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Abstract: The computation of ω-primality has been object of study, mainly, for numerical semigroups
due to its multiple applications to the Factorization Theory. However, its asymptotic version is less
well known. In this work, we study the asymptotic ω-primality for finitely generated cancelative
commutative monoids. By using discrete geometry tools and the Python programming language we
present an algorithm to compute this parameter. Moreover, we improve the proof of a known result
for numerical semigroups.
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1. Introduction

Let S be a commutative, cancellative, reduced and finitely generated monoid. These
conditions imply that S is isomorphic to a quotient of the form Np/ ∼M for some positive
integer p and some subgroup M of Zp (see (Chapter 3 [1])). A monoid is called cancellative
if for all a, b, c ∈ S such that a + c = b + c, a = b, and it is called reduced if S ∩ (−S) = {0}.

Problems involving non-unique factorization in atomic monoids and integral domains
have gathered much attention in the mathematical literature (see for instance [2] and
the references therein). Let S be a monoid, the ω-invariant, introduced in [3], is a well-
established invariant in the theory of non-unique factorizations, and appears also in the
context of direct-sum decompositions of modules [4]. This invariant essentially measures
how far an element of an integral domain or a monoid is from being prime (see [3]) and
it has been studied for several families of numerical semigroups (see, for instance, [5,6]).
There are also several algorithms for its computation (see [7]).

Associated with the ω-primality of an element a of a monoid S there is its asymptotic
version, the asymptotic ω-primality or ω-primality and denoted by ω(a). This parameter
has been object of study in several works, for instance, in [8], the ω-primality is studied
for numerical semigroups generated by two elements and it is given a formula for its
computation, and, in [9], it is computed for numerical monoids, but no other studies
provide methods to calculate this invariant for other types of monoids. Actually, the main
goal of this work is being able to give such procedure to compute it. The asymptotic ω-
primality of a monoid S with set of atoms A(S) = {a1, . . . , at}, denoted by ω(S), is defined
as the maximum of the set {ω(ai) | ai ∈ A(S)}. The definition of ω(a) is limn→∞ ω(na)/n.
Thus, we give a method such that the ω-primality of an element is computed using discrete
sets of points, but to compute the ω-primality it is necessary to use continuous sets of
points. Therefore, in this work, we see how to go from discrete to continuous sets and we
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give a method to compute this invariant in a huge class of finitely generated cancellative
monoids. Futhermore, the method uses a partition of Qp and performs its computations in
each of these subsets independently. Thus, this method is suitable of being parallelized.

We would like to thanks to the team of [10] for its support on doing these computations.

2. Preliminaries and Notations

All monoids appearing in this work are commutative. For this reason, in the sequel
we omit this adjective.

Let S be a commutative, cancellative, reduced (without units) and finitely generated
monoid. By [1], there exists M a subgroup of Zp such that S is isomorphic to Np/ ∼M . For
sake of simplicity, we will identify S with Np/∼M. This group is finitely generated and,
since S has no units, it verifies that M ∩Np = {0}. Furthermore, every finitely abelian
group M is isomorphic to a subgroup of Zd1 × · · ·Zdr × Zk where di ∈ Z and di | di+1.
Therefore M is determined by a set of equations of the form:

a11x1 + · · · + a1pxp ≡ 0, mod d1,
...

ar1x1 + · · · + arpxp ≡ 0, mod dr,
a(r+1)1x1 + · · · + a(r+1)pxp = 0,

...
a(r+k)1x1 + · · · + a(r+k)pxp = 0,

and, therefore, every monoid S is determined by the set of equations of M.
If i ∈ {1, . . . , p}, then ei is the element of Np having all its coordinates equal to

zero except the ith which is equal to 1. For every (δ1, . . . , δp) ∈ Qp its length is de-
noted by ||(δ1, . . . , δp)|| = ∑

p
i=1 |δi| and, as usual, we denote its maximum norm by

||(δ1, . . . , δp)||∞ = maxi∈{1,...,p}{|δi|}. With this norm, we set the distance between two
points in Qp as d(x, y) = ||x− y||∞.

