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Abstract: Three-dimensional vision cameras, such as RGB-D, use 3D point cloud to represent scenes.
File formats as XYZ and PLY are commonly used to store 3D point information as raw data, this
information does not contain further details, such as metadata or segmentation, for the different
objects in the scene. Moreover, objects in the scene can be recognized in a posterior process and can
be used for other purposes, such as camera calibration or scene segmentation. We are proposing a
method to recognize a basketball in the scene using its known dimensions to fit a sphere formula. In
the proposed cost function we search for three different points in the scene using RANSAC (Random
Sample Consensus). Furthermore, taking into account the fixed basketball size, our method differen-
tiates the sphere geometry from other objects in the scene, making our method robust in complex
scenes. In a posterior step, the sphere center is fitted using z-score values eliminating outliers from
the sphere. Results show our methodology converges in finding the basketball in the scene and the
center precision improves using z-score, the proposed method obtains a significant improvement by
reducing outliers in scenes with noise from 1.75 to 8.3 times when using RANSAC alone. Experiments
show our method has advantages when comparing with novel deep learning method.

Keywords: 3D point cloud; RANSAC; sphere detection; RGB-D cameras; z-score

MSC: 65D19

1. Introduction

RGB-D cameras have become a common sensor in the area of computer vision [1,2],
and the popularity started with the Microsoft Kinect output on their Xbox video game
console, when the camera could be used on a personal computer, scientists started taking
advantage of it for research [3]. This type of camera produces, as data output, a color
image and an depth image, both images describing the scene that is captured on camera.
Currently, there are different brands and models of RGB-D cameras, and it is common
for different cameras to offer different characteristics and limitations [4]. Recently, this
type of camera has been embedded in mobile devices as in [5] popularizing the technol-
ogy and use of 3D point clouds. Some formats for saving 3D point clouds are the XYZ
format and the PLY format, where spatial information is included describing each point
in three dimensions and sometimes metadata, such as color, can be included. These files
can vary in size and density of points and these depend mostly on the camera that is
being used to generate such files, thousands of points can be found in a scene captured
in a single shot, and, generally, the complexity of the processing of this information is
increased proportionally with the quality of the camera and of the information it produces,
the greater the detail, the greater point density. Novel methods can be found that use this
type of information to solve problems in different fields, for example, in 3D reconstruc-
tion [6,7], simultaneous localization and mapping (SLAM) as in [8,9], navigation [10], object
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detection [11], mapping urban buildings [12], recovering building geometries [13,14], in-
door scene reconstruction [7,15], computer vision as face recognition [16], segmentation
with background removal [17], recognition tasks in robotics using scene modeling [18], nav-
igation in agriculture [19], pedestrian detection [11], augmented reality (AR) [20], computer-
assisted surgery [21], 3D navigation for pedestrians and robots [22], ADAS (advanced driv-
ing assistance systems) [23], uncrewed aerial vehicles (UAVs) navigation [24], autonomous
driving [25], body tracking [26], and RGB-D Multi-Camera Pose Estimation for 3D Recon-
struction [27]. There are different sets of data or databases that are compiled and organized
to facilitate the research paper using information from different scenarios represented in
3D point clouds [28]. All of the mentioned applications use precise calibration parameters.
In order to match the layers of color and depth, it is necessary to obtain the orientation and
relative position between both layers of information (color and depth).

Object detection in 3D point clouds is commonly used to initiate subsequent processes,
such as calibration of cameras [29], point cloud registration [30], clustering of objects, and
3D point cloud compression, spheres, cones, and cylinders are used as geometric objects due
to the simplicity of being represented and/or modeled mathematically [31,32]. Random
Sample Consensus (RANSAC) is a stochastic method, which uses samples producing
specific parameters to be adjusted in a cost function and then lists the best proposals or
candidates for solution [33], RANSAC has shown promising results locating geometric
primitives in point clouds in three dimensions [34], as such can be adapted in the search for
specific parameters and can speed up the time due to its stochastic nature.

