semilinear delay second-order systems.
Finally, in Section 6 we investigate the Ulam-Hyers-type stability of the second-order
semilinear time-delay system. In Section 7, to illustrate the theoretical findings, we provide
some examples.

2. Auxiliary Lemmas
We study a concept of delayed sine/cosine-type matrix functions. In this consept,
the determining equation and the determining function Q]‘f)’? play an important role,

see [18,21]. We define the determining function Q?;,? by means of the following recurrence
(determining) equation:

‘o Q2km - _AQZk 2m QQZk 2m 1’ .
Qom _sz 1= 9, Q, =1 szo (—1)"AFK, 4)
k=0,1,2,...,m=0,1,2,.

Using the determining equation (4) we can easily obtain an explicit form for Ql’f;? in
terms of A and Q).
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Lemma 1. The determining function Qk has the following explicit form:

k : .
Qokm = Z(—l)]HA]Qsz—z—z]‘,m—L k>1, m>1,
=
AQ AQ
Qoo =1L Q5 QZk 1=

Proof. Indeed,
£ i1,
Qaim = Y (=1 AQQpk 2 2jm—1

(71)]+1AjQQ2k7272j,m71 —OQQx%k 2m-1

. ~.
= 1
(=]

j=1

1
—AY (=1 AQQo 4 2im-1 — QQok—2 -1
=0

= —AQoxk—2m — QQ2%k—2,m-1-
O

Next, we introduce delayed cosine/sine-type matrix functions C", $" by means of the
determining function Qy ,,.

Definition 1. Delayed cosine/sine-type matrix functions C,S" : [0, 00) — R¥ are defined as follows:

[ le] mh)
Cha, 0 = )= ¥ Y odn
m=0k=m
tfmh)2k+l
st A,0t) Q 7,
< = £ E oo,

where (t) . = max{0,t}.

It is clear that C", S can be rewritten in the following way:

Q —c0 <t <0,
kg%]( )Ak(;k)l’ 0<t<h,
2k @ )2k
Ch(t) ) ]g(—l)k,qk( 5 ( - h<t<om
% oo ok
L0 "0 @
+...+kiszk,mU<21:;§)i, mh <t < (m—+1)h,

and
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o, —oo < t <0,
%) t2k+l
—1)f Ak <
kgo( ) k1) 0<t<h,
(o) t2k+l 0 (t _ h 2k+1
—1)fak M p<t<2h
o ,§0< At ZQM 2K+ 1), =
t) = .
00 $2k+1 0 (t _ h)2k+1
Ak +
LU A Gy T L QT
( mh)2k+1
+...+ ZQZk'mW/ mh <t < (m+1)h,
k=m :
where m € Z3°, ® is the d x d null matrix.
If we introduce the following functions:
2k 2k+1
h mh)+ h (t— mh)Jr
C (t_mh ZQka )1 ’ Sm(t_ ZQka 2k—|—1)! ’

then C", S" can be written in the following compact form:

Cht)y:=Cl(t) + CHt—h) + ...+ Cl(t —mh), mh <t < (m+1)h,
Sh(t) := Sh(t) + SH(t —h) + ...+ Sk(t —mh), mh <t < (m+1).

Here are some special cases of C", S".

e IfO=0,and A = A?, then:

00 Zk
(A2 e;t) = Z A2k( 27 = os(AL,
h( 42 = o 1
AS" (A2, 05t) = Z A 2k + 1)

= sin(\At),

where cos(Af) and sin(.At) are matrix cosine and sine functions, respectively.
e If A= ©and Q = B? then we have:

o0 t— mh)2"
ch (@,Bz;t) =Y (_1)'"132"1((2':1),)+ = cos"(B; 1),
m=0 '
) " . (t _ mh)2m+1 '
BSh (@,Bz, t) = B Z (_1) 2 W = lenh(B; t),
m=0 :

where cos”(B;t) and sin” (B;t) are pure delayed matrix cosine and sine functions,
respectively.

e If Aand Q are permutable, then Qy ,, = (—1)k< Il; )Akmﬂm, .k > m and:
© o kN g (= m)*
cht) = ~1 k< )Ak mom ot
=2 LU, 20!

