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Abstract: The interdependency between interest rates, investment demands and inflation rates in a
given economy has a continuous dynamics. We propose a four-dimensional model which describes
these interactions by imposing a control law on the interest rate. By a qualitative analysis based on
tools from dynamical systems theory, we obtain in the new model that the three economic indicators
can be stabilized to three equilibrium states.
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1. Introduction

Many economic and financial phenomena are modeled by dynamical systems based
on differential or difference Equations [1–5]. Financial exhibition can be seen as an elective,
flexible and active inquiry field that can be used to modify the functions of any investigation
method, strategy or inquiry center. According to [6], financial demonstration may be
thought as a multi-discipline research strategy that encourages the consideration of a variety
of socio-economic-political concerns which can have a negative impact on society anywhere
and at any time. However, it shall be asserted that financial demonstration has become
an essential technical-theoretical explanatory instrument for future academics, financial
experts, strategy builders and transnational educators. The importance of “stabilizing an
unsteady economy” through adequate macroeconomic stabilization measures implemented
by government and central bank is highlighted. It is vital to understand how business
emergencies arise and how they can be managed in order to be proficient in these tactics. As
a result, studying dynamic nonlinear macroeconomic models could provide new insights
in this area.

Various models and methods for examining economic indicators of an economy can
be found in the literature. Modeling principles in economic environments is presented
in [7]. A book dealing with economic models based on ordinary and partially differential
equations is [8], where the following three topics of financial engineering are covered:
control and stabilization in financial models, state estimation and forecasting and validation
by statistical methods of decision-making tools. A macroeconomic model applied to three
national economies is presented in [9], where approach is based on three main tools: the
state-space modeling from control theory, fractional calculus and orthogonal distance fitting
method. A model for studying the perspective of annual flow of inheritance (in level or as
a share of national income) in a two-sector economy with one pure consumption good and
one capital good was recently presented in [10]. Using tools from dynamical systems theory,
two endogenous behaviors, which can operate independently or together, are obtained. It
is shown that theoretical results provided by the model are consistent with some empirical
data. In a recent paper [11], a deep learning method for matching the production of wind
energy with consumers’ needs is presented. A neural ordinary differential equation is
used to model the wind speed continuously. A mathematical model based on differential
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equations for studying epidemic and economic consequences of COVID-19 is presented
in [12]. The model deals mainly with interactions between the disease transmission, the
pandemic management, and the economic growth. A macroeconomic development model,
known as the Grossman–Helpman model of endogenous product cycles, is presented
in [13], where the stabilization problem is studied by a method based on optimal control.

A three-dimensional (3D) model to study the interactions of three macroeconomic
indicators in a given economy is presented in [14]. This model is based on three ordinary
differential equations and was designed to describe the relationships between three financial
instruments: the interest rate x(t), the investment demand y(t) and the inflation rate z(t).
By studying the local behavior of the model around one of its equilibrium points, conditions
to stabilize the economy around this steady state have been obtained in [14]. The finance
system is an essential component of our economy that consist of interactions between the
institutional units and markets, generally in a complex manner for the purpose of economic
growth in investment and the demand of commercials. When an inflation occurs and a
chaotic phenomenon appears in the finance system, the interest rate must be adjusted and
controlled, regarding our model, it is possible by introducing a control function. The control
of finance system goes to a quick and effective revival of the economy. This method is used
when an economic crisis occurs. In order to find more economically relevant steady states
to which the 3D model could be stabilized, we apply a control function to the model and
study the resulting four-dimensional (4D) system. In addition, we consider in this work
that x(t) is the real interest rate, which is defined as the difference between the nominal
interest rate and the inflation rate, thus, x(t) may take positive or negative values.

A generalization to fractional order version of the 3D model is reported in [15], while
in [16] the generalized model is studied in a new framework with delay. Moreover, Ref. [16]
investigates by numerical simulations the effect of time delay to chaos in the model, while
methods to suppress chaos in the model were presented in [17]. Fractional-order dynamical
models and their bifurcations [18–23] are promising tools for studying economic models.

The paper is organized as follows: after the introduction, Section 2 describes the model
to be studied and presents a local analysis of its behavior, where equilibrium points are
characterized in terms of their type and stability properties. The occurrence of transcritical
and pitchfork bifurcations when the system’s parameters vary is particularly pointed out.
Section 3 provides bifurcation diagrams for several combinations of parameters, revealing
the complex behavior of the system.

2. Local Analysis of the Model

The 3D system studied in [14] is given by

ẋ = z + x(y− a), ẏ = −x2 − by + 1, ż = −x− cz, (1)

where ẋ = dx
dt denotes the usual derivative with respect to time. The system has been

studied in the first octant given by x ≥ 0, y ≥ 0 and z ≥ 0, where x = x(t) is the real
interest rate, y = y(t) the investment demand, z = z(t) the inflation rate, a ∈ R the amount
(of money) saved, b ≥ 0 the cost per investment, c > 0 the elasticity of the demand on the
commercial market.

We propose in this work to apply a feedback control function u(t) to the first equation
of (1) in the form

ẋ(t) = z(t) + x(t)(y(t)− a)− u(t), (2)

where u(t) = u(0)e
∫ t

0 (m−dx(t))dt, with m, d ∈ R and d 6= 0. Then, u satisfies the equation
u̇ = u(m− dx), which, together with (2), lead to a new four-dimensional (4D) system,
given by

Ẋ = F(X, µ), (3)

where X =
(

x y z u
)T , F(X, µ) =

(
f1 f2 f3 f4

)T , respectively,
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f1 = z + x(y− a)− u, f2 = −x2 − by + 1, f3 = −x− cz and f4 = u(m− dx).

