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Abstract: With the continuous development of financial markets worldwide to tackle rapid changes
such as climate change and global warming, there has been increasing recognition of the importance
of financial time series forecasting in financial market operation and management. In this paper,
we propose a new financial time series forecasting model based on the deep learning ensemble
model. The model is constructed by taking advantage of a convolutional neural network (CNN),
long short-term memory (LSTM) network, and the autoregressive moving average (ARMA) model.
The CNN-LSTM model is introduced to model the spatiotemporal data feature, while the ARMA
model is used to model the autocorrelation data feature. These models are combined in the ensemble
framework to model the mixture of linear and nonlinear data features in the financial time series. The
empirical results using financial time series data show that the proposed deep learning ensemble-
based financial time series forecasting model achieved superior performance in terms of forecasting
accuracy and robustness compared with the benchmark individual models.

Keywords: financial time series; convolutional neural network; long short-term memory; ensemble
forecasting model
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1. Introduction

With the rapid development of technology and transportation, global financial markets
are becoming increasingly linked and integrated. Financial markets are constantly evolving
and expanding, from the traditional equity market and energy market to the recently
emerging cryptocurrency market. Financial market prediction, in terms of financial time
series prediction, is one of the most important topics in the literature, as accurate forecasts
of financial market movement are the key variable to financial models in some important
research topics, such as derivative pricing and risk management [1]. The forecasting
of financial time series changes is essential to the operation and risk management of
financial markets. For example, the stock market is one of the most traditional financial
markets. Accurate forecasting and analysis of a stock index is important for trading
strategy formulation and portfolio risk management [2,3]. Bitcoin is the representative
and leading cryptocurrency of the fast-growing cryptocurrency market. These financial
instruments are known to exhibit highly fluctuating behavior due to their unique market
structure, including anonymity, decentralization, and consensus mechanism [4]. The
forecasting of its future movement is essential for market participants to avoid a high
level of investment risk during market trading [5]. Meanwhile, the carbon market has
been recognized as an effective way to control greenhouse gas emissions and rising global
temperatures, slow down the environmental degradation, and reduce greenhouse gas
emissions [6]. Carbon futures prices are new derivatives products that greenhouse gas
emission-generating companies can use to satisfy carbon control requirements [7,8]. The

Mathematics 2023, 11, 1054. https://doi.org/10.3390/math11041054 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11041054
https://doi.org/10.3390/math11041054
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8097-4435
https://doi.org/10.3390/math11041054
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11041054?type=check_update&version=1


Mathematics 2023, 11, 1054 2 of 15

forecasting of carbon futures prices movement is essential for government policy-making
and enterprise decision-making processes.

The prices of financial products in various financial markets, usually in the form of
financial time series, are subject to complex risk factors around the world, from typical
macroeconomic factors to recently intensifying climate changes [9,10]. As evidenced by
numerous examples of empirical research, they demonstrate different data characteristics,
such as long-term dependence, seasonal fluctuation, and cyclical fluctuation [11]. In
addition to financial market modeling through equilibrium theory and analysis, financial
market prediction through data analysis and modeling is one of the hot research areas.
Different approaches such as econometric theory, linear and nonlinear time series models,
and artificial intelligence models have been explored in the field over the years. Each
model has its unique assumptions and is designed to capture particular data features, in
terms of data modeling perspectives. For example, the ARMA model is designed to model
the autocorrelations in the data [12]. AI models such as neural networks and support
vector regression models have shown that modeling nonlinearity in data is important to
the modeling and forecasting of financial time series [13,14]. The hybrid approach has
shown that combining different models may lead to improved model fit and forecasting
accuracy [14,15]. The deep learning model has been applied extensively to the modeling of
nonlinear data features in time series data in the literature and has been considered to be
state of the art. The deep learning model is unique in that it targets specific data features
such as the temporal and spatial data characteristics, which is a very useful feature to be
taken advantage of during the modeling process.

In this paper, we propose a new ensemble forecasting model, ARMA-CNNLSTM,
based on the ARMA model and CNN-LSTM model. The ARMA model is used to model
the linear features of financial time series, and the CNN-LSTM model is utilized to model
the specific types of nonlinear data features, such as the spatiotemporal data feature for
financial time series. The final predicted values of ensemble models consist of the linear
predicted values of the linear ARMA model and nonlinear predicted values of the nonlinear
CNN-LSTM model. We have conducted a comprehensive evaluation of the predictive
performance of the ARMA-CNNLSTM model with the benchmark ARMA model and the
individual forecasting models (i.e., multilayer perceptron (MLP), convolutional neural
network (CNN), and long short-term memory (LSTM) network) in terms of the level and
directional predictive accuracy. The experiment results using the financial time series
data show that the ARMA-CNNLSTM model demonstrates the best level and directional
forecasting accuracy among the individual models evaluated.

