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Abstract: This paper deals with the problem of diagnosing oncological diseases based on blood
protein markers. The goal of the study is to develop a novel approach in decision-making on
diagnosing oncological diseases based on blood protein markers by generating datasets that include
various combinations of features: both known features corresponding to blood protein markers and
new features generated with the help of mathematical tools, particularly with the involvement of
the non-linear dimensionality reduction algorithm UMAP, formulas for various entropies and fractal
dimensions. These datasets were used to develop a group of multiclass kNN and SVM classifiers
using oversampling algorithms to solve the problem of class imbalance in the dataset, which is
typical for medical diagnostics problems. The results of the experimental studies confirmed the
feasibility of using the UMAP algorithm and approximation entropy, as well as Katz and Higuchi
fractal dimensions to generate new features based on blood protein markers. Various combinations of
these features can be used to expand the set of features from the original dataset in order to improve
the quality of the received classification solutions for diagnosing oncological diseases. The best kNN
and SVM classifiers were developed based on the original dataset augmented respectively with a
feature based on the approximation entropy and features based on the UMAP algorithm and the
approximation entropy. At the same time, the average values of the metric MacroF1−score used to
assess the quality of classifiers during cross-validation increased by 16.138% and 4.219%, respectively,
compared to the average values of this metric in the case when the original dataset was used in the
development of classifiers of the same name.

Keywords: decision-making; oncological disease; kNN classifier; SVM classifier; dataset; features;
UMAP algorithm; entropy; fractal dimension
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1. Introduction

Recently, elements of digital transformation have become increasingly visible and in
demand in various areas of human activity, including healthcare.

The digital transformation of healthcare is a continuous process aimed at completely
restructuring the mechanisms of work of industry authorities, medical organizations and
their interaction with patients. The introduction of advanced digital technologies ensures
high standards of medical care and the transition to the “4P medicine” model (preventive,
personalized, participatory, predictive medicine) [1].

The introduction of digital technologies in healthcare should ensure a decrease in
the level of morbidity and mortality of the population and an increase in life expectancy,
including active life expectancy. The use of health monitoring technologies should allow not
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only for the detection of pathologies at an early stage, but also to prevent the development
of diseases.

The development of technologies for analyzing large volumes of medical data, in-
cluding the use of artificial intelligence, will make it possible to obtain new knowledge in
the field of medicine and biology, as well as to develop new methods for diagnosing and
treating diseases.

The transformation of healthcare under the influence of digital technologies is taking
place everywhere, including such areas as:

• Transition from standardized clinical protocols to a personalized approach to pa-
tient care due to the accumulation of a large amount of medical data, as well as the
widespread use of individual biomonitoring devices;

• Disease prevention through early diagnosis and regular health monitoring using
wearable devices;

• Patient focus and active involvement of the patient in the treatment process.

At the same time, the demand for applied and computational mathematics’ tools for
digital environments becomes obvious in the case of solving problems of disease prevention
through early diagnosis, including cancer [2–5].

Oncological diseases (ODs) are among the most dangerous ones because they can
lead to serious consequences for patients, especially in the case of late diagnosis. Such
consequences include significant pain and a difficult psychological state. The treatment of
oncological diseases is usually lengthy and involves significant financial costs both for the
patients and their families and for the state.

An OD is an immune disease that first causes the division and growth of abnormal
cells in a single organ of the patient, and then can quickly spread to the entire body.

Obviously, early diagnosis of an OD should allow the oncologist to choose an adequate
and effective treatment regimen for the patient in a timely manner. However, the task of
early diagnosis of an OD is very difficult: unfortunately, the typical symptoms of ODs
appear only in the later stages when the disease is difficult to treat, so the treatment may
ultimately turn out to be unsuccessful.

One of the approaches to the early diagnosis of an OD is based on the analysis of
test results, in particular, gene tests (GTs) [4,6] and protein tests (PTs) [4,7,8]. GTs reveal
hereditary information, they are static, difficult to interpret, and are usually used to detect
congenital genetic diseases [4]. Such tests do not detect diseases that occur when there are
problems with the immune system and metabolism. In addition, GTs are expensive. PTs,
unlike GTs, are dynamic and they allow (if carried out in a timely manner) for identifying
the occurrence of an OD and track its development [4]. Additionally, PTs are non-invasive,
painless for patients and affordable.

The diagnosis of ODs based on blood protein markers has been increasingly used
in the last few years [4,9,10]. Presumably, PT-based diagnostic technologies will allow
for predicting the risks of developing oncological diseases 1–3 years in advance, which
will make it possible to take advanced preventive measures against the emergence and
development of an OD.

There are many different types of protein markers in the blood, and the values of
the markers are different for different types of ODs [4]. It is obvious that the use of only
one type of marker or some limited group of markers reduces the accuracy of diagnosing
ODs, even if this marker (or group of markers) is recognized as the standard for diagnosis.
One of the reasons leading to the refusal to use the full range of PTs results is the limited
ability of specialists to interpret the data. It is easier to operate with information about the
values of 1–2 protein markers than with data on the values of several dozen of the same
markers (especially if specialists use a unified table with a priori given limits of the norm
and abnormality, followed by a decision based on their knowledge and intuition). It can
be reasonably assumed that the use of the full range of PTs results should improve the
accuracy of diagnosing various ODs.
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It is obvious that the involvement of modern technologies of data mining and machine
learning will make it possible to reveal the knowledge about the relationship between the
values of blood protein markers in various types of ODs hidden in the PT results.

Currently, data mining and machine learning technologies are actively used to solve
various problems of medical diagnostics, including solving the problems of diagnosing
ODs [10–19]. In this case, classifiers are developed based on appropriate datasets. The
k-Nearest Neighbors (kNN) algorithm [10], SVM (Support Vector Machine) algorithm [11],
Decision Tree (DT) algorithm [12], Random Forest (RF) algorithm [15], their hybrids and
deep learning algorithms [17–19] are most broadly used in creating such classifiers.

The main problem in the development of tools for solving problems of medical di-
agnostics is the imbalance of classes in the dataset [10,20]: usually, normal data patterns
characterizing cases when the disease is absent constitute the majority class, while data
patterns of interest and characterizing cases when certain diseases are present constitute the
corresponding minority classes. In this case, for example, instead of developing a binary
classifier based on an imbalanced dataset, it becomes necessary to develop a multiclass
classifier based on an imbalanced dataset, which is a non-trivial task, since it is necessary to
teach the classifier to separate data from different classes that are imbalanced. Obviously, a
binary classifier can be obtained even in the case of class imbalance (for example, in a ratio
of 10:1), and the accuracy of it will be 90% (which is not bad in the case of balanced classes),
but such accuracy should be considered bad if the classifier made errors on all objects from
the minority class.

Data scientists have proposed various approaches to solve the problem of class imbalance:

• Approaches using various class balancing algorithms that implement oversampling
technologies (for example, SMOTE algorithm (Synthetic Minority Oversampling Tech-
nique) [21–23], ADASYN algorithm (Adaptive Synthetic Sampling Approach) [24]),
undersampling technologies (for example, Tomek Links algorithm) [23,25] and their
combinations;

• Approaches that apply algorithms that account for the sensitivity to the cost of wrong
decisions (cost-sensitive algorithms) [10];

• Approaches that implement the transfer of data into a space of a new dimension (with
a decrease [26–32] or increase [11,33,34] in dimension), in which data classes will be
separated from each other better than in the original space;

• Approaches that implement the so-called one-class classification [34–37].

It should be noted that the transition to the space of a new dimension can be imple-
mented in various ways, for example, using:

• Dimension reduction algorithms (linear [26,27] and non-linear [28–32]) that allow one
to move to a space of lower dimension;

• Kernel functions (as it is done in the SVM-algorithm, which allows the transition to a
space of higher dimension) [11,33,34,36];

• Algorithms for engineering (generation) of new features for data patterns, which make
it possible to move to a space of higher dimension [38].

All of these approaches have their advantages and disadvantages, and there is no
universal methodology for choosing the approach that is appropriate to apply to the dataset
used in the development of the data classifier.

In each case, it is necessary to perform a comprehensive analysis in order to:

• Avoid loss of information during undersampling or reducing the dimension of the
data space;

• Exclude the introduction of false or redundant information during oversampling or
increasing the dimension of the data space.

One of the obvious tools that can be used in assessing the quality of the developed
classifier is detailed analysis of various classification quality metrics on the test sample,
including metrics that allow for accounting for the specifics of the dataset, namely, its imbal-
ance (for example, it is appropriate to use metrics such as Balanced accuracy and F1−score).
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In addition, it is advisable to use cross-validation, including k-fold cross-validation, which
makes it possible to empirically evaluate the generalizing ability of the developed classifier.

A large number of papers have been devoted to the problem of analyzing medical
datasets containing information about blood protein markers and making decisions on the
diagnosis of ODs. In particular, in the pilot study [4], the task was to identify and surgically
localize eight types of resectable ODs (ovary, liver, stomach, pancreas, esophagus, colorec-
tum, lung and breast) based on a multi-analysis blood test using the CancerSEEK test [4,5]
based on a machine learning algorithm called the logistic regression algorithm. The dataset
used in the study is publicly available and located in the Catalog of Somatic Mutations
in Cancer (COSMIC) repository [39] as NIHMS982921-supplement-Tables_S1_to_S11.xlsx,
and it is constantly updated with new data. The original dataset is available in the Sup-
plementary Material for the paper as aar3247_cohen_sm_tables-s1-s11.xlsx [4]. The eight
types of ODs considered in the dataset were chosen by the authors because they are the
most common among the population of Western countries, and also because blood-based
tests are not used in clinical practice for their early detection.

The authors of the pilot study [4] proposed to assess the levels of circulating proteins
and mutations in cell-free DNA and use the obtained data in the LC (logistic classifier)-
based CancerSEEK test. The study used 1005 data patterns received from patients with
non-metastatic clinically identified ovarian, liver, stomach, pancreas, esophagus, colon,
lung or breast ODs. The CancerSEEK test was based on screening results, such as the
levels of protein biomarkers and ctDNA (Circulating tumor DNA). The authors proposed
to take into account each person’s gender, the levels of eight proteins and the presence of
mutations in 1933 different genomic positions, each of which can mutate in several ways.

It was assumed that the presence of a mutation in the analyzed gene or an increase
in the level of any of the eight proteins makes it possible to classify the patient’s pattern
as positive, i.e., a pattern with an identified OD. The authors used logarithmic ratios
to evaluate the mutations and included them in a logistic regression algorithm (and,
accordingly, in the LC), which took into account both the mutation data and the protein
biomarker levels to evaluate the results of the CancerSEEK test. At the same time, the
average values of sensitivity and specificity were determined from the results of 10 iterations
using 10-fold cross validation.

The results of the experiments in [4] showed that the average value of the Sensitivity
metric for eight types of ODs is about 70%, the highest value of the sensitivity metric is
achieved for the ovary class (98%), slightly less for the liver class (close to 98%), and the
lowest value of the sensitivity metric is achieved for the breast class (33%). In general, the
values of the Sensitivity metric ranged from 69 to 98% in the detection of five types of ODs
(esophagus, pancreas, stomach, liver and ovaries, listed in ascending order of values of
the Sensitivity metric). The value of the metric specificity was above 99%: only 7 of the 812
patterns without known cancers scored positive. At the same time, as the authors write,
there is no certainty that several false-positive patterns of patients identified in the normal
class do not actually have an undiscovered OD. However, the classification of these patterns
as false positives can be considered the most conservative approach to the classification
and interpretation of medical data.

The average sensitivity of the CancerSEEK test was 73% for stage II cancer, which is
the most common, 78% for stage III cancer, and less than 43% for stage I cancer. The highest
and the lowest sensitivity for stage I cancer (the earliest stage) was recorded for liver cancer
(100%) and esophageal cancer (20%), respectively.