B 0 o0 P k . m(t—mh)zkH
0= LR ()4
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Using the definitions of C"(t) and S"(t) we can easily obtain the following estimations.

Lemma 2. Forany mh <t < (m+1)h, m € N, the following estimations hold:
HCh(t)H < cosh( ||Q|t) COSh( ]|A||t> = Lc(t),
HSh(t)H < tcosh( ||Q||t> cosh( ||A|t> = tLo(t).

Proof. Indeed,

e H_EIIAH +Z( )|A|k_1||0|a(;l:1))!2f

—m 2k
+W+Z(2)Mwﬂﬂwamﬁ+
)2k+2

) .

- z(k+1)mwmw%%+5!
2k+-2m

4+2(“W)MWMI&JEM.

k 12 +
< ZIIAH 20 ZIIAH R
( Zm 00 2k

+ ZHAH )
<cosh( ||Q|t2>cosh( ||A|t2>.

For the delayed sine matrix function S"(t), we have:

)Zk

+. o)

S 2k+1 0 F )2"*1
h < Kt k k-1 ( +
< Epar e £ 4 Jiar i

k+1
(kO agem oy R
ol (o [Pl e
)2k+3
+

< - 7
Tlal e+ (F10 ) 1aron G
k +m ( mh)2k+2m+1
e n () )wﬁm e
2k+1 + ( h)2k+1
< S G+ I Sl e

( _mh)Zm 00 (t—mh)2k+1

+...+|\Q||m(27)!+1§||f\|| TRkFI)

<tcosh< ||Q|t>cosh< |A||t>
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Definition 2. System (2) is stable on [0, T| in the Ulam—Hyers sense, if there exists C > 0 such
that for any € > 0 and for any function z*(t) satisfying inequality

H £ + Az ()+Qz*(t—h)—f(t)H <e 5)

and the initial conditions in (2), there is a solution z(t)of (2) such that:

Iz (5) — 2(8)]| < Ce
for every t € [0, T1.

Theorem 1. The following formulae hold:
(a)  The function C"(-) and S"(-) are continuous on (0, +c0).
(b)  ECh(t) = —ASM(t) —QS"(t —h), LSh(t)=Clt)forallt € R.

() LCh(t)=—ACH(t) —QCl(t—h), & 5h(t) = —AS"(t) —QSt(t - h).

Proof. The proofs of items (a) and (c) are obvious. In fact, the proof of item (c) is based on

property (b):
k
d h d v v AQ(_mh)i
iSO = g 1 X Q™
_ 5 iQ o (t—mh)?!
L 2 ST (o~ 1))
© o ( mh)ZkJrl
= QA L+
m;Ok §1 2k+2m (2k +1)!
B i iAQAQ t_mh)2k+1 i iQQ (t_mh)2k+l
m=0k=m 2o 2k+1 m=1k=m ka ! (2k+1)
0 t_mh)2k+l o oo _h— mh)szrl
— Ay yosn M oy ol
m;k:zm Zom(2k 4 1)! mZOkZm ka (2k+1)!
= —AS"(t) —Qs"(t—h),
and
d d 0o 00 mh)2k+l
at® EZOZ 2km 2k+1)
[ee] [e0] h
2 Z L) — Ch(t).
—0i= 2k)!
O

The main tool that is used in this section is LT F(s) := L{f(t)} = fo e SHf(t)
Res > a. It is known that LT is defined for a function f that is exponentially bounded.

Lemma 3. We have:

L { (—1)" (ehs (21+4) _10)
o0 mh)2k+1

L‘l{(—l)m<_hs(21+A) l0>m(s21 )1} ZmQka o = S

m

s(szl )1} iQka t_m>h) = Ch(t),

k=m
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where Qo ,, 1s defined in (4).