Sphere detection is used in camera calibration [31], many approaches convert 3D data
to 2D images as in [32], then use circle and ellipse detection to find circumferences in the 2D
data and later translate coordinates from 2D to 3D to locate the sphere object in the 3D data.
Furthermore, there are classical options as Hough Voting still being used [35,36], and deep
learning approaches as in [37,38] to locate objects with a circular shape, novel approaches using
deep learning allow to locate objects in complex scenes. Some previous methods use RANSAC
to find and fit the sphere, nevertheless unlike the method proposed in [32] a background
subtraction is required to limit the search space. In the work of [34], to locate a sphere
normal vectors are required and tolerances on the angles of the normals are used as a second
acceptance criteria for the sphere to be accepted as a RANSAC candidate, in our proposal
only tolerance is used on the distance as a criteria for acceptance as a RANSAC candidate.

A method to locate spheres with a known size directly in 3D point clouds is proposed,
our experiments show advantages when using 3D data directly against converting the 3D
point cloud to a 2D image and then use 2D methods. Some areas of application of the
proposed method are RGB-D camera calibration, RGB-D Multi-Camera Pose Estimation,
3D registration, 3D navigation.

Our strategy shows the following features:

• Three-dimensional data are used directly by our method.
• Sphere size is used as a pattern to be searched.
• The proposed method allows to find the sphere in complex scenes with multiple

objects and textures.
• No additional conversions are needed to detect the sphere.
• It is robust to outliers.

2. Materials and Methods
2.1. Computer Equipment, Programming Language

In this work, a personal computer with the following features, AMD Ryzen 5600x
Processor with 6 cores, 12 processing threads, 3.7 GHz, 32 MB Cache L3, 3 MB Cache
L2, 32 GB RAM, NVIDIA graphics card GeForce RTX 3060 TI with 8GB GDDR6 Memory,
4864 CUDA kernels, Ubuntu 20.04.2 LTS OS, Containers Docker 19.03.8, CUDA driver
version 11.2. Python 3.9 as a programming language. Additionally, a MacBook air (Retina
13-inch, 2020) laptop was used with 1.1 GHz Quad-Core Intel Core i5 CPU, 8 GB RAM and
integrated graphics card Intel Iris Plus Graphics 1536 MB, operating system Mac OS Big
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Sur 10.13 Beta and Python 2.9. All experiments will be run by exchanging the environment
between the personal computer and the laptop, it was used Meshlab to visualize PLY files.

During all experiments, we use an Intel Realsense D435 with the specifications in
Table 1.

Table 1. Intel Realsense D435 [39].

Feature Description

Operating range ∼0.11–10 m
Connection Interface USB Type C

Dimensions 90 mm × 25 mm × 25 mm
Depth resolution 1280 × 720

2.2. RGB-D Camera

A camera was used during the capture of the scenes. RGB-D Intel RealsenseTM D435
with the following characteristics Table 1. The depth images produced by the camera in
experiments contain 101,760 points in 3D for each capture of a scene. The scene in the
depth image is represented in integers and has to be converted by a value of 0.001 that is
configured from the factory in the RGB-D camera as depth unit. Integer values within the
depth image were converted to meters using Equation (1).

Z(Iij)ij = Iij × 0.001 (1)

Additionally, a projection is made from 2D coordinates to coordinates in 3D by the
following Equation (2)

X(Iij)ij = (i − cx)/ fx × 0.001

Y(Iij)ij = (i − cy)/ fy × 0.001
(2)

Here, cx is the center of the sphere in the x-axes, cy is the center of the sphere in y-axes
and fx is the focal length in x-axes and fy is the focal length in the y-axes, the 3D point
cloud is represented with coordinates (x, y, z) and the dimensions are represented in meters
with floating point numbers. The maximum and minimum value of depth depends directly
of the scene captured and the characteristics of the RGB-D camera. Information contained
in a ply file is shown in Figure 1 which is displayed through the Meshlab program, it is
observed that all points in 3D are displayed in green and there is no clear distinction of
the objects present in the scene, the structure of a bookcase is predominantly observed. In
Figure 2, we can see more clearly the different layers of depth due to the representation in
colors from blue to red with increasing distance from the RGB-D camera.

