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Abstract: High-dimensional covariance matrix estimation is one of the fundamental and important
problems in multivariate analysis and has a wide range of applications in many fields. In practice, it
is common that a covariance matrix is composed of a low-rank matrix and a sparse matrix. In this
paper we estimate the covariance matrix by solving a constrained Lq-type regularized optimization
problem. We establish the first-order optimality conditions for this problem by using proximal
mapping and the subspace method. The proposed stationary point degenerates to the first-order
stationary points of the unconstrained Lq regularized sparse or low-rank optimization problems. A
smoothing alternating updating method is proposed to find an estimator for the covariance matrix.
We establish the convergence of the proposed calculation method. The numerical simulation results
show the effectiveness of the proposed approach for high-dimensional covariance estimation.

Keywords: high-dimensional covariance matrix; constrained Lq-type regularized optimization prob-
lem; smoothing alternating updating method
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1. Introduction

High-dimensional covariance matrix estimation is an important topic in statistical
inference and learning. The objective is to estimate the covariance matrix of p variables
based on sample data of size n. Much statistical analysis of high-dimensional data involves
covariance estimation. In a high-dimensional setting (usually p� n), researchers usually
assume that the covariance matrix is sparse and have proposed various regularization
techniques [1–9] to consistently estimate covariance matrix Σ. However, this assumption is
not appropriate in many applications such as financial analysis, depending on the equity
market risks, gene expressions stimulated by cytokines, etc. A more reasonable assumption
based on the factor model [10–14] is that the high-dimensional covariance matrix is the sum
of a low-rank matrix and a sparse matrix. Specifically, a factor model can be formulated as

Yi = B fi + ui, i = 1, · · · , n, (1)

where Yi = (Y1i, · · · , Ypi)
T is the observed variable, B = (b1, · · · , bp)T is the matrix of

factor loadings, fi is a K × 1 vector of common factors, and ui = (u1i, · · · , upi)
T is the

idiosyncratic error component, uncorrelated with fi. Under this model, the covariance
matrix of Yi is given by

Σ = Bcov( fi)BT + Σu

:= L + S, (2)
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where L is the covariance matrix of B fi and S is the covariance matrix of ui. Since K
is usually less than p, L is a low-rank matrix. More generally, there is a large class of
problems where one is interested in estimating the covariance matrix of Xi from the noisy
observations Yi = Xi + ui, where the noise ui is uncorrelated with the signal Xi. In addition,
if Xi is generated from a linear system so that some of its elements are linear functions
of the others, then the covariance matrix of Xi has low-rank. Based on the structural
decomposition (2), this paper proposes a novel approach to estimate the covariance matrix
by solving a constrained low-rank and sparse regularized optimization problem.

Under structural decomposition (2), researchers have proposed some approaches to
estimate the covariance matrix. When the common factors in Model (1) are known and
observable and S is diagonal, Reference [10] proposed a least-squares-based covariance
estimation (LS-CE). The core idea of LS-CE is first to estimate B by the least-squares method
and, then, obtain the final estimator assuming that S is diagonal. Compared to the sample
covariance matrix estimator, the LS-CE estimator is always invertible, even in a high-
dimensional setting. Moreover, this estimator is shown to have substantial gains when
estimating the inverse of the covariance matrix, however, it does not have much advantage
when estimating the covariance matrix. Instead of assuming diagonal S, Reference [11]
assumed that S is sparse and applied the adaptive thresholding technique of [4] to obtain an
estimator for S. Then, a least-squares-based covariance estimator with conditional sparsity
(LS-CS-CE) under Model (1) was studied in [11]. More recently, a robust approach based
on Huber loss minimization was proposed in [13]. This approach estimates the initial joint
covariance matrix of the observed data and the factors and, then, uses it to recover the
covariance matrix of the observed data. Moreover, the proposed estimator in [13] only
requires the condition that the fourth moment of the data exists. This method is applicable
to a wider range of data, including sub-Gaussian and elliptical distributions. When the
common factors are unknown and unobservable, Reference [12] proposed a non-parametric
estimator via the thresholding principal orthogonal complements, which is called the
principal orthogonal complement thresholding (POET) method. The POET uses the K
principal components to estimate L and applies the adaptive thresholding technique [4] on
the rest of the (p−K) components to estimate S. However, as stated in [9], using the simple
thresholding approaches in [1–5,9] to estimate S may lead to the covariance estimators
in [11–13], which are necessarily positive semi-definite.

Moreover, as suggested in [14], an intuitive optimization-type approach is to solve the
problem:

min
L,S∈Rp×p

1
2
‖L + S− Σ̃‖2

F + λLrank(L) + λS ∑
(u,v)∈Dc

I(|Suv|), (3)

where Σ̃ is the sample covariance matrix, rank(L) denotes the rank of matrix L, I(|Suv|) = 1
if |Suv| 6= 0 and I(|Suv|) = 0 if |Suv| = 0, Dc := {(u, v) ∈ N × N : 1 ≤ u ≤ p, 1 ≤
v ≤ p, u 6= v} is the index set of non-diagonal elements of S, and λL and λS are tuning
parameters. To facilitate the calculation, Reference [14] proposed the low-rank and sparse
covariance estimator (LOREC) via solving the following convex relaxation optimization
problem:

min
L,S∈Rp×p

1
2
‖L + S− Σ̃‖2

F + λR‖L‖∗ + λS ∑
(u,v)∈Dc

|Suv|, (4)

where ‖L‖∗ := ∑
p
i=1 σi(L) denotes the nuclear norm of L and σi(L) is the ith largest singular

value of L. However, the estimators for L and S proposed in [14] are not guaranteed to be
positive semi-definite. Clearly, the optimization problems (3) and (4) can be considered
as special cases of the robust principal component analysis (RPCA) in [15] and its convex
relaxation, respectively.
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In this paper, we propose an optimization model similar to some models of RPCA,
which is formulated as

min
L,S∈Rp×z

rank(L) + λS‖S‖0, s.t. L + S = Σ̃,

where ‖S‖0 denotes the number of the non-zero elements of S. Reference [15] showed that
the principal component pursuit estimate solving

min
L,S∈Rp×z

‖L‖∗ + λS

p

∑
u=1

p

∑
v=1
|Suv|, s.t. L + S = Σ̃, (5)

exactly recovers the low-rank L and the sparse S. Furthermore, Reference [16] suggested
that L and S can be estimated by solving the following unconstrained optimization problem:

min
L,S∈Rp×z

‖L‖∗ + λS

p

∑
u=1

p

∑
v=1
|Suv|+

λL
2
‖L + S− Σ̃‖2

F. (6)

More references about the RPCA and related works based on convex and non-convex
regularization can be found in [17–21].

The main contributions of this paper can be summarized as follows:

• We construct a constrained adaptive Lq-type regularized optimization problem for
covariance estimation, which is a non-smooth and non-convex problem. This opti-
mization problem is based on the structural decomposition (2) and the idea of RPCA
in [16], but is not limited to the factor model (1).

• We study the first-order optimality condition of this problem and define a class of
hybrid first-order stationary points. We establish the relationship between the first-
order stationary point and the global minimizer of this problem.

• We propose a smoothing alternating updating method to solve the constructed non-
smooth, non-convex optimization problem and established its convergence. The sim-
ulation results show that the proposed smoothing alternating updating method is
efficacious for the constrained adaptive Lq-type regularized optimization problem.

The rest of this paper is organized as follows. In Section 2, we give some notations
and preliminaries. In Section 3, we construct a constrained adaptive Lq-type regularized
optimization problem for covariance estimation. In Section 4, we study the first-order
optimality condition of this problem and define a class of hybrid first-order stationary
points. In Section 5, we propose a smoothing alternating updating method to solve the non-
smooth, non-convex optimization problem and establish its convergence. The simulation
results are given in Section 6. The conclusions and discussion are given in Section 7, while
the mathematical proofs are given in Section 8.

