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Abstract: The rapidly growing number of COVID-19 infected and death cases has had a catastrophic
worldwide impact. As a case study, the total number of death cases in Algeria is over two thousand
people (increased with time), which drives us to search its possible trend for early warning and
control. In this paper, the proposed model for making a time-series forecast for daily and total
infected cases, death cases, and recovered cases for the countrywide Algeria COVID-19 dataset is a
two-layer dropout gated recurrent unit (TDGRU). Four performance parameters were used to assess
the model’s performance: mean absolute error (MAE), root mean squared error (RMSE), R2, and mean
absolute percentage error (MAPE). The results generated with TDGRU are compared with actual
numbers as well as predictions with conventional time-series techniques, such as autoregressive
integrated moving average (ARIMA), machine learning model of linear regression (LR), and the time
series-based deep learning method of long short-term memory (LSTM). The experiment results on
different time horizons show that the TDGRU model outperforms the other forecasting methods that
deliver correct predictions with lower prediction errors. Furthermore, since this TDGRU is based on
a relatively simpler architecture than the LSTM, in comparison to LSTM-based models, it features a
significantly reduced number of parameters, a shorter training period, a lower memory storage need,
and a more straightforward hardware implementation.

Keywords: COVID-19; LSTM; TDGRU; traditional regression models; time series analysis
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1. Introduction

The world has witnessed social and economic disruption in the year 2020 due to the
emergence of a viral disease called COVID-19, similar to SARS-CoV, the virus responsible
for SARS (severe acute respiratory syndrome) [1]. This respiratory illness which was first
aroused in December 2019 in the city of Wuhan, China, has touched until now about
88 million persons worldwide, leading to more than 1.9 million deaths [2]. Immediately
after the detection of the first case, and without effective medications or vaccinations,
countries started to implement prevention measures, such as travel restrictions, quarantines,
social distancing, testing, and total or partial containment, to limit the spread of this disease
and avert the collapse of their health systems [3]. Simultaneously, multiple types of research
were launched to comprehend the clinical and population-based characteristics of incurable
disease. One of the important chapters in the comprehension of COVID-19 disease is the
epidemiological component. Thus, the epidemiology of the disease allows determining
multiple indicators, such as the rate of mortality, fatality, and recovery. It allows the
comprehension of its spread and prediction of the epidemic evolution and consequently
adopts and evaluates preventive measures [4]. In this way, epidemiological, mathematical,
and statistical models are of great importance in the prediction of epidemic trends. In the
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context of the COVID-19 epidemic, it has caused widespread upheaval in many fields,
for example, academia [5], the medical sector [6,7], etc.

Therefore, different models are employed to speculate on its future development.,
to determine the peak, the end time, and the final size of the epidemic [8–10]. Among these
models, researchers employed the common epidemiological models such as susceptible
infected recovered (SIR) [11]. SEIR models [12] and various variants, as well as other statis-
tical approaches, such as the linear regression algorithms [13], models for data series [14]
and machine learning (ML) or AI [15]. ARIMA is a time series model among the traditional
machine learning regression methods that could predict future events using aggregating
past and current data [16,17]. These models have successfully implemented economics,
finance, climatology, hydrology engineering, and epidemiology [18]. In epidemiology,
ARIMA was widely and efficiently used in simulating several infectious diseases, such
as tuberculosis [19], influenza disease [20], SARS [21], HIV [22], and hemorrhagic fever
with renal syndrome [23]. Additionally, this model was extensively utilized to forecast the
COVID-19 trend in many nations [24–26]. One-layer ANN [27], conventional CNN [28,29],
Elman neural network [30], nonlinear-AR-ANN (NARANN) [31], standard recurrent neu-
ral network (RNN) [32], and its variants LSTM [33] and GRU, LR [34], LASSO regression
model, exponential smoothing method (ESM) [35], support vector regressor (SVR) [36],
auto-encoder and variational auto-encoder (AE-VAE) [37] models [38] are all traditional
ML models which were employed to forecast the coronavirus evolution. These models
use historical data to predict future changes in domains such as image analysis, speech
recognition, and health informatics [39]. Additionally, Fu et al. [40] proposed the use
of an artificial neural network (ANN) for modeling the confirmed cases and fatalities
caused by COVID-19, and stated that the approach was successful. In the current context
of COVID-19, machine learning models have not only been used to predict the epidemic
evolution but also used in diagnosis and prognosis, patient outcome prediction, drug
development, vaccine discovery, false news prediction, and future mutation rate of the
novel coronavirus [41].

