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Abstract: Implementing impedance control in Cartesian task space or directly at the joint level is a
popular option for achieving desired compliance behavior for robotic manipulators performing tasks.
The damping ratio is an important control criterion for modulating the dynamic response; however,
tuning or selecting this parameter is not easy, and can be even more complicated in cases where the
system cannot be directly solved at the joint space level. Our study proposes a novel methodology
for calculating the local optimal damping ratio value and supports it with results obtained from five
different scenarios. We carried out 162 different experiments and obtained the values of the inertia,
stiffness, and damping matrices for each experiment. Then, data preprocessing was carried out to
select the most significant variables using different criteria, reducing the seventeen initial variables to
only three. Finally, the damping ratio values were calculated (predicted) using automatic regression
tools. In particular, five-fold cross-validation was used to obtain a more generalized model and to
assess the forecasting performance. The results show a promising methodology capable of calculating
and predicting control parameters for robotic manipulation tasks.

Keywords: robotic manipulator; Cartesian impedance; MCK system; machine learning; XGBoost;
random forest; support vector regressor; LightGBM; CatBoost

MSC: 68T40; 68T07

1. Introduction

In order to achieve the desired compliant behavior for a robotic manipulator perform-
ing a task, a popular choice is implementing impedance control at either the task (Cartesian)
space or directly at the joint level. Among these common tasks are wiping, deburring,
polishing, and several others for human–robot interaction, in which safety becomes an
important feature that must be handled in a careful manner [1].

Usually, in the one-DoF (Degree of Freedom) mass-damper-spring case or in discrete
systems that can be decoupled, a set of control criteria such as damping ratios ζ or natu-
ral frequencies ωn can be imposed according to particular (scalar) parameters. After the
system is no longer decoupled, the tuning or selection of the parameters is not straightfor-
ward, and it becomes much more complicated in cases of unconstrained discrete systems
or redundant serial kinematic chains, which are not directly solvable at the joint space level.

In this work, a new methodology is applied to perform a joint space analysis based on
the theory of mechanical vibrations of discrete unconstrained systems. As per the expansion
theorem, the solution of unconstrained systems such as the one shown in Figure 1 can be
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obtained by separately solving for the rigid body and non-rigid body modes of motion; then,
the linear combination of all these obtained modes form the complete response of the system.
Analogous to the case of discrete systems, a closed-form solution to redundant robotic
manipulators performing impedance control can be found that allows for modulating the
dynamic response and selecting an appropriate set of stiffness and damping parameters
according to the control criteria.

In general, in robotics there is a rule of thumb that tasks which are complex for any
human being are likely straightforward for any robot, while tasks that are easy for humans
end up being highly complex for any robot. Most recent advances in machine learning (ML)
can successfully teach planar and general robots to perform complex tasks such as loco-
motion [2,3], and manipulation [4–6]. Furthermore, there are ML frameworks that provide
baseline algorithms [7] which can be employed to solve general tasks. Other approaches
focus these algorithms on performing industrial tasks using physical robots [8,9]. Mean-
while, other strategies have overcome the data hurdle by integrating ML with physical
simulations [10,11] and employing sim-to-real techniques to transfer learned tasks from
virtual to physical robots [12].

Regarding the novel points of this work, we propose ML techniques to predict or
compute the damping ratio values that correspond to the dominant oscillatory mode
of motion of the multi-dimensional impedance control system of a redundant robotic
manipulator. Recently, ML or deep learning techniques have been widely applied in the
robotic control field, for example, in optimal impedance control for redundant manipulators
(i.e., [13]). However, in this case, the application of ML techniques for predicting the
damping ratio is particularly novel. The proposed methodology differs from theory-based
damping ratio calculation in that it does not require the application of mathematical
equations or known physical principles in order to make estimates; instead, ML techniques
use algorithms to estimate the damping ratio from historical data. A number of advantages
of using ML techniques are listed below.

• Improved accuracy; machine learning can analyze large amounts of historical data and
learn complex patterns involving the damping ratio, thereby improving prediction
accuracy.

• Handling of redundant variables; machine learning is capable of handling redundant
variables that can occur in a system controlled by redundant Cartesian impedance,
making predictions more robust.

• Ability to adapt to different conditions; machine learning algorithms can be adjusted
to adapt to different operating conditions, which improves the generalization of the
model.

• Modal analysis data; data are obtained from modal analysis on the robot system
instead of from arbitrary trial and error practices.

• Continuous improvement; machine learning allows systems to improve over time,
meaning that they can be updated with new data and their performance can be
improved.

• Use of different techniques; the use of different machine learning techniques such
as XGBoost, support vector regression, random forest, LightGBM, and CatBoost
allows different models to be compared and the best one applied to a given robot
control system.

The rest of this article is structured as follows. In Section 2, the current limitations on
the computation of damping ratio values are described and the need for a new methodology
is shown. Section 3 states the most important basis for understanding the concept of
Cartesian impedance control. In Section 4, the dynamic response modulation of a general
system with damping is described mathematically. The 3R planar robot experimental
setup and data acquisition process are introduced in Section 5. A full explanation of data
preprocessing is detailed in Section 6, along with the proposed prediction methodologies.
The obtained results are presented in Section 7. Lastly, the main conclusions are provided
in Section 8, along with possible future research directions.
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Figure 1. Non-conservative and unconstrained three-DoF discrete mechanical system.

2. Related Works

For general mechanical systems, the damping ratio and natural frequency are a com-
mon and appropriate set of control criteria for the dynamic response of the system. There are
different methods for obtaining or computing these control criteria, among which are mod-
elling, system identification, and automatic learning through previous data, among others
that combine these principles [14,15]. In other applications, such as structural engineering,
machine learning tools have been used to obtain equivalent damping ratios of reinforced
concrete walls in seismic events [16]. However, for redundant robotic systems perform-
ing impedance control with multidimensional mass, damping, and stiffness parameters,
the computation and optimization of these control criteria, that is, the damping ratio, is not
straightforward and cannot be directly treated as a decoupled system of equations, at least
not from a sound fundamental point of view.

In most cases, the translational and rotational Cartesian impedance control parameters,
particularly damping, are chosen in one of the following ways:. First, through trial and
error on the robot setup by experimentally testing for stability regions [17], computation-
ally obtaining values based on previous suitable data [18], imposing linear combinations
involving the Cartesian stiffness, or arbitrarily assuming a set of m or n (depending on
whether the equations are specified at the Cartesian or joint level, respectively) decoupled
M-C-K (mass-damping-stiffness) equations (which in general is not the case) and choosing
a Cartesian space damping matrix as CC = 2

√
KC without considering either the effects of

the off-diagonal elements of the inertia–mass matrix or performing a joint space analysis of
the response using the configuration-dependant Jacobian matrix of the robot.
In order to choose or compute an appropriate set of impedance parameters, a joint space-
based analysis for stiffness [19–21] and damping makes sense, as what is physically needed
to be applied is a set of joint torques at the motors of the robot within a certain desired or
limited range.