The usual cartesian product order ≤ on Qp is defined as follows: λ, µ ∈ Qp verify
λ ≤ µ if and only if µ − λ ∈ Qp

≥. Another map we use is Π : Qp → Qp
≥ defined as

Π(∑
p
i=1 λiei) = ∑λi>0 λiei, where ei is the element of Qp having all its coordinates equal to

zero except the ith which is equal to one.
Denote by ϕ : Np → Np/∼M the projection map. For every A ⊂ Np/∼M denote by

Z(A) the set ϕ−1(A). Since S is a reduced semigroup, for every a ∈ S, Z({a}) is finite. For
all a ∈ S the set Z(a + S) is an ideal of Np, that is, if x ∈ Np and y ∈ Z(a + S), then x + y
belongs to Z(a + S). Example 1 shows a graphical representation of the set Z(a + S).

Example 1. Let S = 〈5, 7〉 be a monoid and 100 ∈ S. Figure 1 represents the ideal Z(100 + S).

Lemma 1. Let a ∈ S = Np/ ∼M and γ ∈ Z(a). The sets Z(a + S), ((γ + M) + Np) ∩ Np,
Π((γ + M) +Np), and Π(γ + M) +Np are equal.

Proof. It is straightforward that ((γ + M) +Np)∩Np = Π((γ + M) +Np) = Π(γ + M) +
Np.

Let x ∈ Z(a+ S). There exists δ ∈ Np such that x ∼M γ+ δ; therefore, x− (γ+ δ) ∈ M,
and γ + x − (γ + δ) = x − δ ∈ γ + M. Since x = (x − δ) + δ and x ∈ Np, x belongs to
((γ + M) +Np) ∩Np.

Assume that x ∈ ((γ + M) +Np) ∩Np. This implies that there exists γ′ ∈ γ + M and
δ ∈ Np such that x = γ′ + δ. Thus x ∼M γ + δ, and since γ + δ ∈ Z(a + S), x is also in
Z(a + S).

Given a monoid S, we define the following binary relation:

a �S b if b = a + c for some c ∈ S.
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Clearly �S is reflexive and transitive. Moreover, if a �S b, then a + c �S b + c for all
c ∈ S. With this notation, a + S = {b ∈ S | a �S b}.

Figure 1. Representation of Z(100 + S).

Factorization-theoretic notions are usually defined for multiplicative monoids, but we
use additive notation for our aim. In this way, the notion of “divisibility” is the same as
being “less than” with the order �S. So, if a, b ∈ S, then a divides b (denoted by a|b) if and
only if a �S b.

An element a ∈ S is called irreducible if there is no b ∈ S fulfilling b|a. The set of
irreducible elements in S is denoted by A(S). When A(S) is the minimal generating set
of S, the monoid S is atomic. In [11], it is proved that every finitely generated cancelative
monoid is atomic. In this way, every concept concerning factorization properties such as
the ω-primality is well-defined for the monoids appearing in this work.

Definition 1 (See Definition 1.1 [8]). Let S be an atomic monoid with set of units S× and set of
irreducibles A(S). For s ∈ S \ S×, we define ω(x) = n if n is the smallest positive integer with
the property that whenever x|(a1 + · · ·+ at), where each ai ∈ A(S), there is a T ⊆ {1, 2, . . . , t}
with |T| ≤ n such that x|∑k∈T ak. If no such n exists, then ω(s) = ∞. For x ∈ S×, we define
ω(x) = 0.

The following result appearing (Proposition 3.3 [12]), and (Algorithm 16 [13]), give us
the key for computing the ω-primality in finitely generated monoids.

Lemma 2. Let S = Np/∼M be a finitely generated atomic monoid and x ∈ S. Then ω(x) is equal
to max{||δ|| | δ ∈ minimals≤(Z(x + S))}.

We illustrate in an easy example how this lemma works.

Example 2. We continue with Example 1. In this case, we have that minimals≤(Z(100+ S))} =
{(15, 0), (6, 10), (13, 5), (20, 0)}. The lengths of these points are 15, 16, 18 and 20, respectively.
Therefore, ω(100) = 20.

The asymptotic version of the ω−primarity is defined as follows.

Definition 2. Let S be an atomic monoid and x ∈ S \ {0}, then the asymptotic ω-primality of x is
the limit ω(x) = limn→+∞

ω(nx)
n .