The parameter vector is µ = (a, b, c, d, m); T stands for the transpose here.
Therefore, the four-dimensional system of differential equations to be studied is

ẋ = z + x(y− a)− u
ẏ = −x2 − by + 1
ż = −x− cz
u̇ = u(m− dx)

.

The model (3) presents economic relevance whenever its state variables lie in the set

Σ = { (x, y, z, u)|x ∈ R, y ≥ 0, z ≥ 0, u ∈ R}.

The new differential equation in u̇(t) leads in general to a different behavior of all
state variables in the 4D model compared to the 3D model. In what follows, a qualitative
analysis of the new model is investigated by well-known tools from the dynamical systems
theory, providing several bifurcation diagrams which describe the local dynamics of the
model around its equilibrium points.

The control introduced in this work by (2) is far from being unique. More other
different control laws can be proposed. They can be designed as equations of type (2) or
other types of constraints applied to one or more of the basis equations of the model. Their
final role is to determine different behaviors of the transformed 3D model, which have
economic relevance and are desirable in an economy.

Remark 1. The hyperplane u = 0 is invariant with respect to the flow of (3). The model (3) with
u = 0 and x(t) ≥ 0 was studied in [14].

Our next step is to determine the equilibrium points (x∗, y∗, z∗, u∗) of system (3),
which are the solutions of the algebraic system

z + x(y− a)− u = 0
−x2 − by + 1 = 0
−x− cz = 0
u(m− dx) = 0

.

The system (3) has four isolated equilibrium points: P1 =
(

0, 1
b , 0, 0

)
for all a, m ∈ R,

b > 0, c > 0 and d 6= 0, the pair P2 =
(√

α, ac+1
c ,− 1

c
√

α, 0
)

and P3 =
(
−
√

α, ac+1
c , 1

c
√

α, 0
)

for all a, m ∈ R, b ≥ 0, c > 0, d 6= 0 and α = 1
c (c− b− abc) ≥ 0, respectively, P4 =(

x4, 1−x2
4

b ,− x4
c , x4

c−b−cx2
4−abc

bc

)
, where x4 = m

d , for all a, m ∈ R, b > 0, c > 0 and d 6= 0.

Remark 2. Since x(t) may be positive or negative in (3), three different equilibrium points
(P1, P3 and P4) with economic relevance arise in the 4D model (3), while in the 3D model (1)
only one equilibrium presented economic relevance and was studied in [14]. Notice that P4 coincides
with P1 if m = 0, respectively, P2 and P3 collide to P1 on α = 0 and b > 0.

In addition, the system has two more non-isolated equilibria for b = 0, that is,
Qy =

(
1, y,− 1

c , y− a− 1
c

)
if m = d 6= 0, respectively, Sy =

(
−1, y, 1

c ,−y + a + 1
c

)
if

m = −d 6= 0.
If P is a saddle equilibrium point, denote by (ns, nu) the dimensions of its stable and

unstable manifolds. For b > 0, denote by β1 = 1
2b (1− ab− bc).
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Theorem 1. Assume m > 0. Then:

(a) if α > 0, the equilibrium point P1 is a saddle with (ns, nu) = (2, 2);
(b) if α < 0 and β1 < 0, the equilibrium point P1 is a saddle with (ns, nu) = (3, 1);
(c) if α < 0 and β1 > 0, the equilibrium point P1 is a saddle with (ns, nu) = (1, 3).

The next result gives us a characterization of the nature of the equilibrium point P1 for
the case when the parameter m involved in the differential equation of system (3) describing
the control function u is negative. Moreover, the dimensions of the stable and unstable
manifolds are established, respectively.

Theorem 2. Assume m < 0. Then,

(a) P1 is a saddle with (ns, nu) = (3, 1) if α > 0, respectively, (ns, nu) = (2, 2) if α < 0 and
β1 > 0;

(b) P1 is an attractor whenever α < 0 and β1 < 0;
(c) if 0 < c < 1, a Hopf bifurcation occurs at P1 on (H) : 1− ab− bc = 0.

Proof. The eigenvalues associated with the equilibrium point P1 are −b, m and λ±p1
=

β1 ±
√

∆1, where β1 = 1
2b (1− ab− bc) and ∆1 = (1−ab+bc)2

4b2 − 1. Since λ+
p1

λ−p1
= − c−b−abc

b
and λ+

p1
+ λ−p1

= 1−ab−bc
b , the proofs of the above theorems follow (except the point c) of

the last theorem.
For the case (c), assume β1 is the bifurcation parameter. A necessary condition to have

Hopf bifurcation at P1 is ∆1 < 0, which is equivalent to −(1 + c) < β1 < 1− c. It follows
that β1 can cross 0 from negative to positive values if and only if 0 < c < 1. At β1 = 0 the

obtained eigenvalues ±i
√

1− c2 are purely complex. Since
∂
(

Re
(

λ±p1

))
∂β1

∣∣∣∣∣
β1=0

= 1 if ∆1 < 0,

a Hopf bifurcation occurs on H. The bifurcation is non-degenerate if the first Lyapunov
coefficient l1(0) is nonzero, in which case a limit cycle (stable or unstable) arises around
the equilibrium P1 when β1 crosses 0. If l1(0) = 0, the bifurcation becomes degenerate and
more limit cycles may arise around P1 when β1 crosses 0.