For redundant robotic manipulators, where there are more joints than task coordinates
(n > m), after the Cartesian impedance system equations are mapped into the joint space
those extra DoFs make the system impossible to solve analytically except by handling
and solving for the rigid-body and non-rigid-body or zero-potential-energy and non-zero-
potential-energy motions [22] separately. When the system is solvable, the effect of each
element of the stiffness and damping matrices can be observed and used to generate
parameter studies that allow an appropriate or optimal set of values to be chosen that
modulate the dynamic response according to the desired control criteria in the modal space.

3. Cartesian Impedance Control

Robotic impedance control grows out of the one-DoF second-order mechanical system
with a mass, damper, spring, and external force mẍ + cẋ + kx = f . When this type of
system is applied to a robotic manipulator, this concept is extended to multiple DoF matrix
equations with coupled non-diagonal mass, damping, and stiffness matrices with certain
dynamic behavior governed by the aforementioned matrices [23,24]. At the Cartesian or
task space level [25], the impedance control of a robot becomes
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MCẍ(t) + CCẋ(t) + KCx(t) = f (1)

with x being the vector of translational and rotational displacements, f the vector of external
forces and moments, and the mass, damping, and stiffness matrices with subscript C expressed
in the Cartesian space. From the dynamic equation of motion of a robot provided by

M(q)q̈(t) + G(q, q̇)q̇(t) + v(q) = τm + τext (2)

where q is the vector of the n joint angles, M is the manipulator’s mass matrix, G is the
matrix containing the centrifugal and Coriolis terms, and v is the gravity vector term, if we
choose the motor torques τm as [−K(q)q(t)−C(q)q̇(t) + v(q) + G(q, q̇)q̇(t)], the system
in Equation (2) becomes

M(q)q̈(t) + Cq̇(t) + Kq(t) = τext (3)

where the external torques τext and the mass, damping, and stiffness matrices establish
the joint space impedance control system of equations. The respective Cartesian stiffness
and damping matrices KC and CC can be mapped to the joint space using the manipulator
Jacobian matrix J(q) [26,27]

K = JTKCJ +
[(

∂JT

∂q1
f
)(

∂JT

∂q2
f
)
· · ·
(

∂JT

∂qn
f
)]

+ JTCC J̇ (4)

C = JTCCJ (5)

making Equations (1) and (3) equivalent to each other.

4. Dynamic Response Modulation of a General System with Damping

The dynamic response of a multi-dimensional non-conservative mechanical system
can be obtained in the modal space [14], in which the multiple DoFs in Equation (3) are
decoupled such that each DoF can be independently analyzed to obtain and tune the
damping ratios and natural frequencies of the response accordingly. In the case of a
redundant robot performing impedance control-related tasks defined in the Cartesian
space, the system in the joint space becomes positive semidefinite due to the additional
(r = n−m) DoFs of the robot. This makes both the joint stiffness and damping matrices
singular when they are mapped from the Cartesian space using Equations (4) and (5).
The methodology presented here reduces the system to a positive definite system that can
be solved analytically. If the robot is non-redundant, the system is positive definite and
transformation to a reduced space is not necessary.

First, the stiffness and damping matrices KC and CC are mapped from the Cartesian to
the joint space using Equations (4) and (5). Assuming that the external forces and changes
in Jacobian are negligible, only the first term in Equation (4) is used to map the stiffness
matrix. After that, the redundancy or positive semi-definite property can be taken care of
by removing the zero-potential-energy (ZP) mode of motion u0 using a constraint matrix S
and obtaining a system in a reduced space defined as q′

Ep =
1
2

uT
0 Ku0 = 0 (6)

u0 ∈ N(K) ⇒ Ku0 = 0 (7)

q = Sq′ (8)

When we remove the r ZP mode(s) that belongs to the null space of the stiffness matrix
(The ZP mode is analogous to the rigid body mode in theory of vibrations with no changes
in the potential energy Ep of the system), Equation (8) can be substituted into Equation (3):
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STM(q)Sq̈′ + STCSq̇′ + STKSq′ = STτext (9)

=⇒ M′(q)q̈′ + C′q̇′ + K′q′ = STτext (10)

This reduced system in the q′ space is now positive definite and solvable for the (n− r)
non-zero potential energy (NZP) modes of motion of the system by establishing the state
vector z(t)=[q′(t)T q̇′(t)T ]T in the state space representation:

ż(t) = Az(t) + BSTτext(t) (11)

where the A and B matrices have dimensions of 2(n− r)× 2(n− r) and 2(n− r)× (n− r),
respectively, and are given by

A =

[
0 I

−(M′)−1K′ −(M′)−1C′

]
, B =

[
0

(M′)−1

]
(12)

This linear system has a solution that is mainly governed by the (n − r) pairs of
eigenvalues λ of the A matrix, which are contained in the Λ matrix, which has a solution

z(t) =
[

q′(t)
q̇′(t)

]
= XeΛtYTz(0) +

∫ t

0
XeΛτYTBτext(t− τ)dτ (13)

where X and Y are the right and left eigenvectors of the system. The corresponding damping
ratios ζ in the modal space of the A matrix can be computed and systematically improved:

λi = a± ib; ωdi = b; ζi = cos (γ); γ = tan−1(b/a) (14)

After the solution is obtained in the modal space, this NZP solution can be mapped back
into the physical space using the constraint matrix in Equation (8). Because the dynamic
equation of impedance control of the robot can be solved analytically, the trend or behavior
of the system can be obtained, as the elements of the damping matrix are iteratively changed
or updated. A parameter study can be generated for all diagonal and off-diagonal elements
of CC, allowing the dynamic response of the system to be modulated through damping in
a consistent and coherent manner.

As can be seen, this analysis in the joint space of the robot must be performed in
order to modulate the dynamic response. This becomes an iterative process of determining
the elements of the damping matrix that affect the most each mode of motion (vibration)
as the robot moves and interacts with the environment. It is worth pointing out that,
the methodology explained here can be applied in higher dimensions as well as in case of
more redundant DoFs for robotic tasks; this becomes a matter of handling the redundancies
by successively imposing constraint matrices (S) and reducing the system until it becomes
positive definite.

Using machine learning tools and data collected applying the proposed methodology
with modal analysis, a function that computes the optimum damping ratio can be obtained.