2. Notations and Preliminaries

Throughout this paper, we use the following notations. The sets of p × p positive
semi-definite symmetric and positive definite symmetric matrices are denoted by Sp

+ and
Sp
++, respectively. It is known that Sp

+ and Sp
++ are cones.

Given matrices X := (Xuv)
p
u,v=1 ∈ Rp×p and Y := (Yuv)

p
u,v=1 ∈ Rp×p, where Xuv is

the (u, v)th element of X, 〈X, Y〉 := ∑
p
u=1 ∑

p
v=1 XuvYuv, and X ◦ Y denotes the Hadamard

product (X ◦Y)uv =: XuvYuv for all u, v = 1, . . . , p. Define the elementwise maximum norm
(or max norm) |X|max := maxu,v |Xuv|, the Frobenius norm ‖X‖F := (∑

p
u=1 ∑

p
v=1 X2

uv)
1/2,

and the spectral norm ‖X‖2 := sup‖x‖2≤1 ‖Xx‖2, where ‖x‖2 :=
√

∑
p
i=1 x2

i is 2-norm of
vector x. Moreover, given a matrix X ∈ Rp×p and a index set Γ ⊆ {(u, v) : 1 ≤ u ≤ p,
1 ≤ v ≤ p}, XΓ denotes the array of the same dimension such that [XΓ]uv = Xuv for
(u, v) ∈ Γ and [XΓ]uv are undefined for (u, v) ∈ Γc. For convenience, we will write the
(u, v)th element of XΓ as Xuv regardless if it is defined or not.
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Given a vector x ∈ Rp, Diag(x) denotes a square matrix with vector x on its diagonal
and zeros elsewhere. Given a matrix X ∈ Sp

+ and letting Di(X) denote the ith largest
eigenvalue of X, i = 1, . . . , p, write D(X) = (D1(X), . . . , Dp(X))T ∈ Rp. Define sign
operator:

sign(t) =


1, if t > 0
0, if t = 0
−1, if t < 0,

and set D := {(u, v) ∈ N×N : 1 ≤ u ≤ p, 1 ≤ v ≤ p, u = v}.
Let f : Rp×p → R be a convex function, and let X̄ ∈ dom f . The subdifferential of f at

X̄ is defined by

∂ f (X̄) :=
{

ξ ∈ Rp×p : lim
t↓0

f (X̄ + tZ)− f (X̄)

t
≥ 〈ξ, Z〉 for all Z ∈ Rp×p

}
,

where dom f := {X ∈ Rp×p : f (X) < ∞} denotes the domain of f , R := (−∞, ∞]. In other
words, ∂ f (X̄) is the closed convex hull of all points of the form limi→∞∇ f (Xi), where
{Xi} is any sequence that converges to X̄ while avoiding the set for which f fails to be
differentiable. Moreover, the singular subdifferential of f at X̄ is defined by

∂∞ f (X̄) :=
{

ξ ∈ Rp×p : (ξ, 0) ∈ N
(
(X̄, f (X̄)); epi f

)}
,

where epi f := {(X, t) ∈ Rp×p ×R : X ∈ dom f , t ≥ f (X)} denotes the epigraph of f .
Finally, we give the definition of the proximal mapping in this paper. Given a closed

set Ω and a function f : Rp×p → R, the proximal mapping on Ω of f is the operator
given by

Prox f ,Ω(X) = argmin
U∈Ω

{
f (U) +

1
2
‖U − X‖2

F

}
for any X ∈ Rp×p.

3. Covariance Estimation with Adaptive Lq-Type Regularization

Considering that sparse covariance matrix estimation is intrinsically a heteroscedastic
problem ([4]) and L and S are all positive semi-definite matrices, we estimate the covariance
matrix by solving the following adaptive Lq-type regularized optimization problem:

min
L,S∈Sp

+

F(L, S) :=
1
2
‖L + S− Σ̃‖2

F + λL‖L‖q
q + ∑

(u,v)∈Dc
λS

uv|Suv|q, (7)

where q ∈ (0, 1), ‖L‖q
q := ∑

p
i=1 σi(L)q is the Schatten-q quasi-norm of matrix L and λL and

λS
uv are tuning parameters. Note that although we use the same q for L and S here for

simplicity, it can be different in general. Our approach is called Lq regularized covariance
(Lq-CSC) estimation with conditional sparsity. The final estimator Σ̂ := L̂ + Ŝ is called the
Lq regularized covariance estimator with conditional sparsity (Lq-CSCE).

To deal with heteroscedasticity in sparse covariance matrix estimation, we adopt the
adaptive thresholding approach of Reference [4] and [12] to calculate the entry-dependent
threshold λS

uv in (7) for Suv as

λS
uv := λ

(
σ̃uuσ̃vv log p

n

)1/2

, (8)

where λ > 0 is a constant. Note that these entry-dependent tuning parameters for S in
Problem (7) depend on the variance of the corresponding variables. The parameter σ̃uu
can be taken as the u-th diagonal elements of the estimator of the POET for S. It is worth
mentioning that, when the data matrix is normalized, the covariance matrix is equivalent to
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its correlation matrix, in which case, all tuning parameters are λ
√

log p/n, and the adaptive
Lq regularization function acting on S becomes the ordinary Lq regularization function.

We now discuss the selection of Σ̃. The common one is the ordinary sample covariance
matrix

1
n− 1

n

∑
i=1

(Yi − Ȳ)(Yi − Ȳ)T ,

where Ȳ = n−1 ∑n
i=1 Yi, Yi is the i-th sample vector, i = 1, · · · , n. The ordinary sample

covariance is suitable for the data with exponential-type tails or polynomial-type tails; see [1,4,8].
However, in many practical problems data tend to be heavy-tailed. Reference [9,13,22] defined
a Huber minimization sample covariance matrix, which is suitable for the data with finite
fourth moment. Moreover, Reference [9] also defined a rank-based covariance matrix and a
median of means covariance matrix for data with other distribution conditions.

Finally, we discuss some basic properties of Problem (7).

Proposition 1. The following statements of F(L, S) : Rp×p ×Rp×p → R+ in Problem (7) hold:

(i) F(L, S) is proper, closed, and coercive, i.e., lim‖(R,S)‖F→∞ F(L, S) = ∞.
(ii) F(L, S) attains its minimal value over Sp

+ × Sp
+.

(iii) Let f (L, S) = 1
2‖L + S − Σ̃‖2

F; the gradient ∇ f (L, S) is Lipschitz continuous with a
constant ` = 2, that is, for any (L1, S1), (L2, S2) ∈ Rp×p ×Rp×p, it holds that

‖∇ f (L1, S1)−∇ f (L2, S2)‖F ≤ 2‖(L1, S1)− (L2, S2)‖F.

(iv) Given a matrix L∗ ∈ Rp×p, the partial gradient function ∇S f (L∗, S) is Lipschitz continu-
ous with a constant ` = 1, that is, for any S1, S2 ∈ Rp×p, it holds that

‖∇S f (L∗, S1)−∇S f (L∗, S2)‖F ≤ ‖S1 − S2‖F.

Moreover, given a matrix S∗ ∈ Rp×p, the partial gradient function∇L f (L, S∗) is Lipschitz
continuous with a constant ` = 1.

4. Necessary Optimality Conditions

In this section, we define a class of first-order stationary points for Problem (7), which
is a hybridization of the first-order stationary points in [23–25] and the fixed point in [25].
Furthermore, we prove that any global minimizer of Problem (7) is a first-order stationary
point of Problem (7). We also define an approximate variant of this stationary point. It is
worth mentioning that the constraints in Problem (7) are treated as ordinary closed convex
set constraints in this paper.

For the simple unconstrained Lq regularized sparse optimization problem [23,24]:

min
x∈Rp

f (x) + λ‖x‖q
q,

where ‖x‖q
q := ∑

p
i=1 |xi|q, its the first-order stationary point is defined as the point satisfying

Diag(x∗)∇ f (x∗) + λq|x∗|q = 0.

