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Abstract: Deep learning technology has been extensively studied for its potential in music, notably
for creative music generation research. Traditional music generation approaches based on recurrent
neural networks cannot provide satisfactory long-distance dependencies. These approaches are
typically designed for specific tasks, such as melody and chord generation, and cannot generate
diverse music simultaneously. Pre-training is used in natural language processing to accomplish
various tasks and overcome the limitation of long-distance dependencies. However, pre-training is
not yet widely used in automatic music generation. Because of the differences in the attributes of
language and music, traditional pre-trained models utilized in language modeling cannot be directly
applied to music fields. This paper proposes a pre-trained model, MRBERT, for multitask-based
music generation to learn melody and rhythm representation. The pre-trained model can be applied
to music generation applications such as web-based music composers that includes the functions
of melody and rhythm generation, modification, completion, and chord matching after being fine-
tuned. The results of ablation experiments performed on the proposed model revealed that under the
evaluation metrics of HITS@k, the pre-trained MRBERT considerably improved the performance of
the generation tasks by 0.09–13.10% and 0.02–7.37%, compared to the usage of RNNs and the original
BERT, respectively.

Keywords: automatic music generation; generative pre-training; embedding; representation learning
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1. Introduction

In the past decade, artificial intelligence has made breakthroughs due to the intro-
duction of deep learning, which allows the use of various artificial intelligence models in
different fields. Representation learning has been in the spotlight because it significantly
reduces the amount of data required to train a model through semi-supervised and self-
supervised learning, and, more importantly, it overcomes the limitations of traditional
supervised learning that requires annotated training data. Representation learning has
achieved excellent results in computer vision [1], natural language processing [2], and
music generation [3,4].

Deep learning-based music technology has been extensively studied for its potential
in music. This includes music generation [3,4], music classification [5,6], melody recogni-
tion [7,8], and music evaluation [9,10]. These functions rely on learning and summarizing
knowledge from music corpus, rather than obtaining it from music theory. Among them,
music generation research is notable because it involves performing a creative task. Mu-
sic generation tasks can be categorized into three categories, namely autoregressive [11],
conditional [12], and sequence-to-sequence (Seq2Seq) generation [13]. In autoregressive
generation, the current value is predicted based on the information from previous values.
For music, each predicted note becomes a consideration when predicting the following

Mathematics 2023, 11, 798. https://doi.org/10.3390/math11040798 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11040798
https://doi.org/10.3390/math11040798
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3732-5346
https://doi.org/10.3390/math11040798
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11040798?type=check_update&version=1


Mathematics 2023, 11, 798 2 of 14

notes, and a piece of music can be generated by looping this process. In conditional gener-
ation, contextual information is used to predict the missing value. When predicting the
missing values in random positions of music, contextual information from both left and
right directions should be considered. Thus, music completion can be realized. In Seq2Seq
generation, a novel sequence based on the given sequence is generated. Seq2Seq generation
involves two processes: understanding the given sequence and then generating a new
sequence subsequently using the understood content. Seq2Seq generation can be applied
in music to generate matching chords based on a given melody.

The above-mentioned traditional music generation models are typically designed to
accomplish only one of the aforementioned three categories and cannot be generalized to
other tasks. Inspired by natural language modeling, music generation requires a model that
can be applied to multitasking without requiring large training resources [2]. Bidirectional
encoder representations from transformers (BERT) [14] is a language representation model
in natural language modeling that is used to pre-train deep directional representations
from unlabeled text by jointly conditioning on both left and right contextual information
in all layers. The pre-trained model can be fine-tuned with only an additional output
layer to create state-of-the-art models for numerous tasks without substantial task-specific
architecture modifications. Therefore, this paper will also focus on the application of
representation models in music generation.

Compared to traditional music generation models, pre-trained model-based automatic
music generation models exhibit several advantages. First, pre-trained models can learn
better representations of music than traditional music generation models. Traditional
music generation models utilize PianoRoll [15] as the representation, which is similar to
one-hot encoding. Therefore, PianoRoll exhibits the same sparse matrix problem as one-hot
encoding, and contextual information is ignored. However, music in the pre-trained model
is mapped into n-dimensional spaces, which is a non-sparse representation by considering
the contextual information from two directions [14]. Second, pre-trained models can handle
long-distance dependencies. Traditional models [16–18] of music generation typically
utilize recurrent neural networks (RNNs) and their variants, such as long short-term
memory (LSTM) and gate recurrent unit (GRU), to generate music because of their ability
to memorize temporal information. However, RNNs exhibit vanishing gradients caused
by backpropagation through time (BPTT) and cannot handle long-distance dependences.
Although LSTM and GRU alleviate the long-distance dependency problem by adding
memory cells and gates, their effect is limited because of BPTT [19]. BERT, based on
the multihead attention mechanism, can link long-distance notes and consider global
features [20]. Finally, pre-trained models can process data in parallel, whereas RNN-
like models run recurrently, which not only causes vanishing gradients but also wastes
computing resources. Because the transformers in BERT run in parallel mode, all tokens in
the sequence are embedded into them without waiting for the data of the previous time step
to be processed [20]. However, applying traditional natural language pre-trained models
directly for music representation learning cannot provide the desired results. The problem
is that there is no concept of rhythm in natural language, but the rhythm is as important as
the melody in music. Therefore, an approach for learning musical representation that takes
into account both the melody and rhythm is needed for use in music generation.