In the following we study how the equilibrium point P4 bifurcates from the equilibrium
point P1 when the parameter m crosses 0, respectively, how equilibrium points P2 and P3
are born from P1 when parameter α increases from 0. We will show that the equilibrium
points bifurcate from P1 through transcritical, respectively, pitchfork bifurcations.

Theorem 3. Assume b > 0. The system undergoes a transcritical bifurcation at m = 0 if α 6= 0
and β1 6= 0, respectively, a pitchfork bifurcation at α = 0 if m 6= 0 and c 6= ±1.

Proof. If m = 0, α 6= 0 and β1 6= 0, the eigenvalues of P1 are −b, 0 and λ±p1
, with

Re
(

λ±p1

)
6= 0; if λ±p1

are real, this follows from λ+
p1

λ−p1
= − αc

b 6= 0. To prove the trans-
critical bifurcation, we will use Sotomayor’s theorem [23]. Denote by µ0 = (a, b, c, d, 0).
The Jacobian matrix J0 = DF(P1, µ0) of the vector field F, expressed at P1 and µ = µ0, has
an eigenvalue λ = 0 with a corresponding eigenvector v =

(
−bc 0 b −cα

)T . The
value λ = 0 is also an eigenvalue for the transpose matrix JT

0 , which has a corresponding

eigenvector w =
(

0 0 0 1
)T ; T stands for the transpose here.

It is clear that wT · Fm(P1, µ0) = 0 and wT · [DFm(P1, µ0) · v] = −cα 6= 0, where
Fm = ∂F

∂m =
(

0 0 0 u
)T ; DFm is the Jacobian matrix of the vector field Fm. It remains

to determine D2F(P1, µ0)(v, v), where, by definition D2F =
(

d2 f1 d2 f2 d2 f3 d2 f4
)T .

For a real-valued function f : V ⊂ R4 → R, x 7→ f (x), x = (x1, x2, x3, x4), V open, and a

vector v = (v1, v2, v3, v4), d2 f (v, v) =
4
∑

i,j=1

∂2 f
∂xixj

vivj denotes the differential of second order



Mathematics 2023, 11, 797 5 of 15

applied to the pair (v, v). Taking into account the expression of w, one needs to determine
only d2 f4(v, v) at (P1, µ0), which is−2dv1v4 = −2bc2dα. Finally, wT ·

[
D2F(P1, µ0)(v, v)

]
=

−2bc2dα 6= 0.
For the pitchfork bifurcation at α = 0, we observe first that Σ := {u = 0} is an

invariant manifold of the system (3). Since P2,3 ∈ Σ for all α ≥ 0, the bifurcation takes place
on Σ and can be studied by restricting the system (3) to Σ. Translating first P1 to the origin
O(0, 0, 0) by y→ y− 1

b , the system (3) restricted to Σ reads

Ẏ = G(Y, µ), (4)

where Y =
(

x y z
)T , G(Y, µ) =

(
g1 g2 g3

)T , respectively,

g1 = z + x(y− a + 1/b), g2 = −x2 − by and g3 = −x− cz.

P′2 =
(
−
√

α, ac+1
c −

1
b , 1

c
√

α
)

and P′3 =
(√

α, ac+1
c −

1
b ,− 1

c
√

α
)

, a ∈ R, b > 0, c > 0 and

α = 1
c (c− b− abc) ≥ 0, become equilibrium points of the system (4).
The stability of the equilibrium O in the system (4) has been studied in [14]. In addition

to the results from [14], we show that the points P′2 and P′3 are born from O when α crosses
0 from negative to positive values by a bifurcation of type nondegenerate pitchfork. This
bifurcation was not studied in [14].

Consider α the bifurcation parameter with m 6= 0 and c 6= ±1. P′2 and P′3 collide to O
at α = 0. The eigenvalues of O in (4) at α = 0 are 0, −b and 1

c − c, with the corresponding

eigenvector to 0 given by v =
(
−c 0 1

)T .

The system (4) is Z2−equivariant with the symmetry R(Y) =
(
−x y −z

)T . In-
deed, R(R(Y)) = Y and R ◦ G(Y, µ) = G ◦ R(Y, µ). In other words, the system (4) remains

unchanged by applying the transformation (x, y, z) R7→ (−x, y,−z). Notice that, we can
write R3 = X+ ⊕ X−, where X+ = {(0, y, 0), y ∈ R} and X− = {(x, 0, z), x, z ∈ R}, such
that R(Y) = Y if Y ∈ X+ and R(Y) = −Y if Y ∈ X−. With these notations, it follows that
v ∈ X−; when needed, we write a vector

(
x y z

)T as (x, y, z).
Thus, applying a result from [24] page 284, the system (4) undergoes a pitchfork

bifurcation at α = 0, which can be degenerate or not. To determine which is the case,
we proceed as it follows. Find first the normal form of (4). To this end, consider the
transformation Z = P−1Y, where P =

(
v1 v2 v3

)
is a column matrix containing the

eigenvectors corresponding to the eigenvalues 0, −b and 1
c − c of O at α = 0, that is, v1 =(

−c 0 1
)T , v2 =

(
0 1 0

)T and v3 =
(
−1 0 c

)T , and Z =
(

z1 z2 z3
)T .