Proof. For n = 0 by the well-known formulas, we have:

L‘l{s(szl +4) 1} =ct(-ar),
Ll{esh (21 + A)_l} =st(-A¢-n?), t=n

Let Qoro = (—A)k. For n = 1, one can use the convolution property of the LT to obtain:

- Ll{ehs (521 + A) 7103 <521 + A) 1}
[on(erea) o) ly(2rea) )

./(;t st (_A(s - h)z)QCh(—A(t _ s)z)ds

> & i koot .

k_ojgm /h (s — B (t — 5)*ds

S ayoap e
4 2k +2j+2)!

k=0j=0
o k ) ) ) (t _ h)2k+2
L EVARY'Y o Yo\ L AT S
- £ coranear
) k*l 2k
=Y Y (1)t Al (- A G-hy h),+ ,
k=1 ]:0 (Zk)

Qox1

L! {e_hs (szl + A) 7lQe_hS (521 + A) 710s (szl + A) 1}
—{e(@rea) Taf e (@14 a) Tos(2r4a)
_ /Ot Sh(—A(s - h)Z)QCf (—A(t —h— s)2>ds

- LL EZk +) 1())((2221])1' /ht (s e s

k=0j=0
o 2U42j42

— E};)(A)jﬂjszJ((Zk_z:lz)]:;;

— g%)ji;)(—1)7'+1A]'Qsz—2j,1(t(;kzji)zil;!+2

- i E(_1)f+1AfQQ2k,2,2j,1 (t(_zi?;)%f

Qok2
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Now, we are ready to use the mathematical induction. To do so, suppose that it holds for
n = m. Then the convolution property of LT yields:

L1 { (—1)" ! (e’“ <s21 + A) 10) " (521 + A) 1}
_ Ll{(—l)ehs (21+4) _10} . Ll{(—l)’" (e’“ (21+4) _10) ms(s21 +4) _1}
~ [[s" (-G~ m)ach (-t - 92)ds

© & (=1 AIQ(=1) Qpp ptm 2j+1 2%
*kZZ%) 2+ 1)1(2k)! /h (5 = 1) (t = mh = 5)"ds

0 oo o P (m + 1)h)2k+2]+2
=— ~1Al0(-1*Q (
k;);)( VAR Qoo™ 37 1 2)1
o k (t— (m+1)h)*
= — JA]QQ A S A ol
](ZZO 2k—2j,m (2k)!
oo k+1 (t— (m—i—l)h)Zk
= Z Z ]+1A]Qsz 2 ZmW
k=0j=m+1 :
_ iQZk (- (m+1)h)*
P (2k)!
O
Lemma 4. We have:
1 t— mh)2k+1
sh(t) = Ll{ 2T+ A+ Qe h } Qur.
( ) mZOkZO "2k+1)
-1 (t —mh
Ch(t) = L‘l{s(szl +A+ Qe_hs) } Z ZQka m) )
m=0k=0

Proof. It is easy to make the following calculations:
L‘l{s(SZIJrAJrQe_hS)l}
—cfs((Fr Ay (2 ) (2 ) o)
Ll{ (1 + (214 4) 106’“) _15(521 + A)l}
- Lo i
_ OO {Zoe‘m(—l)m((szufx) 1Q>ms(521+A) 1}
= St e ((@rea) o) s(@ea)

Hence, by the Lemma 3 we obtain:

_ L—l

mh)ik

ofereararn)) - £ a8

m=0k=m
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3. Exact Analytical Solution

We present the closed form of the analytical solution of the second-order problem (2)
using delayed sine/cosine-type matrix functions C"(t) and S"(t).

Theorem 2. The exact analytical solution of the IVP (2) can be represented as follows:

z(t) = C"(t)p(0) + " (£)¢'(0) — /j)h Sh(t—s —h)Qe(s)ds + /Ot SH(t —s)f(s)ds.

Proof. Suppose that the function f and the solution of (2) are bounded exponentially. By
applying the LT to (2), we obtain the following equation:

L{z"(t)} + AL{z(t)} + QL{z(t — h)} = L{f (1)}
It follows that:
(521 +A+ Qe_hs)Z(s) =5¢(0) + ¢'(0)
- Q/O e~tz(t — h)dt + F(s),
where Z(s) = L{z(t)}, F(s) = L{f(t)}. For sufficiently large s, such that

HA + Qe || < st

the matrix s2I + A + Qe is invertible and
-1
Z(s)=s (SZI +A+ Qe_hs) ¢(0)
-1
+(P1+A+0e7) g/(0)

-1
21+ A+ Qe*hS) O¥(s)

(s
(s

+ 21+A+Qe*hs)_1F(s).
By Lemma 4:
z(t) = C"(H)9(0) + 5" (1)¢'(0)
—/O S'(t—s—1)Q (s)ds+/tSh(t—s)f(s)ds ©)
—h ¢ 0 !