In this paper, a modification of BERT, namely MRBERT, is proposed for the pre-training
of the melody and rhythm for fine-tuning music generation. In pre-training, the melody
and rhythm are embedded separately. For exchanging the information of the melody and
rhythm, semi-cross attention instead of merging, as performed in traditional methods, is
used, which prevents features loss. In fine-tuning, the following three generation tasks
are designed: autoregressive, conditional, and Seq2Seq. Thus, a pre-trained model is
fine-tuned with the output layers corresponding to the three types of generation tasks to
realize multitask music generation.

The contributions of this paper are as follows: (1) A novel generative pre-trained
model based on melody and rhythm, namely MRBERT, is proposed for multitask music
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generation, including autoregressive and conditional generation, as well as Seq2Seq genera-
tion. (2) In pre-training for representation learning, the melody and rhythm are considered
separately, based on the assumption that they have strong dependencies on themselves and
weak dependencies between each other. Experimental results have also shown that this
assumption is reasonable and can be widely applied to related research. (3) The proposed
MRBERT with three generation tasks allows users to generate melodies and rhythms from
scratch through interaction with the user, or to modify or complete existing melodies and
rhythms, or even to generate matching chords based on existing melodies and rhythms.

2. Related Work

This section describes BERT [14] first as a well-known representation learning model
and then two music representation learning studies, MusicBERT [21] and MidiBERT [22],
based on BERT are introduced.

BERT is a language representation model that is designed to learn deep bidirectional
representations from unlabeled text. It did this by conditioning on both the left and right
context in all layers of the model. BERT is able to achieve state-of-the-art results on a wide
range of natural language processing tasks, including question answering and language
inference, by being fine-tuned with only one additional output layer. It has been shown to
perform particularly well on a number of benchmarks, including the GLUE benchmark, the
MultiNLI dataset, and the SQuAD question answering dataset. The main contribution of
BERT is that it proves the importance of bidirectional pre-training for representation learn-
ing. Unlike previous language modeling approaches that used a unidirectional language
model for pre-training [2] and used a shallow concatenation of independently trained
left-to-right and right-to-left language modeling (LM) [23], BERT used a masked language
model (MLM) to enable pre-trained deep bidirectional representations.

Due to BERT’s success in natural language processing tasks, researchers have started
to apply representation learning to music data. Two representative studies in this area are
MusicBERT and MidiBERT.

MusicBERT is a large-scale pre-trained model for music understanding and consists
of large symbolic music corpus containing more than 1 million pieces of music and songs.
MusicBERT designed several mechanisms, including OctupleMIDI encoding and a bar-
level masking strategy, to enhance the pre-training of symbolic music data. Furthermore,
four music understanding-based tasks were designed, two of which were generation tasks,
melody completion and accompaniment suggestion; the other two were classification tasks,
genre and style classification.

MidiBERT used a smaller corpus than MusicBERT and focused on piano music. For
the token representation, it used the beat-based revamped MIDI-derived events [24] token
representation and borrowed Compound words [25] representation to reduce the length
of the token sequences. Furthermore, MidiBERT established a benchmark for symbolic
music understanding, including not only note-level tasks, melody extraction, and velocity
prediction but also sequence-level tasks, composer classification, and emotion classification.

Unlike these two studies, the proposed MRBERT model is a pre-trained model that can
be used for music generation tasks. In the MRBERT, a music corpus called OpenEWLD [26],
which is a leadsheet-based corpus that contains the necessary information for music gener-
ation, such as the melody, rhythm, and chords, is used. The MRBERT differs from other
models in that melody and rhythm are divided into separate token sequences. Additionally,
the embedding layer of the traditional BERT and the attention layer in its transformer are
modified to better fit the pre-training of the melody and rhythm. Finally, the MRBERT
was designed to differentiate from the prediction and classification tasks of traditional
methods by using three generation tasks, which are used to evaluate the performance of
the pre-trained model for music generation.
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3. Automatic Music Generation Based on MRBERT

In this paper, the MRBERT is proposed to learn the representations of the melody and
rhythm for automatic music generation. First, the token representation is described. The
structure and the pre-training of the MRBERT is explained and, finally, the strategies of
fine-tuning are described.