5. Experimental Setup and Data Collection

For a redundant robotic manipulator performing Cartesian impedance control, the an-
alytical tool previously described is used to find an optimal damping matrix that generates
the best or highest possible damping ratio of the dominant NZP (oscillatory) mode of
motion having the least number of damping parameters tuned.

This work focuses on the case of a 3R planar robot, for which the set of optimal
damping elements is obtained considering different paths and Cartesian stiffness matrices.
Because there is no inertia reshaping, the configuration-dependent mass matrix is obtained
directly at the joint space, and because for an intended task there is a Cartesian stiffness
matrix associated with it, a damping matrix needs to be obtained. The were data collected
for each point of a given path and then fed into the following algorithm:L
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M(q) =

m11 m12 m13
m21 m22 m23
m31 m32 m33


KC =

(
k11 k12
k21 k22

)
CC =

(
c11 c12
c21 c22

)
It is worth pointing out that the damping matrix was chosen after performing the

analysis described in the previous Section iteratively in order to establish a behavior and
find the most suitable damping values. An experimental test consisted of finding the
damping matrix elements for all the points or robot configurations in a given path. The
duration of each experimental test for an intended path was 1993.74 s, with a sampling
frequency of about 0.053 Hz. As a consequence, 105 samples (optimal damping values in
a path) were obtained for each experiment. In other words, it takes 18.988 s to generate
one sample. Table 1 shows a description of the trials carried out for each path type in the
workspace of the robot. For the circular paths, the radii values were between 0.2 and 1.15 m,
for the square paths the sides lengths were between 0.3 and 1.626 m, and for the straight
line paths the lengths were between 0.8 and 2 m.

Table 1. Experiments performed for each type of path: circle, square, and straight line.

Path Total Experiments Total Samples

Circle 54 6195
Square 54 6232

Straight Line 54 5448

Total 162 17,875

To better understand the mechanics of a 3R planar robot, Figure 2 illustrates. The mo-
tion of this robot is determined by its three revolute joints; their angular positions are
described by q1, q2, and q3. For this theoretical robot, the range of angular movement is
considered to be infinite in all its joints, meaning that for any i ∈ (1, 2, 3), −∞ < qi < ∞.

In this way, the revolute joints do not impose any restriction on the robot’s workspace.
On the other hand, the link lengths restrict the robot’s reach. This study considers
L1 = 0.5 m, L2 = 0.35 m, and L3 = 0.3 m, with corresponding link masses of m1 = 4 kg,
m2 = 3 kg, and m3 = 2.5 kg.

Because a redundant 3R planar robot is being considered, the number of joint space
variables should be greater than the number of controlled task space variables. In Figure 2,
qi are the three joint space variables and xe, ye, and φ are the task space variables. No
access to control φ is assumed in order to impose redundancy on the model. This means
that the size of the manipulator Jacobian is 2 × 3. Consequently, the mapping from the
Cartesian to the joint space provides a positive semi-definite system with singular K and C
matrices, which is not solvable unless the system is reduced to a positive definite one using
the methodology previously described in this paper.
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Figure 2. 3R planar robot on which this study is based. In our research, L1 = 0.5 m, L2 = 0.35 m, and
L3 = 0.3 m, while the joint space variables q1, q2, and q3 have an infinite range of angular movement.

Local Optimum Damping Based on Modal Analysis

Before extending to a path, it is necessary to explain how to obtain the optimal damping
values for a given point or joint configuration, after which generalizing it for paths is a
matter of applying the algorithm to all the points that are part of the pre-established path.

Figure 3 describes the process of obtaining an optimum damping value for a configu-
ration of a redundant 3R planar robot. For greater comprehension, we explain this by an
example in which the end effector is located at x = [x, y]T = [0.5 m, 0.6 m]T .

The input data are provided by the joint configuration vector q, which corresponds to
the Cartesian x, the inertia mass matrix M(q), a desired stiffness matrix in the Cartesian
space KC, and the configuration-dependent Jacobian matrix of the robot J(q). All of these
data except for the Cartesian stiffness matrix depend on the current robot configuration.
The joint configuration vector is obtained by applying inverse kinematics to x, q = [q1, q2,
q3]T = [1.659,−1.979, 1.105]T rad. Considering this configuration,

M(q) =

 2.013 0.4634 0.2542
0.4634 0.6215 0.1339
0.2542 0.1339 0.0750


J(q) =

[
−0.6000 −0.1020 −0.2121
0.5000 0.5443 0.2121

]

KC =

[
100 0
0 100

]
Then, mapping the Cartesian stiffness matrix to the joint space using Equation (4) and

assuming negligible changes in Jacobian, the joint stiffness matrix K is obtained:

K =

61.00 33.33 23.33
33.33 30.67 13.71
23.33 13.71 9.000


As expected from theory, due to the redundancy this joint stiffness matrix is positive semi-
definite. In order to remove the ZP mode, a state vector in the null space of K must be
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found and normalized with respect to M(q) such that uT
0 Mu0 = 1. For this illustrative

example, the normalized vector is

u0 =

−0.9013
−0.2037

2.647


When the constraint matrix S is imposed to the system such that q = Sq′, the redundancies
are removed. This means that K and M are reduced to K′ and M′ through Equations (8)–(10):

S =

 1 0
0 1

−21.38 −3.284


K′ =

[
3178 295.5
295.5 37.7

]

M′ =
[

25.43 2.032
2.032 0.5510

]
From this point on, a parametric study is carried out with the purpose of analyzing the

influence of the damping matrix on the damping ratios of the system. The damping ratios
affect the dynamic response of the robot under impedance control, and are very important.
To accomplish this parameter study, one element from the main diagonal of the damping
matrix is iteratively increased while the other one remains with a low value (0.1 Ns

m ) in
order to obtain the effect of the element in study over the damping ratios. Please note that
it is important to maintain the positive definite property of the damping matrix. A step
of 0.001 was used for the iterations, beginning with a Cc = diag(0.1, 0.1) Ns

m for the first
iteration (j = 1) in both parametric studies. Note that for the first iterations, the results of
both parameterizations are very alike, as the values are very low.

For both the c11 and c22 parametric studies, the iteration j = 40,000 is shown as an
example in order to clarify the procedure.
For the first parametric study (c11), we have

Cc =

[
40.09 0

0 0.1

]
Mapping the Cartesian damping matrix onto the joint space with the help of Equation (5),
we have

C =

14.46 2.481 5.114
2.481 0.4466 0.8789
5.114 0.8789 1.809


Reducing C, we have

C′ =STCCS

C′ =
[

622.7 93.91
93.91 14.18

]
The next step is to obtain the system matrix (A) from the space state representation, as de-
scribed in Equation (12):

A =


0 0 1 0
0 0 0 1

−116.4 −8.726 −15.41 −2.319
−106.9 −36.19 −113.6 −17.18


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To obtain the damping ratios, the eigenvalues of the A matrix are needed, and can be
obtained using the equations in (14):

ζ1,2 = 0.0782; ζ3,4 = 1

For the second parametric study (element c22), the same procedure is followed:

Cc =

[
0.1 0
0 40.09

]

A =


0 0 1 0
0 0 0 1

−116.4 −8.726 −31.38 −1.188
−106.9 −36.19 70.59 2.632


ζ1,2 = 0.0975; ζ3,4 = 1

For the complete parametric study at this robot configuration, 49,901 iterations have been
considered; the whole analysis results are illustrated in Figure 4.