Multiple studies have been conducted using ARIMA and various artificial intelligence
models since the COVID-19 outbreak started. A few studies were used to predict the epi-
demic trend in different countries [42], while others compared these models’ performance
with other models. Some of these comparative studies are cited below. Certain authors
have compared the performance of machine learning with the SEIRD model. Bedi [43]
reported that for LSTM and SEIRD, in India for a period of thirty days, the models’ pre-
dicted accuracy was the same in comparison to the computed fatality and recovery rate.
Still, some differences were observed at the state level. In the same way, Liu [44] reported
that the SEIRD, LSTM, and GRU models have comparable performance and remarkable
prediction capabilities. Other authors compared the performance of ARIMA with other
machine learning models. Kirbas [45] found that for predicting COVID-19 coronavirus
cases in eight European nations, ARIMA is more accurate than NARNN but less accurate
than the LSTM model, while Shahid [46] reported that ARIMA is a less accurate model than
other machine learning models, such as Bi-LSTM, LSTM, GRU, and SVR, in the prediction
of infected cases, deaths, and recoveries in the top ten most affected countries.

In the same way, Ibrahim [47] reported that Weibull-based LSTM (W-LSTM) showed
satisfactory performance in predicting the spread and severity of COVID-19 in 50 countries
and outperformed both LSTM and ARIMA models. Azarafza [48] used the LSTM model
to anticipate the propagation of the COVID-19 virus in Iran, and its effectiveness was
contrasted to that of other deep neural networks, such as the recurrent neural network
(RNN), the seasonal autoregressive integrated moving average (SARIMA), Holt-Winter’s
exponential smoothing (HWES), and the moving averages (MA) models. The authors
claimed that the LSTM model surpasses the competition and generates fewer inaccurate
results. Elsheikh et al. [26] reported that ARIMA performs better than NARNN but
less than LSTM in forecasting COVID-19 in Saudi Arabia. In another work [49], ARIMA
was compared with five other statistical approaches using a wide variety of statistical
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methods, that is, ridge regression, cubist regression, support vector regressor, and random
decision forests, to make predictions on the spread of COVID-19 in Brazil. The authors
showed that it has better prediction accuracy than ridge regression, cubist recurrence,
and random decision forests, and lower than layering learning and support vector regressor.
Papastefanopoulos et al. [1] compared ARIMA to various methods of time series predictions
of the spread of COVID-19 in the worst-hit regions using a number of different methods,
such as the Holt-Winters additive model (HWAAS), the TBAT and N-Beats. The authors
showed that ARIMA and TBAT showed the best performance in terms of root mean
square error (RMSE). At last, other works compared the performance of different machine
learning models: Chatterjee et al. [50] made predictions on the evolution of COVID-19 in
the main 17 countries using LSTM models. The authors concluded that no single model is
100% accurate; however, the performance of multilayer LSTM models is inferior to that of
the vanilla, stacked, and bi-LSTM models. In the study of Zeroual [15], standard RNN and
its variants, LSTM, Bi-LSTM, and GRUs, are employed for the short-term forecasting of
COVID-19 cases in 6 countries. They demonstrated that VAE performs better than the other
models. Guo et al. proposed using an ANN to simulate COVID-19 fatalities and confirmed
cases. Between January 20 and November, samples on verified cases and fatalities were
compiled. In the same way, Shastri [51] collected relatively brief COVID-19 instances in
India and the USA for 1 month and compared the results to the outcomes of three LSTM
versions. According to their findings, the multi-layer LSTM model outperformed the other
models. Inversely, Arora [4] compared convolutional and stacked LSTM algorithms, and it
was determined that Bi-LSTM is superior for COVID-19 projection in India due to its lower
mean range error. Another work compared the performance of three machine learning
models for new deaths and new cured cases in Wuhan. The findings showed that Elman
neural networks and support vector machines (SVMs) outperformed LSTM in predicting
the trajectory of cumulative fatalities and cumulative cured cases [11].

There are many machine learning methods that can be used for prediction. Machine
learning models train their networks by optimizing the parameters and hyperparameters,
and there are limitations of computing power and execution time according to accuracy
and relevance. GRU is among the best techniques used for time series-based prediction
problems. In the proposed model of TDGRU, a two-layered architecture is used to process
the input sequences and optimize the number of neurons through the dropout layer in
TDGRU layers, and the performance is enhanced. It is also evident from the comparison
of results in terms of several performance indices that were carried out for evaluation
that the proposed technique significantly gives the best predictions. TDGRU outperforms
other existing methods considering all error measures. The current study proposes the
TDGRU model to predict COVID-19 infection and recovery. Death cases in the countrywide
Algerian data of reported cases, deaths, and recovery by the Algerian ministry of health,
for the comparison and recommendation of the efficiency of the proposed three-time series
regression models, are employed, named as ARIMA, LR, and LSTM. Overall, the following
provides a summary of the main characteristics of this study:

1. Multi-layer neural network approaches for COVID-19 daily and overall infection
rates, fatalities, and recovered cases are described. The proposed TDGRU architecture
among DNN is convenient to develop and implement on time-series datasets due to
the better learning capability in the nonlinear feature space and generalization ability.