A liquid biopsy involves deriving mutant DNA templates from dying cancer cells.
Later on, these templates serve as specific neoplasia markers. The authors of the pilot
study [4] found that the mutation in blood plasma was identical to the mutation found
in the primary tumor of the same person in 90% of analyzed cases diagnosed with ODs.
This correspondence between the plasma and primary tumor was evident for all eight
types of cancer and ranged from 100% for ovarian and pancreatic cancer to 82% for gastric
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cancer. One disadvantage of liquid biopsies is the inability to determine the type of cancer
in patients with positive tests, leading to clinical problems for follow-up.

The authors of the pilot study [4] point out that the vast majority of information about
the localization of ODs was obtained from protein markers, since mutations in the driver
gene are usually not tissue-specific. They propose the LC that implements the CancerSEEK
test for the presence of eight common types of ODs. During the development of the LC,
the authors used a training set that combined information about the levels of the gene
and protein biomarkers. In doing so, they were able to increase the sensitivity of the
CancerSEEK test without a significant decrease in specificity. The authors note that the
effectiveness of combining completely different agents with different mechanisms of action
is widely recognized in therapy, but not usually used in diagnostics. They also believe that
other cancer biomarkers, such as metabolites, mRNA transcripts, microRNAs or methylated
DNA sequences, can be similarly combined to increase the sensitivity and localization of a
cancer focus.

The followers of the authors of the pilot study continued to offer their own versions
of classifiers that implement the diagnosis of ODs based on datasets on values of blood
protein markers without taking gene markers into account.

For example, in [10], the authors proposed to use a cost-sensitive kNN algorithm based
on a three-class imbalanced dataset containing patterns characterized by 39 blood protein
markers and belonging to one of three classes: normal, ovary and liver. In order to include
the hidden information in the data analysis and improve the quality of the classification, the
authors used two entropy metrics: approximate entropy AE and sample entropy SE. At the
time that the study was conducted, the analyzed dataset contained 897 patterns from three
classes in the ratio Normal:Ovary:Liver = 799:54:44. The overall accuracy of the classifier
was equal to 0.952, and the values of such metrics as Precision, Recall, MacroF1−score and
AUC were equal to 0.807, 0.833, 0.819 and 0.920, respectively.

It should be noted that the authors of this work abandoned the attempt to develop a
classifier for nine classes (eight classes corresponding to patterns of various types of ODs,
and one class corresponding to patterns for which no ODs were diagnosed) due to poor
separability of the classes.

The goal of this study is to develop the high-precision data classifiers on ODs using
modern tools for data mining and machine learning technologies. It is supposed to develop
kNN [10,34] and SVM [11,33,34,36] classifiers using oversampling algorithms SMOTE [21],
Borderline SMOTE-1 [22], Borderline SMOTE-2 [22] and ADASYN [24], which allow for
restoring the balance of classes in the original and extended datasets, formed on the base of
the original dataset with the application of various techniques for extracting new features.
In particular, it is planned to consider:

• The UMAP (Uniform Manifold Approximation and Projection) algorithm [29–32],
which implements non-linear data dimensionality reduction by embedding data into
a space of lower dimensionality to generate new features based on pattern features;

• Formulas for calculating entropies [40–45], Hjorth parameters [46,47] and fractal
dimensions [48–52] in order to generate new features based on the pattern features.

This study presents the first attempt to generate datasets that involve different tools
with the subsequent selection of the best of them to form new features by extracting
information hidden in the features of the original dataset. The generation of new features
was carried out using the UMAP algorithm, as well as various formulas for calculating
entropies, Hjorth parameters and fractal dimensions. Various combinations of new features
were selected based on correlation and the perceived ability to distinguish between patterns
of different classes were added to the features of the original dataset or combined to form a
new dataset. As a result, it becomes possible to work simultaneously with different datasets
that describe the subject area. This approach to the generation of datasets is used for the
first time in the field of medical diagnostics, including the field of diagnostics of oncological
diseases based on blood protein markers. Subsequently, these datasets are balanced using
oversampling algorithms and are used in the development of classifiers based on the kNN
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and SVM algorithms with subsequent selection of the best classifiers based on classification
quality metrics.

The rest of the paper is organized as follows. Section 2 briefly describes the aspects of
developing the kNN and SVM classifiers. It also discusses the applied quality metrics of
multiclass classification, as well as the problem of class imbalance in datasets. In addition,
this section provides a summary of the principles of operation of the UMAP algorithm, as
well as background information on the investigated nonlinear data extraction tools that are
difficult to obtain from traditional statistics, in particular, on entropy characteristics and
fractal dimensions. Section 3 presents a description of the novel approach to the formation
of the datasets used in the development of the classifiers. Section 4 is devoted to the analysis
of the original dataset based on the UMAP algorithm with data visualization, aspects of
the generation of new features based on entropy characteristics and fractal dimensions
of the data patterns, choosing the best of them. It also discusses all of the steps of the
creation of new datasets used for the development of the kNN and SVM classifiers and the
results of the development of such classifiers, accompanied by tables and figures. Section 5
presents a discussion of the proposed results. Finally, Section 6 contains conclusions and
goals regarding future work.

2. Materials and Methods
2.1. Aspects of Development of Classifiers

The development of classifiers can be performed using various machine learning
algorithms, for example, kNN [10,34,53–56], SVM [10,33,34,36,57,58], LR (Logistic Regres-
sion) [4,59], DT [12–14], RF [15,60,61] and neural networks [17–19], as well as cascade
algorithms and ensembles based on them. We can use the default values of the classifier
parameters, or fine-tune them using population optimization algorithms [62,63]. The qual-
ity of classification using such classifiers will depend both on the quality of datasets on
the basis of which the classifiers are developed, and on the specifics of the mathematical
apparatus embedded in the algorithms corresponding to the classifiers. Currently, there
is no universal machine learning algorithm that could ensure that a classifier developed
on its basis will provide high quality of classification for any arbitrary training dataset.
The same can be said about cascade classifiers and ensembles of classifiers. Obviously,
it is desirable to minimize the time for developing a classifier that provides high-quality
data classification.

Two machine learning algorithms (kNN and SVM) are considered in this study, al-
though all the ideas formulated below can be used in the development of classifiers based
on any machine learning algorithm because they affect only the stage of preparation of
datasets used in the development of classifiers.

The choice of the kNN algorithm is due to the simplicity of its implementation and, as
a result, low time costs for the development of the kNN classifier.

The choice of the SVM algorithm is due to the availability of tools for working with
various kernel functions that provide a transition to a higher-dimensional space, and
the possibility of generating classification rules in an explicit form by identifying the so-
called support vectors located along the class boundary. However, the time spent on the
development of the SVM classifier becomes significantly larger compared to the time spent
on the development of the kNN classifier.

It is precisely because of the large time costs for the development of the RF classifier
that the proposed study does not consider the RF algorithm, although when it is used, it is
usually possible to obtain classifiers that provide a very high quality of data classification.

Let U = {< x1, y1 >, . . . ,< xs, ys >} be a dataset used in the development of classi-
fiers, where xi ∈ X; yi ∈ Y = {1, . . . , M}; i = 1, s; s is the number of patterns in the dataset;
M is the number of classes; X is the set of signs of patterns; and Y is the set of pattern class
labels [34].

Let classifiers be trained on S patterns and testing be carried out on s− S patterns.
The quality of the classifiers is assessed using the k-fold cross-validation procedure.
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2.1.1. kNN Classifier Development

The number of nearest neighbors k for the pattern x and the method of voting for k
nearest neighbors on the question of the class membership of the pattern x are specified
during the development of the binary kNN classifier. The values of the parameters should
provide the minimum classification error.

The membership class y of a pattern x is determined by the membership class of most
of the patterns from among the k nearest neighbors of the pattern x. Various metrics, such
as Euclidean, cosine, Manhattan, etc. can be used to calculate the distance between patterns
in the kNN algorithm. Usually, the distance is calculated using the Euclidean distance
metric as [34,53,54]:

d(xi, x) =

√√√√ q

∑
h=1

(xh
i − xh)

2, (1)

where q is the number of features of patterns xi (i = 1, k) and x; xh
i is the h-th coordinate of

i-th pattern xi; and xh is the h-th coordinate of pattern x.
Various voting methods can be used to determine the membership class of a pattern

during the development of the kNN classifier, for example, simple unweighted voting and
weighted voting [34,53,54].

Simple unweighted voting works in such a way that the distance from the pattern x to
each of the k nearest neighbors xi (i = 1, k) does not matter: each of the k nearest neighbors
xi (i = 1, k) of the pattern votes for its assignment to its class, and all k nearest neighbors xi
(i = 1, k) have equal rights in class definition for pattern x. The pattern x will be assigned
to the class that receives the most votes:

α = argmax
m∈Y

k

∑
i=1
|yxi ,x = m|, (2)

Weighted voting works in such a way that the distance from the pattern x to each of
the k nearest neighbors xi (i = 1, k) is taken into account: the smaller the distance d(xi, x),
the more significant the contribution to the estimation of the pattern x belonging to a certain
class is made by the vote of the nearest neighbor xi (i = 1, k). The total contribution of the
votes of the nearest neighbors xi (i = 1, k) for the pattern x belonging to the class with the
label m ∈ Y can be calculated as:

αm =
k

∑
i=1

1
d2(xi, x)

· ri,m, (3)

where ri,m = 0, if yxi ,x 6= m and ri,m = 1, if yxi ,x = m.
The class that received the highest value αm according to Formula (3) is assigned to

the pattern x.
The problem of finding the optimal values of the parameters of the kNN classifier,

for example, the number of neighbors and the voting method, can be solved using grid
search algorithms or evolutionary optimization algorithms, such as the genetic algorithm,
differential evolution algorithm, PSO algorithm, bee algorithm, ant colony algorithm, fish
school algorithm, etc.

2.1.2. SVM Classifier Development

The SVM algorithm implements binary classification [34,57,58]. In the case of multi-
class classification, i.e., for M ≥ 3, strategies such as OvO (One-vs-One) or OvR (One-vs-
Rest) are used, which allow for the use of binary classification solutions to form solutions
for multiclass classification [64].

The One-vs-One strategy breaks the multiclass classification into one binary classi-
fication problem for each pair of classes. The One-vs-Rest strategy breaks the multiclass
classification into one binary classification problem for each class.
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In the case of binary classification, the basic SVM algorithm operates on patterns
xi ∈ X with class labels yi ∈ Y = {−1;+1}.

The development of the SVM classifier can be performed using kernel functions
κ(xi, xτ) such as linear, polynomial, radial basis and sigmoid kernel functions. Particularly,
the linear kernel function has the form κ(xi, xτ) = xi · xτ , and the radial basic kernel
function, which is used in this study, has the form κ(xi, xτ) = exp(−(xi − xτ) · (xi −
xτ)/(2 · σ2)), where xi · xτ is the scalar product for xi and xτ and σ (σ > 0) is the kernel
function parameter.

The value of the regularization parameter C (C > 0) [57], the type of the kernel
function κ(xi, xτ) and the values of the parameters of the kernel function (for example,
the value of parameter σ for the radial basis kernel function) are determined during the
development of the binary SVM classifier. The values of the parameters should provide the
minimum classification error.

The development of the binary SVM classifier involves solving the problem of con-
struction of a hyperplane separating the classes. According to the Kuhn–Tucker theorem,
this problem can be reduced to a quadratic programming problem containing only dual
variables λi (i = 1, S) [34,57,58]:

1
2 ·

S
∑

i=1

S
∑

τ=1
λi · λτ · yi · yτ · κ(xi, xτ)−

S
∑

i=1
λi → min,

λ
S
∑

i=1
λi · yi = 0,

0 ≤ λi ≤ C, i = 1, S.

(4)

The support vectors are determined as a result of the training of the binary SVM
classifier. These are feature vectors of learning patterns xi, for which the values of the
corresponding dual variables λi are not equal to zero (λi 6= 0) [57]. The support vectors
carry all the information about class separation since they are located near the hyperplane
separating them.