For the simple unconstrained Lq regularized rank optimization problem [25]:

min
X∈Rm×n

f (X) + λ‖X‖q
q,

its first-order stationary point (or fixed point) is defined as the point satisfying

X∗ ∈ Proxλ‖X‖q
q/`,Rp×p

(
X∗ − 1

`
∇ f (X∗)

)
,
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where ` is a constant greater than the Lipschitz constant of∇ f (X). Inspired by these works,
we can define a class of hybrid first-order stationary points of Problem (7).

Definition 1. (L∗, S∗) ∈ Sp
+ × Sp

+ is said to be the first-order stationary point of Problem (7) if
(L∗, S∗) satisfies

L∗ ∈ Proxi(λL/`)‖L‖q
q ,Sp

+

(
L∗ − 1

`
(L∗ + S∗ − Σ̃)

)
, (9)

0 ∈
{

S∗ ◦ (L∗ + S∗ − Σ̃) + Q∗ + S∗ ◦ Y : YΓ∗
⋃

D ∈ ∂hΓ∗
⋃

D(S∗Γ∗ ⋃D)

}
, (10)

where Q∗ := (Q∗uv)
p
u,v=1 and

Q∗uv =

{
qλS

uv|S∗uv|q, if (u, v) ∈ Dc,
0, if (u, v) ∈ D,

Γ∗ = {(u, v) : S∗uv 6= 0}, hΓ∗
⋃

D(SΓ∗
⋃

D) := δSp
+
([SΓ∗

⋃
D : 0]), Y = [YΓ∗

⋃
D : Y(Γ∗

⋃
D)c ],

Y(Γ∗
⋃

D)c can be any finite array.

Next, we investigate the relationship between the global minimizer of Problem (7) and
the first-order stationary point of Problem (7) without any qualification conditions.

Theorem 1. Suppose that (L∗, S∗) ∈ Sp
+ × Sp

+ is a global minimizer of Problem (7), and let
Γ∗ = {(u, v) ∈ N×N : S∗uv 6= 0}. Then, (L∗, S∗) is a first-order stationary point with ` > 1 of
Problem (7).

Again, under some qualification conditions, the form of the first-order stationary
point of Problem (7) can be further analyzed. We now discuss the specific form of the
subdifferential of hΓ∗

⋃
D at S∗Γ∗ ⋃D. Note that

hΓ∗
⋃

D(XΓ∗
⋃

D) = δSp
+
([XΓ∗

⋃
D : 0]) = δSp

+
(LΓ∗

⋃
D(XΓ∗

⋃
D)),

where LΓ∗
⋃

D(XΓ∗
⋃

D) := [XΓ∗
⋃

D : 0] is the mapping acting on array XΓ∗ . The adjoint
mapping L∗Γ∗ ⋃D : Rp×p → Rp×p is defined by

〈LΓ∗
⋃

D(XΓ∗
⋃

D), Y〉 = 〈XΓ∗
⋃

D,L∗Γ∗ ⋃D(Y)〉 for all XΓ∗
⋃

D Y ∈ Rp×p.

Specifically, L∗Γ∗ ⋃D(Y) = YΓ∗
⋃

D. Clearly, δSp
+

is convex, and LΓ∗
⋃

D and L∗Γ∗ ⋃D are linear

mappings. It follows from Theorem 23.9 in [26] and Theorem 2.51 in [27] that, if S∗ ∈ Sp
+,

then

{L∗Γ∗ ⋃D(Y) : Y ∈ NSp
+
(S∗)} ⊆ ∂hΓ∗

⋃
D(S∗Γ∗ ⋃D). (11)

Moreover, suppose that the qualification condition KerL∗Γ∗ ⋃D
⋂

∂∞δSp
+
(S∗) = {0}

holds, where KerL∗Γ∗ ⋃D is the kernel of linear mapping L∗Γ∗ ⋃D, then

{L∗Γ∗ ⋃D(Y) : Y ∈ NSp
+
(S∗)} = ∂hΓ∗

⋃
D(S∗Γ∗ ⋃D). (12)

Based on these discussions, the following statement holds: If (L∗, S∗) satisfies

L∗ ∈ ProxiλL‖L‖q
q ,Sp

+
(Σ̃− S∗),

0 ∈
{

S∗ ◦ (L∗ + S∗ − Σ̃) + Q∗ + S∗ ◦ Y : Y ∈ NSp
+
(S∗)

}
,
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where Q∗ is defined in Definition 1 and the qualification condition KerL∗Γ∗ ⋃D
⋂

∂∞δSp
+
(S∗) = {0}

holds, then (L∗, S∗) is a first-order stationary point of Problem (7).
Obviously, the qualification condition KerL∗Γ∗ ⋃D

⋂
∂∞δSp

+
(S∗) = {0} holds automat-

ically if δSp
+

is locally Lipschitz continuous at S∗. In other words, if S∗ ∈ int(Sp
+) = Sp

++,
this qualification condition holds. Indeed, the true covariance matrix So is often assumed
to be positive definite [7,8]. When S∗ ∈ Sp

++, we can establish the lower bound theory of
the first-order stationary point of Problem (7).

Theorem 2. Let (L∗, S∗) be a first-order stationary point of Problem (7) satisfying F(L∗, S∗) ≤
F(L0, S0) + ε for some L0, S0 and ε ≥ 0, Γ∗ := {(u, v) : S∗uv 6= 0}. If S∗ ∈ Sp

++, then

|S∗uv| ≥
(

q min{λS
uv}√

2[F(L0, S0) + ε]

) 1
1−q
∀ (u, v) ∈ Dc ⋂ Γ∗.

Here, we only give the lower bound theory of the first-order stationary point of
Problem (7). With reference to the definitions of the first- and second-order stationary point
established by [23,24] for the general unconstrained Lq regularized optimization, a class of
second-order necessary optimality conditions of Problem (7) and its lower bound theory
can be considered.

Note that Problem (7) is actually a very challenging optimization problem due to the
positive definite constraints and the non-Lipschitz regularization terms, even finding a
first-order stationary point. Here, we define a class of approximate first-order stationary
points of Problem (7).

Definition 2. We say that (L∗, S∗) ∈ Sp
+ × Sp

+ is an ε-approximate first-order stationary point
(ε ≥ 0) of Problem (7) if there exist a set Γ∗ ⊆ {(u, v) : 1 ≤ u, v ≤ p, S∗uv 6= 0} such that

dist
(

L∗, Proxi(λL/`)‖L‖q
q ,Sp

+

(
L∗ − 1

`
(L∗ + S∗ − Σ̃)

))
≤ ε, (13)

dist
(

0, L∗Γ∗ ⋃D + S∗Γ∗ ⋃D − Σ̃Γ∗
⋃

D + Q∗Γ∗ ⋃D + ΞΓ∗
⋃

D : ΞΓ∗
⋃

D ∈ ∂hΓ∗
⋃

D(S∗Γ∗ ⋃D)

)
≤ ε, (14)

‖S∗(Γ∗ ⋃D)c‖F ≤ ε. (15)

where Q∗ is defined in Definition 1.

Moreover, if (L∗, S∗) is a first-order stationary point of Problem (7), it is an ε-approximate
first-order stationary point of Problem (7) with ε = 0. If (L∗, S∗) is an ε-approximate first-order
stationary point of Problem (7) with ε = 0, it is a first-order stationary point of Problem (7)
with ε = 0. In practice, the stopping point of any algorithm for an optimization problem is
usually an approximate stationary point, rather than a stationary point.

5. Numerical Optimization

In this section, we propose a smoothing alternating updating (SAU) method to solve
Problem (7), which is a combination of the smoothing projection gradient step in [28,29]
and the proximal gradient step in [30] under the framework of the ordinary alternating
minimization method. The convergence of the SAU method is established.

