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Abstract: As one of the top ten security threats faced by artificial intelligence, the adversarial attack
has caused scholars to think deeply from theory to practice. However, in the black-box attack scenario,
how to raise the visual quality of an adversarial example (AE) and perform a more efficient query
should be further explored. This study aims to use the architecture of GAN combined with the
model-stealing attack to train surrogate models and generate high-quality AE. This study proposes an
image AE generation method based on the generative adversarial networks with dual discriminators
and a single generator (DDSG-GAN) and designs the corresponding loss function for each model. The
generator can generate adversarial perturbation, and two discriminators constrain the perturbation,
respectively, to ensure the visual quality and attack effect of the generated AE. We extensively
experiment on MNIST, CIFAR10, and Tiny-ImageNet datasets. The experimental results illustrate
that our method can effectively use query feedback to generate an AE, which significantly reduces
the number of queries on the target model and can implement effective attacks.

Keywords: artificial intelligence; security threat; adversarial attacks; adversarial examples; generative
adversarial networks

MSC: 68T07

1. Introduction

With the emergence of deep neural networks, the security issues of artificial intel-
ligence (AI) have become increasingly prominent. Because of the wide application of
deep learning technology, the security of deep neural networks has also been increasingly
questioned. The existence of an AE makes deep neural networks (DNN) cause disastrous
consequences in many fields, such as the occurrence of traffic accidents in the field of
automatic driving [1], malicious code successfully escaping detection [2], etc. AE is a major
obstacle that various machine learning systems and even artificial intelligence (AI) must
overcome. Its existence not only makes the output results of the model deviate greatly but
can even make this deviation inevitable. This indicates that machine learning models rely
on unreliable features to maximize performance. If the features are disturbed, it will lead
to the misclassification of the model. For example, FGSM [3] enables a machine-learning
model that classifies the original image as a panda with a probability of 57.7% but classifies
its AE as a gibbon with a very high probability of 99.3%.

The vulnerability of DNN to AE has led to adversarial learning. On the one hand,
studying an AE is to understand the mechanism of adversarial attacks to better develop
corresponding defense technologies and construct more robust deep learning models. In
addition, the existence of an AE reveals the serious security threat of DNN. Research on
AE can provide a more comprehensive index for evaluating the robustness of DNN.

In adversarial attacks, because different models own different information access
rights, the attackers need to consider different attack scenarios to design AE. Adversarial
attacks contain two categories: white-box and black-box attacks.
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In white-box attacks, adversaries can acquire the structure and parameter information
of the target model. Therefore, they can use the target model’s gradient information to
construct the AE. However, black-box attacks are more challenging to implement. In a
black-box attack, the attackers can only interact with the target model through the input,
which increases the difficulty of constructing AE. Still, it is more consistent with real-world
attack scenarios.

Black-box attacks contain query-based and transfer-based attacks. Although the
former can achieve a good attack effect, the query complexity is high, the query results are
not fully utilized in the current attack methods, and masses of queries are easily resisted by
defense mechanisms. The latter attack avoids the query to the target model. However, its
attack effect is not ideal.

Combining transfer-based and query-based attacks, we design a generative adversary
network (GAN) with dual discriminators and a single generator (DDSG-GAN) to generate
an AE with better attack performance. We use the generator G of the DDSG-GAN to gener-
ate the adversarial perturbation, and the trained discriminator D1 can act as a surrogate
model of the target model T. The discriminator D2 is used to distinguish whether the input
image is original. We experimentally evaluate our method on the MNIST [4], CIFAR10 [5],
and Tiny-ImageNet [6] datasets and compare it with the state-of-the-art (SOTA) experimen-
tal results. The experiment results demonstrate that the proposed method has a high attack
success rate and greatly reduces the number of queries to the target model. The generated
AE with our proposed method has a higher visual quality. The main contributions are
the following:

(1) This study presents a novel image AE generation method based on the GANs of dual
discriminators. The generator G generates adversarial perturbation, and two discrimi-
nators constrain the generator in different aspects. The constraint of discriminator D1
guarantees the success of the attack, and the constraint of discriminator D2 ensures
the visual quality of the generated AE.