2. The performance of TDGRU is superior to overcoming the gradient exploding/
vanishing issues and provides faster convergence by exploiting the dropout technique.

3. To compare performance on the proposed TDGRU, baseline regressors ARIMA, LR,
and deep learning algorithms, such as LSTM, are also implemented on the datasets
for COVID-19 prediction.

4. The efficiency, accuracy, and robustness of TDGRU are endorsed in terms of MAE,
RMSE, R2 and MAPE performance metrics.
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The paper lays forth the methodical framework for a COVID-19 cases prediction model
employing the TDGRU algorithm along with comparison models LSTM, ARIMA, and LR.
Multi-day forward planning is described in the Section 2 generic structure for prediction
models and depicts the COVID-19 infected, death, and recovered cases dataset for Algeria,
assessed for use in making predictions. In Section 3, we take a look at the full results of the
time series forecasting proposed technique and contrast the outcomes with those of LSTM,
ARIMA, and LR models. We talk about how those models could be used and where they
could go from here in the future.

2. Materials and Methods

This section presents the approach of this paper, which includes the collection and
description of the dataset. The design and a brief explanation of conventional and deep
learning models, experiment environment, and the evaluation measures are also discussed.
The figure provides a graphical summary of the suggested Figure 1.

Figure 1. Schematic depiction of the proposed TDGRU approach along with features of daily and
total infected death and recovered cases and their prediction plots.

2.1. Data Description and Pre-Processing

In this work, Algerian COVID-19 infection datasets, recovered, and deaths cases are
taken from the daily reports of the Algerian Ministry of Health from 25 February to 12
November 2020 https://ourworldindata.org/coronavirus/country/algeria (accessed on
4 January 2023). Based on the results of the RT-PCR positive tests, the total number of
infected patients is determined. On 12 November 2020, 65,108 instances were thought to be
involved. The figures demonstrate that within the same day, there were 43,366 people who
were recovered and 2111 people who died Figures 2 and 3 in terms of daily infected, death,
and recovered cases and the total number of infections, deaths and recoveries, respectively.
The data sets were updated till 13 April 2022, and first phase analysis of the data sets was
used up to 12 November 2020. To further check the efficiency of the model, TDGRU-II was
employed to evaluate all four phases of the corona dataset. The collected dataset has six
features, named daily infected cases, total infected cases, daily death cases, total death cases,
daily recovered cases and total recovered cases. For the pre-processing part, the Python
programming language is used to normalize the data and convert them between 0 and
1. Transformation of the data is performed by using one of the standardization libraries,

https://ourworldindata.org/coronavirus/country/algeria
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Minmaxscaler, which is employed to scale the features among the given minimum and
maximum values.

Figure 2. Daily data for the cases of infected, mortality, and recovered of COVID-19 in Algeria.

Figure 3. COVID-19 cases overall in Algeria, including those who have died and recovered.

Table 1 also includes the suggested models’ respective control parameters. Utilizing
the computational intelligence platform Keras, the time series regression models are set
up with multi-layers and utilize the Adam optimization algorithm. To mitigate the risk
of overfitting, the TDGRU/LSTM models incorporate a dropout control metric in the
interlayer space. The optimizer, the number of delays, and the total number of hidden layers
are all crucial hyper-parameters for the suggested methods. Greater precision, enhanced
efficiency, and satisfactory convergence can all be attained by careful optimization of the
relevant parameters. To improve each hyper-parameter, we applied the hit-and-error rule
(see Table 1), keeping everything else the same, and choosing optimal parameter values
as a compromise between accuracy and runtime. Different optimizers were utilized to
generate the experimental results for parameter optimization; the dropout rate, number of
hidden neurons, and number of hidden layers are all determined by computing the highest
possible score on the validation set. The total amount of delays is determined by the score.
The following parameters of a Windows 10 PC were utilized as the simulation environment:
specifications include a 1.80 GHz Intel Core (TM) i7-8550U processor, 16 GB of DDR4 RAM,
and a 1 TB hard drive. This paper discusses the Python programming language since
it meets the needs of the project and may be modified with additional compiler code to
increase productivity.
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Table 1. Proposed models with parameters and their values.