The classification decision rule that assigns a membership class to a pattern with the
label “−1” or “+1” is defined as [34,57,58]:

F(z) = sign

(
S

∑
i=1

λi · yi · κ(xi, x) + b

)
, (5)

where b = w · xi − yi; w =
S
∑

i=1
λi · yi · xi.

The problem of finding the optimal values of the SVM classifier parameters, for
example, the regularization parameter C (C > 0), the type of the kernel function κ(xi, xτ)
and the values of the parameters of the kernel function, can be solved using grid search
algorithms or evolutionary optimization algorithms.

2.2. Quality Metrics of Multiclass Classification

The assessment of the quality of a multiclass classification can be performed using
metrics such as Accuracy, MacroPrecision, MacroRecall and MacroF1−score [65].

The accuracy metric for multiclass classification can be calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
, (6)

where TP is the total number of true positive elements in the multiclass classification
problem; TN is the total number of true negative elements in the multiclass classification
problem; FP is the total number of false positive elements in the multiclass classifica-
tion problem; and FN is the total number of false negative elements in the multiclass
classification problem.
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The MacroPrecision metric for multiclass classification can be calculated as:

MacroPrecision =
1
M

M

∑
m=1

(
TPm

TPm + FPm

)
, (7)

where m is the class label index; TPm is the number of true positive elements for the m-th
class label; FPm is the number of false positive elements for the m-th class label; and M is
the total number of classes in the multiclass classification problem.

The MacroRecall metric for multiclass classification can be calculated as:

MacroRecall =
1
M

M

∑
m=1

(
TPm

TPm + FNm

)
, (8)

where m is the class label index; TPm is the number of true positive elements for the m-th
class label; FNm is the number of false negative elements for the m-th class label; and M is
the total number of classes in the multiclass classification problem.

The MacroF1−score metric for multiclass classification can be calculated as:

MacroF1−score = 2 ·
(

MacroPrecision ·MacroRecall
MacroPrecision + MacroRecall

)
, (9)

Such metrics as (7)–(9) are useful and effective when developing classifiers using
imbalanced datasets.

The MacroF1−score is used as a maximized classification quality metric. Based on
MacroPrecision and MacroRecall, this metric makes it possible to simultaneously account for
information on precision and recall of the solutions generated by the classifiers.

2.3. Solving the Class Imbalance Problem

In most machine learning algorithms, it is assumed that the goal of learning is to
maximize the proportion of correct decisions in relation to all decisions made, and both the
population and training dataset obey the same distribution. In this case, the datasets used
to develop classifiers should be class-balanced, and the cost of a classification error for all
patterns should be the same.

However, in many practical problems, one has to work with datasets that are poorly
balanced. Learning on imbalanced datasets (imbalance problem) [66,67] can lead to a
significant decrease in the quality of the classification solutions obtained using classifiers
developed on their basis, since such datasets do not provide the required data distribution
characteristics used in training.

For example, in the case of binary classification, the imbalance of the dataset is that
more of the patterns in the dataset belong to one class, which is commonly called “majority”,
and a much smaller set of patterns belongs to another class, which is commonly called
“minority”.

The cost of misclassifying minority class patterns is often many times more expensive
than misclassifying majority class patterns, because minority class objects in real datasets
represent rare but most important instances.

For example, in the context of developing classifiers based on a dataset for ODs, the
class of normal patterns is the majority, while the classes describing eight types of ODs
are minor. Obviously, the correct classification of patterns of minority classes both for the
problem under consideration and in general is of significant interest.

There are various approaches to solving the problem of class imbalance based on the
application of:

• Class balancing algorithms that implement oversampling, undersampling and their
combinations [21–25];

• Algorithms accounting for the sensitivity to the cost of wrong decisions [10];
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• Algorithms for transferring data into a space of a new dimension (with a decrease or
increase in dimension) in order to improve the separability of data [11,26–34];

• One-class classification algorithms [34–37].

In this study, the imbalance problem is proposed to be solved using such oversam-
pling algorithms as SMOTE [21], Borderline-SMOTE-1 [22], Borderline-SMOTE-2 [22] and
ADASYN [24], followed by choosing the best of them in the sense of providing a higher
quality of data classification.

The use of oversampling algorithms is due to the fear of losing critical data patterns in
the case of using undersampling algorithms in the context of the problem of developing
classifiers for diagnosing oncological diseases.

The SMOTE (synthetic minority oversampling technique) algorithm [21] randomly
selects a minority class pattern named a and randomly chooses a pattern named b from
the k nearest neighbors of pattern a. The synthetic pattern will be located randomly in the
line segment between the original pattern a and its neighbor b. The same process will be
repeated until the desired number of synthetic patterns is reached.

The Borderline-SMOTE-1 algorithm [22] considers only the minority class patterns
that have a number of minority class neighbors in the range [g/2, g], where g is defined by
the researcher. These are the borderline patterns and they can be easily misclassified, i.e.,
they are “in danger”. After detecting such original patterns, a basic SMOTE algorithm is
applied to create synthetic patterns.

The Borderline-SMOTE-2 algorithm [22] is similar to the Borderline-SMOTE-1 algo-
rithm, but it also considers the neighbors of the majority class.

The ADASYN algorithm [24] is similar to the SMOTE algorithm, since it generates
synthetic patterns in the line segments between two minority class original patterns. It uses
a weighted distribution for different minority class patterns that takes into account their
level of difficulty: the minority class patterns that have fewer minority class neighbors are
harder to learn than those which have more neighbors of the same class. The ADASYN
algorithm generates more synthetic patterns for the minority class original patterns that
are harder to learn and generates less for the minority class original patterns that are easier
to learn.

2.4. UMAP Algorithm

The UMAP algorithm performs nonlinear dimensionality reduction preserving both
local and global structures of high dimensional data in the best possible way [29,32]
compared to other similar algorithms, for example, compared to the t-SNE algorithm [28].

The UMAP algorithm builds a fuzzy weighted undirected graph in the first step and
optimizes loss function in the second step [29].

The UMAP algorithm works with a dataset X =
{→

x 1,
→
x 2, . . . ,

→
x s

}
, which contains s

objects (patterns). Every object
→
x i ∈ X is represented by q-dimensional vector: ∀→x i ∈ Rq.

The UMAP algorithm embeds objects from the q-dimensional space into the h-dimensional
space (h ≤ q).

In the first step, the UMAP algorithm searches for the k nearest neighbors Zi ={→
z i1, . . . ,

→
z il , . . . ,

→
z ik

}
for every object

→
x i ∈ X, where ∀→z il ∈ X; i = 1, s; l = 1, k, as

described in [68]. Then it computes the scalar distance value dil between
→
x i and

→
z il ∈ Zi

using a distance metric. In the case of working with a Euclidean distance metric, the scalar
value dil can be calculated as (1), where pattern xi is replaced by

→
x i and x is replaced

by
→
z il . As a result, for each object

→
x i ∈ X, the UMAP algorithm determines a set Di =

{di1, . . . , dil , . . . , dik}, which contains the distances between
→
x i and each of its k nearest

neighbors.
After that, a fuzzy simplicial set, represented as a vector

→
µ i ∈ Rs, is constructed

for each object. First, the UMAP algorithm searches for ρi ∈ Di, such that ρi ≤ dil for
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every dil ∈ Di. After that, a binary search is implemented in order to find σi satisfying the
following condition:

k

∑
l=1

e(
ρi−dil

σi
)
= log2 k. (10)

Then the j-th component of vector
→
µ i is represented by a fuzzy value, which shows

how similar i-th and j-th objects from the X set are. Therefore, if the two objects,
→
x i and

→
x j,

are not neighbors, then the j-th component µij of vector
→
µ i is set to 0. If the two objects,

→
x i

and
→
x j, are neighbors, then the j-th component µij of vector

→
µ i is computed as:

µij = e(
ρi−dij

σi
). (11)

It is necessary to say that µij ∈ [0, 1].

The UMAP algorithm defines a vector
→
µ i ∈ Rs for each object

→
x i ∈ X. This vector

encodes fuzzy similarities between the i-th object and every j-th object belonging to the
original high dimensional dataset X.

As a result, the UMAP algorithm builds a weighted adjacency matrix Matr ∈ Rs×s,
where each i-th row is represented by fuzzy vector

→
µ i (i = 1, s).

The weighted adjacency matrix Matr represents a fuzzy weighted oriented graph,
which codes pairwise similarities of objects from X. Matrix Matr is not symmetric.

In the second step, the asymmetric matrix Matr is symmetrized using probabilistic
t-conorm:

µij ← µij + µji − µijµji, (12)

where i and j are the numbers of rows and columns in the Matr matrix, respectively
(µkk = 0; k = 1, s).

Thus, the transformed matrix Matr will already be symmetric.
The initial low dimensional representations of objects from the set X described by

q-dimensional vectors in the space Rh are calculated using spectral embedding [32] (h ≤ q).
As a result, the matrix Y ∈ Rs×h is obtained.

Then the UMAP algorithm starts the optimization process using the weighted fuzzy
cross-entropy with reduced repulsion as the loss function [69]:

L(Matr, Y) =
s

∑
i=1

s

∑
j=1

(
µij ln

µij

νij
+

∑s
k=1 µik

2s
ln

(
1− µij

1− νij

))
, (13)

where Matr ∈ Rs×s is the symmetric adjacency matrix containing fuzzy values encoding
pairwise similarities of high dimensional objects from the dataset X; Y ∈ Rs×h is the
representation of s objects in the low dimensional space Rh; µij ∈ [0, 1] is a scalar value
defining the fuzzy similarity of i-th and j-th high dimensional objects from the original
dataset X; and νij ∈ [0, 1] is a scalar value defining the fuzzy similarity of i-th and j-th
objects in low dimensional space Rh.

The UMAP algorithm determines the pairwise similarity νij of the i-th and j-th objects
represented by the i-th and j-th rows of the Y ∈ Rs×h matrix in the low dimensional space
Rh as:

νij =
(

1 + ad2b
ij

)−1
, (14)

where dij is the scalar value between the i-th and j-th objects, described by vectors
→
y i and

→
y j corresponding to the rows in the matrix Y.

The scalar value dij can be computed using a Euclidean distance metric (1), assuming

vectors
→
x i and

→
z il in (1) are replaced by vectors

→
y i and

→
y j, respectively, and q is replaced
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with h; a and b are the coefficients that are chosen by non-linear least squares fitting of (14)
against the curve:

ψij =

{
1, dij ≤ dmin

e(dmin−dij), dij > dmin
, (15)

where dij is the distance value between the i-th and j-th objects
→
y i and

→
y j represented by

rows in the matrix Y; and dmin is the parameter of the UMAP algorithm (dmin ∈ (0, 1]),
which affects the density of the clusters formed during the loss function (13) optimization
process in the low dimensional space Rh.

The UMAP algorithm performs the optimization of the loss function (13) using the
stochastic gradient descent (SGD) algorithm [29]. The locations of objects, which are
described by rows of the matrix Y ∈ Rs×h, are specified during each iteration of the SGD
algorithm in order to minimize the loss function (13). Other functions given, particularly
in [34], can also be used as a loss function.

2.5. Entropies, Hjorth Parameters and Fractal Dimensions

A number of works have shown that the use of nonlinear approaches can help extract
some information from the data that is difficult to obtain from traditional statistics. In
particular, entropy analysis and fractal analysis are non-linear approaches and provide
researchers with new opportunities to extract and explore the knowledge hidden in the
data. Entropy and fractal dimension are two diametrically opposed but complementary
concepts.

Entropy is a measure of chaos. The value of entropy gives an idea of how far the stud-
ied object (pattern) is from an ordered, structured state and how close it is to a completely
chaotic, structureless, homogeneous form.

Fractal dimension is a metric for characterizing a fractal pattern (which is often a
highly organized structure) by quantifying its complexity as the ratio of change in detail to
change in scale.