The main contribution of this paper is the development of a new ensemble forecasting
model that captures different financial time series data characteristics by taking advantage
of the CNN-LSTM model and ARMA model. Different from the existing ensemble model,
which relied on an ANN and SVR to model nonlinear data features in general, the ARMA-
CNNLSTM ensemble model targets specific spatiotemporal data features by using the
CNN-LSTM deep learning model to simultaneously model the nonlinear spatial correlation
data features between the observations at neighboring time points and the long-term
temporal dependencies in the data, in addition to the linear autocorrelation data feature
modeled by the ARMA model. We found that since the deep learning model targets specific
data features, such as temporal and spatial data characteristics, based on the inherent model
assumptions, they serve as a very useful feature extraction and nonlinear modeling tool for
modeling the spatiotemporal data feature in time series movement, and it can contribute
to the more accurate modeling and forecasting of financial time series in the ensemble
forecasting framework.

The rest of this paper is organized as follows. Section 2 reviews the related works
of financial time series forecast modeling. Section 3 introduces the details of relevant
independent deep learning models and the construction of an ensemble forecasting model.
Section 4 presents the results from the empirical studies using financial time series data.
Detailed analysis and result interpretations are provided. Section 5 concludes the paper.
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2. Literature Review

Time series models such as the ARMA model have been widely used to analyze
linear data features such as autocorrelation in financial time series and have served as the
benchmark model. For example, Ibrahim et al. [16] attempted to forecast Bitcoin’s price
movement direction in the next 5 min and compared the state-of-art strategies in forecasting
Bitcoin’s price movement direction with several models, such as ARMA, Prophet, random
forest, lagged autoregression, and MLP. Chevallier [17] introduced the nonparametric
model to forecast the carbon spot price and carbon futures price and found that the
nonparametric model effectively reduced the prediction error compared with linear AR
models. Zhao et al. [18] presented a novel carbon futures price forecasting model named
the combination-MIDAS model, in which the best forecast model (i.e., MIDAS regression
model) outperformed the benchmark models of AR, MA, and TGARCH. The traditional
linear model is good at modeling the linear characteristics of financial time series but faces
difficulty in modeling the nonlinear characteristics of financial time series. There have
been some attempts to model nonlinear data features, but the complex nonlinear dynamics
frequently violate the model’s assumptions.

In recent years, artificial intelligence models such as neural networks and the recent
deep learning models have attracted a lot of attention for modeling nonlinear data fea-
tures [19]. They are often combined with econometric and time series models to improve
forecasting accuracy. For example, in a stock prices prediction study, Fenghua et al. [20]
proposed a hybrid prediction method that combined singular spectrum analysis (SSA) and
a support vector machine (SVM). This study found that the SSA-SVM model exhibited a
higher forecasting accuracy than the SVM model and EEMD-SVM model. Shen et al. [21]
proposed a GRU-SVM model that applied a gated recurrent unit (GRU) neural network and
support vector machine (SVM) model and compared the prediction performance with the
GRU model, SVM model, and DNN model. Their study demonstrated that the GRU-SVM
model had the best performance. For Bitcoin prices forecast research, Atsalakis et al. [22]
developed a hybrid neuro-fuzzy controller (PATSOS) and applied it to direction change
forecasting of the daily prices of Bitcoin. The empirical results showed its superior and
robust forecasting performance in the cryptocurrency market. Nagula and Alexakis [23]
proposed a hybrid forecasting model that could be applied to classification and regression
analysis, and this model was used to classify and analyze the potential indicators which
might affect Bitcoin price fluctuations and predict the futures prices of Bitcoin. In the
research of carbon futures prices forecasting, Zhu and Wei [10] employed a hybrid time
series predictive model comprising the ARIMA model and a least squares support vector
machine (LSSVM) to forecast carbon futures prices, and the obtained empirical results
revealed the superior predictive performance of the proposed hybrid forecasting model.
Sun et al. [24] developed a hybrid forecasting model consisting of variational mode decom-
position (VMD) and spiking neural networks (SNNs) in predicting carbon futures prices.
The experimental results showed the effectiveness of the proposed model in carbon prices
prediction. Fan et al. [19] proposed a carbon futures prices forecasting model based on a
multi-layer perceptron (MLP) network, which characterized the nonlinearity of the carbon
prices. Atsalakis [7] adopted the computational intelligence technique to build three predic-
tion methods for forecasting the price of carbon futures. The research results demonstrated
that the PATSOS model has the best prediction ability in terms of carbon futures prices fore-
casting. Zhu et al. [25] proposed a novel carbon futures prices prediction model comprising
empirical mode decomposition (EMD), a least squares support vector machine (LSSVM)
with the kernel function prototype, and particle swarm optimization. The empirical results
revealed that the proposed forecasting approach achieved a higher predictive accuracy
and stability in forecasting carbon futures prices. Zhu et al. [26] combined empirical mode
decomposition and evolutionary least squares support vector regression to propose a novel
carbon price forecasting model and compare the proposed forecasting model with other
alternative time series forecasting approaches. Their experimental results showed that the
proposed forecasting model achieved a superior predictive ability in the price prediction of
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carbon futures. The forecasting results using mainstream models are mixed and inconclu-
sive in the literature. Both linear and nonlinear data features in carbon prices data need to
be better exploited in the modeling process to improve forecasting accuracy.