3.1. Token Representation

The melody, rhythm, and chords are extracted from OpenEWLD [26] music corpus
for pre-training and fine-tuning. The OpenEWLD music corpus consists of songs in
the leadsheet, as displayed in Figure 1A. In Figure 1B, the leadsheet is converted from
MusicXML to events through Python library music21. Figure 1C reveals that events
include Instruments, Keys, Timesignatures, Measures, ChordSymbols, and Notes, where
only information related to the melody, rhythm, and chords are extracted. For example,
“G4(2/4)” indicates that the pitch of the note is G in the fourth octave, and the duration of
the note is 2/4. The next step is to separate the melody and rhythm sequences, as displayed
in Figure 1D. The chord sequences are extracted from ChordSymbols to prepare for the
Seq2Seq generation task in the fine-tuning, as presented in Figure 1E. For example, “C”
represents the chord that continues with the melody until the next chord occurs.
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3.2. Pre-Training of MRBERT

The MRBERT is a pre-trained model for the learning representations of the melody
and rhythm. As displayed in Figure 2, the melody (m1, m2, __, . . . , mn) and rhythm
(r1, r2, __, . . . , rn) sequences are input to the embedding layers, where the “__” represents
the random masked tokens. The tokens of the melody sequences and rhythm sequences are
embedded by the corresponding token embedding layer. The position embedding layer,
which is shared by the melody and rhythm, adds the position feature on them. Through the
embedding layers, the melody embedding eM and the rhythm embedding eR are obtained.
Next, eM and eR are input to the corresponding transformer, which exchanges information
through semi-cross attention. Semi-cross attention is proposed to realize the information
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exchange between the melody and rhythm. As presented in formula (1), the cross query of
eM is obtained from the dot-production of the query of the melody qM with the activated
query of the rhythm qR by using softmax. The use of the key kM and value vM is similar
to that of the self-attention. For the rhythm, the query of the melody qM is required for
calculating the cross query of eR. Finally, the melody hidden states hM and rhythm hidden
states hR output by the transformers are passed through the melody prediction layer and
rhythm prediction layer to predict the masked melody m′ and rhythm r′.

Semi Cross AttentionM = so f tmax

(
qM·

(
so f tmax

(
qR))kMT

√
dk

)
vM

and

Semi Cross AttentionR = so f tmax

(
qR·
(
so f tmax

(
qM))kRT

√
dk

)
vR

(1)
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The pre-training strategy of this paper refers to the MLM proposed by BERT, which
follows that 15% of the tokens in the sequence are randomly masked: (1) 80% of the selected
tokens are replaced by MASK; (2) 10% are replaced by randomly selected tokens; (3) the
remaining 10% remain unchanged. Furthermore, to enhance the performance of the pre-
training, this paper refers to BERT-like models and other related studies, drops the next
sentence prediction pre-training task, and uses dynamic masking [27].
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3.3. Fine-Tuning of Generation Tasks

To address the diverse generation tasks, the MRBERT is fine-tuned with three down-
stream tasks, namely autoregressive, conditional, and Seq2Seq generation. Furthermore,
after fine-tuning for each task, joint generation can be achieved by executing the three
generation methods simultaneously.

3.3.1. Autoregressive Generation Task

To accomplish the autoregressive generation task, its generation pattern should be
known, which can be summarized as a unidirectional generation similar to a Markov
chain [28] P(ti|t1, t2, t3, . . . , ti−1), where the probability of the token ti depends on t1 to
ti−1. Autoregressive generation reveals that the tokens are predicted in order from left
to right, and the current token is predicted based on the previous tokens. First, <BOS>
(the beginning of the sequence, which is a special token in vocabulary) is passed into the
MRBERT. Next, the output layers, which are a pair of fully connected layers, predict the
melody and rhythm based on the hidden state from the MRBERT. Finally, the predicted
melody and rhythm are used to calculate the cross-entropy loss for backpropagation. When
backpropagation ends, the input token sequences are incremented by one time step, and
the model predicts the melody and rhythm of the next time step until <EOS> (the end of
the sequence, a special token corresponding to <BOS>) is generated. The ground truth
label data are easily obtained by shifting the input sequences to the right by one time
step. The pre-trained model and output layer continuously shorten the gap between the
prediction and the label data through fine-tuning. After fine-tuning, whenever the melody
and rhythm are generated, generations are added to the end of the sequence to form a new
input, as displayed in Figure 3.
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3.3.2. Conditional Generation Task