In this study, we use five entropy characteristics and three fractal dimensions, as well
as two Hjorth parameters, such as mobility and complexity, to evaluate the patterns of
a dataset on ODs in order to identify such indicators that will allow for improving the
separation of data from different classes from each other. The identified best indicators can
later claim the role of a tool for generating new features used to expand the original dataset.

The indicators considered in the proposed study are listed below.
Permutation entropy (PE) [40] is a tool that provides a quantification measure of the

complexity of the studied object by capturing the order relations between the values and
extracting a probability distribution of the ordinal elements.

Spectral entropy (SPE) [41] is a tool that is based on Shannon’s entropy. It measures the
irregularity or complexity of the studied object in the frequency domain. After performing
a Fourier transform, the studied object is transformed into a power spectrum, and its
information entropy presents the power spectral entropy of the studied object.

Singular value decomposition entropy (SVDE) [42] is a tool that characterizes infor-
mation content or regularity of the studied object depending on the number of vectors
attributed to the process.

Approximate entropy (AE) [43–45] is a tool used to quantify the amount of regularity
and the unpredictability of fluctuations of the studied object.

Sample entropy (SE) [45] is a modification of approximate entropy. It is used for
assessing the complexity of the studied object.

Hjorth mobility (HM) [46,47] is a tool that describes the average frequency for the
studied object and provides information about its so-called speed.

Hjorth complexity (HC) [46,47] is a tool that describes the variability of the studied
object and refers to the similarity of the studied object to a sinusoidal wave.
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Petrosian fractal dimension (PFD) [49] is a tool that allows for estimating the fractal
dimension of a finite sequence describing the studied object by means of converting the
data to a binary sequence before estimating.

Katz fractal dimension (KFD) [50,51] is a tool which makes exponential transformation
of fractal dimension values of the studied object with relative insensitivity to noise.

Higuchi fractal dimension (HFD) [52] is a tool which uses an algorithmic approxi-
mate value for the box-counting dimension of the graph of a real-valued function for the
studied object.

It is necessary to say that HFD yields a more accurate estimation of the fractal dimen-
sion values of the studied object than KFD when tested on synthetic data, but it is more
sensitive to noise.

The list of indicators similar to those considered above can be expanded.
Typically, these indicators are used to analyze signals, for example, represented by

time series. However, there are also works in which these indicators are used to generate
new features of objects based on already known features. For example, the work [10]
explores the possibility of using entropies AE and SE to generate new features in the
problem of diagnosing ODs based on blood protein markers. Obviously, it is possible to
use other indicators in order to extract new features of objects based on already known
ones using them.

A more detailed description of the indicators chosen during the experiments will be
given in Section 4.

3. A Novel Approach to the Generation of Datasets and the Development of Classifiers

The algorithm for developing the best classifier can be described by the following
sequence of steps.

Step 1. Scale each feature of the original dataset to the range [0, 1].
Step 2. Check the features of the dataset for correlation and remove features with high

correlation (taking into account their correlation with the target feature that determines
class labels for patterns).

Step 3. Calculate the values of potential new features based on the not-scaled dataset,
from which the correlated features found in Step 1 are excluded, using five formulas for
entropy, two formulas for Hjorth parameters and three formulas for fractal dimension,
and choose those that are the best at separating patterns of different classes (based on
the average values of entropy and fractal dimensions and average standard deviations).
Check the potential new features for correlation and remove features with high correlation
(taking into account their correlation with the target feature that determines class labels
for patterns).

Step 4. Scale each new feature to the range [0, 1].
Step 5. Set the range [2, H], which will be used in the cycle (during the steps 6–10),

where each number h from the range [2, H] is the dimension in the low-dimensional space
(the number of features); 2 ≤ H ≤ q − 1; q is the dimension of the original space (the
number of features in the original dataset C1).

Step 6. Implement the UMAP algorithm with the number h from the range [2, H].
Scale each feature to the range [0, 1]

Step 7. Construct 12 datasets (if h = 2) or 8 datasets (if h ≥ 3):
1. C1 is the original dataset (with 39 features) (formed only for h = 2).
2. C2 is a dataset based on the UMAP algorithm (from 2 to H features as a result of

embedding in a space of lower dimension).
3. C3 is a dataset based on the original dataset and the UMAP algorithm (from 2 to H

features).
4. C4 is a dataset based on the UMAP algorithm (from 2 to H features) and one entropy.
5. C5 is a dataset based on the UMAP algorithm (from 2 to H features) and two

fractal dimensions.
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6. C6 is a dataset based on the UMAP algorithm (from 2 to H features), one entropy
and two fractal dimensions.

7. C7 is a dataset based on the original dataset, the UMAP algorithm (from 2 to H
features) and one entropy.

8. C8 is a dataset based on the original dataset and one entropy (formed only for
h = 2).

9. C9 is a dataset based on the original dataset and two fractal dimensions (formed
only for h = 2).

10. C10 is a dataset based on the original dataset, one entropy and two fractal dimen-
sions (formed only for h = 2).

11. C11 is a dataset based on the original dataset, the UMAP algorithm (from 2 to H
features) and two fractal dimensions.

12. C12 is a dataset based on the original dataset, the UMAP algorithm (from 2 to H
features), one entropy and two fractal dimensions.

Step 8. Rebalance classes for all datasets.
Step 9. Develop classifiers based on the kNN and SVM algorithms. Assess classifi-

cation quality using cross-validation based on MacroF1−score. Select the best classifiers
based on the kNN and SVM algorithms.

Step 10. Increase the number h of dimensions in the low-dimensional space by 1.
Step 11. If h ≤ H, go back to step 6. If h > H, go to step 12.
Step 12. Select the best classifiers based on the results of the algorithm implementation.

Complete implementation of the algorithm.
The number of datasets that were used to develop the classifiers was determined

as follows.
A total of 12 datasets were used for h = 2. Dataset C1 is the same as the original

dataset. Dataset C2 contains features based on the UMAP algorithm. Other datasets were
acquired by:

• Adding all possible combinations of three groups of features based on the UMAP
algorithm, one entropy and two fractal dimensions (as 1 of 3, 2 of 3, 3 of 3) to the
features of the original dataset;

• Adding all possible combinations of two feature groups based on one entropy and
two fractal dimensions (as 1 of 2, 2 of 2) to the features based on the UMAP algorithm.

Eight datasets were used for h ≥ 3, because datasets C1, C8, C9 and C10 do not contain
features based on the UMAP algorithm. Namely, the number of generated features depends
on h whether the UMAP algorithm is used. Thus, it is sufficient to generate the sets C1, C8,
C9 and C10 once for h = 2 because their composition does not depend on h.

The generation of datasets based on only one entropy and/or two fractal dimensions
was not performed due to a significant reduction (convolution) of the initial information in
this case.

The choice of the scaling method that implements the transformation of each feature
into the range [0, 1] is due to working with the UMAP algorithm, which essentially searches
for the coordinates of patterns in a low-dimensional space. In this regard, we decided to
scale the values for each coordinate of the patterns in the range [0, 1].

This algorithm uses only one entropy (AE) and only two fractal dimensions (KFD
and HFD) because the expediency of using only these out of the 10 indicators specified in
Section 2.5 was confirmed experimentally when working with the original dataset based
on blood protein markers.

Figure 1 shows a diagram that represents the process of generating the datasets used
in the development of classifiers. The upper part of the figure lists the datasets that are
generated only once because they are formed without involving the UMAP algorithm.
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Figure 2 shows the enlarged block diagram of the classifier development.
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4. Experimental Studies

During the experiments, the dataset containing information on 39 serum protein
markers for 1817 patterns was used. This dataset includes such classes of ODs as breast,
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colorectum, esophagus, liver, lung, ovary, pancreas and stomach, as well as the normal
class (Norm) corresponding to cases where an OD was not diagnosed. Each protein
marker is associated with some feature in the dataset. This dataset is multiclass because it
contains information on patterns from nine classes. Accordingly, the classification problem
is multiclass and involves the development of a multiclass classifier. This dataset was taken
from COSMIC repository [39].

The list of serum protein markers is as follows: AFP (pg/mL), Angiopoietin-2 (pg/mL),
AXL (pg/mL), CA-125 (U/mL), CA 15-3 (U/mL), CA19-9 (U/mL), CD44 (ng/mL), CEA
(pg/mL), CYFRA 21-1 (pg/mL), DKK1 (ng/mL), Endoglin (pg/mL), FGF2 (pg/mL), Follis-
tatin (pg/mL), Galectin-3 (ng/mL), G-CSF (pg/mL), GDF15 (ng/mL), HE4 (pg/mL), HGF
(pg/mL), IL-6 (pg/mL), IL-8 (pg/mL), Kallikrein-6 (pg/mL), Leptin (pg/mL), Mesothelin
(ng/mL), Midkine (pg/mL), Myeloperoxidase (ng/mL), NSE (ng/mL), OPG (ng/mL), OPN
(pg/mL), PAR (pg/mL), Prolactin (pg/mL), sEGFR (pg/mL), sFas (pg/mL), SHBG (nM),
sHER2/sEGFR2/sErbB2 (pg/mL), sPECAM-1 (pg/mL), TGFa (pg/mL), Thrombospondin-
2 (pg/mL), TIMP-1 (pg/mL) and TIMP-2 (pg/mL).

All the experiments were conducted using software written in Python 3.10 in the
interactive cloud environment Google Colab. The choice of the Python 3.10 programming
language can be justified by a large number of various available libraries, including libraries
that implement machine learning algorithms.

4.1. Data Analysis Based on the UMAP Algorithm

A preliminary visual analysis of the dataset was performed using the non-linear
dimensionality reduction algorithm UMAP. Information on the software implementation
of the UMAP algorithm used is available in [70].

With the help of the UMAP algorithm, a 39-dimensional nine-class dataset was em-
bedded into a two-dimensional space (Figure 3). Analysis of the visualization results
indicates a complex organization of nine classes in the dataset and their poor separability
in general. However, one can try to find such classes in this nine-class dataset that can be
well separated from each other.
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For example, if only three classes are left in the dataset, such as normal, liver and
ovary, then the results of the visualization of the three-class dataset (Figure 4) allow us to
conclude that it is expedient to carry out research on the development of a classifier capable
of separating patterns of these three classes with high values of classification quality metrics.
It should be noted that a three-class dataset with the same list of classes (normal, liver and
ovary) was considered by the authors in [10].
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At the time when this article was written, the ratio of classes in the dataset was
Normal:Liver:Ovary = 812:44:54 (which differed slightly from the ratio in the work [10]:
Normal:Liver:Ovary = 799:44:54).

It can be assumed that the insufficient separability of patterns of different classes,
both in the nine-class dataset and in sets with a smaller number of classes (including
in the three-class dataset), is due to the presence of different ODs stages in the patterns
presented in the dataset (for example, in the early stages of an OD, separability may be
worse). Clearly, further research is needed to answer this question. Insufficiently good
separability of patterns of different classes may be due to the insufficiency of the number
of features. This problem can be solved by enriching the dataset with new information,
either by involving new features in the analysis, for example, based on gene biomarkers, or
by generating new features based on existing data, i.e., by extracting knowledge hidden
in existing data. In this study, the second approach to enriching the dataset with new
information was implemented: an attempt was made to generate new features based on
the UMAP algorithm, entropy characteristics and fractal dimensions of the existing data
patterns, followed by the selection of new features that satisfy certain a priori selected
criteria.

Scaling to the range [0, 1] for each feature was applied to the nine-class and three-class
datasets before visualization.

It should be noted that the UMAP algorithm is usually used to embed multidimen-
sional objects in two- or three-dimensional space for visualization, but the results of its
application can also be used in the development of data classifiers.
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Since the visualization of a reduced three-class dataset on ODs in a two-dimensional
space indicates the presence of patterns for which a two-dimensional embedding does
not allow for distinguishing some objects in their a priori known classes (Figure 2), then
it is advised to study various options for embedding, that is, nesting in spaces, whose
dimension is equal to the number h, where h ∈ {2, 3, . . . , H}, H is the maximum dimension
of the embedded space. For example, H can be equal to q− 1, where q is the dimension
of the original feature space (in this example q = 39). It is also necessary to develop a data
classifier for q = 39.