In the meantime, the recent introduction of deep learning models, such as CNNs and
LSTM models, in numerous financial markets has shown their value as effective forecasting
tools in forecasting exercises in a wide range of financial markets, such as stock markets,
exchange markets, electricity markets, and crude oil markets [27–31]. Convolutional neural
networks (CNNs) and long short-term memory (LSTM) neural networks, as two typical
deep learning models, have attracted significant attention in recent years due to their
unique advantages in modeling the long-term time dependency of data characteristics and
local adjacent correlation features in time series. For example, Ni et al. [27] constructed a
C-RNN forecasting model based on the RNN and CNN models to improve the forecasting
accuracy of exchange rates. Long et al. [28] built a multi-filter neural network structure
consisting of convolutional and recurrent neurons to predict the movement of stock prices,
and the research results showed the superior performance of the proposed model in the
aspects of accuracy, profitability, and stability. Gonçalves et al. [29] used three kinds of deep
learning models—a deep NN classifier (DNNC), convolutional neural network (CNN), and
long short-term memory (LSTM) network—to predict the price movements in exchange
markets and test the different forecasting abilities of these deep learning models through
empirical research. Through analysis of the research results, the CNN model had the best
predictive performance. In the field of electricity price forecasting, a hybrid DE-LSTM
prediction model consisting of the LSTM model and differential evolution (DE) algorithm
was presented by Peng et al. [30], which confirmed its superior predictive performance
through electricity price forecast experiments in New South Wales, Germany and Austria,
and France. Cen and Wang [31] employed the LSTM model to build a prediction model
and forecast crude oil prices. The experimental results showed excellent performance from
the introduced model in terms of crude oil price prediction.

In the literature, quite a few works have attempted to explore the hybrid model-
ing of financial time series movement using different models. For example, Zhang [32]
utilized the advantages of the ARIMA and ANN models in linear and nonlinear model-
ing and combined the ARIMA and ANN models to improve the prediction accuracy of
time series data. Pai and Lin [14] established a hybrid model by combining the ARIMA
model and SVM model to capture the linear and nonlinear features of stock price fore-
casting, respectively, which presented a better predictive performance than the bench-
marks. Shafie-khah et al. [13] constructed a model composed of a wavelet transform, the
ARIMA model, and radial basis function neural networks (RBFNs) to identify the linear
and nonlinear features, which was applied to price forecasting of the electricity market.
Jeong et al. [33] employed the seasonal autoregressive moving average model (SARIMA)
and ANN model to build a new method to forecast and explore the annual energy cost
budget (AECB) in South Korea, where a higher prediction accuracy of power consump-
tion was confirmed based on the proposed model. In the study by Leonardo Ranaldi [5],
they built a “CryptoNet” system combined with an autoregressive multi-layer artificial
neural network (ARNN) simulator, which was utilized to extract the trends of Bitcoin and
Ether time series, and they found that the ARNN yielded a superior forecast accuracy
compared with the simple linear regression model. However, it remains an open question
how different models can be combined or ensembled to model the complex data features
in financial time series movements. It seems that very little research has taken advantage
of the different modeling power for different data features using both AI and traditional
time series models in financial time series forecasting.

3. The ARMA-CNNLSTM Ensemble Forecasting Model
3.1. Ensemble Forecasting Model

Inspired by the unique advantages of the LSTM model and CNN model in the extrac-
tion of nonlinear features and the merits of the ARMA model in the extraction of linear
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features, the main idea of the ARMA-CNNLSTM model is to model and forecast the time
series by applying individual models that can capture different data features (i.e., the
ARMA model and CNN-LSTM model) and assigning corresponding weights to each model.
The ARMA model and CNN-LSTM model are integrated into the ensemble framework
to predict financial time series movements. In the proposed ARMA-CNNLSTM model,
the linear ARMA model is used to capture the linear trend of the financial time series
data and make linear predicted values for the time series, The CNN model and LSTM
model are employed to build a nonlinear hybrid CNN-LSTM model, which is utilized
to simultaneously extract the nonlinear spatial correlation features between the observed
values at adjacent time points and the nonlinear long-term dependencies feature across
the entire historical observations and then create nonlinear predicted values for the time
series. At last, the final predicted values are constructed from the predicted values of
the individual ensemble models, such as the linear predicted value of the ARMA model
and the nonlinear predicted value of the CNN-LSTM model. They are calculated using
the predicted values of each model with the weight coefficients corresponding to each
model. In this paper, the linear predicted values and nonlinear predicted values are simply
averaged to calculate the total forecast.

In the ARMA-CNNLSTM model, the forecasts from the individual ensemble models
are assumed to be independent. The individual ensemble model assumes different data
characteristics such as autocorrelation, spatial and temporal correlation. These data features
may be classified into linear and nonlinear categories, which distinguishes them from each
other during the modeling process.