Unlike in autoregressive generation, in conditional generation, not only previous
tokens but also future tokens are considered when predicting unknown tokens. The
model should consider the bidirectional contextual information of the unknown tokens.
To realize this task, a generation pattern such as a denoising autoencoder [29] is used,
P
(
tj
∣∣t1, t2, . . . , tj−1, tj+1, . . . , ti

)
, where the unknown token tj should be predicted based

on the known tokens. Fine-tuning for conditional generation is highly similar to pre-
training. However, since multiple tokens are masked, when predicting one of the tokens,
it is assumed to be independent of the other masked tokens. To address this problem,
shorter sequences are used and only a pair of melody and rhythm tokens is masked in
fine-tuning. The cross-entropy loss is calculated by the predictions (melody or rhythm) and
ground truth labels, which are then used for fine-tuning. After fine-tuning, the MRBERT
and the output layer of the conditional generation fill in the missing parts according to
the contextual information obtained from the given melody and rhythm as displayed in
Figure 4.
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3.3.3. Seq2Seq Generation Task

When the melody and rhythm are created, chords should be added to make it sound less
monotonous. This generation pattern can be summarized as P

(
t1, t2, . . . , ti

∣∣ t′1, t′2, . . . , t′i
)
,

where t′ represents the given tokens, and t represents the tokens that should be predicted.
The probability of t for the position 1 to i is based on the given t′ of 1 to i. In fine-tuning,
the melody and rhythm sequences are input into the MRBERT, and the chords of the
corresponding position are predicted by the output layer of the Seq2Seq generation. The
cross-entropy loss calculated from the predicted chords and ground truth label data is
used for fine-tuning. After fine-tuning, the MRBERT can accept the melody and rhythm,
and subsequently generate chords through the output layer of the Seq2Seq generation, as
displayed in Figure 5. The continuous output of the same chord symbol indicates that the
same chord is continuing until a different symbol appears.
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3.3.4. Joint Generation

Users can use the MRBERT with three generation tasks interactively, as displayed
in Figure 6. A simulated use case reveals how the three generation approaches operate
simultaneously. First, the melody and rhythm can be generated under the autoregressive
generation task. Next, the user can adjust the tokens in the generated melody and rhythm
through conditional generation. Finally, the chords are matched to the generated melody
and rhythm through the Seq2Seq generation task.
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Among the predictions provided under the aforementioned three tasks, in addition
to the prediction with the highest probability, other candidates and their corresponding
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probabilities are also given because, in music, a fixed answer rarely exists. Although the
high-probability prediction is the most reasonable for analyzing after the model has learned
the music corpus, it may not be the most appropriate. Users can choose the candidate they
think is the most suitable.

4. Experiments

The MRBERT was first trained to convergence through the pre-training task MLM.
Next, ablation experiments were conducted on three generation tasks based on the pre-
trained MRBERT. BERT, which is a traditional language pre-trained model, was used as the
baseline for the ablation experiments.

4.1. Dataset

The EWLD (Enhanced Wikifonia Leadsheet Dataset) is a dataset of music leadsheets
containing various metadata about composers, works, lyrics, and features. It is designed
specifically for musicological and research purposes. OpenEWLD [26] is a dataset extracted
from EWLD, containing only public domain leadsheets, which is used as the dataset for
training in this paper. As shown in Figure 1, each leadsheet contains the melody, rhythm,
and chords required for training. A total of 502 leadsheets from different composers are
included in OpenEWLD, and 90% of these were selected for training, with the remaining
10% used for evaluation.

4.2. Experimental Environment

The ablation experiment includes w/o cross-attn. (BERT + separate embedding), which
used separate embedding and original self-attention instead of semi-cross attention; w/o
separate embed. (BERT), that is, the melody and rhythm shared a common embedding layer
and only used self-attention (w/o means “without”). Furthermore, experimental results
on RNNs (and BiRNNs) without any pre-training techniques were also listed to detail the
effect of pre-training. HITS@k [21] (k = 1, 3, 5, and 10), which can calculate the proportion
of the correct answer included in the k candidates, was used as the evaluation metrics.
HITS@k was calculated as shown in formula (2), where n represents the number of samples;
I(·) is an indicator function that returns 1 if the rank of the correct answer is less than k,
and 0 otherwise.