By (Lemma 3.3 [14]), the function ω is subadditive, that is, ω(a + b) ≤ ω(a) + ω(b)
for all a, b ∈ S. Thus, for every n, m ∈ N, ω((n + m)a) ≤ nω(a) + mω(b). Fekete’s Subad-
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ditive Lemma (see [15]) states that for every subadditive sequence {zn|n = 1, . . . , ∞},
the limit limn→∞

zn
n exists and it is equal to inf zn

n or −∞. Since ω(x) ≥ 0 for every

x ∈ S \ {0}, the limit ω(x) = limn→∞
ω(nx)

n always exists for all x ∈ S. Besides, in
(Lemma 3.3 [14]), it is proven that ω(γ) ≤ ω(γ + γ′) ≤ ω(γ) + ω(γ′). Taking γ = γ′ we
have that ω(γ) ≤ ω(2γ) ≤ 2ω(γ).

The concept of asymptotic ω-primality of an element can be expanded to the semi-
group (see [3]).

Definition 3. Asymptotic ω-primality of S is defined as

ω(S) = sup{ω(x)|x ∈ A(S)}.

Given A(S) = {a1, . . . , ap} the minimal generating set of S, ω(S) is equal to max{ω(ai)|i ∈
{1, . . . , p}}.

Next result proves that the congruence equations from the defining equations of M
can be ignored.

Corollary 1. Let M and M′ be two subgroups of Zp with sets of defining equations

a11x1 + · · · + a1pxp ≡ 0 mod d1,
...

ar1x1 + · · · + arpxp ≡ 0 mod dr,
a(r+1)1x1 + · · · + a(r+1)pxp = 0,

...
a(r+k)1x1 + · · · + a(r+k)pxp = 0,

and 
a(r+1)1x1 + · · · + a(r+1)pxp = 0,

...
a(r+k)1x1 + · · · + a(r+k)pxp = 0,

respectively. If S = Np/∼M, S′ = Np/∼′M and φ : S′ −→ S such that φ([x]∼′M ) = [x]∼M then
ω([x]∼′M ) = ω([x]∼M ).

Proof. Let k be the least common multiple of d1, . . . , dr. Then ω([x]∼M ) = limn→+∞
ω(nx)

n =

limn→+∞
ω(nkx)

nk = ω([x]∼′M ).

3. Computing the Asymptotic ω-Primality

We introduce now some results that will allow us to show that the computation
of the asymptotic ω-primality can be done from some subsets of Qp instead of some
subsets of Zp using tools of linear programming. For every n ∈ N, if A is a set, we define
1
n A = { a

n | a ∈ A}.
Assume that a = [γ]∼M , that is, γ is an element in Z(a). By Lemma 1, ((γ + M) +

Np) ∩Qp
≥ = Z(a + S). Besides, for every n ∈ N the set ((nγ + M) +Np) ∩Qp

≥ is equal to
n(((γ + 1

n M) + 1
nN

p) ∩Qp
≥), and this implies that ω(na)/n coincides with(

max
{
‖x‖ | x ∈ minimals≤n

(((
γ +

1
n

M
)
+

1
n
Np
)
∩Qp

≥

)})/
n =

max
{
‖x‖ | x ∈ minimals≤

(((
γ +

1
n

M
)
+

1
n
Np
)
∩Qp

≥

)}
, (1)
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and denoting
(

γ + 1
n M

)
by Γn, then

ω(a) = lim
n→∞

max{‖x‖ | x ∈ minimals≤((Γn +
1
n
Np) ∩Qp

≥)}.

Define π : Qp → Qp
≥ as π(∑n

i=1 λiei) = ∑λi>0 λiei. The set (Γn + 1
nN

p) ∩Qp
≥ can be

expressed as π(Γn + 1
nN

p). Furthermore, if x ∈ minimals≤(π(Γn + 1
nN

p)), there exists
y ∈ Γn such that x = π(y). Thus,

ω(a) = lim
n→∞

max{‖x‖ | x ∈ minimals≤(π(Γn))}.

Among the properties of Γn, the following has to be marked:

1. If n1 divides n2, then Γn1 ⊂ Γn2 and Π(Γn1) ⊂ Π(Γn2). Furthermore, by (Lemma 3.3 [14]),
ω(na)/n ≤ ω(a), which implies that ω(a) ≤ ω(a).