Models Parameters Values

TDGRU/LSTM

ARIMA

Layers 2
No. of neurons {64, 128}
Learning rate 0.001

Dropout 0.3
Optimizer RMSprop
Batch size 16

Epochs 250
Timeday 3
(p, d, q) (2, 1, 2)

2.2. Gated Recurrent Unit

One of the well-known variants of RNN is the gated recurrent unit [52], which com-
prises two gates, reset rt and update gates zt. The update gate is employed when a hidden
state is needed to be updated by a new hidden state, whereas the reset gate is selected to
ignore the prior hidden state. Figure 4 is a representation of the GRU cell. The reset gate
works similarly to the forget gate of LSTM. Similar to the LSTM cell, a hidden unit at time
day t is computed using the hidden unit at time day t− 1. The reset gate, update gate,
and hidden unit at time t are represented in Equations (1)–(3):

zt = σ(Wzxt, Whzht−1) (1)

rt = σ(Wrxt, Whrht−1) (2)

ht = (1− zt)⊗ ht−1 + zt ⊗ tanh(Wxt + Wh(rt ⊗ ht−1)) (3)

Wz, Wr are the reset and update gate’s weight vectors. Whr , Whz, and Wh are the
element-wise multiplication and reoccurring input weight vectors ⊗. The sigmoid (sigma)
and kernel functions for GRU output are in the range of (0, 1).

Figure 4. An illustration of single gate recurrent unit with their reset and update gates. The prediction
strategy framework with the TDGRU model is depicted in Figure 1. This model is divided into three
major sections. The input layer is primarily responsible for preprocessing the original data, the input
sequence of three days’ data. The hidden layer is used to optimize parameters by employing 2-layer
with dropout technique to train the data. The output layer predicts data based on the model trained
in the hidden layer with the one/multi-day-ahead prediction, such as t + 1, t + 3, and t + 5.
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Deep learning neural networks have a large memory. However, the network is prone to
learning data features that cannot be generalized, resulting in overfitting. Dropout is among
the most popular regularization techniques proposed to address this issue. To reduce neural
network complexity, it randomly returns the output of a proportion of the hidden units to
zero. During the training process, the dropout layer deactivates some neurons. To facilitate
and accelerate the training day, we integrated a dropout layer between the two GRU layers
in this work.

2.3. Long Short Term Memory

The LSTM unit was primarily offered by Hochreiter and Schmidhuber [53]. Meanwhile,
few modifications to the original RNN have been made; it uses the memory unit to keep
the sequence for further use. The paper follows the implementation of LSTM as described
in [54]. The architecture of LSTM consists of three gates: an input gate, forget gate, an output
gate, and two modulations of input and output. These gates are processed by current and
recurrent inputs and use sigmoid σ as an activation function. Typically, the nonlinear
activation function is utilized in the modulation process (tanh). At time day 3, input x
updates its states, which are described in Equations (4)–(8).

ft = σ
(

W f xt + Wh f ht−1 + b f

)
(4)

it = σ(Wixt−1 + Whiht−1 + bi) (5)

ot = σ(Woxt + Whoht−1 + bo) (6)

ct = it ⊗ (ψ(Wcxt + Whcht−1 + bc)) + ct−1 ⊗ ft (7)

ht = ot ⊗ tanh ct (8)

Here, ft, it and ot symbolize the forget gate, input gate, and output gate, respectively.
ct is the memory cell unit, and ht is the output of LSTM. W f , Wi, Wo, and Wc are the weight
vectors of forgetting, input, output gate, and memory cell unit. Wh f , Whi, Who, and Whc
are the weight vectors of the recurrent input. b f , bi, bo, and bc is for the biases and ⊗
the pointwise multiplication. Tanh and sigmoid (sigma) kernel functions for the LSTM
outcome are limited to the domains of (−1, 1) and (0, 1), correspondingly.

2.4. Modeling through ARIMA Model

The auto-regressive moving average works on univariate time series data [55]. It adds
three hyperparameters to specify the autoregression (AR), differencing (I), and moving av-
erage (MA), termed as p, d, and q, which denote the autoregressive, difference, and moving
average orders, respectively. The entire model is expressed as ARIMA (p, d, q). Suppose
the observation series is Yt, that is, the linear function of the proceeding values is shown in
Equation (9):

Yt = α1Yt−1 + εt (9)

ε represents the random component of each observation, and α1 is the self-regression
coefficient. In this work, we employ the general procedure of ARIMA modeling for the
prediction of COVID-19 cases. A suitable model structure and parameters are obtained
based on the data obtained after the hit and trial method. The selected parameters for the
ARIMA (p, d, q) model are denoted as 2, 1, and 2, respectively.

2.5. Linear Regression

For comparison, the linear regression (LR) model describes relationships between
dependent and independent variables. The model with a single regressor input x ∈ Rm,
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where, x1, . . . , xm features represent the relationship with the response of y ∈ R with a
straight line.

y = β0 + xTβ (10)