HITS@k =
1
n ∑n

i=1 I(ranki ≤ k) (2)

Table 1 presents the hyperparameters of the MRBERT (with ablation model) in pre-
training and fine-tuning. During pre-training, most of the hyperparameters were set to the
same values as those in RoBERTa-base [27], with slight differences in the Number of Layers,
Learning Rate Decay, Batch Size, Max Steps, and Warmup Steps. The Number of Layers in the
MRBERT was set to 6×2 because it has two sets of transformer blocks corresponding to
the melody and rhythm separately, while ensuring that the number of parameters in the
model is on the same level as in the ablation experiments. In terms of the Learning Rate
Decay, power was used rather than linear, that is to make the change in the learning rate
smoother and more conducive to convergence. While the settings of the Batch Size, Max
Steps, and Warmup Steps were adjusted according to the music corpus used.
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Table 1. Hyperparameters for pre-training and fine-tuning of MRBERT (with ablation model).

Parameters MRBERT w/o Cross-Attn. w/o Separate Embed.
1 Number of Layers 6 × 2 3 12 12

Hidden size 768 768 768
FFN inner hidden size 3072 3072 3072

Attention heads 12 12 12
Attention head size 64 64 64

Dropout 0.1 0.1 0.1
Batch Size 32 32 32

Weight Decay 0.01 0.01 0.01
Max Steps 10 k 10 k 10 k

Warmup Steps 1 k 1 k 1 k
Learning Rate Decay power power power

Adam ε 1 × 10−6 1 × 10−6 1 × 10−6

Adam β1 0.9 0.9 0.9
Adam β2 0.98 0.98 0.98

2 Melody Vocab Size 68 + 4 = 72 4 68 + 4 = 72 -
Rhythm Vocab Size 17 + 4 = 21 17 + 4 = 21 -

Melody + Rhythm Vocab Size - - 68 + 17 + 4 = 89
Chord Vocab Size 795 + 4 = 799 795 + 4 = 799 795 + 4 = 799

1 Hyperparameters for pre-training. 2 Hyperparameters for fine-tuning. 3 6 transformer layers of melody and 6
transformer layers of rhythm. 4 4 represents the number of special tokens: <BOS>, <EOS>, <UNK>, <PAD>.

In fine-tuning, the Melody Vocab Size, Rhythm Vocab Size, and Chord Vocab Size determine
the dimension of the probability distribution given by the output layer. The melody and
rhythm have 72 and 21 candidates, respectively, which contain four special tokens (<BOS>,
<EOS>, <UNK>, <PAD>). In the ablation experiment of w/o separate embed., since the melody
and rhythm share an embedding layer, the number of candidates is 89. Furthermore, the
number of chord candidates reached 799.

4.3. Results of Autoregressive Generation

When evaluating autoregressive generation, the pre-trained MRBERT with the output
layer of the autoregressive generation task predicts the next melody and rhythm at each
time step based on the previous. Figure 7 displays the generated melody and rhythm.
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Table 2 presents the generated melody and rhythm, and the probabilities of the pre-
dictions at each time step. The top prediction of the rhythm occupies a higher proportion,
whereas the probabilities of all the melody predictions are balanced. The model is more
confident in the rhythm prediction. This result is consistent with the analysis results of the
music data. Music typically has obvious rhythm patterns, whereas the progression of the
melody is complex and changeable.
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Table 2. Details of autoregressive generation.

Time
Step Pitch Probabilities of Melody Rhythm Probabilities of Rhythm

1 <BOS> <BOS>
2 Rest Rest:0.100 G4: 0.098 F4: 0.092 D4: 0.089 1/4 1/4: 0.309 1/8: 0.263 1/2: 0.146 1/16: 0.054
3 A4 A4: 0.111 G4:0.104 D4: 0.095 Rest: 0.095 1/4 1/4: 0.519 1/8: 0.205 1/2: 0.114 3/4: 0.046
4 G4 G4: 0.127 E4: 0.114 A4: 0.087 F4: 0.079 1/4 1/4: 0.501 1/8: 0.202 1/4: 0.104 3/4: 0.054
5 E4 E4: 0.132 A4: 0.098 F4: 0.081 D4: 0.072 1/8 1/8: 0.364 1/4: 0.364 1/2: 0.097 3/4: 0.070
6 G4 G4: 0.161 A4: 0.153 D4: 0.079 B4: 0.069 1/8 1/8: 0.427 1/4: 0.356 1/2: 0.073 3/8: 0.042
7 A4 A4: 0.187 E4: 0.146 B4: 0.080 D4: 0.077 1/4 1/4: 0.423 1/8: 0.398 1/2: 0.065 3/8: 0.037
8 E4 E4: 0.152 A4: 0.136 G4: 0.125 D4: 0.104 1/8 1/8: 0.465 1/4: 0.308 1/2: 0.076 3/4: 0.049
9 G4 G4: 0.157 E4: 0.147 A4: 0.118 D4: 0.112 1/8 1/8: 0.412 1/4: 0.313 1/2: 0.072 3/8: 0.061