The relationship between the total forecast ŷ f and the individual ensemble forecast
ŷi is assumed to be linear. Suppose that there are n individual ensemble forecasts and for
each ensemble forecast in the total forecast of the weight wi, the final forecast ŷ f can be
calculated as in Equation (1):

ŷ f =
n

∑
i=1

ŷi ∗ wi (1)

3.2. Individual Ensemble Models

As evidenced in the extant literature, there have been numerous models developed
for financial time series forecasting. They need to be selected to construct an ensemble
model pool that is capable of modeling a wide range of data features and produce a pool of
individual ensemble forecasts yi.

As for the linear models, the representative ARMA model can be used to model the
autocorrelation data feature. The ARMA model combines the features from the autoregres-
sive (AR) model and moving average (MA) model to model the conditional means [34]. In
the ARMA model, the current value of the time series data is determined linearly with the
combination of its previous values and its previous white noise terms. The classical ARMA
model is defined as in Equation (2):

φ(L)rt = µ + θ(L)ut (2)

where

φ(L) = 1 − φ1L − φ2L2 − ... − φrLr

θ(L) = 1 + θ1L + θ2L2 + ... + θmLm

where rt is a financial time series. ut is an independent, identically distributed series of
random variables (RVs) ( i.e., white noise terms), µ is a constant, φ(L) represents the r-order
lag polynomial of autoregression (AR), θ(L) represents the m-order lag polynomial of the
moving average (MA), and L is the lag operator, which is used to convert the value of time
point t − 1 to the value of time point t. Given time series rt and integer k, the lag operator
is defined as Lkrt = rt−k.
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As for the nonlinear models, the widely popular deep learning model is the most
promising one. Many deep learning models have been developed in the literature as the
focus of machine learning modeling shifts from the increases in the number of neurons to
the increases in the depth of the layers, and they target specific data features during the
modeling process. The dominant ones include convolutional neural networks and long
short-term memory networks. The design of the network structure in the deep learning
model is flexible so that specialized layers in different deep learning models may be stacked
together to model the diverse range of data characteristics. CNN-LSTM is one such model
that contains layers for both the convolutional neural network and long short-term memory
models. The CNN-LSTM model is used to model the spatial temporal data feature (i.e., it
simultaneously extracts the nonlinear spatial correlation features between the observed
values at adjacent time points and the nonlinear long-term temporal dependencies features
across all historical observations). The typical CNN-LSTM network structure is illustrated
in Figure 1.

Figure 1. CNN-LSTM network structure.

The convolutional neural network (CNN) is one of the most popular deep learning
models, being widely used to classify image data. With the introduction of the convolution
operation in the convolutional layer, the CNN models the nonlinear relationship between
the local regions of the input data [35]. The typical CNN model consists of several layers,
such as the input layer, convolutional layer, pooling layer, flatten layer, fully connected
layer, and output layer. The input layer feeds the input data into the convolutional layer.
Then, the convolutional layer produces the feature maps containing targeted nonlinear
data patterns from the input observations using filters in the convolutional layer. Neurons
in the convolutional layer perform the convolution operations as in Equation (3) [28]:

Ft = σ(∑ w ∗ xt + b) (3)

where Ft is the feature maps output from the filters in the convolutional layer, xt denotes
the input matrix, w and b are the weight vector and bias vector of the filters, respectively, σ
is the activation function, and ∗ is the convolution operation.

The pooling layer is used to down-sample the feature maps generated by the previous
convolutional layer. The flatten layer is applied to flatten the multidimensional feature
maps’ shape into a one-dimensional shape and feed the transformed feature maps into
the fully connected layer [29]. Then, the fully connected layer computes the final results
according to these features. The calculation function is shown in Equation (4):

yt = φ(w ∗ Ft + b) (4)
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where yt is the final result at the current time point t, Ft is the extracted features from the
input data, w and b represent the weight vector and bias vector of the neurons in the fully
connected layer, respectively, and φ is the activation function of a fully connected layer.

The long short-term memory (LSTM) network is a recent development in the recurrent
neural network (RNN), which is known for its recurrent connection in the hidden layer
design [36]. It has a feedback mechanism among different layers and has been extensively
used to model the nonlinear temporal dependency patterns of time series. However, in
practice, the RNN may encounter the vanishing gradients problem and exploding gradients
problem in the training process of modeling the long-term dependencies of the time
series [37]. The LSTM model is designed to tackle these drawbacks of the traditional RNN
model. It has two loops in the LSTM hidden layer, which are the internal circulation system
and the external circulation mechanism. The external circulation mechanism enables LSTM
to recursively feed the LSTM hidden state at a prior time point in the network inputs and
exert an impact on the final forecasting value [29]. The main part of the internal circulation
system is the memory cell, which is a self-connecting unit. The internal circulation system
controls the recurrent flow and updates the cell state information in the entire modeling
process. The role of the memory cell is to store the temporal state information spanning long
time sequences, and it also can prevent the exploding and vanishing gradient problems [38].
The memory cell is a critical part of the memory block, and the memory block is the basic
structure of the hidden layer of LSTM. The memory block also includes three special
adaptive multiplicative gate units, which work together to regulate the internal information
flow in the memory block [37]. The input gate is used to decide which information from
the current input can be fed into the memory cell to update the cell state. The function
of the forget gate is to determine which information from the previous cell state could be
stored in the memory cell and which sh ould be discarded. The forget gate can also prevent
the value of the cell state from growing indefinitely. The role of the output gate is to control
which information in the memory cell should be filtered out to compute the predicted value
at the current time point. The values of the input gate, forget gate, and output gate as well
as the candidate value of the memory cell are calculated as in Equation (5):

it = σ(wi[xt, ht−1] + bi) (5)

gt = σ(wg[xt, ht−1] + bg)

ot = σ(wo[xt, ht−1] + bo)