L—l{ (szl +A+ Qe_hs) lmf(s)} = L—l{ (s21 +A+ Qe—hS) 1} « L H{Q¥(s)}
- /Ot St — 5)Qup(s — h)ds = /Oh S (t — $)Qg(s — h)ds
= /7011 Sh(t —s — h)Qe(s)ds.

Now the assumption on the exponential boundedness can easily be removed by checking
that (6) is a solution of (2). O
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4. Controllability of Linear Delay System

Definition 3. System (2) is called relatively controllable if for an arbitrary initial function ¢ €
C! ([O, T], Rd) , in the terminal state z € R?, there exists a control u € L2([0, T], R") such that a
solution of (2) z(t) := z(t; u) satisfies the condition z(T) = zy.

According to Theorem 2, a solution of (2) has the form:

CH(£)g(0) + 8" (1)’ (0) — [2, S"(t = s — h)Qg(s)ds
z(t) = + Jo S"( t—s)Bu( )ds, t>0,
p(t), —-h<t<O0.

We establish some sufficient and necessary condition for the relative controllability
of (2) by using a delay Gramian matrix defined by:

Tl = /OT S'(T — )BT (8") (T - s)ds.
It follows from the symmetric form of the matrix I'} that it is always non-negative.
Theorem 3. The linear system (2) is controllable if and only if T{ is positive.
Proof. Necessity. Assume that the linear system (2) is relatively controllable. Contrarily,

suppose that I'"is not positive and definite; there is at least a nonzero vector z € R? such
that zTTJz = 0, which implies that:

0=2TT¢z
—/ ZTSM(T BBT(Sh) (T —s)zds
- [l r-onfi= [ osir-onf

It follows that:
zTSh(T —s5)B=0, forall0 <s<T.

Since (2) is relatively controllable, from Definition 3, there is a control function u(t) that
steers the response from O to z. Then,

T
z:/ S"(T — s)Buy (s)ds,
0
T
ZTz = / 2TS"(T — s)Buy (s)ds = 0.
0

This contradicts z # 0. Thus, I'} is positive.
Sufficiency. Assume that I'l is positive. Then it is an invertible matrix. Hence, we
can choose:

u(t) = B7(") (T -0 (1) p,

p:=z;— C"(T)p(0) — S"(T)¢' (0) + /l ST — s — h)Qg(s)ds,
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2(T) = C"(T)¢(0) + S"(T)¢'(0) — /Oh SM(T — s — h)Qg(s)ds

+ /OT sh(T - s)BBT<Sh)T(T —3)(rf) s

= C"(T)@(0) + S"(T)¢' (0) — /Oh ST —s—h)Qg(s)ds + p

=:Zf.
Thus, (2) is controllable. O

5. Controllability of Semilinear Delay Differential System

In this section, we prove the sufficient condition for the relative controllability of (3)
using Krasnoselskii’s FT theorem.
We impose the following assumptions:

(A1) The function f : [0, T] x R? — R is continuous and L £(t) € LY([0, T],R ") such that:

If(ty) = F(& 2 < Le(B)lly —zll, v,z € R,
F(,0) € c([o, T],Rd).

(A2) The linear system is relatively controllable.