Start

Map Kc 
into the 

joint space 
to obtain K

Remove 
ZP mode

Choose a low initial 
value for Cc

Get the 
reduced M and 

K matrices

Get the 
system matrix 

(A)

Get the 
eigenvalues of 

A, natural 
frequency and 
damping  ratio.

Increase the value of 
the analyzed element 

of Cc matrix

¿Has the algorithm reached the  
desired number of iterations ?

Choose as 
optimum Cc 

matrix, the one 
that maximizes   
damping ratio 

N

Y

END

Xd, M, Kc, J

Figure 3. The algorithm used to select Cartesian damping matrices with an associated damping
ratio. The algorithm increases a certain element from the diagonal of Cc and finds the damping ratios
related to the eigenvalues of the system matrix, which is the matrix from the state space representation
that includes the input variables mapped onto the joint space after reducing them using the removed
ZP mode(s). This is performed iteratively until an optimum value is identified.
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(a) Parametric study of element c11.
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(b) Parametric study of element c22.

Figure 4. Plots showing the results of the parametric study of damping based on variation of the
main diagonal elements of Cc (1,1) and (2,2). Because the parametric study of element c22 has more
influence on λ1−2 than element c11, the optimum value is c22 = 17.83, which generates a set of
damping ratios ζ1,2 = 0.2 and ζ3,4 = 0.55.
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From observation and experimentation, it became understood that the most critical
mode is λ1−2, as it is not significantly influenced by any of the elements of the damping
matrix. The element with the greatest influence on mode 1-2, comparing Figure 4a,b, is c22,
and the higher damping ratio values for this mode were obtained with the variation of this
element. Because the damping ratios for mode 1-2 have a unique maximum, the optimum
values for the elements of the damping matrix can be chosen.
Thus, for this configuration, the optimum damping matrix is

Cc =

[
0.1000 0

0 17.83

]
Leading to the following damping ratios:

ζ1,2 = 0.2; ζ3,4 = 0.55

This analysis for one robot configuration corresponding to a point in the intended
path is then extended for each configuration along the path.

6. Methodology

In the creation of data-driven machine learning models, the adage “garbage in, garbage
out” is applicable [28]. In actuality, real-world data are frequently erroneous and deficient
in specific behaviors or patterns, and are frequently inconsistent and incomplete. Data
preprocessing is therefore essential for overcoming the aforementioned problems and
for preparing the data to create data models [29]. Data cleansing, normalization, feature
discovery (i.e., feature extraction, feature selection, and feature learning), and unbalanced
data management are often included in data preprocessing activities.

In this section, all the steps used to preprocess the data are described, including
splitting of the data into training, validation, and testing sets as well as several prelimi-
nary considerations regarding the data, feature selection and redundant variable removal,
and data normalization using scaling strategies.

Then, the basis of the five proposed ML algorithms are addressed. Likewise, the details
of the ML algorithm-based architectures are described. Finally, the technique employed for
hyperparameter tuning (grid search plus CV) is outlined.

6.1. Data Split

Typically, the full dataset (see Figure 5) can be divided into two or more subsets,
i.e., for training, validation, and testing. Training and testing datasets are the most common
in ML models; however, a validation dataset is frequently required as well. Training sets
are usually employed to estimate the parameters of the model and fit the data. After that,
a test set is used to evaluate the model and measure its performance. When a third set is
used (validation), it is commonly intended to change or calibrate the hyperparameters of
the model. If only the training and testing sets are used, another strategy, such as cross-
validation (CV), can be applied to calibrate the model, and a third dataset is not required.
In this work, only two datasets, training and testing, are used. Moreover, during testing a
CV strategy is applied to calibrate the model.

There is no fixed guideline for splitting data. There are several strategies to perform
the task, such as random sampling, stratified random sampling, or non-random sampling.
Considering that our experiments are classified into three path types (square, straight line,
and circle) it is important to ensure that the data are balanced (correctly distributed) with
respect to those paths in the training and testing sets; thus, stratified random sampling
is suitable.



Mathematics 2023, 11, 1021 12 of 26

circle

c22 k 11 k 12 k22 D-R

squared

straight line

experiment 1

experiment 54

experiment 1

experiment 54

experiment 1

experiment 54

sample 1

sample 2

sample 17875

m 11 m 12 m33 c11 c12

+++

+++

+++ +++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++ +++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++
+++

+++

+++ +++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++ +++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++ +++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++ +++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++

Figure 5. Structure of the full dataset.

From Table 1, the number of total samples for each path can be observed. Each path
in the dataset is split into 80% for training and 20% for testing. Next, Table 2 shows the
total samples corresponding to each dataset (training and testing). Taking the total samples
for training (14,299) and testing (3576) and dividing by the total samples (17875), it can be
confirmed that the total distribution is 80% and 20%, respectively, as expected.

Table 2. Total samples intended for training and testing.

Path Training Samples Testing Samples Total Samples

Circle 4956 1239 6195
Square 4985 1247 6232

Straight Line 4358 1090 5448

Total Samples 14,299 3576 17,875

6.2. Preliminary Considerations

Based on Section 5, the input data are composed of the predictor variables (elements of
matrices M, K, and C) and the target (damping-ratio). Regarding the predictors, as they are
elements of matrices there are several considerations to be taken into account. For instance,
the K matrix is joint-form, which implies that it is a diagonal matrix. Thus, all the entries
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outside the main diagonal (drawn from left to right) are zero, i.e., the elements k12 and
k21. A similar case is the C matrix; as it is a diagonal matrix, its elements c12 and c21 are
zero. In consequence, as those four elements are always zero they do not provide useful
information to the input data, and must be removed.

To ensure that the rest of features (elements of matrices) can provide useful information
to the input data, the standard deviation was computed for each feature in order to measure
how many features vary (a measure of variance) throughout the dataset. If a feature does
not vary, it is unnecessary and should be removed. Below, Table 3 shows the standard
deviation computed on the predictors.

Table 3. Standard deviation (STD) of predictor variables into the full dataset.