Figure 1. The 3D point cloud of a complex scene in the composition of objects, a bookcase is shown
at 2 m away from the RGB-D camera, on the bookshelf stand out multiple volumes in the same color.
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Figure 2. Color image representing depth, color red is a greater distance from the camera, blue
represents a shorter distance from the camera.

The shot of a scene by the camera is displayed RGB-D (Figures 1 and 2). An attempt is
made to capture objects at different distances in each experiment.

2.3. Model to Represent the Sphere with a Known Size

An equation is used to model a sphere where on its surface we find three different
points xi, yi, zi with a common center or with coordinates a, b, c:

O = (a, b, c) (3)

r2 = (xi − a)2 + (yi − b)2 + (zi − c)2 (4)

here, r is the radius of the sphere. Expanding right side of Equation (4) for at least 2 different
points:

r2 = x1
2 − 2x1a + a2 + y1

2 − 2y1b + b2 + z1
2 − 2z1c + c2

r2 = x2
2 − 2x2a + a2 + y2

2 − 2y2b + b2 + z2
2 − 2z2c + c2

(5)

Simplifying for two different points:

r2 = x1
2 − 2x1a + a2 + y1

2 − 2y1b + b2 + z1
2 − 2z1c + c2

r2 = x2
2 − 2x2a + a2 + y2

2 − 2y2b + b2 + z2
2 − 2z2c + c2

(6)

Then:

x1
2 − 2x1a + y1

2 − 2y1b + z1
2 − 2z1c = x2

2 − 2x2a + y2
2 − 2y2b + z2

2 − 2z2c

x1
2 − x2

2 − 2x1a + 2x2a + y1
2 − y2

2 − 2y1b + 2y2b + z1
2 − z2

2 − 2z1c + 2z2c = 0

x1
2 − x2

2 + 2a(x2 − x1) + y1
2 − y2

2 + 2b(y2 − y1) + z1
2 − z2

2 + 2c(z2 − z1) = 0

(7)

Expanding the Equation (4) for three different points:

r2 = (x1 − a)2 + (y1 − b)2 + (z1 − c)2

r2 = (x2 − a)2 + (y2 − b)2 + (z2 − c)2

r2 = (x3 − a)2 + (y3 − b)2 + (z3 − c)2

(8)

then in Equation (8) each equation equals r so match in the following order:
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(x1 − xc)
2 + (y1 − yc)

2 + (z1 − zc)
2 =

(x2 − xc)
2 + (y2 − yc)

2 + (z2 − zc)
2

(x3 − xc)
2 + (y3 − yc)

2 + (z3 − zc)
2 =

(x1 − xc)
2 + (y1 − yc)

2 + (z1 − zc)
2

(x3 − xc)
2 + (y3 − yc)

2 + (z3 − zc)
2 =

(x2 − xc)
2 + (y2 − yc)

2 + (z2 − zc)
2

(9)

The 3D Point Coordinates 1 = 3D Point Coordinates 2, 3D Point Coordinates 3 =
3D Point Coordinates 1, 3D Point coordinates 3 = 3D Point Coordinates 2, and using
Equation (7) developing the system of Equation (9) we obtain:

2a(x2 − x1) + 2b(y2 − y1) + 2c(z2 − z1) + x1
2 − x2

2 + y1
2 − y2

2 + z1
2 − z2

2 = 0

2a(x3 − x1) + 2b(y3 − y1) + 2c(z3 − z1) + x1
2 − x3

2 + y1
2 − y3

2 + z1
2 − z3

2 = 0

2a(x3 − x2) + 2b(y3 − y2) + 2c(z3 − z2) + x2
2 − x3

2 + y2
2 − y3

2 + z2
2 − z3

2 = 0

(10)

simplifying Equation (10) and rearranging in the form Ax = b we obtain: 2(x2 − x1) 2(y2 − y1) 2(z2 − z1)
2(x3 − x1) 2(y3 − y1) 2(z3 − z1)
2(x3 − x2) 2(y3 − y2) 2(z3 − z2)

 a
b
c


=

 x2
2 − x2

1 + y2
2 − y2

1 + z2
2 − z2

1
x2

3 − x2
1 + y2

3 − y2
1 + z2

3 − z2
1

x2
3 − x2

2 + y2
3 − y2

2 + z2
3 − z2

2

 (11)

Then:  (x2 − x1) (y2 − y1) (z2 − z1)
(x3 − x1) (y3 − y1) (z3 − z1)
(x3 − x2) (y3 − y2) (z3 − z2)

 a
b
c


= 1/2

 x2
2 − x2

1 + y2
2 − y2

1 + z2
2 − z2

1
x2

3 − x2
1 + y2

3 − y2
1 + z2

3 − z2
1

x2
3 − x2

2 + y2
3 − y2

2 + z2
3 − z2

2

 (12)

the Equation (12) can be solved to calculate the radius by three different points on the
surface of the sphere.