Here, β0 and β are the parameters to estimate. Generally, the parameters are learned
by minimizing the sum of squared errors. In this work, we employ the general proce-
dure of ARIMA modeling for COVID-19 cases prediction. A suitable model structure and
parameters are obtained based on the data obtained after the hit-and-trail method. The se-
lected parameters for the ARIMA (p, d, q) model are denoted as 2, 1, and 2, respectively,
where y is the dependent variable, x = {1, 2, 3, . . . , T} are the independent variables, and
β = {1, 2, 3, . . . , k} are the regression coefficients. Several independent variables, including
daily/total infected cases, daily/total death cases, and daily/total recovered instances, are
considered in this study. In this study, TDGRU is applied in this work to the countrywide
Algeria COVID-19 dataset, which contains total infected cases, daily infected cases, total
death cases, daily death cases, total recovered cases, and daily recovered cases as input and
we obtain the output in terms of 1, 3, and 5 days ahead of future predictions as mentioned
in Figure 4. However, the models’ dataset is divided into two parts: the training set (about
70% of the dataset), which is used to train the network, and the testing set (about 30%
of the dataset), which is not utilized during training but provides a measure of network
performance before, during, and after training. After much trial and error, a handful of
parameters are settled on and implemented, with the best of these being those with higher
validation scores. As shown in Figure 5, the data have two train and test splits. The sliding
window over the training data is used to learn the nonlinear patterns of COVID-19 cases.
This denotes the previous three days’ observations appended with the current time day in
the training set. Hence, the training data contain all the observations before the testing day.

Figure 5. Learning principle of multi-day ahead in TDGRU.

The majority of machine learning models make use of 2D arrays (samples and features)
as input patterns; this is because temporal forecasting often involves the examination of
historical data. On the other hand, TDGRU employs a three-dimensional array to capture
trends in the time horizon (samples, time day and attributes). In light of this, it is necessary
to transform the time series components that need to be forecasted into a sequential
regression problem with predefined lag times. The term loopback describes the number
of days in a series (days for the dataset under consideration that are used to review and
take into account the feature values in order to use them when predicting the next (and/or
subsequent) day(s). Through trial and error, it was discovered that the COVID-19 dataset’s
optimal lag value for the very near future (such as t+ 1) is a loopback element. This number
represents the data records from the seven and three days prior. In Table 2, the prediction
performance results for specified lag time evaluations in terms of error measures are listed.
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Table 2. Error analysis of COVID-19 Algerian dataset with respect to all error measures.

Methods Data MAE RMSE R2 MAPE

TDGRU

Daily infected 0.47 0.52 0.92 0.933

Total infected 21.15 24.51 0.92 0.176

Daily death 0.011 0.012 0.99 0.33

Total death 0.33 0.41 0.99 0.053

Daily recovered 0.26 0.61 0.99 0.271

Total recovered 8.24 9.72 0.99 0.244

LSTM

Daily infected 1.63 1.98 0.92 13.76

Total infected 98.83 159.7 0.91 5.10

Daily death 0.01 0.01 0.92 11.70

Total death 3.57 4.41 0.95 2.47

Daily recovered 0.29 0.38 0.98 17.00

Total recovered 14.9 19.4 0.96 4.487

ARIMA

Daily infected 226.37 282.71 1.31 26.93

Total infected 52,904.7 81,764.59 13.59 51.9

Daily death 214.69 387.63 1.22 14.45

Total death 932.06 1060.65 0.34 44.91

Daily recovered 284.87 372.74 1.83 38.10

Total recovered 4340.33 5527.53 1.86 31.5

LR

Daily infected 155.41 190.78 0.093 67.5

Total infected 15,399.0 17,907.21 0.24 59.6

Daily death 206.86 260.86 0.024 26.5

Total death 173.49 233.52 0.021 21.7

Daily recovered 209.34 260.78 0.022 18.9

Total recovered 176.15 239.77 0.173 24.8

2.6. Evaluation Metrics

Evaluation is measured through computing the values for mean absolute error (MAE),
root mean square error (RMSE), and coefficient of determination (R2). These indices
calculate the target values and assessment of the model performance. However, metrics are
employed to evaluate the model accuracy and the equations where Ai presents the actual
(A) and P̂i for predicted (P). The predicted values of MAE are zero for the best model.
The equations used in this study are Equations (11)–(14):

MAE =
1
N

N

∑
i=1

∣∣Ai − P̂i
∣∣ (11)

Calculating the differences between the actual and the predicted number of COVID-19
cases, RMSE is denoted as

RMSE =

√√√√ 1
N

N

∑
i=1

(
Ai − P̂i

)2 (12)

To exhibit the variance among dependent and independent parameters, R2 is de-
fined as
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R2 =
∑(A− P′)2

∑
(

A− P̂
)2 (13)

MAPE computes the range of error in terms of percentage

MAPE =

(
1
n

n

∑
i=1

∣∣∣∣A− P′

A

∣∣∣∣
)
∗ 100 (14)

3. Results and Discussion

In this part, the simulation and results are commenced in detail. However, in the
suggested approach, the numbers of COVID-19 total and daily infected cases, total and
daily death cases, and total and daily recovered cases in Algeria are predicted by employing
the TDGRU model.