5.1. A Smooth Approximation Optimization Problem

Referring to the smoothing technique in [23,29], a class of smooth approximation
optimizations of Problem (7) can be given by

min
L,S∈Sp

+

Fµ(L, S) :=
1
2
‖L + S− Σ̃‖2

F + λL‖L‖q
q + ∑

(u,v)∈Dc
λS

uvψµ(Suv)
q, (16)
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where µ ∈ (0, ∞) and

ψµ(Suv) =

{
|Suv|, |Suv| > µ,
S2

uv
2µ + µ

2 , |Suv| ≤ µ.

Obviously, ψµ(Suv) is first-order continuously differential and

(ψµ(Suv)
q)′ =


q|Suv|q−1sign(Suv), |Suv| > µ,

q
(

S2
uv

2µ + µ
2

)q−1
Suv
µ , |Suv| ≤ µ.

(17)

Furthermore,
∇SFµ(L, S) = L + S− Σ̃ + Ψ(S),

where

(Ψ(S))uv =

{
λS

uv(ψµ(Suv)q)′, (u, v) ∈ Dc,
0, (u, v) ∈ D.

(18)

Next, we define a class of hybrid first-order stationary points of Problem (16).

Definition 3. We say that (L∗, S∗) ∈ Sp
+ × Sp

+ is a first-order stationary point of Problem (16) if
(L∗, S∗) satisfies

L∗ ∈ Proxi(λL/`)‖L‖q
q ,Sp

+

(
L∗ − 1

`
(L∗ + S∗ − Σ̃)

)
, (19)

0 ∈
{
∇SFµ(L∗, S∗) + Y , Y ∈ NSp

+
(S∗)

}
. (20)

Similar to the proof of Theorem 1, it is easy to prove that any global solution of Problem
(16) is a first-order stationary point of Problem (16) with ` > 1. The following conclusions
establish the relationship between the first-order stationary points of Problems (7) and (16),
which is the core of the convergence of the SAU method in next subsection.

Theorem 3. Let {µk} denote a sequence with µk > 0, k = 1, 2, · · · , and µk → 0 as k → 0
and (L∗µk

, S∗µk
) be a first-order stationary point of Problem (16) with µ = µk. Then, the following

statements holds:

(i) If µk ≤ ε/p2, then (L∗µk
, S∗µk

) is an ε-approximate first-order stationary point of Problem (7).
(ii) Any accumulation point of (L∗µk

, S∗µk
) is a first-order stationary point of Problem (7).

5.2. Smoothing Alternating Updating Method

Theorem 3 provides a feasible procedure to obtain an approximate solution of Problem (7)
by solving Problem (16). This subsection gives the framework of the SAU method for
Problem (7) and establishes its convergence.

First, we give the framework of the alternating updating (AU) method for solving
Problem (16).

Algorithm 1. Given α0 > 0, β ∈ (0, 1), ` > 1, choose an the initial point (L0, S0) ∈ Sp
+ × Sp

+.
For m = 0, 1, 2, · · · , repeat the following two steps until convergence:

Step 1. Update L by solving the following optimization problem:

Lm+1 = argmin
L∈Sp

+

〈∇L f (Lm, Sm), L− Lm〉+ `

2
‖L− Lm‖2

F + λL‖L‖q
q. (21)
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Step 2. Compute

Sm+1 = argmin
S∈Sp

+

‖S− (Sm − αm∇SFµ(Lm+1, Sm))‖2
F, (22)

where αm = α0β`m and `m is the smallest non-negative integer ` such that

Fµ(Lm+1, Sm(α0β`))) ≤ Fµ(Lm+1, Sm))− c
2
‖Sm(α0β`))− Sm‖2

F,

and Sm(α) = minS∈Sp
+
‖S− (Sm − α∇SFµ(Lm+1, Sm))‖2

F.

The AU method proposed in this paper applies the proximal gradient step [30] to
update L and uses the smoothing projection gradient step [28,29] to update S. A key
component at each iteration of the proposed AU method is to solve a singular-value
minimization Problem (21), which can be rewritten as follows:

min
L∈Sp

+

1
2

∥∥∥∥L−
(

Lm − 1
`
∇L f (Lm, Sm)

)∥∥∥∥2

F
+

λL
`
‖L‖q

q. (23)

Theorem 3.4 of [30] provides a solution to Problem (23). To facilitate the expression, define
vector q-thresholding operatorH(d) := (hv(d1), · · · , hv(dp))T with v = 2λL/`, where

h(di) =


hv,q(di) di > d∗,
(v(1− q))1/(2−q) or 0 di = d∗,
0, di < d∗,

(24)

d∗ = 2−q
2(1−q) (v(1− q))1/(2−q), and hv,q(di) is the unique root of the single-variable mini-

mization problem in (d̄,+∞):

min
x≥0

gdi
(x) := x2 − 2dix + vxq,

where d̄ = (vq(1− q)/2)1/(2−q). Moreover, hv,q(di) is differentiable and strictly increasing
on [d∗,+∞). As per the suggestion in [25], hv,q(di) can be simply obtained by the numerical
methods, for example the Newton method:

xz+1 = xz − qv(xz)q−1/2 + xz − di

q(q− 1)v(xz)q−2/2 + 1

with the initial point d0 = 1.5d̄.

Theorem 4 (Theorem 3.4 in [30]). Let UDiag(d)UT be the eigenvalue decomposition of Lm −
(1/`)∇L f (Lm, Sm)). Then, L∗ = UDiag(H(d))UT is an optimal solution to Problem (23),
whereH(d) is defined as (24) with v = 2λL/`.

When q = 1/2,H(d) has a closed-form expression, that is hv,q(di) =
2
3 di(1+ cos( 2π

3 −
2ϕ(di)

3 )), ϕ(di) = arccos( v
8 (

di
3 )
−3/2), d∗ =

3√54
4 v2/3. Refer to [30] for the details.

Another key component of at each iteration of the proposed AU method is a projection
problem over Sp

+, which can be written as follows:

min
S∈Sp

+

‖S− Cm‖2
F, (25)

where Cm := Sm− αm∇SFµ(Lm+1, Sm). It is well known that, if Cm has the eigen-decomposition
Cm := ∑

p
i=1 λivivT

i , then S∗ = ∑
p
i=1 max{λi, 0}vivT

i is the optimal solution of Problem (25).
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By (23) and (25), it is easy to find that, when the initial matrices L0 and S0 in the
AU method are symmetric, the matrices for L and S output by the AU method are also
symmetric. The next theorem gives the convergence of the AU method.

Theorem 5. Let {(Lm, Sm)} be the sequence generated by the AU method. Then, the following
statements hold:

(i) Fµ(Lm+1, Sm+1) ≤ Fµ(Lm, Sm)− c
2‖Sm+1 − Sm‖2

F −
`−1

2 ‖Lm+1 − Lm‖2
F.

(ii) {(Lm, Sm)} is bounded.
(iii) limm→∞ ‖Lm+1 − Lm‖F = 0, limm→∞ ‖Sm+1 − Sm‖F = 0.
(iv) Any accumulation point of {(Lm, Sm)} is a first-order stationary point of Problem (16).

We now give the framework of the SAU method for solving Problem (16).

Algorithm 2. Give τ ∈ (0, 1). Choose an initial smoothing parameter µ0. For k = 0, 1, 2, · · · ,
repeat the following two steps until convergence:

Step 1. Solve Problem (16) with µk by the AU method, and obtain (L∗µk
, S∗µk

).
Step 2. Set µk+1 ≤ τµk, and return to Step 1.

Theorem 3 shows that any accumulation point of (L∗µk
, S∗µk

) is a first-order stationary
point of Problem (7), which provides the guarantee of the convergence of the SAU method.
In practice, k cannot be taken as infinite, and µk cannot be taken as 0. Then, the Lq-CSCE
we obtained by the SAU method is often an ε-approximate first-order stationary point of
Problem (7). Indeed, we stop the SAU method if it reaches a maximum iteration kmax or
µk < ε, where ε > 0 is a small constant. Moreover, in order to improve the efficiency of
the SAU method, a trick is to take the output point (L∗µk

, S∗µk
) as the initial point of the AU

method for Problem (16) with µk+1. Thus, if the initial point of the AU method for solving
Problem (16) with µ0, then the final matrices for L and S generated by the SAU method are
also symmetric.