10 A4 A4: 0.164 D4: 0.100 E4: 0.089 C5: 0.066 1/8 1/8: 0.355 1/4: 0.344 1/2: 0.110 3/8: 0.056
11 C5 C5: 0.125 G4: 0.107 D4: 0.093 F4: 0.087 1/8 1/8: 0.385 1/4: 0.370 1/2: 0.112 3/8: 0.038
12 G4 G4: 0.177 A4: 0.148 E4: 0.139 D4: 0.088 1/8 1/8: 0.569 1/4: 0.267 1/2: 0.056 3/8: 0.045
13 A4 A4: 0.163 E4: 0.113 D4: 0.106 Rest: 0.086 1/8 1/8: 0.405 1/4: 0.338 1/2: 0.071 3/8: 0.048
14 E4 E4: 0.131 A4: 0.108 F4: 0.085 D4: 0.074 1/4 1/4: 0.453 1/8: 0.319 1/2: 0.082 3/8: 0.029
15 F4 F4: 0.148 A4: 0.102 G4: 0.090 C5: 0.086 1/8 1/8: 0.497 1/4: 0.263 1/2: 0.075 3/4: 0.046
16 G4 G4: 0.212 A4: 0.142 E4: 0.116 D4: 0.088 1/8 1/8: 0.519 1/4: 0.259 1/2: 0.082 3/8: 0.031
17 A4 A4: 0.156 E4: 0.116 D4: 0.088 F4: 0.076 1/8 1/8: 0.445 1/4: 0.349 1/2: 0.056 3/8: 0.039
18 F4 F4: 0.144 E4: 0.104 G4: 0.087 C5: 0.079 1/8 1/8: 0.452 1/4: 0.286 1/2: 0.093 3/8: 0.045
19 G4 G4: 0.148 A4: 0.134 E4: 0.103 D4: 0.099 1/8 1/8: 0.489 1/4: 0.329 1/2: 0.065 3/8: 0.034
20 E4 E4: 0.139 A4: 0.120 C5: 0.093 F4: 0.077 1/8 1/8: 0.495 1/4: 0.296 1/2: 0.082 3/8: 0.041

Table 3 presents the ablation experimental results of HITS@k in the autoregressive
generation task. For the melody prediction, in HITS@k (k = 1, 3, 5, and 10), the MRBERT
achieved the average of 51.70%, 2.77% higher than w/o cross-attn., and 3.65% higher than
w/o separated embed., and 7.94% higher than the RNN. For the rhythm prediction, it achieved
the average of 81.79%, 0.37% higher than w/o cross-attn., and 0.78% higher than w/o separated
embed., and 2.56% higher than the RNN.

Table 3. Ablation experimental results of the autoregressive generation task.

Model
HITS@1 (%) HITS@3 (%) HITS@5 (%) HITS@10 (%)

Mel. Rhy. Mel. Rhy. Mel. Rhy. Mel. Rhy.

MRBERT 15.87 51.53 42.03 83.01 61.53 92.81 87.36 99.81
w/o cross-attn. 14.74 51.44 38.96 82.65 57.45 91.88 84.58 99.80

w/o separate embed. 14.27 51.16 38.14 82.17 55.90 90.91 83.88 99.79

RNN 12.51 48.24 33.60 79.28 50.28 89.67 78.63 99.72

The experimental results revealed that the MRBERT outperformed the models of the
ablation experiment in all metrics, especially in the melody prediction. Since w/o cross-attn.
utilized separate embedding, the performance is slightly higher than that of w/o separated
embed. Furthermore, pre-training considerably improved the prediction of the melody
and rhythm.

4.4. Results of Conditional Generation

In the conditional generation, the melody and rhythm dropped at random positions
were used as the evaluation data. The pre-trained MRBERT with the output layers of the
conditional generation predicted the missing part of the melody and rhythm based on
a given melody and rhythm. Figure 8 displays the predictions of the model and correct
answers for the missing parts of the head, middle, and tail of a piece of music. The leadsheet
reveals that the missing part in the middle of the bar (or measure) could be easily predicted,
but misjudgments occurred at the position at which the bar was switched.
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Table 4 presents the details of the predictions in Figure 8. The model presents strong
confidence in the rhythm prediction with a high accuracy, whereas the probabilities of the
melody candidates did not differ considerably. Although the model predicted F4 as G4,
F4 appeared as the second candidate immediately after. Furthermore, the rhythm 1/8 was
accurately predicted at this time but the probability of the first candidate did not have an
absolute advantage because, during the bar switching stage, the prediction of the rhythm
fluctuates, which is a normal phenomenon.

Table 4. Details of conditional generation.