The model is trained to make predictions for the next two months to produce the pre-
diction from data that were collected from the Algerian website (https://ourworldindata.
org/coronavirus/country/algeria (accessed on 4 January 2023)). To evaluate the perfor-
mance of the proposed technique, TDGRU, two cases are used: TDGRU-I represents the first
two phases of COVID-19 data (i.e., 25 February 2020–12 November 2020) and TDGRU-II
corresponds to the all phases of COVID-19 data (i.e., 25 February 2020–13 April 2022). The
actual and predicted numbers of COVID-19 total and daily infected, death, and recovered
cases of TDGRU-I are plotted in Figure 6a–f.

It can be perceived that the predicted cases are a good match with the actual cases,
which signify a better impact of the TDGRU-I model. Experimental results verify the
dominance of the proposed model in terms of MAE, RMSE, R2, MAPE metrics along with
comparing three other distinct benchmark techniques. Table 2 demonstrates the future
prediction results concerning all error measures of all models for the COVID-19 Algerian
dataset for daily and total infected, death, and recovered cases. It can be noticed that
TDGRU outperforms on all models, as enumerated in Table 2, which shows 21.15 low MAE
value for total infected cases, 0.33 for total death cases, and 8.24 for total recovered cases,
and RMSE values for total infected cases of 24.51, 0.41 for total death cases, and 8.24 for
total recovered cases.

The R2 has shown the highest values for total infected, death, and recovered cases
at 0.92, 0.99, and 0.99, respectively. Another performance measure, MAPE, represents
the best values of 0.176, 0.053, and 0.244 for total infected, deaths, and recovered cases,
correspondingly.

It can be noticed from Table 2 that all the error measures for daily infected, death,
and recovered cases have the lowest values among other techniques. The model’s perfor-
mance depends upon the higher value of the coefficient of determination and the lower
value of the MAE and RMSE. Furthermore, LSTM can be found to have better performance
in all cases than ARIMA and LR among the comparison models.

It can be examined from these illustrations that LSTM gives 98.83 MAE for total
infected and 3.57 MAE for total death, and 14.9 MAE for total recovered cases. Additionally,
the computed RMSE errors for daily infected, death, and recovered are 1.98, 0.01, and 0.38,
respectively. R2 shows better values of 0.99 approximately and the best values for MAPE.
Subsequently, a comparison analysis between the TDGRU-I model and the LSTM in three
error indices is demonstrated as bar charts in Figure 7a–c. This figure shows that LSTM
gives the lowest values of MAE, RMSE, and R2 for the daily and total infected, death,
and recovered cases of the Algerian COVID-19 dataset. The experimental results state that
the TDGRU model recommended in this work attained in all cases the best performance
compared with the LSTM model; hence, parameter selection for both DL models is the
same. To further evaluate the efficacy of the proposed model, it is implemented on the
second case, TDGRU-II, for the whole dataset, and the result is given in Table 3. It can be
observed that the proposed model performed very well on both suggested cases of datasets
among all the approaches; Figure 8 demonstrates the comparison analysis of both cases in

https://ourworldindata.org/coronavirus/country/algeria
https://ourworldindata.org/coronavirus/country/algeria
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terms of all error measures and finds that the TDGRU-I model has the best performance
over others.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6. Prediction plots of TDGRU-I on daily and total infected, death and recovered cases
in Algeria.
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(a)

(b)

(c)

Figure 7. Comparison analysis of Daily and Total COVID-19 cases between TDGRU and LSTM with
respect to MAE, RMSE, and R2 (a–c). (a) Daily infected, and total infected cases of Algeria data;
(b) daily death, and total death cases of Algeria data; (c) daily recovered, and total recovered cases of
Algeria data.

Figure 8. Comparison analysis of TDGRU-I (first phase) and TDGRU-II (all phases of COVID-19).
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Table 3. One-day-ahead error analysis of COVID-19 country-wide dataset of Algeria with respect to
error metrics.

Methods Data MAE RMSE R2 MAPE

TDGRU-II

Daily infected 5.28 22.52 0.99 2.32
Total infected 200.21 254.03 0.97 0.081
Daily death 0.033 0.068 0.99 0.079
Total death 4.26 5.35 0.99 0.068

For multi-day-ahead predictions, Table 4 demonstrates the prediction interval of
multiple days termed as 1-day, 3-day, and 5-day prediction results of the TDGRU-I model
for all cases of the Algerian dataset. On each prediction interval, the performance shows
more variation than single-day prediction. Similarly, 1-day-ahead prediction has similar
performance values for all cases, where MAE and RMSE range from 0.13 to 0.52, and R2

ranges from 0.92 to 0.99 for daily infected, death, and recovered cases, while for MAPE,
the range is 0.053 to 33.5. On 3-day-ahead (three days ahead) predictions, the range of
error metrics is different in the cases of daily and total infected, death, and recovered: from
2.17 to 55.30 for MAE; 25.65 to 1050.5 for RMSE; and 0.85 to 0.97 for R2. On 5-day-ahead
(five days ahead) predictions, features of daily death and recovered cases outperform over
3-day-ahead TDGRU with 2.01, 2.48, 15.39, and 21.29 for MAE and RMSE, respectively.