(2) This study designs a new method to train the surrogate model; we use original images
and AEs to train our substitute model together. The training process contains two
stages: pre-training and fine-tuning. To make the most of the query results of the AE,
we put the query results of the AEs into the circular queue for the subsequent training,
which greatly reduces the query requirement of the target model and makes efficient
use of the query results.

(3) This study introduces a clipping mechanism so that the generated AEs are within the
ε neighborhood of the original image.

The remainder of our paper is organized as follows. Section 2 introduces the related
work of adversarial attacks. The proposed method of generating AE is described in
Section 3. Section 4 demonstrates the effectiveness of the attack method through extensive
experiments. Section 5 summarizes this paper.

2. Related Work

AEs can exist in many areas of artificial intelligence (AI), such as images, voice, text,
and malware, and bring many potential risks to people’s lives. This study mainly focuses
on adversarial attacks in image classification tasks. Adversarial attacks mainly contain
white-box and black-box attacks. This section will summarize and review the relevant
studies of adversarial attacks.

2.1. White-Box attack

In a white-box attack, the adversaries can acquire the structure and parameter infor-
mation of the attacked target model, while in a black-box attack, the adversaries can only
gain the prediction results of the target model about the input. The white-box attack has
been developed earlier and is simpler to implement. At present, it can achieve a good
attack effect.

White-box attacks mainly include three categories, which are summarized as follows:
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(1) Optimize the objective function directly: Szegedy et al. [7] proposed directly
optimizing the objective function with the box-constrained L-BFGS algorithm to generate
adversarial perturbation. C&W [8] put forward three optimization-based attack methods
after the defense distillation, successfully broke the defense distillation, and made the white-
box attack reach a new height. Although the optimization-based methods can achieve a
good attack effect, the optimization process takes a long time.

(2) Gradient-based attack method: FGSM [3] maintains that the existence of AEs is
mainly due to the linear nature of the neural network and can add perturbations in the
direction of the maximum gradient change of DNN to increase the classification loss of
images. Due to FGSM being a one-step attack algorithm, the attack effect has yet to be
improved. The success of FGSM has based on the hypothesis that the loss function is locally
linear. If it is nonlinear, the attack’s success cannot be guaranteed. Based on this, Kurakin
Alexey et al. [9] put forward I-FGSM, which obtains AEs through continuous iteration
of the FGSM algorithm. Compared to FGSM, the I-FGSM can construct a more accurate
perturbation, but from the performance of AEs in transfer attacks, I-FGSM is less effective
than FGSM. Similar to the I-FGSM attack, the PGD [10] attack has more iterations and a
better attack effect, whose disadvantage is its poor transfer attack ability.

(3) The attack method based on the generated neural network can train the neural
network to generate AEs. Once the network training is completed, it can generate AEs in
batches. For example, ATN [11] can convert an input image into AEs against the target
model. It also has a strong attack capability, but the effect of a transfer attack is poor.
AdvGAN [12] introduced the GANs into the method of generating AEs based on the
generative neural network for the first time, and the trained AdvGAN network can convert
random noise into AEs.

Other white-box attack algorithms, such as DeepFool [13], are based on the considera-
tion of how to add the minimum perturbation to the original image. It is by reducing the
distance between the image and the decision boundary of the target model to iteratively
generate the minimum perturbation that can make the target model misclassified, which is
relatively simple to implement and can achieve a good attack effect. One-pixel attack [14]
is based on differential evolution. Each attack attempt to modify one pixel of data of an
example achieves the result of model misclassification. This method has a good attack
performance on less pixel information datasets, but for the datasets with a larger pixel
space, the performance of the algorithm declined. The current white-box attack methods
have been relatively mature and have achieved a good attack effect in MNIST, CIFAR10,
ImageNet [6], and other datasets.

2.2. Black-Box attack

Compared with a white-box attack, a black-box attack is more difficult to implement. In
the black-box attack setting, the adversary can only interact with the target model through
input, which increases the difficulty of constructing the AEs. Black-box attacks are divided
into query-based attacks and transfer-based attacks. Querying different target models will
get different types of feedback results. According to the query results of the target model,
query-based attacks can be divided into score-based attacks and decision-based attacks.