6. Simulations

In this section, we study the performance of the Lq-CSC method and the associated
algorithms. The following models are considered in this section:

• Model 1 (banded matrix with ordering). Σ∗ = blockdiag(A1, A2), where A1 = (σuv),

1 ≤ u, v ≤ p/2, σuv = (1− |i−j|
10 )+, A2 = 4Ip/2×p/2. Σ∗ is a two-block diagonal matrix,

A1 is a banded and sparse covariance matrix, and A2 is a diagonal matrix with four
along the diagonal.

• Model 2 (simple factor). Σ∗ = UDUT + I, where U ∈ Rp×3 with orthonormal
columns uniformly random and D = 8I.

• Model 3 (random factor). Σ∗ = UDUT + ΣSparse, where U ∈ Rp×3 with orthonormal
columns uniformly random and D = 8I, where ΣSparse is the sparse matrix generated
by Model 1.

The matrix Σ∗ in Model 1 is sparse, while the matrix in Model 2 and Model 3 satisfies
structural decomposition (2).

6.1. Comparison with Representative Methods

This subsection studies the advantages and disadvantages of the Lq-CSCE and existing
methods. Four representative estimators (the adaptive thresholding estimator (ATE) with
the hard thresholding rule in [4], the optimization-type estimator (OTE) in [8], the POET
in [12], and the LOREC in [14]) were used for the comparison. The first two estimators are
based on the assumption of sparse covariance. While the ATE is a good simple thresholding
estimator, the OTE is a good optimization-type estimator. Our estimators POET and LOREC
are based on the structural decomposition (2).
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Under each model, we set n = 100, and all random sample are generated from the
normal distribution with mean 0 and covariance matrix Σ, for p = 30, 100, 200. The losses
are measured by three matrix norms: the spectral norm, the max norm, and the Frobenius
norm. The standard errors are given in parentheses. It is known that q = 0.5 is a good choice
for the variable selection problem and the low-rank problem [24,25]. For convenience,
the parameter q in Problem (7) is taken as 0.5. In this subsection, we do not consider
different options of q.

For Model 1, the tuning parameters λL in Problems (4) and (7) are taken as 108.
Moreover, we set K = 0 in the POET. Under these setting, the LOREC, POET, and Lq-CSCE
degenerate into the simple soft thresholding estimator [1,2], the ATE, and the constrained
adaptive thresholding estimator, respectively. Table 1 reports the means and standard
errors of the five estimators under the three losses. In our analysis, the performance of the
POET is almost the same as the ATE. Note that compared with the ATE, OTE, POET, and
Lq-CSCE, the LOREC has a large bias under the spectral norm loss and the Frobenius norm
loss, which is caused by the bias of the L1 penalty. Moreover, the Lq-CSCE performs best
under the spectral norm loss and the Frobenius norm loss. All methods perform similarly
under the max norm.

For Models 2 and 3, we choose the tuning parameters in the LOREC and Lq-CSCE
by setting the grid and setting K = 3 in the POET. Tables 2 and 3 report the means and
standard errors of the five estimators under the three losses. Note that the ATE and OTE
performed poorly for Models 2 and 3. In contrast, the LOREC, POET, and Lq-CSCE were
more effective. The Lq-CSCE performs best under the spectral norm loss and the Frobenius
norm loss. The same as the result of Model 1, all methods perform similarly under the max
norm. It is worth mentioning that the adaptive technology is invalid for Model 2.

Moreover, Table 4 records the number of times that the estimators of the POET, LOREC,
and Lq-CSCE for L and S are positive semi-definite matrices. Clearly, all estimators of
the Lq-CSC estimation for L and S are positive semi-definite. It is not guaranteed that the
estimators of the LOREC and POET for S are positive semi-definite matrices.

Table 1. Simulation results for Model 1 over 100 replications. The standard errors are given in
parentheses.

p SE ATE OTE POET LOREC Lq-CSCE

(Spectral norm)
30 3.76 (0.58) 1.73 (0.50) 1.89 (1.04) 1.74 (0.48) 3.04 (0.43) 1.74 (0.48)

100 8.58 (0.67) 2.69 (0.44) 2.70 (0.50) 2.61 (0.49) 4.94 (0.38) 2.60(0.50)
200 14.10 (0.82) 4.73 (0.52) 3.27 (0.42) 3.02 (0.45) 6.17 (0.38) 3.02(0.46)

(Max norm)
30 1.25 (0.23) 1.17 (0.28) 1.16 (0.28) 1.16 (0.28) 1.22 (0.22) 1.16 (0.28)

100 1.59 (0.26) 1.59 (0.26) 1.48 (0.32) 1.51 (0.33) 1.50 (0.25) 1.51 (0.33)
200 1.73 (0.21) 1.73 (0.21) 1.63 (0.25) 1.67 (0.25) 1.63 (0.19) 1.67 (0.25)

(Frobenius
norm)

30 7.69 (0.52) 3.17 (0.48) 3.32 (1.03) 3.22 (0.43) 6.35 (0.47) 3.12 (0.44)
100 25.30 (0.64) 8.10 (0.66) 7.24 (0.52) 6.73 (0.49) 16.06 (0.58) 6.41 (0.52)
200 50.50 (0.79) 21.41 (0.80) 12.11 (0.48) 9.80 (0.47) 25.59 (0.62) 9.25 (0.49)
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Table 2. Simulation results for Model 2 over 100 replications. The standard errors are given in
parentheses.

p SE ATE OTE POET LOREC Lq-CSCE

(Spectral norm)
30 3.30 (0.75) 3.31 (0.10) 3.28 (0.03) 3.77 (0.79) 3.23 (0.73) 3.27 (0.77)

100 4.99 (0.75) 7.60 (0.08) 7.62 (0.13) 5.48 (0.85) 4.60 (0.62) 4.60 (0.63)
200 6.85 (0.59) 8.36 (0.79) 8.65 (0.49) 7.40 (0.28) 6.30 (0.25) 6.27 (0.63)

(Max norm)
30 0.73 (0.18) 0.74 (0.17) 0.73 (0.18) 0.75 (0.19) 0.72 (0.17) 0.72 (0.16)

100 0.57 (0.08) 0.62 (0.05) 0.62 (0.05) 0.56 (0.09) 0.55 (0.07) 0.50 (0.07)
200 0.54 (0.07) 0.54 (0.07) 0.52 (0.08) 0.54 (0.07) 0.52 (0.07) 0.51 (0.07)

(Frobenius
norm)

30 5.59 (0.58) 5.70 (0.59) 5.58 (0.57) 5.47 (0.76) 5.17 (0.58) 4.98 (0.63)
100 12.62 (0.40) 13.58 (0.05) 13.49 (0.24) 10.26 (0.57) 10.06 (0.40) 7.91 (0.48)
200 22.54 (0.39) 14.21 (0.09) 13.94 (0.02) 16.04 (0.53) 18.71 (0.39) 14.37 (0.48)

Table 3. Simulation results for Model 3 over 100 replications. The standard errors are given in
parentheses.

p SE ATE OTE POET LOREC Lq-CSCE

(Spectral norm)
30 5.59 (1.04) 5.57 (0.85) 5.53 (1.03) 5.73 (1.09) 5.57 (1.04) 5.33 (0.99)

100 10.09 (0.77) 9.71 (0.76) 10.01 (0.77) 10.19 (0.78) 9.52 (0.76) 9.21 (0.96)
200 15.00 (0.93) 13.17 (0.84) 14.22 (0.89) 15.69 (0.95) 14.41 (0.93) 11.28 (1.11)

(Max norm)
30 1.63 (0.30) 1.70 (0.28) 1.63 (0.30) 1.65 (0.29) 1.63 (0.30) 1.59 (0.29)

100 1.71 (0.29) 1.71 (0.29) 1.71 (0.29) 1.71 (0.29) 1.67 (0.29) 1.72 (0.37)
200 1.76 (0.22) 1.76 (0.22) 1.75 (0.22) 1.76 (0.22) 1.75 (0.21) 1.60 (0.16)

(Frobenius
norm)

30 10.44 (0.88) 11.09 (0.94) 10.34 (0.87) 10.54 (0.91) 10.39 (0.88) 10.10 (0.84)
100 27.99 (0.77) 27.48 (0.76) 27.78 (0.77) 27.76 (0.78) 25.69 (0.76) 19.66 (0.96)
200 52.86 (0.75) 49.25 (0.74) 50.16 (0.73) 49.76 (0.76) 49.09 (0.74) 32.23 (0.78)

Table 4. Record of the number of positive semi-definite matrices over 100 replications.