M m11 m12 m13 m21 m22 m23 m31 m32 m33

STD 0.991 0.548 0.133 0.548 0.178 0.089 0.133 0.089 1.994× 10−14

C c11 c22

STD 23.973 23.684

K k11

STD 272.354

From Table 3 it can be seen that the elements from matrices K and C have quite a
significant deviation, unlike matrix M, in which there are elements with low but still signif-
icant deviation (i.e., with at least two significant decimal values). However, the element
m33 has a standard deviation equal to 1.994× 10−14, which is completely negligible. This
element must be removed, as it does not vary at all throughout the dataset.

In summary, with these preliminary considerations several elements of the matrices
have been removed. The remaining eleven parameters include eight for M, two for C,
and one for K.

6.3. Feature Selection

The process of choosing a subset of pertinent features to be used in model creation
is known as feature selection, or sometimes as variable selection or attribute selection.
Feature selection is usually carried out for several purposes. First, it can enhance a machine-
learning algorithm’s performance [28]. For instance, certain features could be noise, or may
not be important for a specific problem. These features contribute to overfitting, which can
lead to biased or undesirable variation in the problem result. Second, feature selection is
carried out to increase the model’s interpretability [28]. The model is made simpler when
certain features are eliminated. In order to better understand which features contribute
the most to the model, feature selection additionally rates the relevance of the features.
Third, feature selection lowers the amount of resources needed for computation and data
collection [28]. For instance, if sensor data are utilized as features, feature selection aids in
reducing the number of sensors, lowering the cost of the sensor system, as well as the costs
associated with data gathering, storage, and processing. Finally, feature selection works to
lessen the possibility of the “curse of dimensionality,” similar to dimensionality reduction.

In this work, considering that the full dataset contains several experiments and each
is performed under different execution conditions, there is not any guarantee that the
predictor variables have a linear relationship, either between themselves or with the
predicted or target variables. Under this scenario, a linear measure of correlation such
as the Pearson correlation is not appropriate; instead, other techniques for measuring
correlation that are able to capture nonlinear relationships should be employed, such as
Spearman’s rank correlation, distance correlation (DC), mutual information (MI), ANOVA
f-test, Chi-square test, and variance checking, among others. In this work, three different
methods, Spearman, MI, and DC, are used to measure the feature–target (feature selection)
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and feature–feature (redundant variables removal) correlation. Each method and its details
are explained below.

6.3.1. Spearman’s Rank Correlation

Known as Spearman’s rho, this is a non-parametric measure of the association between
two variables. In the context of this study, it can be used to measure the correlation between
different features of the robot, such as its control parameters and damping ratio.

As is well known, Spearman’s correlation varies in a range from −1 to +1, where
−1 is associated with the maximum negative relationship between two variables and
+1 represents the maximum positive one [30]. Based on [31], an absolute correlation
coefficients between 0.00 and 0.10 represents a negligible correlation, i.e., those predictor
variables should be removed. Figure 6a shows the Spearman correlation matrix among the
predictor variables and with respect to the variable to be predicted.

The last row (from top to bottom) contains the correlation coefficients between the
predictor variables and the target (feature–target). It can be seen that these coefficients
vary in a range of −0.42 to +0.04 (moderate, weak, and negligible correlations). In this
sense, as there are no higher coefficients and not very many predictor variables, it is not
suitable to remove them. Therefore, in Section 6.4 all of the features are evaluated in order
to eliminate those that are redundant.
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Figure 6. Feature−target and feature−feature correlation matrices computed with different tech-
niques: (a) Spearman, (b) MI, and (c) DC.

6.3.2. MI Correlation

MI is a concept used in feature selection that measures the dependence between two
variables [32,33]. In this work, MI can be used to measure the dependence between the
input features of the robot, such as its control parameters, and the output feature, such
as the damping ratio. The MI between two variables is a non-negative value, with larger
values indicating stronger dependence between the variables.

Figure 6b shows the feature–feature and feature–target MI correlation matrix. As men-
tioned above, the last row from top to bottom contains the correlation coefficients between
the features and the target. After observing these values, the variables with coefficients
closer to 0 are eliminated, considering a cut-off value of 1.5; Considering this, the remained
features are m11, m12, m13, m21, m22, m23, m31, and m32. This means that, in Section 6.4,
those features are evaluated to determine which are redundant and should be removed.

6.3.3. DC

DC is a statistical measure that quantifies the dependence between two random
variables. In feature selection, it can be used to measure the dependence between the input
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features and output feature of a model [34]. DC has the advantage of being able to detect
nonlinear relationships between variables, making it a useful tool for feature selection
in situations where the relationships between features and the output are nonlinear [35].

The DC coefficient is a value between 0 and 1, where 0 indicates no dependence
between the variables and 1 indicates perfect dependence. The coefficient is calculated
as the square root of the ratio of the distance covariance and the product of the distance
variances of the two variables.

Figure 6c shows the feature–feature and feature–target DC matrix. As in the previous
cases, the values of the last row from top to bottom correspond to the feature–target
correlation coefficients. Values between 0.00 and 0.10 represent a negligible correlation,
i.e., those features should be removed. Considering this, the remaining features are m11,
m13, m22, m23, m31,m32, k11, and c11. In Section 6.4, these features are evaluated to determine
which are redundant and should be removed.

6.4. Redundant Variables Removal

Accuracy and elapsed time are two crucial factors to be considered when ML models
are built, as it is desirable for the model to have excellent performance, i.e., the best accuracy
and the least elapsed time for the training and testing stages. Feature quality is a key point
to achieve this, as redundant variables (two or more predictors that explain the same
information) result in poor model performance [36].

Regarding the Spearman and DC correlation, when the absolute correlation coefficient
fluctuates from 0.90 to 1.00 it can be considered as a very strong correlation [31]; thus,
if two predictor variables have a very strong correlation one of those must be removed to
avoid redundant features. On the other hand, concerning MI correlation, if the correlation
coefficients are less than 1.50 (cut-off value) it means that those variables are sufficiently
independent of each other.

Table 4 summarizes the feature selection and redundant variables removal process
carried out to select the predictor variables used in the next stage of the methodology.
The “Feature Selection” column summarizes the discussion about the correlation of all
the features against the target in order to determine which should be kept or removed.
Thus, in this part, only the features that contain a (3) are assessed in the next column,
“Redundancy Analysis”, to determine whether they are redundant with another feature,
while those that contain a (7) symbol are excluded from the next analysis, as they are not
strongly correlated with the target.

The column “Redundancy Analysis” recaps what was discussed in the previous
paragraph about two features being considered redundant or not. Based on that, the (3)
symbol determines the non-redundant features that are kept, while the (7) symbol points
out the features that are redundant and should be removed; (***) indicates features that
were not evaluated because they were excluded in the previous feature selection phase.