As a result, a group of classifiers will be obtained, developed on the basis of datasets
“embedded” in the space of a smaller dimension with the number of features h (h ∈
{2, 3, . . . , H}), as well as a dataset located in the original feature space (i.e., for q = 39).
It will be possible to choose the best classifier from this group in terms of maximizing
the classification quality metric (for example, MacroF1−score in the case of working with
class-imbalanced datasets). Moving to a lower dimensional space may potentially make it
possible to improve the separability of classes from each other, even without making any
additional effort, such as balancing classes or taking the sensitivity to the cost of wrong
decisions into account.

The scaling of each feature to the range [0, 1] was performed twice during the im-
plementation of the UMAP algorithm: before applying the UMAP algorithm and during
preparations of the dataset obtained using the UMAP algorithm for developing a classifier.
The resulting dataset can be used on its own or to form an augmented dataset. We can add
new features obtained using the UMAP algorithm or extracted in some other way (e.g., by
computing entropy characteristics and fractal dimensions of the original dataset) to the fea-
tures of the original 39-feature dataset. The data obtained by reducing the dimensionality
of the original dataset can be considered as new features.

4.2. Generation of New Features Based on Entropies, Hjorth Parameters and Fractal Dimensions of
Data Patterns

The original three-class dataset was examined for feature correlation before developing
classifiers based on variously formed datasets. The examination showed the absence of a
strong correlation with the values of the correlation index of at least 0.7 between the features.
The maximum value of the correlation index, equal to 0.604, was found only for one pair of
traits with numbers 34 and 35 (sHER2/sEGFR2/sErbB2 (pg/mL) and sPECAM-1 (pg/mL)).
The values of the correlation index for other pairs of features turned out to be less than 0.6.
As a result, the expediency of using all the features in the further analysis and development
of classifiers was proved.

In order to improve the quality of data classification, it was decided to generate new
features based on metrics such as entropy characteristics and fractal dimensions of data
patterns, selecting among them those that do not correlate with each other or the features
of a three-class dataset.

Three-class not scaled to range [0, 1] for each feature dataset was used to generate new
features based on the entropy characteristics, Hjorth parameters and fractal dimensions of
data patterns. Formulas that were used in the generation of new features for each pattern
involved 10 metrics. There were five formulas for entropy, such as permutation entropy
(PE), spectral entropy (SPE), singular value decomposition entropy (SVDE), approximate
entropy (AE) and sample entropy (SE); two formulas for Hjorth parameters, such as Hjorth
mobility and complexity (HM and HC); and three formulas for calculating such fractal
dimensions as Petrosian fractal dimension (PFD), Katz fractal dimension (KFD) and Higuchi
fractal dimension (HFD).

The results of the calculations of the entropy values, Hjorth parameters and fractal
dimensions were grouped into three classes. For each of the three classes, the mean value
and the mean standard deviation were calculated for each potential new generated feature.

Comparative analysis of the mean values and mean standard deviations of the afore-
mentioned metrics for each of the three classes for each potential new generated feature
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(Tables 1 and 2) made it possible to draw the following conclusions. The largest differences
between the classes are shown by the entropies AE and SE (Table 1), as well as the fractal
dimensions KFD and HFD (Table 1). These metrics were chosen for further consideration.
Meanwhile, the mean standard deviations for all the metrics above turned out to be small
(and only for the KFD metric they are slightly larger than for other metrics).

Table 1. Mean values for each of the three classes for each potential new generated feature.

Class

Mean Values

Entropy Hjorth Parameters Fractal Dimension

PE SPE SVDE AE 1 SE HM HC PFD KFD HFD

Normal 0.977 0.921 0.943 0.454 0.508 1.335 1.334 1.068 1.609 2.337
Liver 0.981 0.913 0.937 0.257 0.425 1.326 1.336 1.069 1.548 2.271
Ovary 0.978 0.924 0.975 0.353 0.348 1.313 1.306 1.065 1.696 2.372

1 Bold type indicates the mean values of the metrics that make it possible to distinguish between classes.

Table 2. Mean standard deviations for each of the three classes for each potential new generatedfeature.

Class

Mean Standard Deviations

Entropy Hjorth Parameters Fractal Dimension

PE SPE SVDE AE 2 SE HM HC PFD KFD HFD

Normal 0.018 0.054 0.043 0.091 0.164 0.131 0.510 0.005 0.174 0.068
Liver 0.013 0.085 0.082 0.105 0.105 0.098 0.021 0.005 0.266 0.138
Ovary 0.015 0.026 0.021 0.097 0.131 0.110 0.207 0.004 0.230 0.091

2 Bold type indicates the mean standard deviations of the metrics that make it possible to distinguish between
classes.

The selected metrics were tested for correlation with each other. The tests showed a
correlation between the metrics AE and SE (with the value of the correlation metric equal
to 0.931). The metric SE was excluded from further consideration, among other things,
because it has a lower correlation with the target feature that determines the labels of
pattern classes (the values of the correlation metric for the metrics AE and SE are 0.360
and 0.320, respectively, which corresponds to a moderate direct linear dependence on the
Chaddock scale). It should be noted that the experiments confirmed the advantage, albeit
insignificant, of the metric AE as a tool for generating the values of a new feature included
in the dataset (in terms of ensuring a higher quality of data classification). The correlation
between the chosen fractal dimensions KFD and HFD is small: it is only 0.141.

Thus, it is advisable to use one feature based on the approximation entropy AE, as
well as two features based on fractal dimensions KFD and HFD.

Below, we briefly describe the algorithms that allow for calculating approximation
entropy AE, the Katz fractal dimension KFD and the Higuchi fractal dimension HFD.

The algorithm for determining the approximation entropy AE can be described as
follows [45].

Suppose we have a sequence of numbers u = {u(1), u(2), . . . , u(q) } of length q, a
non-negative integer ξ (ξ ≤ q) and a positive real number r.

First, the algorithm defines the blocks χ(i) = {u(i), u(i + 1), . . . , u(i + ξ − 1) } and
χ(j) = {u(j), u(j + 1), . . . , u(j + ξ − 1) }, and calculates the distance between χ(i) and
χ(j) as d(χ(i), χ(j)) = max

κ=1,ξ
(|u(i + κ − 1)− u(j + κ − 1)|). Then it calculates the value

Cξ
i (r) = number(d(χ(i),χ(j))≤r)

q−ξ+1 , where j ≤ q − ξ + 1. The numerator of Cξ
i (r) defines the
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number of blocks of consecutive values of length ξ, which are similar to a given block. As a
result, the algorithm calculates the value φξ(r) as

φξ(r) =
1

q− ξ + 1
·

q−ξ+1

∑
i=1

logCξ
i (r) (16)

and approximation entropy AE(q, ξ, r)(u) as

AE(q, ξ, r)(u) = φξ(r)− φξ+1(r), (17)

where ξ ≥ 1; AE(q, 0, r)(u) = −φ1(r).
Approximation entropy AE(q, ξ, r)(u) defines the logarithmic frequency with which

blocks of length ξ that are close together stay together for the next position.
AE(q, ξ, r) is the statistical assessment of the parameter AE(ξ, r):

AE(ξ, r)(u) = lim
q→∞

[
φξ(r)− φξ+1(r)

]
. (18)

In the proposed research, we used ξ = 2 and r = 0.25 (these are values that are usually
applied).

In the context of the problem under consideration, we use the description of a certain
pattern xi ∈ X (i = 1, s; s is the number of patterns in the dataset X) based on blood protein
markers corresponding to q features as a certain sequence of numbers u of length q.

The algorithm for determining the Katz fractal dimension KFD can be described as
follows [51].

Suppose we have a sequence of points
(
ζ j, ϑj

)
of length q.

First, the algorithm defines the length L of the waveform as

L = ∑q−2
j=0

√(
ϑj+1 − ϑj

)2
+
(
ζ j+1 − ζ j

)2 (19)

and the maximum distance ∆ between the initial point (ζ1, ϑ1) to the other points as

∆ = max
j=2,q

√(
ζ j − ζ1

)2 −
(
ϑj − ϑ1

)2. (20)

Then the algorithm calculates the Katz fractal dimension KFD as

D =
log(q)

log(q) + log
(

∆
L

) . (21)

In the context of the problem being solved, we consider a sequence of points
(

j, xj
i

)
,

where j is the j-th number of the feature in the dataset X (j = 1, q; q is the number of
features), as a sequence of points

(
ζ j, ϑj

)
of length q; and xj

i is the value of the j-th feature
of the i-th pattern xi ∈ X (i = 1, s; s is the number of patterns in the dataset X based on
blood protein markers;).

The algorithm for determining the Higuchi fractal dimension HFD can be described
as follows [52].

Suppose we have a sequence of numbers u = {u(1), u(2), . . . , u(q) } of length q.
First, the algorithm defines new sequences uξ

κ , defined as:

uξ
κ ; u(ξ), u(ξ + κ), u(ξ + 2κ), . . . , u

(
ξ +

[
q− ξ

κ

]
κ

) (
ξ = 1, κ

)
, (22)

where [o] is the Gauss’ notation, which denotes the integer part of o; ξ is the integer defining
the initial moment; and κ is the integer defining the interval moment.
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As a result, the algorithm defines κ sets of new sequences.
Then the algorithm calculates the length Lξ(κ) of curve uξ

κ as

Lξ(κ) =
q− 1[

q−ξ
κ

]
·κ2
·
[

q−ξ
κ ]

∑
i=1
|u(ξ + i·κ)− u(ξ + (i− 1)·κ)|, (23)

and the length L(κ) as

L(κ) =
1
κ
·

κ

∑
ξ=1

Lξ(κ). (24)

Then the algorithm calculates the Higuchi fractal dimension HFD as the slope of the
best-fitting linear function through the data points:{(

log
1
κ

, log(L(κ))
)}

. (25)

In the context of the problem under consideration, we use the description of a certain
pattern xi ∈ X (i = 1, s; s is the number of patterns in the dataset X) based on blood protein
markers, corresponding to q features, as a certain sequence of numbers u of length q.

In the proposed research, we used values for κ ≤ 10 and m < k.

4.3. Generation of Datasets Used in the Development of Classifiers

The development of the classifiers was carried out based on the following datasets
generated based on new features from Sections 4.1 and 4.2:

1. C1 is the original dataset (it contains 39 features);
2. C2 is a dataset based on the UMAP algorithm (it contains from 2 to H features as a

result of embedding in a space of lower dimension);
3. C3 is a dataset based on the original dataset and the UMAP algorithm (it generates

from 2 to H features);
4. C4 is a dataset based on the UMAP algorithm (it generates from 2 to H features) and

one entropy;
5. C5 is a dataset based on the UMAP algorithm (it generates from 2 to H features) and

two fractal dimensions;
6. C6 is a dataset based on the UMAP algorithm (it generates from 2 to H features), one

entropy and two fractal dimensions;
7. C7 is a dataset based on the original dataset, the UMAP algorithm (it generates from

2 to H features) and one entropy;
8. C8 is a dataset based on the original dataset and one entropy;
9. C9 is a dataset based on the original dataset and two fractal dimensions;
10. C10 is a dataset based on the original dataset, one entropy and two fractal dimensions;
11. C11 is a dataset based on the original dataset, the UMAP algorithm (it generates from

2 to H features) and two fractal dimensions;
12. C12 is a dataset based on the original dataset, the UMAP algorithm (it generates from

2 to H features), one entropy and two fractal dimensions.

The content of the datasets (namely, the number and selection of features) C1, C8, C9
and C10 does not depend on the dimension h of the space into which the 39-dimensional
feature space of the original dataset is embedded when applying the UMAP algorithm.
Therefore, classifiers based on these datasets should be developed once. Balancing algo-
rithms, such as SMOTE and its modifications that implement the synthesis of new patterns
at the classes’ boundary (Borderline SMOTE-1, Borderline SMOTE-2 and ADASYN), are
applied once, as well. After this is completed, new classifiers are developed.