The system (4) in the new variables z1, z2 and z3 reads

ż1 = k(z3 + cz1)z2, ż2 = −bz2 − c2z2
1 − 2cz1z3 − z2

3, ż3 = −1
k

z3 − kz1z2 −
k
c

z2z3, (5)

where k = c
c2−1 . Since the eigenvalues of O in (4) at α = 0 are 0, −b and 1

c − c (in this order),
we consider the extended system of dimension 4 formed by α̇ = 0 and the three equations
from (5). The new system has at α = 0 the eigenvalues 0, 0, −b and 1

c − c, thus, applying
the Center Manifold Theorem, there exists a two-dimensional center manifold Wα

c of class
C∞ of the form z2 = h2(z1, α) and z3 = h3(z1, α), h2, h3 ∈ C∞, which locally (in cubic terms)
can be expressed by

z2 = ∑
i+j≤3

cijzi
1αj and z3 = ∑

i+j≤3
dijzi

1αj.

Using the method of undetermined coefficients, we found c20 = −c2

b , d30 = c4

b(c2−1)2 ,

while the other coefficients are all 0. Therefore, the system (5) on the center manifold Wα
c is

of the form
ż1 = β(α)z1 + σ0z3

1 + ...
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where β(α) is a smooth function of α with β(0) = 0 and σ0 = c4

b(1−c2)
6= 0, thus, the pitchfork

bifurcation is non-degenerate. To find the function β(α), higher order terms are needed in
the expressions of h2(z1, α) and h3(z1, α).

We notice that the coefficient σ0 could be obtained without considering the extended
system, by finding the 1−dimensional center manifold Wc directly in the system (5) and

then the restriction of (5) on Wc. In this case, Wc is given locally by z2 =
3
∑

i=1
cizi

1 and

z3 =
3
∑

i=1
dizi

1. Applying the method of undetermined coefficients, one can show c2 = − c2

b

and d3 = 1
b

c4

(c2−1)2 , while the other coefficients are 0. These lead to ż1 = σ0z3
1 + ... . The

advantage of using the extended system is that β(α) may also be determined.

Remark 3. The Sotomayor’s theorem for pitchfork bifurcation gives no answer to the problem
because D3F =

(
0 0 0 0

)T .

The local behavior of the system (3) at P2,3. The characteristic polynomial at P2 and P3
with α > 0 is P(λ) =

(
λ−m± d

√
α
)
Q(λ), where

Q(λ) = λ3 + s2λ2 + s1λ + 2cα,

s2 = 1
c
(
c2 + bc− 1

)
and s1 = 1

c
(
bc2 + 2cα− b

)
; ” + ” corresponds to P2 and ”− ” to P3.

Denote by λ1, λ2 and λ3 the roots of Q(λ), respectively, λP2
4 = m− d

√
α and λP3

4 = m+ d
√

α.
Since the roots of Q(λ) satisfy λ1λ2λ3 < 0, P2,3 are saddles or attractors. Denote by
s3 = s2s1 − 2cα. By Routh–Hurwitz conditions, λ1, λ2 and λ3 have negative real parts if
and only if

s2 > 0 and s3 > 0, (6)

which are equivalent to c(b + c) > 1 and b(1− bc)(2ac + 3) + bc3(b + c) − 2c > 0. We
notice that (6) are satisfied at least for α > 0 sufficiently small and c2 > 1. The results are
summarized in the next Theorem 4. The attractors P2 and P3 with orbits converging to
them are illustrated in Figure 1.

(a) (b)

Figure 1. (a) Orbits around the attractors P2 and P3 in the system (3) projected in the xyz space.
The parameters are a = 9, b = 0.1, c = 2, m = d = −1. The starting points for P2 are (0.2, 9 +

i/2, −0.1, 0.05), while for P3 they are (−0.2, 9 + i/2, 0.1, 0.05), for i = 0, 1, 2, 3, 4. (b) Orbits around
the attractor P4 for a = b = 1, c = 10, m = 0.1 and d = −0.2.

Theorem 4. Assume α > 0. Then, P2 and P3 are attractors if (6) is satisfied and λP2
4 < 0 for P2,

respectively, λP3
4 < 0 for P3. In the other cases with λ

P2,3
4 6= 0, P2 and P3 are saddles.
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The local behavior of the system (3) at P4. The characteristic polynomial at P4 is

S(λ) = λ4 + m3λ3 + m2λ2 + m1λ + m0,

where m3 = a + b + c− 1
b +

m2

bd2 , m2 = − c
b α + m0

bc + 3b+c
bd2 m2 − 2bβ1, m1 = −c b+m

b α + 1
c m0 +

cm2 3b+m
bd2 and m0 = cm m2−d2α

d2 ; α = 1
c (c− b− abc) and β1 = 1

2b (1− ab− bc).

Remark 4. Denote by β2 = bc + bm + cm and β3 = b + c + m. Then m1 and m2 can be written
in the forms

m1 = aβ2 + N1 and m2 = aβ3 + N2, (7)

where N1 = m2 2bc+β2
bd2 + (b− c) β2

bc and N2 = m2 2b+β3
bd2 + 1

bc (b− c)m + c
b
(
b2 − 1

)
.