Method p = 30 p = 100 p = 200
L S L S L S

Model1
ATE - - - - - -
OTE - - - - - -

POET 100 0 100 0 100 0
LOREC 100 86 100 0 100 0
Lq-CSCE 100 100 100 100 100 100
Model2

ATE - - - - - -
OTE - - - - - -

POET 100 100 100 2 100 0
LOREC 0 100 53 100 100 100
Lq-CSCE 100 100 100 100 100 100
Model3

ATE - - - - - -
OTE - - - - - -

POET 100 0 100 0 100 0
LOREC 31 0 0 25 0 0
Lq-CSCE 100 100 100 100 100 100
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6.2. Choice of q

In the previous simulations, we only consider the setting where q = 0.5. This sub-
section supplements some simulations to study the influence of the choice of q on the
performance of Lq-CSCE. Here, we consider the cases q = 0.1, 0.3, 0.5 0.7, and 0.9.

Tables 5–7 report the means and standard errors of the Lq-CSCE with different q
under the three losses. Note that the options for q did not affect the result of the Lq-CSCE
under the max norm loss. Under other losses, for different models, the performance of
the Lq-CSCE depends on the choice of q deeply or shallowly. Specifically, there was little
difference between q = 0.1, q = 0.3, and q = 0.5 under the spectral norm loss and the max
norm loss. The Lq-CSCE with q = 0.7 and q = 0.9 performed poorly under the Frobenius
norm, especially when q = 0.9. Note that, when q = 0.1, the Lq-CSCE is slightly worse
than that of q = 0.3 and q = 0.5. We guess that a smaller q would make the minimizing
functional more non-convex and, thus, more difficult to solve. The estimator induced by
the Lq function with a large q had a large deviation.

Problem (23) has an explicit solution when q = 0.5, which makes the iteration of
the SAU method simple. When q = 0.1, 0.3, 0.7, and 0.9, it is necessary to embed other
numerical methods to find the approximate solution of Problem (23). Therefore, in practical
applications, we recommend the setting where q = 0.5.

Table 5. Simulation results of the Lq-CSCE with different q for Model 1 over 100 replications.
The standard errors are given in parentheses.

p q = 0.1 q = 0.3 q = 0.5 q = 0.7 q = 0.9

(Spectral norm)
30 1.70 (0.49) 1.71 (0.48) 1.66 (0.51) 1.68 (0.46) 2.12 (0.43)
100 2.61 (0.54) 2.61 (0.54) 2.62 (0.55) 2.80 (0.46) 3.71 (0.32)
200 3.10 (0.52) 3.11 (0.52) 3.10 (0.53) 3.42 (0.49) 4.10 (0.46)

(Max norm)
30 1.18 (0.31) 1.18 (0.32) 1.13 (0.30) 1.21 (0.32) 1.21 (0.33)
100 1.53 (0.33) 1.53 (0.32) 1.53 (0.34) 1.54 (0.31) 1.52 (0.28)
200 1.65 (0.26) 1.65 (0.27) 1.65 (0.33) 1.66 (0.32) 1.66 (0.30)

(Frobenius norm)
30 3.12 (0.52) 3.15 (0.51) 3.10 (0.54) 3.73 (0.53) 4.45 (0.46)
100 6.38 (0.54) 6.34 (0.54) 6.34 (0.52) 6.43 (0.64) 7.21 (0.55)
200 9.31 (0.53) 9.22 (0.55) 9.21 (0.57) 9.70 (0.51) 11.12 (0.49)

Table 6. Simulation results of the Lq-CSCE with different q for Model 2 over 100 replications.
The standard errors are given in parentheses.

p q = 0.1 q = 0.3 q = 0.5 q = 0.7 q = 0.9

(Spectral norm)
30 3.41 (0.75) 3.41 (0.74) 3.40 (0.72) 3.39 (0.68) 3.38 (0.62)
100 4.81 (0.75) 4.75 (0.10) 4.77 (0.03) 4.74 (0.79) 4.83 (0.79)
200 6.35 (0.75) 6.30 (0.10) 6.31 (0.03) 6.40 (0.79) 6.41 (0.79)

(Max norm)
30 0.73 (0.25) 0.74 (0.18) 0.74 (0.18) 0.73 (0.18) 0.74 (0.19)
100 0.57 (0.11) 0.53 (0.10) 0.53 (0.07) 0.53 (0.04) 0.54 (0.05)
200 0.53 (0.10) 0.50 (0.07) 0.51 (0.09) 0.52 (0.07) 0.54 (0.08)

(Frobenius norm)
30 5.58 (0.62) 5.36 (0.65) 5.33 (0.64) 5.32 (0.61) 5.52 (0.56)
100 8.15 (0.62) 8.09 (0.52) 8.11 (0.50) 8.30 (0.52) 9.14 (0.57)
200 14.81 (0.65) 14.49 (0.57) 14.62 (0.53) 14.74 (0.56) 15.55 (0.49)
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Table 7. Simulation results of the Lq-CSCE with different q for Model 3 over 100 replications.
The standard errors are given in parentheses.

p q = 0.1 q = 0.3 q = 0.5 q = 0.7 q = 0.9

(Spectral norm)
30 5.80 (1.01) 5.63 (0.99) 5.51 (0.98) 5.71 (0.95) 5.65 (1.00)
100 8.91 (1.04) 8.89 (0.90) 8.97 (0.93) 8.85 (0.84) 9.21 (0.79)
200 12.40 (1.13) 12.20 (1.04) 12.21 (1.01) 12.34 (1.06) 13.37 (0.99)

(Max norm)
30 1.60 (0.35) 1.56 (0.29) 1.56 (0.28) 1.56 (0.31) 1.60 (0.29)
100 1.73 (0.43) 1.73 (0.31) 1.74 (0.34) 1.76 (0.33) 1.69 (0.31)
200 1.71 (0.29) 1.71 (0.22) 1.72 (0.19) 1.73 (0.19) 1.78 (0.21)

(Frobenius norm)
30 10.12 (0.91) 9.98 (0.87) 10.03 (0.89) 10.14 (0.84) 10.42 (0.86)
100 20.60 (1.03) 20.01 (0.99) 20.04 (1.01) 20.45 (0.95) 21.36 (0.83)
200 31.56 (0.99) 31.40 (0.90) 31.29 (0.84) 31.49 (0.79) 34.47 (0.72)

7. Discussion and Conclusions

In this paper, we considered the problem of estimating a high-dimensional covari-
ance matrix from noisy data and studied a class of estimators based on the structural
decomposition (2). We estimated the high-dimensional covariance matrix by solving a
constrained adaptive Lq-type regularized optimization Problem (7). This paper provided a
systematic study for Problem (7). We first defined a class of hybrid first-order stationary
points of Problem (7) and analyzed the relationship between these stationary points and
the global solution of Problem (7). Secondly, we proposed an SAU method for solving
Problem (7) and established its convergence. The final simulation results showed that the
proposed SAU method can solve Problem (7) effectively and that the final Lq-CSCE had
good numerical performance.