2.4. Z-Score

To remove outliers in the set of points that are considered as part of the sphere the
punctuation is used Z [40], to remove values below a defined threshold from −1.5 and
above 1.5.

z = ∑ (Xi − X̄)/σ (13)

where Xi is the measured value, X̄ is the average of the values and σ is the standard deviation.

2.5. Basketball and RANSAC Method

In the algorithm shown in the flowchart (Figure 3), as a first step, three points are
selected randomly from the 3D point cloud, we obtain the center with Equation (11) and
later the radius with Equation (4), as step two, check that the radius is within a tolerance of
ε = 1 cm close to the radius of the ball of basketball with a radius of 12 cm. If it is within
tolerance checks that the center exists in a list of candidate centers. If it exists, the points are
added to the center of the list. If the center does not exist, a new center is added. along with
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its points on the surface of the sphere to the list. If a radius is not found within tolerance,
check and update the stop condition which can be a limit of iterations, in the experiment a
thousand iterations were used as a limit. If the stop condition is still not reached, three new
candidates randomly and it starts over in the first step. If the stop condition is reached,
iterates through all the points in the point cloud in 3D and check distances to registered
centers, if centers are found within tolerance, each point evaluated is added to the list of
whose center it corresponds.

start

Select 3 points randomly, the first in the whole image 

and the other two within a maximum distance equal to 

the basketball's diameter.

Check and 

update 

stop criteria

Verify

if the radius approaches

at 12 cm, considering

a tolerance.

Check if the 

center exists in a list of 

candidates within 

a tolerance

YES

YES

NO

NO

NO

Add the center of the sphere to a list of candidate 

centers. Add points to the existing center

The center with the most significant number of 

candidates and the slightest mean error is considered 

the center and points of the sphere.

Center adjustment by means of Z score, atypical points of 

the sphere smaller than !1.5 and greater than 1.5 are 

eliminated, and the barycenter is obtained as the new 

center, considering the remaining points.

Iterate through all the points in the 3D point cloud. 

If the distance to any center in the candidate list is 

close considering the tolerance, add the point to 

that center.

Continue

end

Compute the points belonging to the sphere within the 

radius of 12 cm with the new center.

Figure 3. Flow chart of the proposed method.

Once the classification of the points to their centers is finished corresponding, the list
is sorted and the center is selected with the greatest number of points and the least error
with respect to the tolerance in the measure of the radius of the sphere. Subsequently, an
adjustment of the center of the sphere is made, for this, it is used z-score or Z score, to
eliminate outliers, eliminate data with Z-score less than −1.5 and greater tan 1.5, with the
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remaining values a barycenter is calculated and it is taken as the new center of the sphere,
through which they are considered sphere points those points within the defined radius.

3. Experiments and Results

A standard size 7 basketball is used, with a circumference of approximately 35 cm
and a radius of 12 cm as show in Figure 4. With a fixed radius, a tolerance of 1 cm and the
RANSAC method can be integrated to adjust the system of Equations (11) by sampling
three points in the 3D point cloud.

Figure 4. Scene experiment 1.

A scene with a relatively flat wall is selected to the bottom and a basketball is placed
25 cm from the realsense D435 camera, the image is captured in color or RGB (Red Green
Blue, color image) as shown (Figure 4).

The depth of the same scene is captured by the realsense D435 camera, which is
converted to a file PLY using Equations (1) and (2), the scene can be displayed in shades of
color from blue to red as shown (Figure 5), and subsequently the PLY file is visualized with
Meshlab (Figure 6).