For c > 0 arbitrary fixed, define the following curves lying in the ba−parametric
plane: A = {(b, a), α = 0, b > 0}, H = {(b, a), β1 = 0, b > 0}, S2 = {(b, a), s2 = 0, b > 0},
S3 = {(b, a), s3 = 0, b > 0}, L1 =

{
(b, a), λP2

4 = 0, b > 0
}

, L2 =
{
(b, a), λP3

4 = 0, b > 0
}

and Mi = {(b, a), mi = 0, b > 0}, i = 1, 2, 3. Notice that b corresponds to the x-axis, while a
to the y-axis, and all curves are included in the region b > 0.

Theorem 5. If m0 < 0, then P4 is a saddle. Assume m0 > 0. Then,

(a) P4 is a saddle or an attractor for all d > 0 and m 6= 0.
(b) P4 is an attractor if and only if m3 > 0, k0 = m3m2 −m1 > 0 and k1 = (m3m2 −m1)m1 −

m2
3m0 > 0. In particular, if α < 0, β1 < 0, b(b + c)(a + b) > c and m > 0 sufficiently

small, P4 is an attractor, as shown in Figure 1.

Proof. It is clear that P4 is a saddle if m0 < 0, since the product of its eigenvalues is
negative.

(a) Let further be m0 > 0. Assume first m > 0, thus, m2 > αd2. It is clear that m1 > 0 if
α ≤ 0, thus,

E2 = λ1λ2(λ3 + λ4) + λ2λ3λ4 = −m1 < 0.

Let α > 0. Then, m2 > αd2 yields m1 > 2cα + 1
c m0 > 0, thus, E2 < 0.

Secondly, assume m < 0. Then m2 < αd2 and α > 0 follow from m0 > 0. For an
arbitrary fixed b > 0, denote by

(
b, al2

)
∈ L2, (b, am1) ∈ M1, (b, am2) ∈ M2 and

(b, am3) ∈ M3 four points from the corresponding curves. Then,

am1 = −N1

β2
, am2 = −N2

β3
, al2 − am1 =

2cm2

d2β2
and am2 − am1 = N3, (8)

where N3 =
(
1− c2) b

cβ3
+ 2m2 c2−bm

d2β2β3
. Notice that am3 = 1

b − c − b − m2

bd2 and al2 =

1
b −

1
c −

m2

bd2 . More cases need to be considered further.

(a1) Assume β2 ≤ 0. The curve L2 is given by

a = al2 , (9)

with b > 0 and c > 0. One can show that m0 > 0 is equivalent to a < al2 . If β2 = 0,

then m1 = 2b2c3

d2(b+c)2 > 0, thus, E2 = −m1 < 0. If β2 < 0, then, from m1 = aβ2 + N1

and a < al2 , one gets m1 > 2c
d2 m2, which leads to E2 < 0.

(a2) Assume β2 > 0 and 0 < c ≤ 1. Then β3 > 0 as well. Since m1|L2
= 2cm2

d2 6= 0
and m2|M1

= −N3β3 6= 0, it follows that L2 ∩M1 = ∅ and M2 ∩M1 = ∅; we
denoted as usual by m1|L2

= m1(b, a) for (b, a) ∈ L2. From (8), one get al2 > am1

and am2 > am1 , since N3 > 0 if 0 < c ≤ 1.
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For b > 0, denote by M+
1 = {(b, a), m1 > 0, m0 ≥ 0} and M−1 = {(b, a), m1 ≤ 0,

m0 ≥ 0}, the two regions from m0 ≥ 0 corresponding to m1 > 0, respec-
tively, m1 ≤ 0. Then E2 = −m1 < 0 on the region M+

1 . Notice that L2 ⊂ M+
1 ,

because m1|L2
= 2cm2

d2 > 0 and L2 ∩M1 = ∅.
If m1 ≤ 0, which is equivalent to a ≤ am1 , one can show

m2 ≤ −N3β3 < 0,

whenever 0 < c ≤ 1. It follows that

E3 = λ1(λ2 + λ3 + λ4) + λ2(λ3 + λ4) + λ3λ4 = m2 < 0,

on M−1 . Therefore, E2 < 0 or E3 < 0 on m0 > 0, whenever β2 > 0 and 0 < c ≤ 1.
(a3) Assume β2 > 0 and c > 1, thus, β3 > 0. Since

m1|L2
=

2cm2

d2 6= 0, m2|L2
>

b
c

(
c2 − 1

)
6= 0 and m3|L2

= b + c− 1
c
6= 0,

it follows that L2 ∩M1 = ∅, L2 ∩M2 = ∅ and L2 ∩M3 = ∅. Notice that al2 −

am2 =
bd2(c2−1)+2cm2

cd2β3
> 0.

In the region b > 0, denote by M+
2 = {(b, a), m2 ≥ 0, m0 ≥ 0} and M−2 =

{(b, a), m2 < 0, m0 ≥ 0}. Then E3 = m2 < 0 on the region M−2 . Notice that
L2 ⊂ M+

2 , because m2|L2
> b

c
(
c2 − 1

)
> 0 and L2 ∩M2 = ∅.