Theorem 4. Suppose that (A1) and (Ay) are satisfied. Then System (3) is relatively controllable
provided that

|BIT*L2(T)M]|Ls

<L
L1
Proof. To examine the conditions for the Krasnoselskii theorem, we divide our proof into

several steps.
Step 1. The control function

u(t;z) = BT(S"(T 1) "(1§) " (27— C(T)p(0) — S*(1)g(0)
+ /jl ST —s — ) Qg(s)ds — /OT sh(T — s)f(s,z(s))ds>

satisfies the Lipschitz and linear growth conditions.
Indeed, in light of (A1), we obtain that:

=) < 181 (1F) 7 = e = 0 (] + Lo + TLDg'O)]

0 T
ﬂLTL(:(T)HQH/_h||§0(5)||¢715+TLC(T)/0 (||f(S/Z(S))—f(S/0)|+||f(510)|)d5>
< AAu‘+'Lu”Z

loor

where:

M= 81 (18) | = pze(r = ([2f] + LeDo ) + TLe(D g 0)

|

0<s<

+TLeno] [ lo©lds + PLe(T) max 1601 ),

Ly = MTLC(T)HLf

28
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Similarly,
lu(t;z) - tzn</ﬂbh $)|1£(s,2()) = Fs,y(5)) s
< ['])s"T 5)|Lsslz .
< Lullz = Yl o
Step 2: Define:
Piz(t) i= C"(1)9(0) + 5"(1)¢' (0) )
0 t
- / ] Sh(t—s — 1) Qe(s)ds + / S"(t — s)Bu(s; z)ds
— 0
t
Pyz(t) = /O St — ) f(s,2(s))ds. ®)

Show that P;z 4+ P,y € B, forall z,y € B,.
1Pi=(t) + Pay ()]
< [[ctw||igc)1 + s 0|19 ©)
+ [ ]lste s = m][i0ngts) s

" /otHSh(t - S)H”BH [u(s; )| ds

+ [ 8" = )| 1Bl ms) s

< Le(®)[lo(0)| + tLe(t)|| @' ()
+hTLc(T)[|Ol 9]l

+ ||B|| TLc(T) (My + Lur)
+ TLe(T)(r+ [1£(0)[)-

Step 3: We prove that P; is a contraction.
1Paz(t) = Py(8)
t
< [[[s"e =) IBiliutsz) —u(sy)as
< |BIT*Le(T) Lulz = Y| -

Step 4: We prove that P, is a continuous compact operator.
First, we prove that P, is continuous. To prove this, let {z,} be a sequence in

C([—h, T},Rd> such that z, — z as n — 0. Then:

|P2za(t) = P2z (1)
<[54~ )15 2n)) = FGs 2l
< TLC(T)‘

R

Taking the supremum of the left-hand side and letting 7 — oo, we obtain the continuity of P,.



Mathematics 2023, 11, 806

13 0of 19

Second, we show that P, is uniformly bounded on B,. For any z € B,, we have:

2ol < [[]|s" =917 =) las
< TL(T) [ Ly(s)r+ 1£(5,0) s
< TLe(T)|[L]| , (r+ £ 0) o),

in other words, P, is uniformly bounded on B;.
Third, we show that P, is equicontinuous. Indeed,

[ P2z(t2) — Paz(t1)|

/Otz S (ty — 5)f(s,2(s))ds — /Otl Sty —s) f(s,2(s))ds
JAEICEDCET

51

<

IN

+ \ '[85 = 8"t~ 9)] s ()

For I; we have:

I < TLe(T) /: (Lp(s)r + 1£(s,0)]))ds

— 0

ast, — fy.
For I, we have:

L< /OtIHSh(tz —s)— St —s)H (Ly(s)r+ 11£(s,0)]] ) ds

— 0,

as S"(t) is uniformly convergent on [0, T]. Therefore:
||P22(i’2) — PzZ(t1)|| — 0 as tp — t1.

The Arzela—Ascoli theorem says that P, is compact on B,.

Steps 1-4 say that:

(i) Phz+ Py € B, forany z,y € B;

(ii) P; is a contraction;

(iii) P, is continuous and compact.

Thus, by the Krasnoselskii theorem there exists a fixed point z € B, such that P;z +
Pyz = z. Moreover, Pyz(T) + P,z(T) = z(T), that is, the system (3) is exact and controllable
on[0,T]. O

6. Hyers—-Ulam Stability of Semilinear Delay Differential System

In this section, we discuss stability in the Hyers-Ulam sense of (3) on the interval
[0, T).