Masked Pitch Sequence Probabilities of Pitch Masked Rhythm Sequence Probabilities of Rhythm

<BOS>, D4, E-4 1, F4, G4, . . .
E-4: 0.276; G4: 0.130; B-4: 0.118;
A-4: 0.114; F4: 0.087; Rest: 0.069 <BOS>, 1/6, 1/6, 1/6, 1/2, . . . 1/6: 0.626; 3/16: 0.098;

1/4: 0.094; 1/2: 0.048

. . . , C5, B4, A4, G4, F#4, . . . A4: 0.229; Rest: 0.164; G4: 0.160;
C5: 0.141; B4: 0.096; D5: 0.033

. . . , 1/8, 1/8, 1/8, 1/8, 1/8,
. . .

1/8: 0.785; 1/4: 0.109;
3/8: 0.040; 1/2: 0.038

. . . , G4, F4, F4, F4, <EOS> G4: 0.280; F4 2: 0.127; A4: 0.116;
E4: 0.105; D4: 0.086; F#4: 0.083

. . . , 3/8, 1/8, 1/2, 1/2,
<EOS>

1/8: 0.280; 1/2: 0.197;
1/4: 0.086; 3/8: 0.080

1 The underline “__” indicates the covered pitch or rhythm. 2 Model predicted G4, but the correct answer is F4.

Table 5 presents the ablation experimental results of HITS@k in the conditional gen-
eration task. For the melody prediction, in HITS@k (k = 1, 3, 5, and 10), the MRBERT
achieved the average of 54.86%, 1.49% higher than w/o cross-attn., and 5.22% higher than w/o
separated embed., and 9.95% higher than the BiRNN. For the rhythm prediction, it achieved
the average of 81.85%, 0.55% higher than w/o cross-attn., and 2.09% higher than w/o separated
embed., and 3.16% higher than the BiRNN.

Table 5. Ablation experimental results of the conditional generation task.

Model
HITS@1 (%) HITS@3 (%) HITS@5 (%) HITS@10 (%)

Mel. Rhy. Mel. Rhy. Mel. Rhy. Mel. Rhy.

MRBERT 18.67 51.14 45.86 82.78 65.05 93.69 89.84 99.79
w/o cross-attn. 18.07 50.93 43.94 82.02 63.35 92.55 88.10 99.69

w/o separate embed. 15.69 48.61 40.27 80.11 57.68 90.73 84.91 99.57

BiRNN 13.07 48.11 34.91 78.48 51.95 89.03 79.71 99.12

The experimental results revealed that the MRBERT outperformed the other ablation
models, and the accuracy of the rhythm prediction was higher than that of the other models.
Compared to the autoregressive generation, since information from two directions was
considered in the conditional generation, the accuracy was slightly higher.

4.5. Results of Seq2Seq Generation

In the Seq2Seq generation, the melody with the chords was used as the evaluation
data. Figure 9 shows an example of the real chords and predicted chords based on the
pre-trained MRBERT with the output layer of the Seq2Seq generation. The predicted chords
contained “F,” “BbM,” and “C7.” They were all included in the real chords.
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C5: 0.141; B4: 0.096; D5: 0.033 …, 1/8, 1/8, 1/8, 1/8, 1/8, … 
1/8: 0.785; 1/4: 0.109; 
3/8: 0.040; 1/2: 0.038 

…, G4, F4, F4, F4, <EOS> G4: 0.280; F4 2: 0.127; A4: 0.116; 
 E4: 0.105; D4: 0.086; F#4: 0.083 …, 3/8, 1/8, 1/2, 1/2, <EOS> 1/8: 0.280; 1/2: 0.197; 

1/4: 0.086; 3/8: 0.080 
1 The underline “__” indicates the covered pitch or rhythm. 2 Model predicted G4, but the correct 
answer is F4. 

Table 5 presents the ablation experimental results of HITS@k in the conditional gen-
eration task. For the melody prediction, in HITS@k (k = 1, 3, 5, and 10), the MRBERT 
achieved the average of 54.86%, 1.49% higher than w/o cross-attn., and 5.22% higher than 
w/o separated embed., and 9.95% higher than the BiRNN. For the rhythm prediction, it 
achieved the average of 81.85%, 0.55% higher than w/o cross-attn., and 2.09% higher than 
w/o separated embed., and 3.16% higher than the BiRNN. 

Table 5. Ablation experimental results of the conditional generation task. 

Model HITS@1 (%) HITS@3 (%) HITS@5 (%) HITS@10 (%) 
Mel. Rhy. Mel. Rhy. Mel. Rhy. Mel. Rhy. 