2. If n1 divides n2, i.e., n2 = kn1, applying again (Lemma 3.3 [14]), ω(n2a) = ω(kn1a) ≤
kω(n1a). Thus, n1ω(n2a) ≤ n2ω(n1a) and therefore ω(n2a)

n2
≤ ω(n1a)

n1
.

3. For every n, Γn ⊂ Γ and ∪n≥1Γn = Γ. Besides, Π(Γn) ⊂ Π(Γ) and ∪n≥1Π(Γn) =

Π(Γ). Since Π(Γk) ⊂ Π(Γn!) for every k ≤ n, we also have ∪n≥1Π(Γn!) = Π(Γ).
4. The sequence {ω(n!a)

n! }n∈N is decreasing.

For every subset ∆ of {1, . . . , p} define the set

Q∆ = {(x1, . . . , xp) ∈ Qp | xi ≥ 0, ∀i ∈ ∆, and xi ≤ 0 ∀i ∈ {1, . . . , p} \ ∆}.

We use the following notation: for every ∆ ⊂ {1, . . . , p}, intersect Γn and Q∆ and
denote Γn ∩Q∆ by Γn

∆. Also define π : Q∆ → Qp
≤ and consider π(Γn

∆). Next proposition
gives us more information about the minimals elements of the set (Γn + 1

nN
p) ∩Qp

≥.

Proposition 1. The set ∪∆⊂{1,...,p}π(Γn
∆) is a subset of (Γn + 1

nN
p) ∩Qp

≥,

minimals≤((Γn +
1
n
Np) ∩Qp

≥) ⊂ ∪∆⊂{1,...,p}minimals≤π(Γn
∆), (2)

and

minimals≤((Γn +
1
n
Np) ∩Qp

≥) = minimals≤
(
∪∆⊂{1,...,p}minimals≤π(Γn

∆)
)

. (3)

Proof. We have that

minimals≤
(
∪∆⊂{1,...,p}minimals≤π(Γn

∆)
)
= minimals≤

(
∪∆⊂{1,...,p}π(Γn

∆)
)

.

If x ∈ ∪∆⊂{1,...,p}π(Γn
∆), there exits x′ ∈ Γn

∆ such that π∆(x′) = x. The difference
x− x′ verifies that all its coordinates are fractions of the form of k

n with k ∈ N; therefore,
x ∈ (x′ + 1

nN
p) ∩Qp

≥ ⊂ (Γn + 1
nN

p) ∩Qp
≥.

Let x be an element of minimals≤((Γn + 1
nN

p) ∩ Qp
≥). There exists y ∈ Γn

such that y ≤ x. Besides, there exists ∆ such that y ∈ Q∆. Since x ∈ Qp
≥, we have

π∆(y) ≤ x. Take y′ ∈ minimals≤π∆(Γn
∆) verifying y′ ≤ π∆(y). Then, y′ ≤ π∆(y) ≤ x.

Since π∆(Γn
∆) ⊂ (Γn + 1

nN
p) ∩Qp

≥, x = y′, and, thus, minimals≤((Γn + 1
nN

p) ∩Qp
≥) ⊂

∪∆⊂{1,...,p}minimals≤π∆(Γn
∆).

Now, since ∪∆⊂{1,...,p}minimals≤π∆(Γn
∆) ⊂ (Γn + 1

nN
p) ∩Qp

≥ and

minimals≤((Γn +
1
n
Np) ∩Qp

≥) ⊂ ∪∆⊂{1,...,p}minimals≤π∆(Γn
∆),
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we have

minimals≤((Γn +
1
n
Np) ∩Qp

≥) = minimals≤
(
∪∆⊂{1,...,p}minimals≤π∆(Γn

∆)
)

.

The computation of minimals≤π∆(Γn
∆) gives us the ω-primality of a when n = 1.

Since for different values of n we obtain different π∆(Γn
∆), we have to study how these sets

change when n changes. Moreover, as we are interested in getting the minimal elements of
these sets we need to ensure that there exist a bounded region where these elements are
found. In the following section, we see how this is solved for many cases using tools of
Linear Programming.

4. Computing the Asymptotic ω-Primality

Let 〈M〉 be the vectorial subspace of Qp generated by M. Note that the set γ + 〈M〉 is
an affine variety (affine subspace) of Qp, and 〈M〉 is defined by the set of homogeneous
equations of M. Take into account the following considerations:

1. For every ∆ the set Q∆ is a cone.
2. The sets γ+ 〈M〉 and Γ∆ = (γ+ 〈M〉)∩Q∆ ⊂ Qp are polyhedrons, and the projection

π∆(Γ∆) is also a polyhedron.
3. For every n ∈ N, Γn

∆ ⊂ Γ∆ and π∆(Γn
∆) ⊂ π∆(Γ∆).