The correct detection of the basketball is shown (Figures 7 and 8) as a spherical
geometry in a first experiment with good conditions in the scene where the soccer ball
basketball is distinguished from the rest of the scene and is not occluded by other objects.
The 3D points that belong to the surface of the ball are colored red and are distinguished
from the other points in the scene.

Figure 5. Depth display in blue to red colors from experiment 1.
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Figure 6. Visualization of experiment 1 in Meshlab.

Figure 7. Visualization of experiment 1 in Meshlab.

Figure 8. Visualization of experiment 1 in Meshlab.

The tolerance ε defines the number of outliers at locations near the surface of the
sphere. In this example, a thousand iterations were used to search for on the entire image
per iteration, in each experiment different candidate solution proposals are generated as
the center of the sphere that is sought, different solutions, because there are different points
that satisfy the proposed mathematical model Equation (11) within tolerance established,
however the candidate with the highest number of points and whose radius approaches
with less error to the known measure of 12 cm, is the selected solution using the RANSAC
method. In this first experiment, the different candidates that are generated belong to the
same object, so the center is very similar in all proposals, however, the method converges
to the winning center.
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The adjustment of the points of the sphere is carried out by means of the Z-score
Equation (13), of the points that turn out to belong to the sphere with the winning center,
minor points are removed to −1.5 and greater than 1.5, which are considered as values
outliers, these values were selected by means of a heuristic based on a lower RMSE type
error (Root mean square error). A new center is calculated by a centroid with the remaining
points. seen in color red the points discriminated as outliers (Figure 9) using the Z-score
and the dots in blue as the values within the sphere of radius 12 cm from the new center.

Figure 9. Visualization of the sphere of experiment 1 already adjusted in Meshlab.

In a second experiment, an image is generated with the Realsense D435 camera of a
scene with greater complexity to the first experiment, in whose middle part, in the middle
part of the scene there is a bookcase with various objects, showing a brown basketball on a
tripod, which is sought by the proposed method. The scene of the second experiment is
shown (Figure 10).

Figure 10. Scene experiment 2.

A depth image of the scene is generated (Figure 10), which is converted to a PLY file
using Equations (1) and (2), the PLY file is visualized with Meshlab (Figure 11).
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Figure 11. Experiment scene 1 3D point cloud, visualization of the PLY file with Meshlab software.

The correct detection of the basketball is shown (Figure 12) as a spherical geometry. In
this image there are outliers in places close to the surface of the sphere as it can be parts
of the scene that correspond to the tripod where the ball rests. In this example we used
10,000 iterations searching the entire image, in each experiment different candidate solution
proposals as the center of the sphere that is sought, different solutions are found because
there are points that satisfy the proposed mathematical model Equation (11) within the
established tolerance, however in this experiment the candidate with the largest number of
points and whose radius approaches with a smaller error the measure known 12 cm is the
solution selected by the RANSAC method.

Figure 12. Scene of the second 3D point cloud experiment, the correct detection of the basketball is
observed, to greater clarity the points belonging to the ball are colored in red.

It is observed that false positives can be obtained if the tolerance is higher and if
the scene is sampled without enough frequency or considering a space away from the
dimensions of the actual diameter of the ball 24 cm, as in (Figure 13) where the incorrect
detection of certain points that satisfy the model mathematical to represent the sphere are
showed, but that nevertheless they do not belong to the geometry being sought.
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Figure 13. Incorrect detection.

A scene is captured by increasing the distance of the ball basketball towards the
camera in a third experiment considering multiple levels of depth as seen in the color image
(Figure 14).

Figure 14. Color scene showing details of the third experiment considering a new position of the ball
in scene.

A difference in depth is observed with respect to the second experiment (Figure 15).

Figure 15. Scene in jet color scale, from blue to red representing distances closest to the camera in
blue and furthest from the camera in red.
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The proposed method correctly detects the geometry searched in the scene (Figure 16)
and the result (Figure 17), it is important to note that the number of solution candidates
increases in scenes with greater complexity and variety of objects, however, RANSAC
successfully discards false positives allowing to find the correct object.

Figure 16. The 3D point cloud is observed in the format PLY using Meshlab software, without
detecting any object.