The number and selection of features in the remaining datasets C2, C3, C4, C5, C6, C7,
C11 and C12 depends on the dimension h of the space into which the UMAP algorithm
embeds the 39-dimensional feature space of the original dataset. Therefore, new classifiers
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should be developed based on the datasets C2, C3, C4, C5, C6, C7, C11 and C12 for each
h, both in the case of refusal to use class balancing algorithms, and in the case of their
application.

If the dataset is supposed to use a feature based on the entropies, then two variants of
the classifier are developed in order to assess the advantages of using the approximation
entropy AE and the sample entropy SE in relation to each other, followed by choosing the
best entropy for the role of the entropy used for generation of new feature values.

If the UMAP algorithm is not used in the formation of the dataset, i.e., the dataset does
not depend on the dimension h of the space into which the 39-dimensional feature space of
the original dataset is embedded, then we will identify the names of the classifiers with the
names of the datasets corresponding to them. In this case, we will discuss classifiers C1,
C8, C9 and C10. If the UMAP algorithm is used when forming a dataset, i.e., the dataset
depends on the dimension of the space h into which the 39-dimensional feature space of the
original dataset is embedded using the UMAP algorithm, then we will add an indication of
the space dimension to the name of the corresponding dataset. For example, we will talk
about the C3 classifier (for h = 5), if, during its development, a dataset was used that was
formed based on the results of applying the UMAP algorithm for h = 5.

4.4. Aspects of k-Fold Cross-Validation

The classifiers were developed using the kNN and SVM algorithms, the software
implementations of which were taken from the scikit-learn library of the Python language.

It should be noted that it is possible to use other machine learning algorithms, for
example, the RF algorithm, but this can lead to significant time costs for the development
of classifiers due to the specifics of the algorithm itself.

First of all, we developed classifiers for different values of the dimension h of the space
in which the UMAP algorithm embedded the original 39-dimensional space. The classifiers
were developed using the kNN and SVM algorithms based on 12 datasets. No balancing
algorithms had been applied to the datasets prior to that.

Then we developed classifiers using datasets that were balanced by classes based on
four algorithms: SMOTE, Borderline SMOTE-1, Borderline SMOTE-2 and ADASYN. In this
case, we used the kNN and SVM algorithms once again.

Before balancing, the ratio of classes in each of the 12 datasets was Normal:Ovary:Liver
= 812:54:44.

The classes were balanced with the values of the parameters of the balancing algo-
rithms set by default in the Python program libraries.

After balancing the classes using the SMOTE algorithm, the ratio of classes in each of
the 12 datasets became Normal:Ovary:Liver = 812:812:812.

After balancing the classes using the Borderline SMOTE-1 algorithm, the ratio of
classes in each of the 12 datasets became Normal:Ovary:Liver = 812:812:812.

After balancing the classes using the Borderline SMOTE-2 algorithm, the ratio of
classes in each of the 12 datasets became Normal:Ovary:Liver = 812:812:811.

After balancing the classes using the ADASYN algorithm, the ratio of classes in each
of the 12 datasets became Normal:Ovary:Liver = 812:807:806.

In order to assess the quality of each classifier, the k-fold cross-validation procedure,
which is an effective approach for estimating the performance of a classifier, was applied.

MacroF1−score was used as the main metric of classification quality in order to reduce
the negative impact on the quality of classification of the existing class imbalance in the
original C1 dataset.

A grid search was implemented for the optimal values of the parameters of the kNN
and SVM classifiers using the classical approach to the implementation of the k-fold cross-
validation procedure. In this case, the k classifiers are trained and evaluated on the k
holdout test sets. As a result, the mean performance of the k classifiers is evaluated.

We proposed to perform 10-fold cross-validation (that is k = 10) during implementation
of the grid search for the optimal values of the parameters of the best classifier. We used
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a stratified sampling strategy [71,72]. The results of the cross-validation were used to
calculate the mean value of MacroF1−score and the corresponding standard deviation. For
the best classifier, similar values were calculated for such metrics as Accuracy, MacroPrecision
and MacroRecall. In addition, hyperparameter values were determined for the best classifier.

A grid search was implemented while working with the kNN algorithm. The following
parameters were used in the grid search: n_neighbors, which corresponds to the number of
nearest neighbors, and weights, which corresponds to weight coefficients assigned to the
neighbors. The value of the number of neighbors n_neighbors varied from 5 to 15 with a step
of one. The weights parameter could take one of two values: ‘uniform’ and ‘distance’. In the
first case, all neighbors of some object had equal weights. In the second case, the neighbor’s
weight depended on the distance to the object: the smaller the distance, the greater the
weight. As for the rest of the parameters, we used the default values set in the software
implementation of the kNN algorithm in the Python scikit-learn library. As a result, 10 *
(11 * 2) = 220 model evaluations were obtained with a single pass through the grid.

Working with the SVM algorithm involved the implementation of a grid search, as
well. In this case, it was implemented for the values of such parameters as: gamma, which
is a parameter of the radial basis function of the kernel, and C, which is a regularization
parameter. The value of the gamma parameter varied from 0.4 to 2 with a step of 0.1. The
value of parameter C also changed from 0.4 to 2 with a step of 0.1.

We used the default values set in the software implementation of the SVM algorithm
in the Python scikit-learn library as the values of the rest parameters. As a result, 10 * (17 *
17) = 2890 model evaluations were obtained with a single pass through the grid.

4.5. Development of the Classifiers

We conducted research in order to determine the feasibility of using the approximation
entropy or sample entropy when forming the values of new features for each of the kNN
and SVM algorithms used in the development of the classifiers. The feasibility assessment
was performed for both datasets that were not subjected to class balancing, and for datasets
that were subjected to class balancing using four algorithms: SMOTE, Borderline SMOTE-1,
Borderline SMOTE-2 and ADASYN.

The preference for one or another entropy was given based on its provision of the
maximum mean value of MacroF1−score at the test sets on a group of the kNN or SVM
classifiers developed on the basis of the studied datasets (without class balancing or with
balancing using one of the four algorithms). The best class balancing algorithm was chosen
for each of the kNN and SVM algorithms used in the development of the classifiers.

The results of our research for the kNN and SVM algorithms used in the development
of the classifiers are shown in Tables 3 and 4, respectively. The development of the classifiers
was carried out for h = 2, . . . , 38. The maximum mean values of MacroF1−score in columns
AE and SE for each type of classifier are highlighted in bold, and the coinciding values are
italicized.

Table 3. Study of the advantages of entropies AE and SE in the development of the kNN classifiers.

Type of Classification Algorithm/
Class Balancing Algorithm

Maximum Mean Value of MacroF1-score

AE SE

kNN/no class balancing 0.842 0.849 3

kNN/SMOTE 0.866 0.864

kNN/Borderline SMOTE-1 0.878 0.878

kNN/Borderline SMOTE-2 0.861 0.861

kNN/ADASYN 0.842 0.842
3 The metric value with the largest value in the row is highlighted in bold. Matching metric values in a row are
italicized.
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Table 4. Study of the advantages of entropies AE and SE in the development of the SVM classifiers.

Type of Classification Algorithm/
Class Balancing Algorithm

Maximum Mean Value of MacroF1-score

AE SE

SVM/no class balancing 0.883 0.884 4

SVM/SMOTE 0.912 0.912

SVM/Borderline SMOTE-1 0.911 0.911

SVM/Borderline SMOTE-2 0.886 0.886

SVM/ADASYN 0.905 0.905
4 The metric value with the largest value in the row is highlighted in bold. Matching metric values in a row are
italicized.

The experimental results did not reveal a clear advantage of the approximation entropy
over the sample entropy. Preference was given to the approximation entropy because of
its higher correlation with the target feature. However, it is possible that, in the case of
working with the SVM algorithm, preference should be given to the sample entropy SE due
to the fact that the time spent on calculating the sample entropy SE is less than calculating
the approximate entropy AE.

Based on the results of the analysis of Tables 3 and 4, a class balancing algorithm
was also identified, which allowed for obtaining larger maximum mean values of the
MacroF1−score. This is the Borderline SMOTE-1 algorithm for the kNN classifier devel-
opment (Table 3), and the SMOTE algorithm for the SVM classifier development (Table 4).
These algorithms will be considered in subsequent detailed studies when developing the
corresponding classifiers.

4.6. Development of kNN Classifiers

Euclidean distance metric was used during development of the kNN classifiers. The
weights of neighbors for each analyzed object could be equal or dependent on the distance
to this object. The Borderline SMOTE-1 algorithm was used to implement class balancing.

4.6.1. Experiment without Class Balancing

Figure 5 presents the results of the experiment in choosing the best kNN classifier in
the case of working with the approximation entropy AE when forming some of the datasets
used in the development of the classifiers. The balancing of classes in datasets was not
performed here.
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Figure 5. Visualization of the results of the experiment of choosing the best kNN classifier based on
12 datasets without using a class balancing algorithm (n_neighbors is the number of nearest neighbors;
weights is the parameter which assigns weight coefficients to the neighbors; q is the dimension of
the space corresponding to the dataset used for development of classifier; h is the dimension of the
space into which the UMAP algorithm embeds the 39-dimensional feature space corresponding to
the original dataset; the background of each color shows the amount of standard deviation around
the mean of the metric MacroF1−score).

The red color indicates the line corresponding to the mean value of the MacroF1−score
obtained for the best C1 classifier developed on the basis of the original dataset, i.e., the
dataset with 39 features. The light red shading shows the spread for the MacroF1−score
mean value calculated from its standard deviation. The blue color indicates the line
corresponding to the mean values of the MacroF1−score obtained for the best classifiers
developed on the basis of the modified datasets. The light blue shading shows the spread
for the MacroF1−score means calculated from their standard deviation. In addition, the
following information is presented in Figure 5 next to the names of the classifiers developed
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on the basis of datasets: the number of features that depend on the dimension h of the space
into which the original 39-dimensional space is embedded, the dimensions h of the space
allowing for building the best classifiers, the final dimension q of the space corresponding to
the dataset used for development of classifier, and the best values of classifiers parameters
are indicated. The same designations are used in Figures 6–8.

Figure 6. Visualization of the results of the experiment of choosing the best kNN classifier based on
12 datasets using the Borderline SMOTE-1 class balancing algorithm (n_neighbors is the number of
nearest neighbors; weights is the parameter which assigns weight coefficients to the neighbors; q is the
dimension of the space corresponding to the dataset used for the development of the classifier; h is
the dimension of the space into which the UMAP algorithm embeds the 39-dimensional feature space
corresponding to the original dataset; the background of each color shows the amount of standard
deviation around the mean of the metric MacroF1−score).
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Figure 7. Visualization of the results of the experiment for choosing the best SVM classifier based
on 12 datasets without using class balancing algorithms (gamma is the parameter of the radial basic
kernel function; C is the regularization parameter; q is the dimension of the space corresponding
to the dataset used for development of the classifier; h is the dimension of the space into which the
UMAP algorithm embeds the 39-dimensional feature space corresponding to the original dataset; the
background of each color shows the amount of standard deviation around the mean of the metric
MacroF1−score).



Mathematics 2023, 11, 792 29 of 39

Figure 8. Visualization of the results of the experiment for choosing the best SVM classifier based on
12 datasets using the SMOTE algorithm for class balancing (gamma is the parameter of the radial basic
kernel function; C is the regularization parameter; q is the dimension of the space corresponding to
the dataset used for the development of the classifier; h is the dimension of the space into which the
UMAP algorithm embeds the 39-dimensional feature space corresponding to the original dataset; the
background of each color shows the amount of standard deviation around the mean of the metric
MacroF1−score).