4. In general, minimals≤π∆(Γn
∆) is not a subset of minimals≤π∆(Γ∆).

We illustrate these considerations in a couple of easy examples.

Example 3. Consider the monoid S = N2/∼M with M the subgroup of Z2 generated by
{(−10, 11)}, and γ = (15, 0). The values of ∆ are {∆1 = {1, 2}, ∆2 = {1}, ∆3 = {2}, ∆4 = ∅}
and:

• π∆1(Γ
1
∆1
) = {(15, 0), (5, 11)}, and π∆1(Γ∆1) is the segment (15, 0)(0, 33

2 ).
• π∆2(Γ

1
∆2
) = {(15, 0), (25, 0), (35, 0), . . . }, and π∆2(Γ∆2) is the ray with origin (15, 0).

• π∆3(Γ
1
∆3
) = {(0, 22), (0, 33), (0, 44), . . . }, and π∆3(Γ∆3) is the ray with origin (0, 33

2 ).
• π∆4(Γ

1
∆4
) = ∅, and π∆4(Γ∆4) = ∅.

Thus,

• minimals≤π∆1(Γ
1
∆1
) = {(15, 0), (5, 11)}, and minimals≤π∆1(Γ∆1) = (15, 0)(0, 33

2 ).
• minimals≤π∆2(Γ

1
∆2
) = {(15, 0)}, and minimals≤π∆2(Γ∆2) = {(15, 0)} (the same set of

minimals).
• minimals≤π∆3(Γ

1
∆3
) = {(0, 22)}, and minimals≤π∆3(Γ∆3) = {(0, 33

2 )} (they are not
equal).

• minimals≤π∆4(Γ
1
∆4
) = ∅, and minimals≤π∆4(Γ∆4) = ∅.

Previous sets can be computed easily from Figure 2.

Example 4. Let S be the monoid N4/ ∼M where M is given by the equations x + y + z + t =
0,−6x + 7y + 4z − 3t = 0, and let γ be the factorization (1, 1, 1, 1). In this case,
we have that ∪∆⊂{1,...,p}minimals≤π(Γn

∆) = {(0, 0, 20/3, 0), (0, 0, 0, 5), (4/5, 0, 16/5, 0),
(20/13, 32/13, 0, 0), (0, 0, 0, 8), (4/9, 0, 0, 32/9)} but minimals≤((Γn + 1

nN
p) ∩ Qp

≥) =
{(0, 0, 20/3, 0), (0, 0, 0, 5), (4/5, 0, 16/5, 0), (20/13, 32/13, 0, 0), (4/9, 0, 0, 32/9)}.

Note that, in general, Equality (2) does not hold as Example 4 shows. Moreover, from
Example 3, we have that minimals≤π∆(Γn

∆) is not, in general, a subset of minimals≤π∆(Γ∆).
Since Γn

∆ ⊂ Γ∆, it can only be assured that minimals≤π∆(Γn
∆) ⊂ π∆(Γ∆) and that for every

x ∈ minimals≤π∆(Γn
∆) there exists y ∈ minimals≤π∆(Γ∆) such that y ≤ x. Now, we prove

that increasing the value of n these sets of minimal elements get closer.
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Figure 2. Example M = 〈(−10, 11)〉 and γ = (15, 2).

Theorem 1. For all ∆ ⊂ {1, . . . , p} and for all ε > 0, there exists n0 ∈ N such that if n ≥ n0 and
x ∈ minimals≤π∆(Γn

∆), then d(x, minimals≤π∆(Γ∆)) < ε.

Proof. Let ∆ be a subset of {1, . . . , p}, and x be a minimal element of π∆(Γn
∆) ⊂ π∆(Γ∆).