Definition 4. System (3) is said to be stable in the Hyers-Ulam sense on [0, T] if there exists, for a
given € > 0, a function P € C ([O, T],Rd) satisfying the inequality

9" (£) + Ap(t) + Qy(t —h) — f(tp()|| <& te[0,T], )
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and there exists a solution z € C ([O, T], Rd) of (3) and a constant M > 0 such that
[p(t) —z(t)[| < Me, t[0,T].
Remark 1. A function ¢ € C ([0, T], Rd) is a solution of Inequality (9) if and only if there exists

a function g € C ([O, T], Rd> such that:

L g®)ll <e teloT]
2. 9(t) = —Ap(t) = Qy(t —h) + (£, ¢(H) +g(t), t€[0,T].

Lemma 5. Let p € C ([0, T], Rd> be a solution of Inequality (9). Then, v is a solution of the
inequality:

lp(8) =9 ()] = 5-Le(t), (10)
where:
p*(t) = C"(1)p(0) + S"(t)¢' (0)
0 t
_/41 Sh(t—s—h)Qq)(s)ds+/O S (E— s)f(s, p(s))ds.

Proof. From Remark 1, the solution of the equation

P(t) = —Ap(t) = Qp(t — ) + f(t,9(t)) +g(t), t€[0,T],
can be written as:
p(t) = C*(£)p(0) + S"(£)¢'(0)
0 t
- /_h Sh(t—s —h)Qe(s)ds + /0 Sh(t—s)f(s,9(s))ds

+ /Ot Sh(t —s)g(s)ds.

From Lemma 5, we obtain for all t € [0, T7:

96 =90l < [ 8" )lgto)las < e
0
Theorem 5. Let (A1) be satisfied. Then, System (3) is Hyers—Ulam stable. In other words:
I =zl < Me,
where
_T Lc(T)
S 2Ty,

Proof. Assume that ¢ is a solution of Inequality (9) and z is the unique solution of (3),
that is,

2(t) = C"()(0) + 8" (1)¢' (0)
—/0 Sh(t—s—h)Q(p(s)ds—i—/tSh(t—s)f(s,z(s))ds.
—h 0
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From Lemma 5, similar to the proof of Theorem 4, and by virtue of (10), we obtain:

[p(8) =2 < [[p()) =g (OI + [[9™(8) — 2D

< TLC(t)

o[855 05)) — Fs (e 1

et?

<
< —Le(h)
+tLe ()| Lf| I = 2l
Therefore,
eT? Le(T
19—zl < 5 o ___
e,
Thus:
1Y — 2| < Me.
O

7. Examples
Example 1. We study a linear delayed dynamical second-order control system of the form

1 0 0 -1 1 0
'"B)=10 1 0 {¢BH)+|1 0 1}5(1&—}1)
0 0 1 0 1 1
[0 0 (11)
+1 1 0 [u(t)+f(t4(1),
[0 1
c(t)=9(t), —-h<t<0,

defined in a time interval [0, T]), T > 1, with one constant time delay h = 1. Hence, d = 3,
r=2and
Q(T) == {Qox Qut, Qo : t €[0,T)}.

Moreover, using the determining function given in [39], we have:

Q(T) = [Q1(0) Q2(0) Q2(h) Q3(0) Q3(h) Q3(2h)]
= [B AB QB A%B (AQ + QA)B QZB].

Substituting matrices A, Q3, and B in to Q(T), we easily obtain:

o 0 0 061 00 0 2 0 -1 1
rankQ(T)=rank| 1 0 1 0 0 1 1 0 0 2 0 1| =3.
01 0 1 1 1 0 1 2 4 2 1

Hence, by [40] the linear dynamical system associated with (11) is relatively controllable in each
[0, T] for T > 1. Consequently, by Theorem 4 System (11) is relatively controllable under the
condition that the function f(t,{) satisfies the Lipschitz condition and is uniformly bounded.
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Example 2. Now, we study a deterministic model of population dynamics with delayed birth rates
and delayed logistic terms. The following system was used in [41] to model the growth in population:

ORI | B A R e [

1(
2(
Py(t,01(t), Ca(t — h))
+[P;(féit éi(t—h))} 0<t<T. (12)

Then, (12) can be turned into:

g"(t) = AZ(t) + BL(t — h) + P(t, (1), (t = h)).