In the query-based attacks, by interacting with the target model, the Zero Order
Optimization (ZOO) attack [15] uses the confidence score of the model’s feedback to
estimate the target model’s gradient. Then, it uses the estimated gradient information to
generate AEs. AutoZOOM [16] is the improved version of the ZOO attack, which introduces
an autoencoder structure and greatly reduces the cost of useless pixel search. At the same
time, AutoZOOM adopts a dynamic attack mechanism to further reduce the number of
queries. After that, Bandits attack [17] uses the gradient prior information to improve the
black-box attacks and introduces data-dependent and time-dependent priors to improve
the query efficiency. However, the above methods are used for high-precision gradient
estimation, so these inevitably require a lot of time and computing storage. Guo et al. put
forward SimBA [18], which does not need to estimate the gradient of the target model and
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generates query samples by continuously greedily adding randomly sampled perturbation
to the original image. According to the query results, it is decided to add or remove the
perturbation on the target image. LeBA [19] combined transfer-based and query-based
attacks to optimize SimBA further and achieve more efficient attacks.

With the outstanding performance of meta-learning in various classification tasks,
Meta attacks [20] first combine adversarial attacks, and meta-learning First uses meta-
learning to train a general Meta attack model. Then, it uses real attack information to fine-
tune the Meta attack model, which greatly improves the query efficiency. The Simulator
attack [21] further improves the attack model based on the Meta attack, which realizes the
accurate simulation of any unknown target model. It improves the overall query efficiency
of the model. However, because the model is relatively complex, there are comparatively
high requirements for computer hardware configuration, and the training time is pretty
long. Query-based black-box attacks can achieve a higher success rate. Still, this type of
attack requires many query requirements and computing storage, and a large number
of queries are easily resisted by the defense mechanism. Therefore, how to improve the
efficiency of the query is the key to the current research.

Biggio et al. [22] found that the AEs generated against a certain machine learning
model can be used to attack other models, which led researchers to think about transfer
attacks. The goal of the transfer-based attack is that the AEs generated for one model can
still attack other models. The core idea of the transfer-based black-box attack method [23,24]
is to generate AEs on the source model and then transfer them to the target model. This
method does not need to know the network structure and the parameters of the target
model, nor does it need to query the target model. However, because there is a large
distance between the source model and the target model, the attack effect is not satisfactory.
The precondition for the realization of transfer-based attacks is the transfer ability of
AE. Therefore, training a surrogate model that can highly simulate the target model will
improve the AEs’ transferability. Therefore, the model-stealing attacks [25–27] are gradually
applied to adversarial attacks. The model-stealing attacks obtain the labels of input data by
querying the target model and then using the input and query results to train the black-box
model’s surrogate model. The surrogate model trained by model stealing attacks can more
accurately fit the target model and greatly improve the success rate of transfer attacks.

In recent research, many scholars have applied GANs [28] to the adversarial attack.
Zhao et al. [29] built the semantic space of images on the architecture of GANs to obtain
more natural AE. Xiao et al. [12] first introduced the idea of GANs in the attack algorithm
based on neural networks to generate AE. They proposed a network architecture including
a generator, discriminator, and target model. The trained generator can efficiently generate
AEs for any input image, but it can only generate AEs for a single target class. Later,
Zhou et al. [30] proposed a data-free surrogate model training based on GAN’s architecture
to attack the target model. This method does not need a training data set but needs to
combine a white-box attack algorithm, such as FGSM or PGD, to generate AE, and the
training time is very long. Because it needs a lot of queries, this attack is easy to be avoided
by the defense mechanism. In this paper, we focus on the black-box attack, based on the
architecture of GANs, and combine it with the model-stealing attack to generate adversarial
samples with a higher attack success rate and better visual quality.

3. Methodology
3.1. Preliminaries
3.1.1. Adversarial Examples and Adversarial Attack

Modifying the original images in a human-imperceptible way so that the modified
images can be misclassified by the machine learning model, and the modified images are
called AE. For a victim image classification model T, we use (x, y) as the original image-
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label pair. The goal of the adversarial attack is to generate an AE x̂ so that target model T
can misclassify it. For the untargeted attack setting, it can be formulated as follows:

argmax T(x) = y, and argmax T(x̂) 6= y, s.t.‖x̂− x‖ ≤ ε. (1)

For the targeted attack setting, it can be formulated as follows:

argmax T(x) = y, and argmax T(x̂) 6= y, s.t.‖x̂− x‖p ≤ ε. (2)

where ‖·‖p denotes the lp norm, t is the target class in the targeted attack, and ε is the upper
bound of the perturbation.