Ĉt = tanh(wc[xt, ht−1] + bc)

where it, gt, ot, and Ĉt are the values of the input gate, forget gate, output gate, and
candidate cell state at time t, respectively. The parameters wt, wg, wo, and wc are the
weight matrices of the corresponding units, and bt, bg, bo, and bc are the bias vectors of the
corresponding units.

The state of the memory cell at the current time point t will be updated based on the
values of the aforementioned input gate, forget gate, candidate memory cell, and previous
memory cell state at time point t − 1 as in Equation (6):

Ct = gt ∗ Ct−1 + it ∗ Ĉt (6)

The symbol ∗ is the element-wise product, Ct−1 is the cell state at time point t − 1,
and Ct is the updated value of the cell state at the current time point t.

The output gate screens out the desired information from the memory cell, and the
ultimate output value of the LSTM model is obtained according to the exported hidden
state information from the memory block. The calculation processes of the hidden output
state and final predicted value of LSTM are shown in Equation (7):

ht = ot ∗ tanh(Ct) (7)

yt = φ(wyht + by)
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where ht is the value of the hidden state of the memory block, yt is the final predicted value
of the LSTM model, and wy and by are the weight matrix and bias vector of the output
layer of the LSTM model, respectively. In these above-mentioned equation, σ is the sigmoid
function, tanh is the hyperbolic tangent function, and φ is the activation function of the
LSTM output layer. The parameters of the LSTM model will be optimized by minimizing
the loss function using the backpropagation algorithm based on gradient descent in the
training process [39].

4. Empirical Studies
4.1. Data Description and Statistical Tests

In this paper, different financial time series data are used to conduct the empirical
evaluation of the predictive accuracy of the proposed ARMA-CNNLSTM forecasting
model. Due to data availability, these included weekly EU ETS data in the European
carbon trading market, the daily Shanghai composite index in the Chinese stock market,
and daily Bitcoin prices in the cryptocurrency market. The reasons for the choice of these
time series in these three representative financial markets are as follows. The European
Union Emission Trading System (EU ETS) is the largest financial trading market in the
world, with the total market value being about USD 148 billion, roughly 84% of the global
financial market [7,19]. The EU ETS has attracted the attention of a large number of market
participants such as investors, traders, and brokers around the world. The Shanghai stock
index is one of the major stock indexes in China, attracting the attention of a large number
of stock market participants, and its trading volume has grown rapidly in recent years.
It is of great significance to forecast the Shanghai stock index’s price movement. Bitcoin
has been regarded as one of the most important cryptocurrencies in the global virtual
currency market [4,40]. It has gradually attracted more and more attention from investors,
policymakers, and the media [22].

The data sources were netease finance, sandbag, and investing websites, which all
provided publicly available datasets. The EU ETS dataset covered the periods from 7 April
2008 to 21 September 2020, with a total of 645 weekly observations. The Shanghai Com-
posite index dataset covered the period from 4 January 2010 to 23 January 2020, which
contained 2447 daily observations. The Bitcoin dataset covered the period from 2 February
2012 to 8 August 2020, which contained 3107 daily observations. All datasets were split into
training and test datasets using the conventional 80:20 ratio to facilitate the model testing
and performance evaluations. The training set was used to train the parameters of different
models, and the testing set was utilized to test the predictive accuracy of different models
in out-of-sample forecasting exercises [37]. The performance of the models was evaluated
using mainstream predictive accuracy measures, such as the mean absolute error (MAE),
mean absolute percentage error (MAPE), root mean square error (RMSE), and directional
prediction statistic Dstat. The MAE, MAPE, and RMSE were used to measure the distance
between the predicted value and the actual value. The smaller the values for the MAE,
MAPE, and RMSE were, the closer the predicted value was to the actual value, and the
better the predicted performance of the forecasting model was Dstat measured the accuracy
of the forecasting models in predicting the direction of financial time series movement. The
larger the value of Dstat was, the more accurate the forecasting model was in predicting the
direction of financial time series movement. Both random walk (RW) and ARMA models
were used as the benchmark models in this paper.

The descriptive statistics and the p-values of the BDS test of independence and Jarque–
Bera test of normality are reported for the EU ETS financial futures prices, the closing value
of the Shanghai stock index, and the closing prices of Bitcoin in Table 1.
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Table 1. Descriptive statistics and statistical tests of three financial time series.