Finally, as three methods are selected to perform redundant analysis, a feature is kept
only if all three, or at least two, provide a (3) symbol to the feature; otherwise, it is not
considered for integrating the predictor set and receives a (7) symbol.

Therefore, after this thorough feature selection process, the remaining features from
the initial dataset are

• M matrix: m11, m13, and m22
• K matrix: k11
• C matrix: c11
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Table 4. Feature selection and redundancy analysis for all the features from the full dataset, applying
three different correlation measurement techniques; (3) and (7) determine whether or not the feature
is taken into account after each analysis, respectively, while (***) marks the feature as excluded in that
specific analysis.

Features
Feature Selection
(Feature-Target)

Redundancy Analysis
(Feature-Feature) Final Votation

Spearman MI DC Spearman MI DC

m11 3 3 3 3 3 3 3

m12 3 3 7 7 7 *** 7

m13 3 3 3 3 7 3 3

m21 3 3 7 7 7 *** 7

m22 3 3 3 3 7 3 3

m23 3 3 3 7 7 7 7

m31 3 3 3 7 7 7 7

m32 3 3 3 7 7 7 7

k11 3 7 3 3 *** 3 3

c11 3 7 3 3 *** 3 3

c22 3 7 7 3 *** *** 7

6.5. Data Normalization

Predictors can come from different data sources, which can have varying order of
magnitude. To accelerate training or improve a model’s generalization capability, a data
scaling strategy can be applied [37]. There are several normalization or standardization
techniques, including Min-Max, Stardard, Robust, and L1, among others [29]. Based on
our experiments’ nature (simulation), there are no outliers; thus, the Min-Max technique is
applied, considering that this strategy is usually weak to the presence of outliers. Min-Max
scales data in the [0, 1] range using a linear transformation based on the original data range.
Thus, through this process it is ensured that data are scaled to the same proportions and in
the same range for all features.

Next, as indicated at the beginning of this section, it is essential to recall the foundations
of the proposed ML techniques as well as the details of their algorithm-based architectures.

6.6. XGBoost: eXtreme Gradient Boosting

This algorithm, which is applicable to both regression and classification, was first
developed by Chen et al. [38]. It is an ensemble in which boosting properties are leveraged
by aggregating new models to adjust errors in the performance of the existing models. This
task is recursive until no noticeable improvements are detected, then the task stops. When
boosting is combined with a gradient basis, the new models that are added can help to
predict the residuals or errors of prior models. Finally, the models aggregated to make a
final prediction. During this step, a gradient descent algorithm is employed to minimize
the loss when new models are added. Notably, XGBoost won on 17 of the 29 machine
learning tasks launched by Kaggle by 2015.

As with many other machine learning algorithms, XGBoost requires a careful tuning
process to determine the optimal performance. Moreover, this algorithm has several
hyperparameters that need to be tuned; for that reason, the tuning process needs to be
performed appropriately. Strategies such as Grid Search can be used to search for optimum
hyperparameter combinations.

6.7. RF: Random Forest

An RF is an ensemble of decision trees used to forecast the output from a set of
predictors [39]. On a training dataset, decision trees are built to obtain the prediction results
in either mode (in case of classification issues) or the mean prediction (in case of regression
issues) of the individual trees [40]. During the training stage, a bootstrap sample function is
employed to randomly split the dataset into homogeneous subsets. While a random subset
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is used to train each decision tree, the rest of the subsets are taken to validate the tree and
compute the model accuracy [40,41]. Moreover, similar to XGBoost, this algorithm requires
tuning of the hyperparameters to achieve its best performance.

6.8. LightGBM

This is an open-source gradient-boosting framework that uses tree-based learning
algorithms. It is designed to handle large-scale data and has been widely used in various
applications, such as recommendation systems, click-through rate prediction, and machine
learning competitions. LightGBM is particularly efficient at handling large datasets and
high-dimensional data, as it uses a histogram-based algorithm to split the tree leaves, which
reduces the complexity of the model and speeds up the training process [42].

Compared to XGBoost, while both are powerful gradient-boosting libraries that have
been used in many machine learning tasks with good performance, LightGBM is generally
faster, more memory efficient, and is better able to handle categorical features and missing
values, making it more suitable for large-scale data.

6.9. CatBoost

This algorithm can be used for both classification and regression tasks. For regression
problems, it uses a different loss function, such as mean squared error or mean absolute
error, to optimize the model. It permits using other loss functions as well [43]. CatBoost is
particularly suitable for datasets with a large number of categorical features and missing
values, as it has built-in handling for both.

Compared to RF, CatBoost is generally more powerful and accurate for regression;
however, it can be more complex and require more computational resources. Compared
to XGBoost and LightGBM, CatBoost has better ability to handle categorical features and
missing values, which can be beneficial when working with datasets with a high number
of categorical features.

6.10. SVR: Support Vector Regressor

Support vector machine is a well-known ML algorithm to deal with data classification
challenges where high-dimensional data and small training datasets are not an issue.
However, computational resource demands can reach high levels if caution is not taken [44].
This algorithm is extremely well equipped to deal with regression issues.

6.11. Hyperparameter Tuning Process for Models

The hyperparameter tuning process can be performed on a grid or by random search.
Random searching (non-discrete or parametric values) tends to consume a higher level
of computational resources than grid search; thus, in this study we have employed grid
search. In grid search, reasonable ranges (parametric values) must be initially proposed as
the hyperparameter combinations are set and tested on this basis.

On the other hand, K-fold cross-validation is used to assess model performance during
the tuning process, with cross-validation adopted as a strategy to avoid overfitting. For this
work, K = 5 is taken as a popular fold-division number, i.e., the data are divided in five
folds. Four-fold validation is typically intended for training, with the remaining data used
for validation. After that, the data used for validation pass through to become part of
the training folds, while one of the four folds initially used for training passes through to
become the new validation fold. This iterative task executes until all folds have been used
for validation. When this process is complete, the data are reshuffled and cross-validation
is repeated; for our case, three repetitions were set.

The five proposed models each have several distinct hyperparameters that need to be
tuned. Table 5 presents the most popular hyperparameters for each model and defines the
parametric values used for cross-validation.
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Table 5. Parametric values for hyperparameters of different ML algorithms. *** Not Applicable.