3.1.2. Attack Scenarios

In this paper, we consider the adversarial attack in the black-box scenario. Query-
based black-box attacks can be divided into decision-based attacks and score-based attacks.
In this paper, we focus on a decision-based attack scenario.

(1) Score-based attacks. In this scenario, the attacker is unknown to any structure and
parameter information of the target model, but for any input, the adversary can
acquire the classification confidence.

(2) Decision-based attacks. Similar to the attack scenario of score-based attacks, the
adversary doesn’t know any structure and parameter information of the target model,
but for any input, the attacker can acquire the classification label.

3.2. Model Architecture

In this section, we will introduce the method of generating AEs based on the dual
discriminators and single generator of GAN (DDSG-GAN). This paper introduces the model
architecture of GAN and designs a GAN with dual discriminators and a single generator
to generate AEs. DDSG-GAN uses generator G to generate adversarial perturbations and
uses discriminators D1 and D2 to constrain the generated perturbations. Then, the trained
discriminator D1 can be used as a surrogate model of the target model T, and the overall
structure of DDSG-GAN is shown in Figure 1. The input of Generator G is the original
image x, and the output is perturbation vector δ = G

(
x; θg

)
. Adding the perturbation

vector to the original image and clipping it to obtain the query sample x̂. Input x and x̂
into the target model T to acquire the output T(x) and T(x̂). Discriminator D1 uses image-
output pairs (x, T(x)) and (x̂, T(x̂)) for training, and Discriminator D2 uses image-output
pairs (x, 1) and (x̂, 0) for training.
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In DDSG-GAN, T is the victim image classification black-box model. The generator
G will generate the perturbation vector δ of the input image x and add δ to x. Then,
through clip operation, we can get query sample x̂. The T’s query result is used to train
discriminator D1, and discriminator D2 is used to identify whether the input is the original
image. Both discriminators, D1 and D2, will constrain the generated perturbations.
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In this training process, the generator and discriminator play a game relationship with
each other. In each iteration, target model T and discriminators D1 and D2 will calculate
corresponding prediction results for each input. The discriminator D1 fits the target model
according to the output of the target model T. With the increasing of iterations, the fitting
ability of the discriminator D1 to T is constantly enhanced so that the attack ability of
generator G to target model T continues to increase. At the same time, the discriminator D2
is increasingly capable of classifying true and fake samples so that generator G will generate
AEs closer to the original data distribution. This training process forms discriminators D1
and D2 with generator G to keep playing games and making progress.

3.2.1. The Training of Discriminator D1

The input of generator G is the original image x, and the output is the perturbation
vector δ = G

(
x; θg

)
about the original image x. Add the generated perturbation vector

to x to get the query sample x′. To ensure that the generated sample is within the ε
neighborhood of the original image, we clip x′ or δ to get the final query sample x̂. In the l2
norm attack,

x̂ = Clip
(
x′, x

)
=

x + ε
‖x′−x‖p

·(x′ − x), ‖x′ − x‖p ≥ ε,

x′, ‖x′ − x‖p < ε,
(3)

where ‖x′ − x‖p denotes the lp norm between x and x′, and ε is the upper bound of the
perturbation.

In the l∞ norm attack,

δ′ = clip(δ, α1, α2) =


α1, δ < α1;
δ, α1 ≤ δ ≤ α2,
α2, δ > α2;

(4)

where α1 and α2 are the upper bound and lower bound of clipping respectively. The final
query sample x̂ = x + δ′.

The adversarial attack’s goal is to make the target model misclassify the AE. It can be
formulated as follows:

T(x̂) 6= y, (5)

For the convenience of training, we convert (5) to maximize the following
objective function:

max
x̂

L(T(x̂), y), (6)

where L(·, ·) measures the difference between the output of target model T and y.
In the process of solving the optimization problem (6), it is necessary to continuously

query the target model T to obtain T(x̂). However, this will make the query calculation
very large, which is easily avoided by the defense mechanism. In the cause of reducing the
number of queries to the target model, we train the discriminator D1 as a surrogate model
for T so that the query of T can be transferred to D1, which will greatly reduce the number
of queries to the target model.