Assume further m2 ≥ 0. If m1 > 0, then E2 = −m1 < 0. It remains the case
m1 ≤ 0. We notice that M2 may intersect M1 in the region m0 ≥ 0, since

m2|M1
= 2m2 bm− c2

d2β2
+

b
c

(
c2 − 1

)
,

may be zero. The inequalities m2 ≥ 0 and m1 ≤ 0 yield −N2
β3
≤ a ≤ −N1

β2
, thus,

N2β2 > N1β3, which, in turns, leads to

m2

d2 <
β2b
(
c2 − 1

)
2c(c2 − bm)

. (10)

Then, −N2
β3
≤ a and (10) yield

m3 >
−bcm(b + c) + c2(c2 − 1

)
+ bc + mb

c(c2 − bm)
,

which implies m3 > 0, because bc + mb > −mc > 0 follows from β2 > 0 and
m < 0. Therefore,

E4 = λ1 + λ2 + λ3 + λ4 = −m3 < 0.

It follows that, E2 < 0 or E3 < 0 or E4 < 0 whenever m0 > 0, if c > 0, d > 0 and
m 6= 0, which, in turn, imply that at least one eigenvalue λi has Re(λi) < 0. This
confirms the proof.

(b) The result follows from Routh–Hurwitz conditions for S(λ), which are m0 > 0, m3 > 0,
m3m2 > m1 and k1 > 0. For the particular case, we write the expression k1 as a
polynomial in m,

k1(m) =
8

∑
i=1

c′im
i + αβ1(b(b + c)(a + b)− c)

2c
b
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for some coefficients c′i, thus, k1 > 0. The condition m3m2 > m1 follows from k1 > 0
and m1 > 0.

Example 1. The equilibrium point P4 does not exist in the 3D model. This happens due to the
control function u(t), defined by the two constraints in the new 4D model. When P4 is an attractor
and P4 ∈ Σ, the three state variables, namely the real interest rate x = x(t), the investment demand
y = y(t) and the inflation rate z = z(t), can be stabilized at least locally around three fixed values
m
d , d2−m2

bd2 and − m
cd , respectively, which are economically relevant if md < 0 and d2 > m2. This

scenario does not arise in the 3D model since P4 is not a steady state of the model.

3. Bifurcation Diagrams

Denote by R the region
R = {(b, a), b ≥ 0}.

The curve A has a unique branch of the form a = 1
b −

1
c lying in R, for all c > 0

arbitrary fixed, which splits the region R into two parts: α > 0 in the region from R that
contains the origin (0, 0), and α < 0 in the other region, as shown in Figures 2–5.
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Figure 2. Bifurcation diagrams of the system (3) for 0 < c < 1 and (a) 0 < m < c0d, respectively,
(b) m > c0d > 0, where c0 = c+1
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Figure 4. Bifurcation diagrams of the system (3) for m < 0, d > 0 and c > 1, (a,b). A region R1
8 where

P4 is an attractor is presented in (b).
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Figure 5. Bifurcation diagrams of the system (3) for 0 < c < 1, d > 0 and (a) −c0d < m < 0,
respectively, (b) m < −c0d < 0.

S2 is the vertical line b = 1
c − c, thus, s2 < 0 on the left of S2 and s2 > 0 on the right of

S2, for all c > 0 arbitrary fixed. If c = 1, s2 = b. If c > 1, the curve S2 lies on b < 0, thus, it
is outside the region of interest. However, the sign of s2 is important if c > 1 as well.

If c 6= 1, the curve S3 has in R two branches asymptotically to the vertical line b = 1
c

(on the left and right of the line) given by s3 = 2b 1−bc
c a +

(
c− 3

c
)
b2 +

(
3
c2 + c2

)
b− 2

c = 0.

Notice that s3 = c2−1
c 6= 0 if b = 1

c . It follows that s3 < 0 in the region from R that contains
(0, 0). The sign of s3 changes when (b, a) crosses a branch of S3, as shown in Figures 2–5.
Notice that a branch of the curve S3 may lie on α < 0, especially if c > 1, and this branch is
not taken into account (it is not depicted in Figures 3 and 4) because P2,3 do not exist on
α < 0.

If c = 1, then s3 = 2(1− b)(b + ab− 1), thus, S3 has two branches in R as well: one is
the vertical line b = 1 and the other is the curve A, as shown in Figure 3b. It is clear that
s3 < 0 in the region from R that contains (0, 0).

If 0 < c < 1, the curves A, S2 and S3 intersect at the same point I1 = (b1, a1), with
b1 = 1

c − c > 0 and a1 = 2c2−1
c−c3 . If in addition md > 0, then L1 ∩ S2 = {I2}, I2 = (b2, a2),

where b2 = b1 and a2 = a1 − m2c
d2(1−c2)

, thus, a2 < a1. If md < 0, then L2 ∩ S2 = {I2}.

Since m0 = cm m2−d2α
d2 , λP2

4 = m− d
√

α and λP3
4 = m + d

√
α, by Theorem 5, the curves

L1 : λP2
4 = 0 and L2 : λP3

4 = 0 devide the region R into two disjoint subregions (on the left
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and right of L1, and the same for L2), as shown in Figures 2–5. On one subregion P4 is a
saddle, while on the other P4 is a saddle or an attractor.

The following theorem clarifies the intersection of the bifurcation curves L1 and S3.
Since λP2

4 has constant sign on α > 0 if md < 0, only the case md > 0 is needed. We assume
further m > 0 and d > 0. The case m < 0 and d < 0 is similar.