Hyper-Parameter
Algorithm

XGBoost SVR RF LightGBM CatBoost

colsample_bytree [1, 0.75, 0.5, 0.25, 0.1] *** *** *** ***
learning_rate [1, 0.75, 0.5, 0.3, 0.1] *** *** [1, 0.75, 0.5, 0.3, 0.1] [0.01, 0.05, 0.1]
max_depth [5, 6, 10, 50, 100] *** [5, 6, 10, 50, 100] *** [4, 6, 8]

alpha [0, 0.5, 1] *** *** *** ***
n_estimators [10, 50, 100, 500, 1000] *** [10, 50, 100, 500, 1000] *** ***

C *** [1, 10, 50, 100, 500, 1000] *** *** ***
ccp_alpha *** *** [0, 0.5, 1] *** ***

num_leaves *** *** *** [20, 25, 30, 35, 40, 45] ***
min_data_in_leaf *** *** *** [10, 15, 20, 25, 30, 35, 40, 45] ***
feature_fraction *** *** *** [0.5, 0.6, 0.7, 0.8, 0.9, 1] ***
bagging_fraction *** *** *** [0.5, 0.6, 0.7, 0.8, 0.9, 1] ***

iterations *** *** *** *** [30, 50, 100]
l2_leaf_reg *** *** *** *** [1, 3, 5, 7, 9]

6.12. Feature Importance

This process refers to the relative importance of different features in a dataset for a
given model. It is a measure of the impact that each feature has on the model’s predic-
tions. There are a variety of feature importance measures, such as the permutation-based
importance (PbI), mean decrease impurity (MDI), and mean decrease accuracy (MDA), that
can be used to determine the importance of each feature. Both this method and feature
selection are important steps in the process of building machine learning models, and can
help to both improve the performance of the model and to understand the relationships
between the features and the output.

In this study, the MDI (or Gini importance) [45,46] and PbI [47] are used to perform
this task. On the one hand, the Gini importance looks at how a random forest is constructed
and measures how each feature decreases the impurity of the split; the feature with the
highest decrease is selected for the internal node. For each feature, it can describe the
average decrease in the impurity. The average over all the trees in the forest is the measure
of the feature importance. On the other hand, PbI, apart from analyzing feature importance,
is employed to overcome the drawbacks of default feature importance computed with MDI.
PbI randomly shuffles each feature and computes the change in the model’s performance.
The features which impact the performance the most are the most essential ones.

In this work, RF is the algorithm employed to determine feature importance, following
training and tuning using a five-variable predictor set. Note that after choosing the features
with the highest impact for the RF model, it should be re-trained and re-tuned for predicting
damping ratios. The other models are trained only once, and perform the prediction using
the most important features.

Figure 7 shows the feature importance analysis using the two above-mentioned meth-
ods, MDI and PbI. Gini importance analysis (see Figure 7a) performed over the variables,
as mentioned in Section 6.4, clearly shows that m11 and m13 are the features with the least
impact on the model, and should be removed. This idea is supported by PbI analysis (see
Figure 7b), where the same two variables have the least impact on the model. In conclusion,
the predictor set is finally reduced to three variables: k11, c11, and m22.

As a final point, Figure 8 shows the flow of the entire applied methodology and
summarizes all the steps described in Section 6.
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Figure 7. Feature importance analysis based on MDI and PbI methods; the results of both methods
agree that the most important features for an RF model are k11, c11, and m22.
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Figure 8. Flowchart of the proposed data processing methodology.

7. Results and Discussion

Through K-fold cross-validation, each one of the five stated algorithms was trained
and validated to obtain the best possible combination of hyperparameters allowing for
the highest accuracy (R2 score) in predictions for optimum damping ratios. Thus, Table 6
shows the most suitable hyperparameters that could be found for the LightGBM, CatBoost,
XGBoost, SVR, and RF models.

With the chosen hyperparameters, each model was retrained and retested. At this
point, it should be noted that one-way testing was usually performed, with no splitting or
cross-validation. When evaluating model performance on the test dataset, the model may
suffer from overfitting to the test data. Using cross-validation, the model’s performance
is estimated on different subsets of the data, leading to a more unbiased estimate of the
model’s performance. Furthermore, cross-validation provides a more reliable estimate of
the model’s performance by averaging the performance over multiple subsets of the data.
This is especially useful when the sample size is small or the data are unbalanced, in which
case a single training–testing split may not be representative of the model’s performance.
In this work, testing is carried out using cross-validation.
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Table 6. Chosen values for hyperparameters of the different ML models through the K-fold cross-
validation method. *** Not Applicable.

Hyper-Parameter
Algorithm

XGBoost SVR RF LightGBM CatBoost

colsample_bytree 1.00 *** *** *** ***
learning_rate 0.10 *** *** 0.51 0.01
max_depth 6 *** 100 *** 4

alpha 0 *** *** *** ***
n_estimators 1000 *** 1000 *** ***

C *** 1000 *** *** ***
ccp_alpha *** *** 0 *** ***

num_leaves *** *** *** 45 ***
min_data_in_leaf *** *** *** 45 ***
feature_fraction *** *** *** 0.83 ***
bagging_fraction *** *** *** 0.50 ***

iterations *** *** *** *** 30
l2_leaf_reg *** *** *** *** 9

Classic model assessment characteristics to measure performance are the training and
testing time, an error metric such as the root mean square error or RMSE, and the training
and testing accuracy (R2 score). Table 7 shows these characteristics in order to assess and
discuss the models’ performance.

Table 7. Evaluation of the models based on cross-validation, accuracy, RMSE, and elapsed time.

Algorithm K-Fold
Accuracy (%) RMSE Elapsed Time (s)

Train Test Train Test Train Test

XGBoost

1 82.32 78.94 0.1187 0.1287

18.25 0.05

2 86.14 85.32 0.0978 0.1033
3 96.99 90.90 0.0349 0.0632
4 92.38 87.06 0.0679 0.0879
5 92.97 89.11 0.0670 0.0849

Average 90.17 86.27 0.0773 0.0936

RF

1 81.89 75.83 0.1202 0.1379

57.00 1.11

2 85.92 84.67 0.0986 0.1056
3 97.64 84.71 0.0309 0.0819
4 92.74 84.20 0.0663 0.0971
5 93.50 86.12 0.0644 0.0958

Average 90.34 83.11 0.0761 0.1036

LightGBM

1 76.83 75.00 0.1359 0.1402

0.55 0.01

2 80.50 80.16 0.1161 0.1201
3 87.22 84.61 0.0719 0.0821
4 77.98 76.60 0.1155 0.1182
5 83.11 82.40 0.1038 0.1079

Average 81.13 79.75 0.1087 0.1137

SVR

1 38.13 38.52 0.2221 0.2199

96.46 1.39

2 47.98 52.05 0.1896 0.1867
3 73.60 70.40 0.1034 0.1139
4 67.74 66.73 0.1398 0.1409
5 66.79 71.25 0.1456 0.1379