8. Proof

This section provides the detailed proof of the conclusions in this paper.

Proof of Proposition 1. (i)(ii) The properness of F(L, S) is obvious. Note that F is contin-
uous over its domain and dom(F) is closed. Theorem 2.8 in [31] shows that F is closed.
Furthermore, whether ‖L‖F → ∞ or ‖S‖F → ∞, at least one of the three terms in F tends to
infinity. Thus, the coerciveness of F(L, S) holds. Then, it follows from Theorem 2.14 in [31]
that F(L, S) attains its minimal value over Sp

+ × Sp
+.

(iii) By calculation, ∇ f (L, S) = [∇T
L f (L, S),∇T

S f (L, S)]T , where

∇L f (L, S) = ∇S f (L, S) = L + S− Σ̃.

For any (L1, S1), (L2, S2) ∈ Rp×p ×Rp×p, it holds that

‖∇ f (L1, S1)−∇ f (L2, S2)‖2
F = ‖∇L f (L1, S1)−∇L f (L2, S2)‖2

F + ‖∇S f (L1, S1)−∇S f (L2, S2)‖2
F

= 2‖L1 − L2 + S1 − S2‖2
F

= 2‖L1 − L2‖2
F + 2‖S1 − S2‖2

F + 4〈L1 − L2, S1 − S2〉
≤ 4‖L1 − L2‖2

F + 4‖S1 − S2‖2
F

= 4‖(L1, S1)− (L2, S2)‖2
F,

which implies that the gradient ∇ f (L, S) is Lipschitz continuous with a constant
` = 2.

(iv) By calculation, ∇S f (L∗, S) = L∗ + S− Σ̃. For any S1, S2 ∈ Rp×p, it holds that
∇S f (L∗, S1)−∇S f (L∗, S2) = S1 − S2. Then, the partial gradient function ∇S f (L∗, S) is
Lipschitz continuous with a constant ` = 1. The same result holds for the partial gradient
function ∇L f (L, S∗).
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Proof of Theorem 1. Since (L∗, S∗) is a global minimizer of Problem (7), then L∗ is also a
global minimizer of the problem:

min
L∈Sp

+

f (L, S∗) + λL‖L‖q
q.

By (iv) of Proposition 1, we have that

f (L1, S) ≤ f (L2, S) + 〈∇L f (L2, S), L1 − L2〉+
1
2
‖L1 − L2‖2

F, ∀ L1, L2 ∈ Rp×p.

It follows that

f (L∗, S∗) + λL‖L∗‖q
q ≤ f (L, S∗) + λL‖L‖q

q

≤ f (L, S∗) + λL‖L‖q
q +

`− 1
2
‖L− L∗‖2

F

≤ f (L∗, S∗) + 〈∇L f (L∗, S∗), L− L∗〉+ 1
2
‖L− L∗‖2

F + λL‖L‖q
q +

`− 1
2
‖L− L∗‖2

F

= f (L∗, S∗) + 〈∇L f (L∗, S∗), L− L∗〉+ `

2
‖L− L∗‖2

F + λL‖L‖q
q.

Thus,

L∗ ∈ argmin
L∈Sp

+

{
f (L∗, S∗) + 〈∇L f (L∗, S∗), L− L∗〉+ `

2
‖L− L∗‖2

F + λL‖L‖q
q

}

= Proxi(λL/`)‖L‖q
q ,Sp

+

(
L∗ − 1

`
(L∗ + S∗ − Σ̃)

)
.

Hence, (9) holds.
We now prove that (10) holds for (L∗, S∗). Observe that S∗ is a global minimizer of

the problem:

min
S∈Sp

+

f (L∗, S) + ∑
(u,v)∈Dc

λS
uv|Suv|q,

which can be equivalently rewritten as

min
S∈Rp×p

f (L∗, S) + ∑
(u,v)∈Dc

λS
uv|Suv|q + δSp

+
(S).

Then, S∗Γ∗ is a global minimizer of the problem:

min
SΓ∗

f (L∗, SΓ∗ , S∗(Γ∗)c) + ∑
(u,v)∈Dc ⋂ Γ∗

λS
uv|Suv|q + δSp

+
([SΓ∗ : S∗(Γ∗)c ]). (26)

It follows from the first-order optimality condition of Problem (26) and Exercise 10.10
in [32] that there exists a YΓ∗ ∈ ∂hΓ∗(SΓ∗) such that

0 = L∗uv + S∗uv − Σ̃uv + λS∗
uvsign(S∗uv)|S∗uv|q−1 + Yuv, for all (u, v) ∈ Γ∗

⋂
Dc, (27)

0 = L∗uv + S∗uv − Σ̃uv + Yuv, for all (u, v) ∈ Γ∗
⋂

D. (28)

Moreover, let Y = [YΓ∗ : Y(Γ∗)c ], where Y(Γ∗)c is some finite array. For any (u, v) ∈
(Γ∗)c ⋂Dc, we have

S∗uv(L∗uv + S∗uv − Σ̃uv) + λS
uv|Suv|q + S∗uvYuv = 0, (29)
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and for any (u, v) ∈ (Γ∗)c ⋂D, we have

S∗uv(L∗uv + S∗uv − Σ̃uv) + S∗uvYuv = 0, (30)

Combining (27)-(30) with the definition of Y , (10) holds. Thus, (L∗, S∗) is a first-order
stationary point of Problem (7).

Proof of Theorem 2. Since (L∗, S∗) is a first-order stationary point of Problem (7) and
S∗ ∈ Sp

++, by Definition 1, it holds that

0 = S∗ ◦ (L∗ + S∗ − Σ̃) + Q∗, (31)

where Q∗ := (Q∗uv)
p
u,v=1 and

Q∗uv =

{
qλS

uv|S∗uv|q, if (u, v) ∈ Dc,
0, if (u, v) ∈ D.

For all (u, v) ∈ Dc ⋂ Γ∗, by (31), we have

0 = S∗uv(L∗uv + S∗uv − Σ̃uv) + qλS
uv|S∗uv|q. (32)

Moreover, the statement (iv) in Proposition 1 shows that ∇S f (L, S) is Lipschitz con-
tinuous with a constant 1, and it follows that

f (L∗, Y) ≤ f (L∗, X) + 〈∇S f (L∗, X), Y − X〉+ 1
2
‖Y − X‖2

F, ∀ X, Y ∈ Rp×p.

Taking X = S∗ and Y = S∗ −∇S f (L∗, S∗), we obtain that

f (L∗, S∗ −∇S f (L∗, S∗)) ≤ f (L∗, S∗)− 1
2
‖∇S f (L∗, S∗)‖2

F.

Note that

f (L∗, S∗ −∇S f (L∗, S∗)) ≥ 0, f (L∗, S∗) ≤ F(L∗, S∗) ≤ F(L0, S0) + ε.

It follows that
‖∇S f (L∗, S∗)‖F ≤

√
2[F(L0, S0) + ε].

This, together with the relation (32), implies that

qλS
uv|S∗uv|q−1 = |(∇S f (L∗, S∗))uv| ≤ ‖∇S f (L∗, S∗)‖F ≤

√
2[F(L0, S0) + ε], ∀(u, v) ∈ Dc ⋂ Γ∗.

Thus, we have

|S∗uv| ≥
(

q min{λS
uv}√

2[F(L0, S0) + ε]

) 1
1−q
∀(u, v) ∈ Dc ⋂ Γ∗,

which completes this proof.

Proof of Theorem 3. (i) We just need to prove that Relation (20) is a sufficient condition
for (14) and the inequality (15) holds. Since (L∗µk

, S∗µk
) is a first-order stationary point of

Problem (16), there exists a matrix Y∗µk
∈ NSp

+
(S∗) such that

0 = ∇SFµk (L∗µk
) + Y∗µk

.