MRBERT 18.67 51.14 45.86 82.78 65.05 93.69 89.84 99.79 
w/o cross-attn. 18.07 50.93 43.94 82.02 63.35 92.55 88.10 99.69 

w/o separate embed. 15.69 48.61 40.27 80.11 57.68 90.73 84.91 99.57 
BiRNN 13.07 48.11 34.91 78.48 51.95 89.03 79.71 99.12 

The experimental results revealed that the MRBERT outperformed the other ablation 
models, and the accuracy of the rhythm prediction was higher than that of the other mod-
els. Compared to the autoregressive generation, since information from two directions 
was considered in the conditional generation, the accuracy was slightly higher. 

4.5. Results of Seq2Seq Generation 
In the Seq2Seq generation, the melody with the chords was used as the evaluation 

data. Figure 9 shows an example of the real chords and predicted chords based on the pre-
trained MRBERT with the output layer of the Seq2Seq generation. The predicted chords 
contained “F,” “BbM,” and “C7.” They were all included in the real chords. 

 

Figure 9. Leadsheets of given melody sequence with generated chords and reference chords.

Table 6 presents the ablation experimental results of HITS@k in the Seq2Seq generation
task. The MRBERT achieved the average of 49.56%, 0.61% higher than w/o cross-attn., and
1.83% higher than w/o separated embed., and 5.14% higher than the BiRNN.

Table 6. Ablation experimental results of Seq2Seq generation task.

Model HITS@1 (%) HITS@3 (%) HITS@5 (%) HITS@10 (%)

MRBERT 22.94 45.90 57.42 71.97
w/o cross-attn. 22.61 45.24 56.75 71.18

w/o separate embed. 22.15 43.46 55.12 70.17

BiRNN 19.70 39.96 51.50 66.51

The experimental results revealed that the MRBERT outperformed the other ablation
models in the Seq2Seq generation task. Separate embedding also improved the performance
even when predicting the chords rather than the melody and rhythm.

5. Discussion

This paper has conducted ablation experiments for three kinds of tasks, autoregressive
generation, conditional generation, and Seq2Seq generation, and has evaluated them at
multiple levels by setting different k in HIST@k. The following has been demonstrated
by the experimental results: First, pre-trained representation learning can improve the
performance of the three kinds of tasks. This is evident in the fact that the performance
of the RNN and BiRNN is significantly lower than that of the models using pre-training
techniques in all tasks. Second, it is effective to consider the melody and rhythm separately
in representation learning. From the ablation results, it can be seen that the model using
separate embedding performs better in HITS@k in each task than that not using separate
embedding. Third, the assumption that there are weak dependencies between the melody
and rhythm is reasonable. The performance of the MRBERT using both separate embed-
ding and semi-cross attention together is slightly higher than that using only separate
embedding.

This paper and other music representation learning studies are inspired by language
modeling in natural language processing, so this method can only be applied to symbolic
format music data. In fact, a large amount of music exists in audio format, such as mp3,
wav, etc. This requires the model to be able to handle continuous spectrograms rather
than discrete sequences. There have been some studies in computer vision that explore
the application of representation learning in image processing [30–32], which is very
enlightening for future work.

6. Conclusions

This paper proposed MRBERT, a pre-trained model for multitask music generation.
During pre-training, the MRBERT learned representations of the melody and rhythm by
dividing the embedding layers and transformer blocks into two groups and implementing
information exchanging through semi-cross attention. Compared to the original BERT,
the MRBERT simultaneously considered the strong dependencies of the melodies and
rhythms on themselves and the weak dependencies between them, which allows it to
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learn better representations than the original BERT. In the subsequent fine-tuning, the
corresponding content was generated according to the tasks. Three music generation
tasks, namely autoregressive, conditional, and Seq2Seq generation, were designed to help
users compose music, making the composition more convenient. Unlike traditional music
generation approaches designed for a single task, these three tasks included multiple
functions of melody and rhythm generation, modification, and completion, as well as
chord generation. To verify the performance of the MRBERT, ablation experiments were
conducted on each generation task. The experimental results revealed that pre-training
improves the task performance, and the MRBERT, using separate embedding and semi-
cross attention, outperformed the traditional language pre-trained model BERT in the
metric of HITS@k.

The proposed method can be utilized in practical music generation applications,
including melody and rhythm generation, modification, completion, and chord matching,
such as web-based music composers. However, to generate high-quality music, a music
corpus composed of leadsheets is used as the training data. These leadsheets must clearly
label the melodies, rhythms, and corresponding chords. The problem is that it is difficult
to collect this type of data, which limits the expansion of the data volume. In the future,
although the application of pre-training techniques in music will continue to be explored, it
is equally important to extend the generation tasks to unlabeled music symbolic data and
audio data.
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