The linear system
g"(t) = AZ(t) + BL(t = h)

associated with (12) is controllable; see [41]. Thus, for any Lipschitz continuous and uniformly
bounded P, by Theorem 4 System (12) is relatively controllable on [0, T].

Example 3. Assume that d = 2, h = 0.2, and T = 0.8. Consider the problem of the relative
controllability of the time-delay linear dynamical control system:

1 1 2 1/2 0
y(t):(o 1)y(t—0.2)+(0/ 1/2 )u(t),0§t§0.8

t

w=( L) sacrce

In this case Sp(t) = e), B(t—h) , which is defined in Definition 3. The delayed Grammian matrix of

System (13) has the followmg explicit form:
0.8 0.8
WS = / $4(0.8 — s)BBTST (0.8 — 5)ds = / e106-9) ppTT(0675) g
0 0

0.8

_ / 6}?(0'6_S>BZ€}?T (0.6—s)ds
0

= Wiy 4+ Wy 4+ W3 4+ Wy

Here,

sz/()z4<l+0(06! )+QZ(O‘4Z! )>

2
x B? (I + QTL'i'— %) 4 (QT)27(0‘42_' s) >ds,

W3 = /026<I + Q(O'6_S))B2<I+ QT(0‘6_S)>ds,

1! 1!

0.8
W, = B?ds.
0.6
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By elementary computation, one can obtain:

W, — (01923 9.2648 x 1072 W, — (010617 41383 x 1072
P71 926481072 6.9945x10°2 )7 "2~ \ 41383x 1072 85571 x 1072

Wa — 6.3333 x 1072 1.1333 x 102 W, (005 0
37\ 11333 %1072 60667 x1072 )7 "4~ \ 0 0.05 /°

Therefore, we obtain:

W — 04118 0.14536 w1 — 3.0082 —1.6428
~\ 0.14536 0.26618 )’ | —1.6428 4.6539

By Theorem 3 this implies that the linear time delay system (13) is relatively controllable on [0,0.8].

Example 4. Let h = 0.5, T = 1, and d = 2. Consider the relative controllability of the following
linear time-delay differential controlled system:

y'(t) = ( 8'2 8.2 )y(t)+< 8'2 8:; )y(t—O.Z)—l—( (1)/2 (1)/2 )u(t), 0<t<1

t (14)
y(t) = < o > —02<t<0.

In this case, Sp,(t) = eAte?(tfh), which is defined in Definition 3. The delayed Grammian matrix of

System (13) has the following explicit form:

A ane [ 18221 03644
Q=c Q‘(o 1.4577

1 1 A ~
W& = /0 Sh(t)BBTSZ(t)ds = /0 eA(lfs)e?(lfsfh)BBTe,?T(l*S*h)eAT(lfs)ds
= Wi+ W,.

Here,

_ 105 4y A AT AT(1—s)
W, = ZL/O A0 (14005 —5)) (1+07(05-5))e ds,
Wy =1 b A(=9) ,AT(1=s) 4

4 Jos

Simple calculations show that:

W, — (04555 0.0307 W, — (01384 0
=1 00307 03656 )7 "2\ 0 0.1384 )’

Wi ( 0.5939 0.0307 >

0=\ 00307 0.35040

Therefore, we obtain that W} is invertible. This means that the linear determinisitic delay system
corresponding to (13) is relatively exact and controllable on [0,1]. By Theorem 4, System (13) is
relatively controllable [0, 0.8].

8. Conclusions

In this article we

¢  Studied a problem of finding the exact analytical solution of continuous linear time-
delay systems using the delayed sine/cosine-type matrix functions;
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¢  Established sufficient and necessary conditions for the relative controllability of linear
time-delay differential systems in terms of a delay Grammian matrix;

*  Obtained sufficient conditions of the relative controllability and Hyers—-Ulam stability
of semilinear time-delay differential systems.

A possible direction in which to extend the results of this paper is toward fractional
linear/semilinear impulsive systems of order 1 < a < 2. On the other hand, in the future,
the same approach can be used for various types of random noises or disturbances in
second-order dynamical stochastic systems.
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