Dataset Mean Min Max Standard Deviation Skewness Kurtosis pBDS pADF

PEUETS 12.32 2.97 30.52 7.40 0.77 2.34 0 0.4685

PSSI 2801.7 1950.01 5166.35 529.38 0.75 4.53 0 0.001

PBitcoin 3028.11 4.22 19187 3847.12 1.15 3.25 0 0.5312

The results in Table 1 show that the distribution of the EU ETS financial futures prices,
Shanghai stock index, and Bitcoin prices deviated from the normal distribution, as the
kurtosis value deviates from 3. There was significant volatility in the financial time series
movement, indicated by the standard deviation value. We used the augmented Dickey–
Fuller (ADF) test, a popular nonstationarity test, to test for the stationarity property in
the financial time series data. The ADF test of the Shanghai stock index rejected the null
hypothesis, as its p-value of 0.001 was less than the cut-off value of 0.05. The original
financial time series was transformed using the first difference operation. The EU ETS
financial futures prices were not stationary, as the null hypothesis could not be rejected at a
p-value of 0.4685, and the Bitcoin closing prices were not stationary, as the null hypothesis
could not be rejected at a p-value of 0.5312, which was significantly higher than the cut-off
value of 0.05.

4.2. Results for In-Sample Model Fit

We searched for and determined the optimal parameters for the benchmark ARMA
model, individual model, and ARMA-CNNLSTM model. We applied these models to
forecast the financial time series using the validation set. The ARMA model was considered
the benchmark model in this paper since, until now there has been no conclusive evidence
that any econometric models consistently beat these two benchmark models [41]. It is
widely considered the most robust baseline model in the literature. There are several
hyperparameters for the MLP, CNN, and LSTM models, such as the number of filters in
the CNN layer, the number of hidden neurons in the LSTM hidden layer, the number of
neurons in the fully connected layer, the learning rate, and the training epochs. We used the
grid search method to search for the value of the optimal parameter. The lower and upper
bounds for the search space were as follows: filters (1, 10) and neurons (1, 100). In these
artificial intelligence models, the search scope of the hidden layers was from 1 to 2, and the
search scope of the neurons in each hidden layer was from 1 to 200. The rolling window
was set to five, which means that each sub-period was fed into the artificial intelligence
models containing five previous observations. This is equivalent to 5 trading days in a
week. To make a one-step-ahead prediction, the rolling windows scrolled forward one
step each time. The last 10% of the dataset in the training set was taken as the validation
set. Through the greedy search method, the optimal model structure was determined
by evaluating the RMSE values of different model structures in the validation set. We
illustrate the performance of the ARMA-CNNLSTM model using different parameters in
Figures 2–4.

The performance of the model errors can be seen clearly from Figures 2–4. When
different sets of parameters were used for the CNN and LSTM models, we used the
RMSE as the performance measure and adopted the minimization criteria. The parameters
with which the ARMA-CNNLSTM model generated the smallest MSE were chosen as
the optimal parameters. The optimal model parameters were as follows. Based on the
minimization of Akaike’s Information Criterion (AIC), the ARMA (1,1) model was selected
for EU ETS and Shanghai stock index while ARMA(1,0) was selected for Bitcoin. In the
prediction process, we set the rolling window size of the ARMA model equal to the amount
of training data, and the financial time series were predicted by scrolling forward one step
for each time of the rolling window.
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Figure 2. RMSE of ARMA-CNNLSTM forecasts using different model parameters in the validation
set of EU ETS financial time series forecasting.

Figure 3. RMSE of ARMA-CNNLSTM forecasts using different model parameters in the validation
set of Shanghai stock index forecasting.

Figure 4. RMSE of ARMA-CNNLSTM forecasts using different model parameters in the validation
set of Bitcoin closing prices forecasting.

For EU ETS, the network structure and parameters for the MLP model were set as follows:
dense layer (units = 78, activation = ReLU)–dense layer (units = 78, activation = ReLU)–
dense layer (units = 78, activation = ReLU)–dropout layer (0.5)–dense layer (units = 1). The
network structure and parameters for the LSTM model were set as follows: LSTM layer
(units = 86, activation = ReLU)–LSTM layer (units = 86, activation = ReLU)–dropout layer
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(0.5)–dense layer (units = 1). The network structure and parameters for the CNN were set as
follows: convolution layer (filters = 10, kernel size = 2, activation = ReLU)–convolution layer
(filters = 10, kernel size = 2, activation = ReLU)–convolution layer (filters = 10, kernel size
= 2, activation = ReLU)–pooling layer (max pooling, pooling size = 2)–flatten Layer–dense
layer (units = 81, activation = ReLU)–dropout layer (0.5)–dense layer (units = 1). The network
structure and parameters for the ARMA-CNNLSTM model were set as follows: CNN layer
(filters = 3, kernel size = 2, activation = ReLU)–CNN layer (filters = 3, kernel size = 2, activation
= ReLU)–CNN layer (filters = 3, kernel size = 2, activation = ReLU)–pooling layer (max pooling,
pooling size = 2)–flatten layer–LSTM layer (units = 20, activation = ReLU)–dropout layer
(0.5)–dense layer (units = 10, activation = ReLU)–dropout layer (0.2)–dense layer (units = 1).