As can be seen from Figure 5, all the classifiers developed on the basis of the modified
datasets outperformed C1 classifier developed on the basis of the original dataset in terms
of the mean value of the MacroF1−score.
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Classifier C6 (with h = 24) turned out to be the best: it has a mean value of MacroF1−score
equal to 0.842 (with a standard deviation of 0.080), while classifier C1 has mean value of
MacroF1−score equal to 0.756 (while the standard deviation is 0.101).

The dataset used in the development of classifier C6 (with h = 24) was obtained from
the original one as a result of applying the UMAP algorithm to it with h = 24. This dataset
contains 27 features in total, including one feature based on approximation entropy AE and
two features based on fractal dimensions KFD and HFD.

Classifiers C2 (with h = 36), C4 (with h = 11) and C5 (with h = 19) also turned out to be
relatively good in terms of the mean value of the MacroF1−score.

The worst classifier in this experiment is classifier C9 (independent of h) developed on
the basis of the dataset obtained by adding two features based on fractal dimensions KFD
and HFD to the original dataset.

Table 5 shows the main characteristics of classifier C1, as well as the best classifier,
namely, classifier C6 (with h = 24), without class balancing.

Table 5. Characteristics of kNN classifiers C1 and C6 (with h = 24) in the experiment without class
balancing.

Characteristic
Classifier

C1 C6 (with h = 24)

Number of features in the
dataset 39 27

Number of neighbors
(n_neighbors) 6 12

weights ‘distance’ ‘distance’

MacroF1−score (mean/std) 0.756/0.101 0.842/0.093

Accuracy (mean/std) 0.948/0.017 0.966/0.016

MacroRecall (mean/std) 0.687/0.106 0.803/0.091

MacroPrecision (mean/std) 0.938/0.063 0.919/0.098

Training time (mean/std), s. 0.002/0.001 0.004/0.002

Quality metrics calculation
time (mean/std), s. 0.009/0.003 0.009/0.002

In the experiment under consideration, the use of the modified dataset C6 (with h = 24)
obtained from the original dataset C1 allowed for increasing the value of the MacroF1−score
for classifier C6 (with h = 24) by 0.086 compared to classifier C1 (the standard deviation
for metric MacroF1−score of classifier C6 (with h = 24) turned out to be less than that of
classifier C1). The training time of classifier C6 (with h = 24) increased about two times.
The quality metrics calculation time during the testing did not change much.

It should be noted that classifier C6 (with h = 24), as well as classifiers C2 (with h = 36),
C4 (with h = 11) and C5 (with h = 19), outperformed the classifier developed in [10] using
the principles of cost-sensitive algorithms based on the mean values of the main quality
metrics. At the same time, one can notice slight discrepancies in the number of patterns of
the normal class in the proposed study and in [10]: in our dataset there are 13 more such
patterns, but this could only negatively affect our results (compared to the results in [10]),
which, however, did not happen.

The F1 of the best classifier in [10] was equal to 0.819, and the values of such metrics
as Accuracy, Recall and Precision were equal to 0.952, 0.807 and 0.833, respectively. Unfortu-
nately, the rules for choosing the best classifier in our study and in [10] may be somewhat
different (for example, we do not know if standard deviation estimates were calculated in
that study), but we assume that our best classifiers (with the best (maximum) values of
quality metrics) clearly outperform the best classifier in [10]. To confirm these conclusions,
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we will provide additional information on classifiers C2 (with h = 36), C4 (with h = 11)
and C5 (with h = 19) (because for classifier C6 (with h = 24), such information is given in
Table 5).

Classifier C2 (with h = 36) has a mean value of MacroF1−score equal to 0.841 (with
a standard deviation of 0.093) and mean values of such metrics as Accuracy, Recall and
Precision equal to 0.965 (with a standard deviation of 0.015), 0.812 (with a standard deviation
of 0.088) and 0.917 (with a standard deviation of 0.065), respectively.

Classifier C4 (with h = 11) has a mean value of MacroF1−score equal to 0.839 (with
a standard deviation of 0.094) and mean values of such metrics as Accuracy, Recall and
Precision are equal to 0.963 (with a standard deviation of 0.016), 0.818 (with a standard
deviation of 0.094) and 0.900 (with a standard deviation of 0.098), respectively.

Classifier C5 (with h = 19) has a mean value of MacroF1−score equal to 0.839 (with
a standard deviation of 0.083) and mean values of such metrics as Accuracy, Recall and
Precision are equal to 0.964 (with a standard deviation of 0.017), 0.800 (with a standard
deviation of 0.095) and 0.930 (with a standard deviation of 0.058), respectively.

Thus, we can conclude that even a simple addition of new features can increase the
separability of patterns of one class from patterns of another class.

Analysis of the values of the classification quality metrics (Table 5), in particular, the
values of the MacroRecall metric, allowed us to conclude that the quality of the classification
is not high enough and that it is necessary to take additional actions to improve the quality
of the classification. In order to perform such actions, we can use class balancing or cost-
sensitive algorithms. In this study, we implemented algorithms for balancing classes in
datasets.

4.6.2. Class Balancing Experiment

Figure 6 presents the results of the experiment for choosing the best kNN classifier in
the case of working with the approximation entropy AE in the formation of some of the 12
datasets used in the development of the classifiers. In this case, the balancing of classes in
datasets was performed using the Borderline SMOTE-1 algorithm.

The red color indicates the line corresponding to the mean value of the MacroF1−score
obtained for the best classifier C1 developed on the basis of the original dataset, i.e., the
dataset with 39 features. The light red shading shows the spread for the MacroF1−score
mean value, calculated from its standard deviation. The blue color indicates the line
corresponding to the mean values of the MacroF1−score obtained for the best classifier
C1 developed on the basis of the balanced original dataset. The light blue shading shows
the spread for the MacroF1−score means, calculated from their standard deviation. The
green color indicates the line corresponding to the mean values of MacroF1−score obtained
for the best classifiers developed on the basis of the modified balanced datasets. The
light green shading shows the spread for the MacroF1−score means, calculated from their
standard deviation.

Figure 6 shows that all the classifiers developed on the basis of the balanced datasets
provide a higher mean value of the MacroF1−score than the classifier C1 developed on the
basis of the original dataset. At the same time, some classifiers have lower values of the
MacroF1−score than the classifier C1 developed on the basis of the balanced original dataset.
In addition, Figure 6 shows a decrease in the standard deviations for the MacroF1−score
for the classifiers developed on the basis of balanced datasets compared to the standard
deviations for the MacroF1−score for the classifiers developed on the basis of imbalanced
datasets (Figure 5).

Classifier 8 (independent of h) turned out to be the best: it has a mean value of
MacroF1−score equal to 0.878 (with a standard deviation of 0.050), while classifier C1 has a
mean value of MacroF1−score equal to 0.847 (while the standard deviation is 0.079).

The dataset used in the development of classifier C8 (independent of h) was obtained
from the original one by adding one feature based on approximation entropy AE. This
dataset contains 40 features in total.
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The classifiers C7 (with h = 4), C10 (independent of h), C11 (with h = 18) and C12
(with h = 19) also turned out to be relatively good in terms of the mean value of the
MacroF1−score.

The worst classifiers in this experiment were classifier C4 (with h = 11) and C6 (with h
= 12). The first classifier was developed on the basis of a dataset obtained from the original
one as a result of applying the UMAP algorithm to it with h = 11 by adding one feature
based on approximation entropy AE. The second classifier was developed on the basis of a
dataset obtained from the original one as a result of applying the UMAP algorithm to it
with h = 12 by adding one feature based on approximation entropy AE and two features
based on fractal dimensions KFD and HFD.

From Figures 5 and 6, one can notice a decrease in the standard deviation of classifiers
in the case of using the Borderline SMOTE-1 algorithm to balance classes in datasets.

Table 6 shows the main characteristics of classifier C1, as well as the best classifier,
namely classifier C8 (independent of h), with class balancing.

Table 6. Characteristics of kNN classifiers C1 and C8 (independent of h) in the experiment using the
Borderline SMOTE-1 class balancing algorithm.

Characteristic
Classifier

C1 C8 (independent of h)

Number of features in the
dataset 39 40

Number of neighbors
(n_neighbors) 10 6

weights ‘uniform’ ‘uniform’

MacroF1−score (mean/std) 0.847/0.079 0.878/0.050

Accuracy (mean/std) 0.957/0.022 0.968/0.013

MacroRecall (mean/std) 0.870/0.079 0.877/0.066

MacroPrecision (mean/std) 0.846/0.085 0.896/0.063

Training time (mean/std), s. 0.012/0.006 0.028/0.002

Quality metrics calculation
time (mean/std), s. 0.024/0.009 0.017/0.003

It should be noted that classifier C8 (independent of h), as well as classifiers C7 (with
h = 4), C10 (independent of h), C11 (with h = 18) and C12 (with h = 19) outperformed the
classifier developed in [10] using the principles of cost-sensitive algorithms based on the
mean values of the main quality metrics.

To confirm these conclusions, we will provide additional information on classifiers C7
(with h = 4), C10 (independent of h), C11 (with h = 18) and C12 (with h = 19) (because for
classifier C8 (independent of h), such information is given in Table 6).

Classifier C7 (with h = 4) has mean value of MacroF1−score equal to 0.871 (with a
standard deviation of 0.065), and mean values of such metrics as Accuracy, Recall and
Precision are equal to 0.969 (with a standard deviation of 0.014), 0.864 (with a standard
deviation of 0.077) and 0.902 (with a standard deviation of 0.067), respectively.

Classifier C10 (independent of h) has mean value of MacroF1−score equal to 0.867
(with a standard deviation of 0.070), and mean values of such metrics as Accuracy, Recall
and Precision are equal to 0.966 (with a standard deviation of 0.016), 0.870 (with a standard
deviation of 0.081) and 0.888 (with a standard deviation of 0.074), respectively.

Classifier C11 (with h = 18) has mean value of MacroF1−score equal to 0.864 (with
a standard deviation of 0.057), and mean values of such metrics as Accuracy, Recall and
Precision are equal to 0.966 (with a standard deviation of 0.015), 0.866 (with a standard
deviation of 0.064) and 0.883 (with a standard deviation of 0.067), respectively.
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Classifier C12 (with h = 19) has mean value of MacroF1−score equal to 0.865 (with
a standard deviation of 0.066), and mean values of such metrics as Accuracy, Recall and
Precision are equal to 0.968 (with a standard deviation of 0.014), 0.864 (with a standard
deviation of 0.074) and 0.890 (with a standard deviation of 0.064), respectively.

In the experiment under consideration, using the best classifier C8 (independent of h)
made it possible to increase the mean value of MacroF1−score by 0.031 compared to the C1
classifier (with the standard deviation for MacroF1−score of classifier C8 (independent of
h) being less than that of classifier C1). The training time of classifier C8 increased about 2.3
times. The quality metrics calculation time during the testing even decreased slightly.

Analysis of the values of classification quality metrics (Table 6), particularly the values
of the MacroRecall metric, allows us to conclude that the classification quality by important
metrics has increased. It should be noted that the training time in the case of applying class
balancing to the dataset has increased, for example, about two times for classifier C1.

4.7. Development of SVM Classifiers

We used the radial basis kernel function during the development of the SVM classifiers.
Experiments with the linear function of the kernel were also carried out, but turned out to
be less successful, therefore they are not presented in this study. The SMOTE algorithm
was used to implement class balancing.

4.7.1. Experiment without Class Balancing

Figure 7 presents the results of the experiment for choosing the best SVM classifier in
the case of working with the approximation entropy AE when forming some of 12 datasets
used in the development of the classifiers. The balancing of classes in the datasets was not
performed here. Figure 7 uses the same notations as Figure 5.