The TDGRU model has a noticeable improvement for 1-day-ahead prediction in
the error measures of MAE, RMSE, R2, and MAPE as compared to 3- and 5-day-ahead
predictions. Furthermore, to explore the relationship between prediction performance
concerning all categories of features, Figure 9 shows the prediction analysis in terms of the
1-, 3-, 5-day-ahead predictions of TDGRU-I model. It can be observed that the performance
of all cases leads to the moderately same level. Therefore, the performance on the 1-day
GRU model (blue curve) is the most fitted to the actual curve (green). On the other hand,
prediction (t + 3) represents the prediction at 3 days ahead. Its curve (yellow) is far from
the actual (t). Therefore, the third prediction (t + 5) becomes worse than the other at two
days ahead.

Figure 9. Actual vs. predicted plots of daily, and total infected, death, and recovered cases at 1-, 3-,
and 5-day-ahead prediction results of the TDGRU model.
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Table 4. The 1-, 3-, and 5-day-ahead error analysis of COVID-19 dataset with respect to error measures.

Model Prediction Data MAE RMSE R2 MAPE

1-day-TDGRU

Daily infected 0.47 0.52 0.92 0.933

Total infected 21.15 24.51 0.92 0.176

Daily death 0.011 0.012 0.99 0.33

Total death 0.33 0.41 0.99 0.053

Daily recovered 0.13 0.17 0.99 0.271

Total recovered 8.24 9.72 0.99 0.244

3-days-TDGRU

Daily infected 34.51 55.30 0.88 9.881

Total infected 986.74 1050.5 0.97 8.52

Daily death 2.17 2.66 0.93 29.14

Total death 25.65 30.49 0.96 3.642

Daily recovered 17.32 25.79 0.85 11.06

Total recovered 773.9 942.1 0.91 8.47

5-days-TDGRU

Daily infected 52.83 81.67 0.75 17.43

Total infected 1873.8 2324.3 0.77 5.16

Daily death 2.01 2.48 0.96 33.45

Total death 30.21 36.15 0.94 2.03

Daily recovered 15.39 21.29 0.86 16.93

Total recovered 927.7 1093.5 0.85 6.22

For further performance evaluation of the proposed model with the ability of multi-
day-ahead prediction, Figure 10 depicts the 1-, 3-, and 5-day-ahead performance results of
the TDGRU-I model based on MAE, RMSE, R2, and MAPE, separately. Hence, it can be
examined from the first part of Figure 10 with the lowest MAE value of the 1-day TDGRU
model as compared to others. Additionally, the predictions of the daily death, recovery,
and total death at 3 and 5 days ahead are similar. Otherwise, the 3-day TDGRU model
results are better than the 5-day TDGRU for total infected and recovered cases. Therefore,
the results reconfirm the superiority of the proposed model. To verify the dominance of the
TDGRU model, this work creates three other distinct benchmark techniques for comparison.
Table 2 illustrates the future prediction results concerning all error measures of all models
for the COVID-19 Algerian dataset of daily and total infected, death, and recovered cases.
It can be noticed that TDGRU outperforms all models, as enumerated in Table 2, which
shows 21.15 low MAE value for total infected cases, 0.33 for total death cases, and 8.24 for
total recovered cases, while the RMSE value for the total infected cases is 24.51, and 0.41 for
total death cases.

The R2 is shown the high values for total infected, death, and recovered cases at 0.92,
0.99, and 0.99, respectively, and the best values of MAPE are demonstrated in Figure 10.

The experimental results state that the TDGRU model recommended in this work
attained the best performance in all cases compared with the LSTM model. The TDGRU
model has a noticeable improvement for 1 day in the error measures of MAE, RMSE, R2