There exists y ∈ minimals≤π∆(Γ∆) such that y ≤ x. The set π∆(M) is a finitely generated
subgroup of {µiei | µi ∈ Z and µi = 0 ∀i 6∈ ∆} ∼= Z|∆| and π∆(M)≥ = π∆(M) ∩ {µiei |
µi ∈ N and µi = 0 ∀i 6∈ ∆} is a submonoid of π∆(M). Since the monoid π∆(M)≥ is isomor-
phic to the intersection of a finitely generated group with N|∆|, it is a finitely generated
monoid. Assume that {s1, . . . , st} is a system of generators of the monoid π∆(M)≥, so any
si is the projection of an element s′i belonging to M. The element x can be expressed as
x = y + ∑t

i=1 λi
si
n with λi ∈ Q≥. If for example λ1 ≥ 1, we consider the element z = x− s1

n .
The element z verifies y ≤ z ≤ x. Since s1 = π∆(s′1) and x = π∆(x′) for any x′ ∈ Γn

∆, the ele-

ment z is equal to π∆(x′− s′1
n ), and belongs to π∆(Γn

∆). Thus, x is not minimal, which is a con-
tradiction and therefore every minimal element of π∆(Γn

∆) can be expressed as y+∑t
i=1 λi

si
n

with 0 ≤ λi < 1. This implies that, for every ε > 0 if n0(∆) = ∑t
i=1 ||si ||

ε , then for every
n ≥ n0(∆) and for every x ∈ minimals≤π∆(Γn

∆) we have d(x, minimals≤π∆(Γ∆)) < ε.
Since the set Σ = {∆|∆ ⊂ {1, . . . , p}} is finite, the theorem is satisfied for

n0 = max{n0(∆)|∆ ∈ Σ}.

Theorem 2. For every y ∈ minimals≤π∆(Γ∆), there exist σ : N → N strictly increasing such
that y ∈ minimals≤π∆(Γ

σ(n)
∆ ).

Proof. Assume that y = π∆(y′). The element y′ − γ belongs to 〈M〉. Fixed {m1, . . . , mr}
a generating set of M, there exist λ1, . . . , λr ∈ Q such that ∑r

1 λimi = y′ − γ. Let d be
the least common multiple of the denominators of λ1, . . . , λr. The element y′ belongs to
γ + 1

2nd M = Γ2nd
∆ for every n. Thus, y ∈ π∆(Γ2nd

∆ ). Since y ∈ minimals≤π∆(Γ∆) and

π∆(Γ2nd
∆ ) ⊂ π∆(Γ∆), the element y is in minimals≤π∆(Γ

σ(n)
∆ ) with σ(n) = 2nd.

Following corollary gives us the main computational characterization of this work.
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Theorem 3. Let S = Np/∼M and γ ∈ Np. If the set

Mγ = minimals≤
(
∪∆⊂{1,...,p}minimals≤π∆(Γ∆)

)
is equal to ∪∆⊂{1,...,p}minimals≤π∆(Γ∆), then

ω([γ]∼M ) = max
{
||x|| | x ∈ minimals≤

(
∪∆⊂{1,...,p}minimals≤π∆(Γ∆)

)}
.

Proof. Recall that for every x = (x1, . . . , xp) ∈ Qp, ‖x‖ = ∑
p
1 |xi| and ||x||∞ = max{|xi| |

i ∈ {1, . . . , p}}, and that for every x, y ∈ Qp, d(x, y) = ||x − y||∞. Using the triangle
inequality, it is not hard to prove that if x, y ∈ Qp, then |‖x‖ − ‖y‖| ≤ p · d(x, y).

The sets minimals≤π∆(Γ∆) are closed and bounded. The set

Mγ = minimals≤
(
∪∆⊂{1,...,p}minimals≤π∆(Γ∆)

)
is closed subset of ∪∆⊂{1,...,p}minimals≤π∆(Γ∆), so it is also closed and bounded. For this
reason, there exists x0 ∈Mγ such that x0 has maximum length, that is ‖x0‖ = max{‖x‖ |
x ∈Mγ}. We also have that there exists ∆ ⊂ {1, . . . , p} such that x0 ∈ minimals≤π∆(Γ∆),

and by Theorem 2, there exist σ : N→ N and n0 ∈ N such that x0 ∈ minimals≤π∆(Γ
σ(n)
∆ )

for every n ≥ n0. By Theorem 1, there exists n′0 such that for every n ≥ n′0 and every

x ∈ minimals≤π∆(Γ
σ(n)
∆ ), there exists y ∈ minimals≤π∆(Γ∆) such that d(x, y) < 1

n . Thus,

there exists τ : N → N such that x0 ∈ minimals≤π∆(Γ
τ(n)
∆ ) for every n, and for every

x ∈ minimals≤π∆(Γ
τ(n)
∆ ) there exists y ∈ minimals≤π∆(Γ∆) verifying that d(x, y) < 1

n .