Average 58.85 59.79 0.1601 0.1599

CatBoost

1 20.67 20.64 0.2601 0.2498

1.65 0.01

2 22.40 23.67 0.2515 0.2356
3 18.05 19.75 0.2316 0.1876
4 19.03 19.21 0.1822 0.2196
5 18.62 19.25 0.2215 0.2312

Average 19.75 20.50 0.2229 0.2248

Comparing the five models, it is noticeable that both the XGBoost and RF models have
the highest average accuracy in the tests (86.27% and 83.11%, respectively), and outperform
the LightGBM, SVR, and CatBoost models. During training, the average accuracy of
XGBoost is quite similar to that of RF. In terms of RMSE, XGBoost has the lowest value
in testing. Thus far, considering these characteristics, XGBoost has the best performance.
However, in terms of the elapsed time needed to train or test a model, LightGBM is much
faster than XGBoost. This is a great advantage if a model is intended to be deployed into
production, as in the ML lifecycle the control time is quite critical.
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As can be seen, CatBoost performs poorly, reaching an average accuracy of 20.50% in
testing and19.75% in training. The reasons for this could be due to a number of aspects.
On the one hand, this model is probably too complex for the given dataset, memorizing
the training data instead of generalizing to new data. Another possibility is that the model
is too simple for the given dataset, and is not able to capture the underlying patterns in
the data.

It is always important to visualize the results in graphics; as such, Figure 9 shows
the scatter plots for the different tested models, with real datapoints plotted against the
predicted values. Following this idea, it is expected that better prediction will result
in datapoints being plotted closer to the straight curve, with a slope equal to 1. The XGBoost
model meets almost all the conditions to be the model with the highest performance,
followed by the RF model, then the LighGBM model, and finally the SVR model. In terms
of accuracy, the XGBoost and RF models have almost the same percentage; Figure 9a,c
shows that most of datapoints are nearer to the straight curve. However, Figure 9d shows
that many datapoints are far from the straight curve, indicating the low accuracy and
performance of the model. It should be noted that the scatter plot figure for the CatBoost
model is not shown due to its very poor performance.
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Figure 9. Plot of actual test data values of the damping ratio against their predicted values for
(a) XGBoost, (b) LightGBM, (c) RF, and (d) SVR models.
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On the other hand, recalling that the dataset was built with simulations of three differ-
ent path types, it is important to analyze how the prediction of the data points associated
with each path perform. Based on this, the XGBoost model has the best performance,
Figure 10 highlights the location distribution of the datapoints associated with each differ-
ent path type.
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Figure 10. Plot of actual damping ratio test data values against their predicted values for each
different path type when using the extreme gradient boosting model.

Considering each path, it is possible to observe the trend of the prediction results.
Essentially, the straight line and square paths have the best predictions performance, while
the circle has a larger error. This behavior is corroborated by Figure 10, where the furthest
data points of the trend line are the blue ones that belong to the circle path, while the
nearest ones belong to the other available paths.

In addition, as can be seen in Figure 10, there are outliers at the extreme real damping
ratio equal to one. This shows that the model is better at predicting certain damping ratio
values than others. For this reason, we decided to carry out an analysis of sample frequency
distribution for each value of the damping ratio in the training dataset. Despite the fact that,
as shown in Table 2, the dataset is relatively balanced in terms of the number of samples
for each type of trajectory, it can be seen in Figure 11 that this is not the case for the number
of samples for each value of the damping ratio.

It should be remembered that data preprocessing (feature selection and redundant
variables removal) was carried out considering this imbalance of samples in terms of
damping ratio values. This could have led to the elimination of variables that would have
helped the model to predict whether they correspond to one damping ratio or another.
For this reason, as mentioned in the next section, in future work it is important to ensure a
balanced dataset in terms of the number of samples per value of the damping factor.
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Figure 11. Damping ratio frequency distribution considering the path (robot trajectory). The distribu-
tion is similar to a normal distribution, with particular peaks at 0 and 1 values.

8. Conclusions and Future Work

This study has shown, as expected, that different configurations of a robotic manipula-
tor result in different dynamic responses as the robot moves along a given path. To maintain
a dynamic response as close as possible to the desired level, joint space analysis with cor-
responding damping value updates must be performed and implemented. A parameter
study based on the modal analysis and optimization for damping ratio values is computa-
tionally expensive, especially when the robot includes more DoFs or task coordinates that
need to be analyzed.

This study proposes and validates an innovative and advanced damping factor predic-
tion method. Specifically, instead of using the seventeen variables that normally make up
the matrices, the five ML models tested here only need one value from the M matrix (m22),
one value from the KC matrix (k11), and one value from the CC matrix (c11), providing a
total of only three variables. Furthermore, the stated strategy works under the different
path types (circle, square, and straight line) to which the 3R planar robot is subject.

The three main contributions of this work are: (i) preprocessing (data cleaning, nor-
malization, feature importance, and rendundant variables removal) of the variables from
the matrices derived from various time and experiments; (ii) selection of the best model
hyperparameters based on the grid search technique; and (iii) the training and testing of
five different ML models using K-fold cross-validation. Furthermore, the K-fold cross-
validation strategy utilized in the proposed method eliminates the need for a validation
dataset. The developed damping ratio prediction approaches with the best hyperparame-
ters work very well, with accuracy (R2 score) results higher than 86% and RMSE outcomes
less than 0.094. With the XGBoost and RF models in particular, a significant overall accuracy
greater than 83.1% is attained. The XGBoost model achieves an inference time on the test
data of 0.05 s, making it extremely adaptable to real-world scenarios. Comparing the test
time with the time required to generate a sample (18.99 s), sample generation is 380 times
slower than the ML model. These findings demonstrate the potential of ML models for the
creation of robot damping prediction systems.

It is important to clarify that there are several limitations and considerations that can
affect the performance of machine learning algorithms used for damping ratio prediction,
among which are the following:

• Data quality: machine learning algorithms require a large dataset to train and vali-
date the model, and their performance can suffer if the data are incomplete, noisy,
or irrelevant.
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• Model choice: Tte performance of machine learning algorithms can depend on model
choice, and it may be necessary to try several different models in order to find the best
fit for a particular problem.

• Overfitting: machine learning algorithms can overfit the model to the training data,
which can reduce the model’s accuracy on new data.

• Generalization: machine learning algorithms may not generalize well to new data
if not enough training data have been used or if all relevant variables have not
been considered.

As future work , we intend to extend the present analysis for prediction of optimal
damping ratios in real robot applications in addition to simulated robots. An important
point is to generate a balanced dataset in terms of the number of examples per type of
trajectory, as well as the number of samples for each value of the damping ratio. Fur-
thermore, it is desirable to expand the methodology to higher-dimensional and highly
redundant systems, as this can be an excellent tool for system identification and modulation
of dynamic response.
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