Theorem 6. Assume m > 0 and d > 0. The following assertions are true.

(1) If 0 < c < 1 and b > 1
c , the intersection L1 ∩ S3 on α > 0 has zero points if 0 < m < dc0,

one point if m = dc0, respectively, two points if m > dc0, where c0 = c+1
c
√

2

√
1− c2.

(2) If 0 < c < 1 and 0 < b ≤ 1
c , then either s2 < 0 or s3 < 0 on α > 0.

(3) If c ≥ 1, the intersection L1 ∩ S3 has a single point on α > 0 and b > 0.

Proof. Since λP2
4 = m − d

√
α, the curve L1 is defined only on α > 0 and is given by

a = 1
b −

1
c −

m2

bd2 , with b > 0. The intersection L1 ∩ S3 satisfies s3 = 0 and λP2
4 = 0, which

lead to an equation in b of the form(
c− 1

c

)
b2 +

(
2m2

d2 +
1
c2 + c2 − 2

)
b− 2m2

cd2 = 0. (11)

(1) By w = b− 1
c , (11) reads p0w2 + p1w + p0 = 0, where p0 = c− 1

c and p1 = 2m2

d2 −
1
c2 + c2. Its roots w1,2 satisfy w1w2 = 1. Thus, w1 > 0 and w2 > 0 iff w1 + w2 > 0
and ∆ > 0 (the discriminant). Since p0 < 0, the inequalities lead to p1 > 0 and
∆ = (p1 − 2p0)(p1 + 2p0) > 0, that is, p1 > 0 and p1 + 2p0 > 0. However, p1 + 2p0 =

2
(

m2

d2 − c2
0

)
> 0, where c0 = c+1

c
√

2

√
1− c2 > 0, and m > 0, lead to m > dc0. Moreover,

p1 + 2p0 > 0 leads to 2m2

d2 > 2c2
0 > 1

c2 − c2 > 0, which, in turn, leads to p1 > 0.
Therefore, w1 > 0 and w2 > 0 iff m > dc0. In this case L1 ∩ S3 = {I3, I4}, where
Ii = (bi, ai), ai =

1
bi
− 1

c −
m2

bid2 , i = 3, 4, respectively, b3 = w1 +
1
c and b4 = w2 +

1
c . It

is clear that I3 = I4 if m = dc0. If 0 < m < dc0 and p1 > 0, then ∆ < 0, thus L1 ∩ S3 is
the empty set.

(2) If 0 < b < 1
c − c, then s2 < 0. If b = 1

c − c, then s2 = 0 and s3 = −2cα < 0 on α > 0,

while, s3 = c2−1
c < 0 if b = 1

c . Let 1
c − c < b < 1

c and α > 0. Then s2 > 0 and

s3 = 2α
bc− 1

c
− b

c
s2

(
1− c2

)
< 0.

(3) Assume c > 1. Then, the roots b5,6 of (11) satisfy b5b6 < 0, thus, b5 > 0 and b6 < 0;
notice that the discriminant of Equation (11) is positive. It follows that L1 ∩ S3 = {I5},
where I5 = (b5, a5) and a5 = 1

b5
− 1

c −
m2

b5d2 . If c = 1, then L1 ∩ S3 = {I5}, where

I5 =
(

1,−m2

d2

)
.

The theorem is now proved.

A similar result can be obtained for the intersection of the curve L2 with S3. Since
λP3

4 = m + d
√

α has constant sign on α > 0 if md > 0, only the case md < 0 is needed. We
present the result for m < 0 and d > 0, while the remaining case m > 0 and d < 0 can be
treated similarly. A proof of the next theorem can be obtained as above.

Theorem 7. Assume m < 0 and d > 0. The following assertions are true.

(1) If 0 < c < 1 and b > 1
c , the intersection L2 ∩ S3 on α > 0 has zero points if −dc0 < m < 0,

one point if m = −dc0, respectively, two points if m < −dc0 < 0.
(2) If 0 < c < 1 and 0 < b ≤ 1

c , then either s2 < 0 or s3 < 0 on α > 0.
(3) If c ≥ 1, the intersection L2 ∩ S3 has a single point on α > 0 and b > 0.
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Remark 5. For d > 0 and m ∈ R we obtain:

(1) If m > 0 and d > 0, then λP3
4 = m + d

√
α > 0 and m0 = cm λ

P2
4 λ

P3
4

d2 has the same sign as

λP2
4 on α > 0, and m0 > 0 if α ≤ 0. The curves {m0 = 0} and L1 coincide.

(2) If m < 0 and d > 0, then λP2
4 = m− d

√
α < 0 and m0 has the same sign as λP3

4 on α > 0,
and m0 < 0 if α ≤ 0. The curve {m0 = 0} coincides to L2 in this case.

Remark 6. In the following cases, we will determine the bifurcation diagrams of the system (3)
when m > 0 and d > 0, respectively, m < 0 and d > 0. One can proceed similarly in other cases.

Case 1. Assume first 0 < c < 1, m > 0 and d > 0. Notice that λP3
4 > 0, whenever P3

exists, and {m0 = 0} coincides to L1. Based on Theorem 6, two main bifurcation diagrams
arise to describe the system’s dynamics, as shown in Figure 2a,b. The bifurcation curves
in the two diagrams are illustrated in Matlab: Figure 2a uses c = 0.2, m = 1 and d = 0.5,
while Figure 2b c = 0.4, m = 2.7 and d = 1.