The sets minimals≤π∆(Γ
τ(n)
∆ ) are finite; denote by xn the element having maximum

length and by yn an element minimals≤π∆(Γ∆) verifying that d(xn, yn) < 1
n . Note that

‖x0‖ ≤ ‖xn‖ and ‖yn‖ ≤ ‖x0‖ for every n ∈ N. Using the Equality (1), the sequence
{‖xn‖}n∈N has limit and it is equal to ω([γ]∼M ). Since |‖xn‖ − ‖yn‖| ≤ p · d(xn, yn) < p 1

n ,
the sequence {‖yn‖}n∈N also has limit equal to ω([γ]∼M ). Using now that ‖yn‖ ≤ ‖x0‖ ≤
‖xn‖, the limit ω([γ]∼M ) is equal to ‖x0‖.

From the above results and under certain conditions, we are ready to give a method
for computing the asymptotic ω-primality of a given element of a cancellative monoid.

Algorithm 1 admits a parallel version because each of the needed computations for step
1 can be done as separate procedures. In [16], a Python implementation of this algorithm
can be found.

Algorithm 1: Computing the asymptotic ω-primality of an element.
Input: A system of generators of M and γ ∈ Np.
Output: The asymptotic ω-primality of [γ]∼M , ω([γ]∼M ).

1. For every ∆ ⊂ {1, . . . , p} compute V∆ the set minimal vertices π∆(Γ∆).
2. Compute V = minimals≤ ∪∆⊂{1,...,p} V∆.
3. Return ω([γ]∼M ) = max{||v|| | v ∈ V}.

5. Two Particular Cases

In this section we focus on two particular cases that can be easily studied: rank(M) = 1
and rank(M) = p− 1.

5.1. Case rank(M) = 1

Let v be the generator of M and [γ] ∈ S. Since v = (v1, . . . , vp) has, at least, a negative
and a positive component, we can define the following Algorithm 2.
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Algorithm 2: Computing the asymptotic ω-primality of an element for the case
rank(M) = 1.

Input: v generator of M and γ ∈ Np.
Output: The asymptotic ω-primality of [γ]∼M , ω([γ]∼M )

1. I = {1, . . . , p}, W = ∅, v′ = v.
2. While all coordinates of v /∈ Np:

(a) Compute the minimum λ ∈ Q≥ such that there exist i ∈ I with γi + λv′i = 0.
(b) Set v′i = 0, I = I \ {i} and W = W ∪ {γ + λv′}.
(c) I = {1, . . . , p}, v′ = v.
(d) Repeat Step 2 and return max{||w|| | w ∈W}.

5.2. Case rank(M) = p− 1

If rank(M) = p − 1, then S is a numerical semigroup. This kind of structures has
been broadly studied (see for example [17]). In (Corollary 20 [9]), the authors state that if
S = 〈s1 < · · · < sq〉 then ω̄(s) = s

s1
. Note that with our construction we get the same result,

since in this kind of semigroups minimals≤(π(Γn)) are the intersection of the hyperplane
spanned by M and the axes. As M is defined as m1x1 + · · ·+ mn pn = 0, then an element
s ∈ S is given by m1x1 + · · ·+ mn pn = 0. Therefore, minimals≤(π(Γn)) = { s

s1
> · · · > s

sq
}

and ω̄(s) = s
s1

.

6. Conclusions

We have generalize the known results about the asymptotic ω-primality for any finitely
generated commutative cancelative monoids. We have described a discrete geometric
method using partitions Qn ∩Nn which can be used for computing other invariants. This
method has allowed us to develop an algorithm for computing the ω-primality for this
kind of semigroups under some assumptions. Moreover, this method allowed us to proof a
prevous known result in a more straightforward way.

7. Future Work

We are interested in being able to compute the asymptotic ω-primality in all the
possible cases not only under the hypotesis of Theorem 3. In order to achieve this goal, a
possible strategy may be to study different families of cancelative monoids as it has been
done for the ω-primality.
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