As can be seen from Figure 7, only classifier C8 (independent of h), classifier C9 (inde-
pendent of h) and classifier C10 (independent of h) developed on the basis of the modified
datasets were able to outperform classifier C1 (which has mean value of MacroF1−score
equal to 0.877 with the standard deviation equal to 0.078), developed on the basis of the
original dataset by the mean value of the MacroF1−score. At the same time, classifier
C8 (independent of h) outperformed classifier C9 (independent of h) and classifier C10
(independent of h), if we compare them by the mean values of the MacroF1−score: for
example, classifier C8 (independent of h) has a mean value of MacroF1−score equal to 0.885
(with the standard deviation equal to 0.079); classifier C9 (independent of h) has a mean
value of MacroF1−score equal to 0.878 (with the standard deviation of 0.078); and classifier
C10 (independent of h) has a mean MacroF1−score of 0.880 (with a standard deviation of
0.074). The rest of the classifiers turned out to be less successful than classifier C1.

Note that classifier C8 (independent of h), classifier C9 (independent of h) and classifier
C10 (independent of h) are developed on the basis of datasets containing 40 (39 + 1), 41 (39
+ 2) and 42 (39 + 1 + 2) features, respectively.

It is obvious that preference should be given to the classifier developed using the
dataset with fewer features: this is classifier C8 (independent of h). In addition, it has the
highest mean value of MacroF1−score.

The dataset used in the development of classifier C8 (independent of h) was obtained
from the original one by adding a new feature formed on the basis of the approximation
entropy AE.

Table 7 shows the main characteristics of classifier C1, as well as the best classifier,
namely classifier C8, without class balancing.
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Table 7. Characteristics of SVM classifiers C1 and C8 in the experiment without class balancing.

Characteristic
Classifier

C1 C8 (independent of h)

Number of features in the
dataset 39 40

gamma 1.2 1.2

C 2.0 2.0

MacroF1−score (mean/std) 0.877/0.078 0.885/0.079

Accuracy (mean/std) 0.973/0.015 0.974/0.016

MacroRecall (mean/std) 0.843/0.088 0.850/0.090

MacroPrecision (mean/std) 0.950/0.053 0.957/0.051

Training time (mean/std), s. 0.123/0.008 0.131/0.007

Quality metrics calculation
time (mean/std), s. 0.007/0.001 0.009/0.001

In the experiment under consideration, the use of the best classifier C8 (independent
of h) made it possible to increase the mean value of the MacroF1−score by 0.008 compared
to the C1 classifier (with approximately the same standard deviations). The training time
of classifier C8 increased slightly, which was expected (because the number of features
increased by only 1). The same can be said about the quality metrics calculation time during
the testing.

Analysis of the values of the classification quality metrics (Table 7), particularly the
values of the MacroRecall metric, allows us to conclude that the quality of the classification
is not high enough and that it is necessary to take additional action to improve the quality
of the classification.

4.7.2. Class Balancing Experiment

Figure 8 presents the results of the experiment for choosing the best SVM classifier
in the case of working with the approximation entropy AE when forming some of the 12
datasets used in the development of classifiers. In this case, the balancing of classes in
datasets was performed using the SMOTE algorithm.

Figure 8 uses the same notations as Figure 6.
As can be seen from Figure 8, only classifier C3 (with h = 2), classifier C7 (with h =

28) and classifier C8 (independent of h) developed on the basis of the modified datasets
were able to outperform classifier C1 (which has mean value of MacroF1−score equal to
0.910 with the standard deviation equal to 0.064) developed on the basis of the original
dataset by the mean value of the MacroF1−score. At the same time, classifier C7 (with
h = 28) outperformed classifier C3 (with h = 2) and classifier C8 (independent of h), if
we compare them by the mean values of MacroF1−score: for example, classifier C7 (with
h = 28) has a mean value of MacroF1−score equal to 0.914 (with the standard deviation
equal to 0.050); classifier C3 (with h = 2) has a mean value of MacroF1−score equal to
0.912 (while the standard deviation is 0.058); and classifier C8 (independent of h) has a
mean MacroF1−score of 0.913 (with a standard deviation of 0.061). It should be noted that
classifiers C9 (independent of h), C10 (independent of h), C11 (with h = 3) and C12 (with
h = 2) outperformed classifier C1 developed on the basis of the original dataset that was
not subjected to class balancing (Section 4.7.1) by the mean value of MacroF1−score. The
rest of the classifiers turned out to be inefficient compared to classifier C1 developed on
the basis of the original dataset that was not subjected to class balancing (Section 4.7.1)
and classifier C1 developed on the basis of the original dataset that was subjected to class
balancing (Section 4.7.2).



Mathematics 2023, 11, 792 35 of 39

Note that classifier C3 (with h = 2), classifier C7 (with h = 28) and classifier C8 (inde-
pendent of h) were developed on the basis of the datasets containing 41 (39 + 2), 68 (39 + 28
+ 1) and 40 (39 + 1) features, respectively.

It is obvious that preference should be given to the classifier which has the highest
mean value of MacroF1−score: this is classifier C7 (with h = 28). However, it was developed
using the dataset with the greatest number of features among the three datasets discussed
above.

The dataset used in the development of classifier C7 (with h = 28) was obtained from
the original one (with 39 features) by adding one new feature formed on the basis of the
approximation entropy AE and 28 features obtained using the UMAP algorithm.

Alternatively, we can use classifier C3 (with h = 2) and classifier C8 (independent of h),
which are less accurate by the mean value of MacroF1−score, but developed from datasets
with fewer features.

It should be noted that the best classifiers, particularly classifier C3 (with h = 2),
classifier C7 (with h = 28) and classifier C8 (independent of h), outperformed all the best
classifiers proposed in Sections 4.6.1, 4.6.2 and 4.7.1 in terms of the main quality metrics.

From Figures 7 and 8, one can notice a decrease in the standard deviation of classifiers
in the case of using the SMOTE algorithm to balance classes in datasets.

Table 8 shows the main characteristics of classifier C1, as well as the best classifier,
namely, classifier C7 (with h = 28) with class balancing.

Table 8. Characteristics of SVM classifiers C1 and C7 (with h = 28) in the experiment with class
balancing.

Characteristic
Classifier

C1 C7 (with h = 28)

Number of features in the
dataset 39 68

gamma 1 0.7

C 0.4 0.7

MacroF1−score (mean/std) 0.910/0.064 0.914/0.050

Accuracy (mean/std) 0.977/0.015 0.978/0.012

MacroRecall (mean/std) 0.907/0.081 0.907/0.065

MacroPrecision (mean/std) 0.929/0.058 0.937/0.048

Training time (mean/std), s. 0.886/0.214 0.489/0.021

Quality metrics calculation
time (mean/std), s. 0.013/0.004 0.008/0.001

In the experiment under consideration, the use of the best classifier C7 (with h = 28)
made it possible to increase the mean value of the MacroF1−score by 0.004 compared to
the C1 classifier (with approximately the same standard deviations). It should be noted
that the training time and quality metrics calculation time during the testing in the case
of applying class balancing to the dataset has decreased approximately 1.8 and 1.6 times,
respectively, for classifier C7 (with h = 28), despite the increase in the number of features.

Analysis of the values of the classification quality metrics (Table 8), particularly the
values of the MacroRecall metric, allows us to conclude that the classification quality in
terms of the main metrics has increased.

5. Discussion

The results of the experiments with two machine learning algorithms such as kNN
and SVM showed the feasibility of modifying the original dataset by adding new features
based on the approximation entropy AE and fractal dimensions KFD and HFD, and also
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based on the UMAP algorithm, and sometimes by replacing the original dataset with the
results of applying the UMAP algorithm to it with the addition of new features based on
the approximation entropy AE and fractal dimensions KFD and HFD.

At the same time, due to the high imbalance of classes in the original dataset, it is
advisable to use class balancing algorithms and cost-sensitive algorithms. In the proposed
study, four class balancing algorithms were implemented (SMOTE, Borderline SMOTE-1,
Borderline SMOTE-2 and ADASYN). The Borderline SMOTE-1 algorithm for the kNN
classifier and the SMOTE algorithm for the SVM classifier were recognized as the best.
However, balancing classes using appropriate algorithms is associated with significant time
costs, so the goal of further research is to develop classifiers using cost-sensitive algorithms.

In the context of working with the kNN algorithm using the Borderline SMOTE-1
algorithm for class balancing, classifier C8 (independent of h) turned out to be the best.

The dataset used in the development of classifier C8 (independent of h) was obtained
from the original one by adding one feature based on approximation entropy AE. Thus,
the development of the kNN classifier was performed in 40-dimensional space (while the
original space was 39-dimensional).

In the context of working with the SVM algorithm using the SMOTE algorithm for
class balancing, classifier C7 (with h = 28) turned out to be the best.

The dataset used in the development of classifier C7 (with h = 28) was obtained
from the original one by adding new features obtained using the UMAP algorithm to the
original dataset with the dimension of the new space h = 28 and one feature based on the
approximation entropy AE. Thus, the development of the SVM classifier C7 (with h = 28)
was performed in 68-dimensional space (while the original space was 39-dimensional).

All 12 kNN classifiers developed on the basis of class-balanced datasets using the
Borderline SMOTE-1 algorithm outperformed the base classifier C1 developed on the
basis of the original dataset, in which features were compared to blood protein markers
(Figure 4).

Eight out of 12 SVM classifiers developed on the basis of class-balanced datasets using
the SMOTE algorithm outperformed the basic C1 classifier developed on the basis of the
original dataset, in which features were compared to blood protein markers. These are
classifiers C1, C3 (with h = 2), C7 (with h = 28), C8, C9, C10, C11 (with h = 3) and C12 (with h
= 2). Four out of 12 SVM classifiers developed on the basis of class-balanced datasets using
the SMOTE algorithm turned out to be even worse than the basic C1 classifier developed
on the basis of the original dataset. Such classifiers are C2 (with h = 36), C4 (with h = 11),
C5 (with h = 36) and C6 (with h = 36) (Figure 6).

The classifiers recognized as the best in Sections 4.6.1 and 4.7.1 outperformed the
classifier proposed in [10] in terms of the main quality metrics. However, it was decided to
use balancing algorithms in order to restore the balance of classes. The classifiers recognized
as the best in Sections 4.6.2 and 4.7.2 outperformed the classifier proposed in [10], as well
as the classifiers developed in Sections 4.6.1 and 4.7.1, in terms of the main quality metrics.
In general, it should be noted that the proposed approach to the formation of datasets by
generating new features using different tools with their subsequent combination and use
as a new dataset or as an addition to the original dataset turned out to be effective.

The best kNN classifier, C8, was developed based on the original dataset augmented
with a feature based on entropy approximation AE. The best SVM classifier, C7, was
developed based on the original dataset augmented with features based on the UMAP
algorithm and entropy approximation AE. The average values of metric MacroF1−score
used to assess the quality of classifiers during cross-validation increased by 16.138% and
4.219%, respectively, compared to the average values of this metric in the case when an
unbalanced original dataset was used in the development of classifiers of the same name.
The average values of metric MacroF1−score increased by 3.660% and 0.440%, respectively,
compared to the average values of this metric in the case when a balanced original dataset
was used in the development of the classifiers of the same name.
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One can assume that applying the population-based optimization algorithms to search
for optimal parameter values of the UMAP algorithm and optimal parameter values of
classifiers [58,62,63], working with different formulas for calculating the loss function
in the UMAP algorithm [32], entropy and fractal dimension, as well as ideas of hybrid
classifiers [34] can ultimately improve the quality of data classification.

6. Conclusions

During this research, we proposed a new approach to the development of datasets
used in the development of classifiers in the task of classifying ODs based on blood protein
markers. It was suggested to use the results from applying the UMAP dimensionality
reduction algorithm to the original dataset and the results of calculating the approximation
entropy AE and two fractal dimensions KFD and HFD as new features. In some cases,
new features can provide an improvement in the quality of classification with different
combinations between themselves or with the original dataset.

The goal of further research is to analyze the prospects for the development and
application of cost-effective algorithms in the development of classifiers in the problem
of classifying ODs based on blood protein markers. In addition, we plan to study the
possibilities of improving the quality of classification by using population optimization
algorithms for the values of parameters of the UMAP algorithms and classifier parameters,
and also to work with various formulas for calculating entropy and the fractal dimension.
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