Let N := {(u, v) ∈ Dc : (S∗µk
)uv > µ}. It holds that

0 = (L∗µk
)N ⋃

D + (S∗µk
)N ⋃

D − Σ̃N ⋃
D + [Ψ(S∗µk

)]N ⋃
D + (Y∗µk

)N ⋃
D. (33)
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By (11), it is known that

(Y∗µk
)N ⋃

D ∈ L∗N ⋃
D(NSp

+
(S∗µk

)) ⊆ ∂hN ⋃
D((S∗µk

)N ⋃
D).

Then,

dist
(

0, (L∗µk
)N ⋃

D + (S∗µk
)N ⋃

D − Σ̃N ⋃
D + [Ψ(S∗µk

)]N ⋃
D + (Yµk )N

⋃
D : YN ⋃

D ∈ ∂hN ⋃
D((S∗µk

)N ⋃
D)

)
≤ ε.

Moreover, it follows from the condition that µ ≤ ε/p2 that

‖(S∗µk
)(Γ∗

⋃
D)c‖F ≤ ∑

(u,v)∈(Γ∗ ⋃D)c
|(S∗µk

)uv| ≤ µp2 ≤ ε.

Therefore, (L∗µk
, S∗µk

) is an ε-approximate first-order stationary point of Problem (7).
(ii) Let (L∗, S∗) be an accumulation point of (L∗µk

, S∗µk
). By the definition of the first-

order stationary point of Problem (16), for any (u, v) ∈ N c ⋂Dc, there exists a matrix
Y∗µk
∈ NSp

+
(S∗µk

) such that

0 = (L∗µk
)uv + (S∗µk

)uv − Σ̃uv + qλuv

(
(S∗µk

)2
uv

2µk
+

µk
2

)q−1 (S∗µk
)uv

µk
+ (Y∗µk

)uv. (34)

Note that

0 ≤ qλuv

(
(S∗µk

)2
uv

2µk
+

µk
2

)q−1 (S∗µk
)2

uv

µk
≤ qλuv

(
(S∗µk

)2
uv

µk

)q

≤ qλS
uv|(S∗µk

)uv|q. (35)

If |(S∗µk
)uv| ≤ µk for arbitrarily large k, then S∗uv = limk→∞(S∗µk

)uv = 0, and by (35), we
have

lim
k→∞

qλuv

(
(S∗µk

)2
uv

2µk
+

µk
2

)q−1 (S∗µk
)2

uv

µk
= 0 and qλS

uv|S∗uv|q = 0.

Since Y∗µk
∈ NSp

+
(S∗µk

), limk→∞ Y∗µk
∈ NSp

+
(S∗).

This, together with the relation (34), implies that, for any (u, v) ∈ N c ⋂Dc,

0 ∈
{

S∗uv(L∗uv + S∗uv − Σ̃uv) + qλS
uv|S∗uv|q + S∗uvYuv, Y ∈ NSp

+
(S∗)

}
. (36)

Moreover, for any (u, v) ∈ N ⋃
D, we have

0 = (L∗µk
)uv + (S∗µk

)uv − Σ̃uv + Qµk
uv + (Y∗µk

)uv, (37)

where

Qµk
uv =

{
0, (u, v) ∈ D,
qλS

uvsign((S∗µk
)uv)|(S∗µk

)uv|q−1, (u, v) ∈ (N ⋃
D)/D.

For any (u, v) ∈ N ⋃
D, it follows that

0 ∈
{

S∗uv(L∗uv + S∗uv − Σ̃uv) + S∗uvQuv + S∗uvYuv, Y ∈ NSp
+
(S∗)

}
, (38)

where

Quv =

{
0, (u, v) ∈ D,
qλS

uvsign(S∗uv)|S∗uv|q−1, (u, v) ∈ (N ⋃
D)/D.

Since the Y∗µk
in (34) coincides with that in (37), by (36) and (38), we have that (L∗, S∗)

is the first-order stationary point of Problem (16).
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Proof of Theorem 5. (i) By (iv) of Proposition 1, we have that

1
2
‖L1 + S− Σ̃‖2

F ≤
1
2
‖L2 + S− Σ̃‖2

F + 〈L2 + S− Σ̃, L1 − L2〉+
1
2
‖L1 − L2‖2

F, ∀ L1, L2 ∈ Rp×p.

It follows that

Fµ(Lm+1, Sm) =
1
2
‖Lm+1 + Sm − Σ̃‖2

F + λL‖Lm+1‖q
q + ∑

(u,v)∈Dc
λS

uvψµ(Sm
uv)

q,

≤ 1
2
‖Lm + Sm − Σ̃‖2

F + 〈Lm + Sm − Σ̃, Lm+1 − Lm〉+ 1
2
‖Lm+1 − Lm‖2

F + λL‖Lm+1‖q
q

+ ∑
(u,v)∈Dc

λS
uvψµ(Sm

uv)
q

≤ 1
2
‖Lm + Sm − Σ̃‖2

F + 〈Lm + Sm − Σ̃, Lm+1 − Lm〉+ `

2
‖Lm+1 − Lm‖2

F + λL‖Lm+1‖q
q

+ ∑
(u,v)∈Dc

λS
uvψµ(Sm

uv)
q − `− 1

2
‖Lm+1 − Lm‖2

F

≤ 1
2
‖Lm + Sm − Σ̃‖2

F + λL‖Lm‖q
q + ∑

(u,v)∈Dc
λS

uvψµ(Sm
uv)

q − `− 1
2
‖Lm+1 − Lm‖2

F

= Fµ(Lm, Sm)− `− 1
2
‖Lm+1 − Lm‖2

F,

where the third inequality is due to the iteration of L in AU. Then,

Fµ(Lm+1, Sm+1) ≤ Fµ(Lm+1, Sm)− c
2
‖Sm+1 − Sm‖2

F

≤ Fµ(Lm, Sm)− c
2
‖Sm+1 − Sm‖2

F −
`− 1

2
‖Lm+1 − Lm‖2

F.

(ii) It is easy to show that Fµ is coercive, which implies that Fµ is level bounded. By (i)
in this Theorem, we have Fµ(Lm, Sm) ≤ Fµ(L0, S0). Then, {(Lm, Sm)} is bounded.

(iii) It follows from the inequality in (i) that

∞

∑
m=0

(
c
2
‖Sm+1 − Sm‖2

F +
`− 1

2
‖Lm+1 − Lm‖2

F

)
≤

∞

∑
m=0

(
Fµ(Lm, Sm)− Fµ(Lm+1, Sm+1)

)
≤ Fµ(L0, S0)− lim

m→∞
Fµ(Lm, Sm) < ∞,

where the last inequality is due to Fµ being bounded from below. Hence, limm→∞ ‖Lm+1 −
Lm‖F = 0, limm→∞ ‖Sm+1 − Sm‖F = 0.

(iv) Let (L∗, S∗) be an accumulation point of (Lm, Sm). We assumed that limj→∞ Lmj =
L∗ and limj→∞ Smj = S∗, where mj → ∞ as j→ ∞. By the results in (iii),

lim
j→∞

Lmj+1 = lim
j→∞

Lmj + (Lmj+1 − Lmj) = L∗, lim
j→∞

Smj+1 = lim
j→∞

Smj + (Smj+1 − Smj) = S∗.

By the AU method in this paper, we have that

Lmj+1 = argmin
L∈Sp

+

〈∇L f (Lmj , Smj), L− L∗〉+ `

2
‖L− Lmj‖2

F + λL‖L‖q
q,

〈Smj+1 − (Smj − αmj∇SFµ(Lmj , Smj)), S− Smj+1〉 ≥ 0, ∀ S ∈ Sp
+.
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Taking the limits on both sides, it follows that

L∗ = argmin
L∈Sp

+

〈∇L f (L∗, S∗), L− L∗〉+ `

2
‖L− Lmj‖2

F + λL‖L‖q
q,

〈∇SFµ(L∗, S∗), S− S∗〉 ≥ 0, ∀ S ∈ Sp
+,

i.e., (L∗, S∗) is a first-order stationary point of Problem (16).
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