For Shanghai stock index, the network structure and parameters for the MLP model
were set as follows: dense layer (units = 80, activation = ReLU)–dense layer (units = 80, acti-
vation = ReLU)–dropout layer (0.5)–dense layer (units = 1). The network structure and pa-
rameters for the LSTM model were set as follows: LSTM layer (units = 3, activation = ReLU)–
dropout layer (0.5)–dense layer (units = 1). The network structure and parameters for the
CNN were set as follows: convolution layer (filters = 8, kernel size = 4, activation = ReLU)–
pooling layer (max pooling, pooling size = 2)–dense layer (units = 75, activation = ReLU)–
dropout layer (0.5)–dense layer (units = 1). The network structure and parameters for
the ARMA-CNNLSTM model were set as follows: CNN layer (filters = 3, kernel size = 2,
activation = ReLU)–CNN layer (filters = 3, kernel size = 2, activation = ReLU)–CNN layer
(filters = 3, kernel size = 2, activation = ReLU)–pooling layer (max pooling, pooling size
= 2)–flatten layer–LSTM layer (units = 72, activation = ReLU)–LSTM layer (units = 72,
activation = ReLU)–dropout layer (0.5)–dense layer (units = 10, activation = ReLU)–dropout
layer (0.2)–dense layer (units = 1).

For Bitcoin, dense layer (units = 61, activation = ReLU)–dense layer (units = 61, activa-
tion = ReLU)–dense layer (units = 61, activation = ReLU)–dropout layer (0.5)–dense layer
(units = 1). The network structure and parameters for the LSTM model were set as follows:
LSTM layer (units = 31, activation = ReLU)–LSTM layer (units = 31, activation = ReLU)–
dropout layer (0.5)–dense layer (units = 1). The network structure and parameters for the
CNN were set as follows: convolution layer (filters = 5, kernel size = 2, activation = ReLU)–
convolution layer (filters = 5, kernel size = 2, activation = ReLU)–convolution layer
(filters = 5, kernel size = 2, activation = ReLU)–pooling layer (max pooling, pooling size = 2)–
dense layer (units = 73, activation = ReLU)–dropout layer (0.5)–dense layer (units = 1). The
network structure and parameters for the ARMA-CNNLSTM model were set as follows:
CNN layer (filters = 5, kernel size = 2, activation = ReLU)–CNN layer (filters = 5, kernel
size = 3, activation = ReLU)–pooling layer (max pooling, pooling size = 2)–flatten layer–
LSTM layer (units = 17, activation = ReLU)–dropout layer (0.5)–dense layer (units = 10,
activation = ReLU)–dropout layer (0.2)–dense layer (units = 1). For the MLP, CNN, LSTM,
and ARMA-CNNLSTM models, the learning rate was 0.001.

4.3. Results for Out-of-Sample Model Performance Evaluation

With the determined optimal parameters, the benchmark model, as well as the ARMA-
CNNLSTM model, were applied to the forecasting of financial time series using the out-of-
sample dataset. The performances of these models were compared and evaluated. Table 2
shows the predictive performances of different forecasting models for the EU ETS financial
time series based on different evaluation criteria. Table 3 shows the predictive performances
of different prediction models based on different evaluation criteria for the Shanghai stock
index. Table 4 shows the predictive performance of different prediction models based on
different evaluation criteria for Bitcoin’s closing prices.
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Table 2. Comparison of the predictive abilities of different models for EU ETS financial time series.

Model RMSE MAPE MAE Dstat

Random walk 1.2399 0.0415 0.9151 0.4651

ARMA 1.2379 0.0413 0.9122 0.5581

MLP 1.3771 0.0466 1.0217 0.5039

LSTM 3.9867 0.1552 3.3696 0.5504

CNN 1.7748 0.0621 1.3474 0.4884

ARMA-CNNLSTM 1.2195 0.0400 0.8837 0.6047

Table 3. Comparison of the predictive abilities of different models for Shanghai stock index time series.

Model RMSE×10−2 MAPE MAE×10−2 Dstat

Random walk 1.7173 5.6231 1.271 0.3517

ARMA 1.2004 1.3853 0.8669 0.7526

MLP 1.2175 1.2291 0.8727 0.7321

LSTM 1.2022 1.0637 0.8655 0.7464

CNN 1.2061 1.2057 0.8679 0.7403

ARMA-CNNLSTM 1.1964 1.1479 0.861 0.7423

Table 4. Comparison of the predictive abilities of different models for Bitcoin’s closing prices.