Figure 17. Basketball correctly detected in the second experiment.

It is observed in a close-up that the difference between the ball with the table is defined
correctly (Figure 18).

Figure 18. Greater detail is shown in the difference of the dots detected as part of basketball in color
red and the tripod in color green.
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Outliers are removed for center adjustment using the Z score from Equation (13)
where for all points that are obtained until the selection of the best circle using RANSAC,
its corresponding Z value is obtained as shown (Figure 19).

Z score

E
le

m
e

n
ts

Figure 19. Z-score values of scene 1, before finding the barycenter.

The Figure 20 shows the classification of outliers in red color after being evaluated by
means of z-score.

Figure 20. Close-up of the sphere of experiment 1 already adjusted by removing outliers with the
Z-score, Visualization in Meshlab.

Root Mean Square Error (RMSE) value is displayed of experiment one in meters
(Table 2), which is used to select the threshold Z less than −1.5 and greater than 1.5,
observes that by means of this threshold, an RMSE is obtained smaller in the comparison
of the distances from the new center which was obtained by calculating the barycenter
against the center distance obtained in a previous step only with RANSAC.

Table 2. RMSE centers detected with RANSAC adjusted with Z score.

Scene
and

Z Threshold

RMSE
RANSAC

RMSE
RANSAC Center
Adjusted Points

RMSE
Barycenter

Adjusted Points

E1 z 3 0.007343368 0.007343368 0.032156230
E1 z 2 0.007343368 0.007343368 0.020370757
E1 z 1.5 0.007343368 0.007343368 0.004612417
E2 z 1.5 0.366534813 0.357131966 0.041731429
E3 z 1.5 0.033177435 0.033539393 0.027763554
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In order to compare with a state of the art method based in neural networks [38], we
create a set of 200 2D images re-projecting 3D point cloud scenes to 2D images, these images
containing two main types of scenes, the first one with a clean area and a flat wall in the
background and the second type with a scene containing multiple objects and depths in
the scene as shown in Figure 21. All images were masked manually to obtain cIOU values
as in [41].

Figure 21. (a) RGB scene, (b) 3D point cloud reprojection to 2D image, (c) CircleNet detection, (d) Our
sphere detection reprojected to a circle in 2D image, and (e) our sphere detection directly in 3D point cloud.

Mean Average Precision (mAP) [42] is used in Table 3 as a metric. To obtain cIOU
values from the proposed method, the sphere center was re-projected to 2D and with the
sphere radio the sphere center was reprojected to the left at same depth to compute a circle
in the 2D re-projection.

Table 3. Comparison with other methods.

Method mAP mAP.50cIOU mAP.75cIOU

CircleNet-HG 0.491 0.843 0.512
SphereDetection (ours) 0.512 0.894 0.529

4. Conclusions and Future Work

The proposed method uses the classic RANSAC algorithm and a mathematical model
to obtain the radius and center of the sphere from three points that are on the surface of the
sphere directly in a 3D point cloud, the defined size of the basketball is used as the objective
value of our model and through a tolerance different solutions are sought randomly in. As
shown in experiments, the proposed methodology converges and finds the correct object in
the scene even when the complexity and variety of objects on stage are considerable. In
the present work, the first sample is taken randomly from the totality of the depth images,
and the remaining two samples are taken at a maximum distance of the diameter of the
basketball, expediting the convergence of the method and reducing the search space.

Experiments showed advantages when using data in 3 dimensions against other
methods that search for circumferences in a two-dimensional space.

The number of iterations used in the proposed method is directly related to the size
and complexity of the depth image being processed. During our experiments, we observed
that when processing less complex scenes, with easily distinguishable backgrounds and
few objects, the number of iterations could be decreased.

In our experiments it is shown that using Z-Score the improvement is obtained by
reducing outliers from 1.75 to 8.3 times when using RANSAC only in scenes with different
complexity and noise characteristics.



Mathematics 2023, 11, 1023 15 of 16

The method provides opportunities for future work as the parallelization of the
algorithm in the sampling stage, implementing heuristics to adjust tolerances versus noise
and distance in the depth data, automatically adjust the number of iterations by analyzing
the complexity of the scene and the number of points to process.
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