and MAPE as compared to 3- and 5-day-ahead predictions. Both TDGRU models are able
to preserve significant properties through many gates, which ensures that important special
qualities are not lost during long-term transmission. This can be seen from the fact that both
of these may be observed. TDGRU has a more straightforward organizational structure.
TDGRU can save a large amount of time without sacrificing performance because it has one
fewer gate than LSTM, which minimizes the amount of matrix multiplication that needs to
be performed.
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Figure 10. Comparison analysis of 1-, 3-, and 5-day-ahead predictions in form of bar charts for all daily
and total infected, death, and recovered cases of TDGRU-I model and 8.24 for total recovered cases.
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In addition, in order to evaluate and contrast the effectiveness of the suggested model
in both scenarios, the paired sample t-test is a statistical method that compares two means
scores that come from the same group. The pair samples t-test is utilized in situations in
which the variables being tested are independent, there are two levels, and each level is
comprised of repeated measures. Table 5 presents a graphical representation of the ratio of
these two correlation statistics of the 1-day-ahead prediction for daily infected cases of the
TDGRU and LSTM models with respect to MAE based on twenty separate executions. We
use the testing sample in a paired t-test for this purpose (TDGRU-I). By applying the sample
t-test to the outcomes of two independent evaluations carried out on the records of the test
set of data, we can calculate a 95 percent confidence interval for the difference in mean
scores between the two models after numerous rounds of refinement. In Table 5, we see that
the MAE values for the TDGRU model (M = 3.351, SD = 0.697) are significantly higher than
those for the LSTM model (M = 9.957, SD = 1.993). Table 5 displays the r-squared value,
at the 0.000 level of significance, between the two distinct groups of model evaluations to
demonstrate how they are distinct from one another. According to the data presented in
Table 5, the confidence interval for that difference has a lower bound of −7.15 and an upper
bound of −5.85 as its upper and lower bounds, respectively. The outcomes of the sample
t-test seem to be t = −20.036, p = 0.00 respectively. Because the two-tailed test’s importance
threshold is less then 0.05, it may be deduced that the differences between the assessment
sets do, in fact, constitute differences that are statistically significant. Additionally, the
relevance of our suggested model, the TDGRU model, is demonstrated by the lack of
connection between the data points of the TDGRU-I and LSTM models.

Table 5. Paired t-test analysis of 1-day-ahead prediction for daily infected cases of TDGRU and LSTM
model with respect to MAE.

Paired Samples Statistics

Mean N Std. Deviation Sdt. Error Mean
Pair 1 TDGRU_MAE

LSTM_MAE
3.3516
9.8573

20
20

0. 69782
1.99366

0.15604
0.44580

Paired Samples Correlations

N Correlation Sig.
Pair 1 TDGRU_MAE &
LSTM_MAE 20 0.903 0.000

Paired Samples Test
Paired Differences

Mean Std. Deviation Sdt. Error Mean 95% Confidence Interval
of the Difference t df sig. (2-tailod)

Pair 1 TDGRU_MAE-
LSTM_MAE −6.50570 1.39635 0.31223 Lower Upper −20.836 19 0.000−7.15921 −5.85219

4. Discussion

Several factors influence COVID-19 infection, resulting in stochastic and nonlinear
behavior. Many times, traditional machine learning algorithms are unable to accurately
predict process parameters with several affecting variables. Forecasts can be improved by
employing more complex models. In contrast to conventional methods of forecasting, such
as LR, ARIMA, and standard LSTM, the proposed TDGRU technique is more computa-
tionally efficient and significantly more accurate for 1-day-ahead corona case predictions
but becomes progressively less accurate for 3- and 5-day-ahead corona case predictions.
Each model’s error rates increase as the amount of foresight days grows. It is likely due
to prediction errors accumulating within the framework of iterative forecasting. The ex-
perimental results in Figure 10 demonstrate that a forecast made more days in advance
has a larger inaccuracy rate. The purpose of TDGRU is for multi-day forecasting and
prediction tasks that require one, three, or five output neurons to complete. TDGRU has
more consistent gradients compared to the LSTM, and the backpropagation method is
easier to train, reducing the effects of multiple gates. Previous research has shown that the
TDGRU is frequently the best predictor compared to the literature. Those studies, however,
were limited to univariate data. The current study focused on the univariate time series
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prediction model. However, this is only for a small dataset and a forecast with 5-day-ahead.
So, the author’s main idea is to use the neural networks and use different comparisons
with up-to-date algorithms. The author will consider a SIR- and SEIR-based study as
future work. In addition, the proposed model can be useful for predicting multi-day-ahead
forecast from multivariate time series data.

5. Conclusions

In this work, the TDGRU model is employed to predict the number of daily and total
infected cases, death cases, and recovered cases in Algeria for forecasting the short-term
incidence and severity of COVID-19. The model is evaluated in terms of performance
metrics of MAE, RMSE, R2 and MAPE with actual numbers and comparison with the other
three benchmark models. The results comprise incidence, mortality, and survival rates with
1-day, 3-day, and 5-day predictions. The findings suggest that the spread continued to rise
by the end of December 2022, and certain containment measures need to be strengthened to
help political and health experts effectively organize and provide resources, with personnel
protection and medical establishments. At that time, the progression of the epidemic poses
the greatest threat to the global economy, and the speed of economic recovery now depends
on the speed with which the pandemic can be stopped worldwide. In the current state
of affairs, special COVID-19 drugs have yet to be developed successfully. It is critical to
launching a coordinated response to the epidemic. China will undoubtedly greatly assist in
the global fight against the epidemic.
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