Model RMSE MAPE MAE Dstat

Random walk 323.8311 0.0257 199.1424 0.5314

ARMA 324.6788 0.0258 199.5287 0.4928

MLP 341.0648 0.028 217.3472 0.5153

LSTM 476.8439 0.0423 327.0795 0.5395

CNN 378.66 0.0315 243.013 0.5298

ARMA-CNNLSTM 323.7705 0.0254 197.04 0.5556

The results in Table 2 show that the ARMA-CNNLSTM model achieved a better
predictive performance than all the other benchmark models and individual models in
terms of the four predictive performance measures. The RMSE, MAPE, and MAE of the
ARMA-CNNLSTM model were all lower than those of the random walk and ARMA
models, which indicates that the ARMA-CNNLSTM model produced financial time series
forecasts with a higher level of forecasting accuracy than the mainstream models. The
statistical measure Dstat for the ARMA-CNNLSTM model forecasts was higher than those of
all the other models, which indicates that the forecasts from the ARMA-CNNLSTM models
provided a higher level of directional forecasting accuracy than those of the benchmark
models as well as the mainstream models. From the results in Table 3, the RMSE, MAPE,
and MAE of the ARMA-CNNLSTM model were lower than the random walk, ARMA, CNN,
and LSTM models, indicating the ARMA-CNNLSTM model for the Shanghai stock index
time series outperformed the benchmark and individual models with a higher forecasting
accuracy. The statistical measure Dstat for the ARMA- CNNLSTM model forecasts was
higher than for the CNN model, MLP model, and random walk model, which shows
that the ARMA-CNNLSTM model had a better direction prediction accuracy than the
mainstream models. The results in Table 4 indicate that the ARMA-CNNLSTM model
showed a better forecasting accuracy for Bitcoin’s closing prices than the benchmark and
mainstream models, based on the lower values for the RMSE, MAPE, and MAE of the
ARMA-CNNLSTM model. The statistical measure Dstat for the ARMA-CNNLSTM model
forecasts was higher than those for the benchmark models as well as the mainstream



Mathematics 2023, 11, 1054 13 of 15

models, which illustrates that the ARMA-CNNLSTM model provided a higher level of
directional forecasting accuracy than those of all the other models.

Interestingly, we found that neither the CNN nor LSTM forecasts dominated the
benchmark random walk and ARMA models. This shows that as these two models focus
on certain data features, neither of these two deep learning models can provide an adequate
fit for financial data with complex data features. They only model certain aspects of the
data characteristics with their unique assumptions. The mixture of diverse data features
in the empirical data requires the integration and combination of different deep learning
models, such as the proposed ARMA-CNNLSTM model in the ensemble framework. The
worse performance of the individual CNN and LSTM models could also be attributed to
the suboptimal hyperparameter optimization process. In the literature, hyperparameter
optimization is a difficult research problem. Although more advanced optimization models
such as genetic algorithms have been introduced to search for the optimal hyperparameters,
there is a lack of consensus on the best optimization model in the literature. The simple
averaging method serves as a robust linear ensemble method and has been adopted in this
paper to construct the ARMA-CNNLSTM model.

Meanwhile, the improved forecasting accuracy of the ARMA-CNNLSTM model was
attributed to the introduction of deep learning models focusing on different data features so
that the forecasts from the ARMA and CNN-LSTM models assumed different data features
and had a higher level of independence. forecasts from the ARMA and CNN-LSTM models
to average the individual forecasts would reduce the estimation bias and improve the
forecasting accuracy. The ensemble model incorporates the partial information captured by
the individual deep learning models and econometric models effectively.

5. Conclusions

In this paper, we proposed a new ensemble forecasting model based on the ARMA
model and CNN-LSTM model. We found that different deep learning models target
different data characteristics with their unique assumptions and network structure, and
they are better at recognizing and modeling different nonlinear data features, such as spatial
and temporal data features. The ensemble of individual forecasts of both the ARMA and
CNN-LSTM models effectively reduced the estimation bias and improved the forecasting
accuracy. In this research, the ARMA-CNNLSTM model had the best predictive ability in
financial time series forecasting when it was compared with the baseline models.

The work in this paper has profound implications. In this paper, the ARMA-CNNLSTM
model was applied extensively to three representative financial time series with widely
different volatility levels and characteristics. It achieved consistent, superior performance.
This demonstrates the robustness of the ARMA-CNNLSTM model and the potential of
this model to be generalized beyond the dataset investigated in this paper to a diverse
range of financial time series in practice. What is more, our results imply that by modeling
different financial time series data features with specific deep learning models, it is possible
to improve the predictive capability of the forecasting model. Although the deep learning
models demonstrated overwhelming success in modeling the nonlinear data features, we
found through a comprehensive comparative empirical study that they may not model the
complex data features well, possibly due to the difficulty of setting the correct hyperpa-
rameters for the mixture of linear and nonlinear data features during the model’s tuning
process. The introduction of the deep learning model into the ensemble framework can
contribute significantly to the understanding and modeling of the mixture of data features.
Given the rapid development in deep learning fields, it is expected that the modeling accu-
racy of the nonlinear data features, such as the spatiotemporal data features, will improve
continuously, and this would also lead to improvement in the ensemble model. Therefore,
future research can be directed toward this aspect, where both the introduction of a more
innovative deep learning model and the design of a new optimization algorithm for the
ensemble model offer promising approaches to forecasting performance improvement.
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