Case 2. Assume c > 1, m > 0 and d > 0. Then S2 lies on b < 0 and s2 > 0 on b > 0.
By Theorem 6, L1 ∩ S3 = {I5} in the region α > 0 from R. One can show A ∩ S3 = ∅ on
b > 0 and β1 < 0 in the region R where α < 0. As in case 1, λP3

4 > 0 on α > 0 and {m0 = 0}
coincides to L1. In particular, if c = 1, then s2 = b > 0 and s3 = 2(b− 1)α. Two main
bifurcation diagrams emerge in this case, which are depicted in Figure 3a,b. The curves are
illustrated for c = 2, m = 1 and d = 0.6 in Figure 3a, respectively, c = 1, m = 1 and d = 0.6
in Figure 3b.

Case 3. Assume c > 1, m < 0 and d > 0. The curve L2 is given by the same
expression as L1. The curve {m0 = 0} coincides to L2 in this case; λP2

4 < 0 whenever P2

exists. Furthermore, sign(m0) = sign
(

λP3
4

)
on α > 0 and m0 < 0 if α ≤ 0, respectively,

β1 < 0 in the region R where α < 0. Using Theorem 7, a bifurcation diagram is presented in
Figure 4a. Figure 4b presents a region R1

8 where P4 is an attractor, in a typical case m = −1,
d = 0.5 and c = 2. The strip R1

8 is quite large, it extends to infinity along the horizontal axis
when b > 0 is large. We denoted by K1 the curve {(b, a), k1 = 0}.

Case 4. Assume 0 < c < 1, m < 0 and d > 0, thus, λP2
4 < 0 if α > 0. By Theorem 7, two

main bifurcation diagrams arise to describe the system’s dynamics, as shown in Figure 5a,b.
Figure 5a is illustrated for c = 0.2, m = −1 and d = 0.5, while Figure 5b for c = 0.2, m = −3
and d = 0.5.

Remark 7. The type of the equilibria P1, P2,3 and P4 as they appear in different regions from the
above bifurcation diagrams presented in Figures 2–5, are described in Table 1.

Table 1. The type of the equilibria P1, P2, P3 and P4 on different regions from bifurcation diagrams;
s stands for saddle, while a for attractor.

R1 R2 R3 R4 R5 R6 R7 R8 R9

P1 s s s s s a s s s
P2 − s s a a − a s −
P3 − s s s s − a a −
P4 a, s a, s s s a, s s s a, s s

The different behavior of P1 as an attractor on the region R6 is presented in Figure 6,
while the two possible states of P4 as an attractor or saddle are depicted in Figure 7.
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Figure 6. The time series of the four variables around the attractor P1 in the system (3). The parameters
are a = 1, b = 1, c = 2, m = −1 and d = 1. The starting point of these series is (1, 1, 1, 1).
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Figure 7. (Left). The time series of the four variables when P4 is an attractor within the region
R8. The parameters are a = −2, b = 5, c = 2, m = −1, d = 0.5 and P4(−2, −0.6, 1, −1.8). The
starting point of these series is (−1, −0.1, −0.5, −0.8). One may notice that the four series converge
correspondingly to the four coordinates of P4 as t increases, that is, x(t)→ −2, y(t)→ −0.6, z(t)→ 1,
and u(t)→ −1.8. (Right). The time series of the four variables when P4 is a saddle within the region
R8. The parameters are a = −3, b = 10, c = 2, m = −1, d = 0.5 and P4(−2, −0.3, 1, −4.4). The
starting point of these series is (−2.1, −0.3, 1, −4.4). One may notice that the four series do not
converge correspondingly to the four coordinates of P4 as t increases.

4. Conclusions

An economic model based on differential equations with four variables, the real
interest rate, the investment demand, the inflation rate and a control function of the system,
has been investigated. The model builds upon a three-dimensional model studied earlier
in [14], to which a new variable and equation related to the real interest rate are added.
A qualitative analysis has been performed and more bifurcation diagrams were obtained
for understanding its local behavior, which undergoes three bifurcations: transcritical,
pitchfork and Hopf. Bifurcation diagrams are used to illustrate how the dynamics of the
4D system alters with the increasing value of the parameters m and c. The occurrence of
Hopf bifurcation means that the system’s equilibrium points can evolve into predictable
economic cycle.

The system (3) proposed in this work has three equilibrium points with economic
relevance, P1, P3 and P4, while the initial system studied in [14], which corresponds to u = 0
in (3), has only one steady state with economic relevance, the point P1. Thus, the control
function u proposed in this work increases the relevance of the initial model. This could lead
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to a better understanding of economical prediction for more complex financial phenomena
and also explain complex and dynamic behaviour of various economic systems. When the
control function is null, we notice that the saving amount variable a is inversely proportional
with the fluctuation of the system, meaning the smaller the saving amount is, the bigger the
fluctuation of the system is, so the saving amount has to keep a balance because a too small
saving amount means chaotic phenomenon and a too large saving amount means a slow
economy. When the control function is different from zero, the Routh-Hurwitz criterion is
used to study the properties of the asymptotic stability of the economic model with control.
This control function can improve the economic vigor and become a necessary condition,
in order to make the economy develop well. Numerical simulations are provided using
Matlab in order to illustrate the effectiveness of the proposed approaches.
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