The training goal of the discriminator D1 is to make it to be used as a surrogate model
to simulate the function of model T. For the purpose of improving the fitting ability of D1,
we use the original image x and the generated query sample x̂ to train D1 together. The
loss function for training the discriminator D1 is as follows:

LD1 = β1 × d(D1(x; θd1), T(x)) + β2 × d(D1(x̂; θd1), T(x̂)), (7)

where T(x) and T(x̂) are the query results obtained by inputting x and x̂ into the target
model T, respectively, θd1 is the parameters of model D1, D1(x̂; θd1) is the predicting result
of the discriminator D1 about the query sample x̂, and D1(x; θd1) is the predicting result of
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the discriminator D1 about the original image x. β1 and β2 are the weight factors used to
control the relative importance. In this paper, we set β1 = 2, β2 = 1.

For the decision-based black-box attack, the loss function of D1 can be formulated
as follows:

LD1 = β1 × CEL(D1(x; θd1), T(x)) + β2 × CEL(D1(x̂; θd1), T(x̂)), (8)

where CEL(a, b) denotes the cross-entropy function between a and b.
For the score-based black-box attack, the adversary is obtained through query T to get

the classification probability for each class. So, we can convert the T(x) obtained by the
query into the corresponding label value and bring it into (8) to calculate the loss function
of D1 in this attack setting. Algorithm 1 presents the training procedure of D1.

Algorithm 1 Training procedure of the Discriminator D1

Input:

Training dataset (x, T(x)) and (x′, T(x′)), where x is the original image and x′

is the sample after adding perturbation, target model T, the discriminator D1
and its parameters θd1, the generator G and its parameters θg; loss function
L(·, ·) is defined in Equation (7).

Parameters:
Batch number B, learning rate λ1, iterations N, weight factor β1 and β2,
clipping upper bound α1 and lower bound α2.

Output: The trained Discriminator D1.
1: for epoch← 1 to N do
2: for b← 1 to B do
3: δ = G

(
x; θg

)
4: if norm = 2 do
5: x′ = x + δ

6: x̂ = Clip(x′, x)
7: elif norm = ∞do
8: δ′ = clip(δ, α1, α2)
9: x̂ = x + δ′

10: end if
11: x̂ ← clip(x̂, 0, 1)
12: lossd1 = β1 × d(D1(x; θd1), T(x)) + β2 × d(D1(x̂; θd1), T(x̂))
13: θd1 ← θd1 − λ1 ×∇θd1

lossd1
14: end for
15: end for
16: return D1

3.2.2. The Training of Discriminator D2

We train the discriminator D1 as a surrogate model for T, so most of the queries on T
can be transferred to discriminator D1. When the attack is successful, the AEs must be close
to x, so discriminator D2 can be set to distinguish whether the sample is sampled from the
original images. If it is the original image, the label is 1. If it is the AE, the label is 0. The
objective function for training the discriminator D2 is:

LD2 = Ex∼Pdata(x)[log(D2(x; θd2)) + log(1− D2(x̂; θd2))], (9)

where Pdata(x) is the data distribution of the original image x, E denotes the calculation of
the mean of the expression, θd2 is the parameters of model D2, D2(x; θd2) is the predicting
result of the discriminator D2 about the original image x, and D2(x̂; θd2) is the predicting
result of the discriminator D2 about the query sample x̂.

The discriminator D2 is used to judge whether the sample is true or fake and uses D2
to train a good generator to fool D2 so that the distribution of the generated AE can be
closer to the original image. Algorithm 2 presents the training procedure of D2.
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Algorithm 2 Training procedure of the Discriminator D2

Input:
Training dataset (x, 1) and (x̂, 0), where x is the original image and x̂ are the
query samples, the discriminator D2 and its parameters θd2, loss function
L(·, ·) is defined in Equation (9).

Parameters: Batch number B, Learning rate λ2, iterations N.
Output: The trained Discriminator D2.

1: for epoch← 1 to N do
2: for b← 1 to B do
3: lossd2 = Ex∼Pdata(x)[log(D2(x; θd2)) + log(1− D2(x̂; θd2))]

4: θd2 ← θd2 + λ2 ×∇θd2
lossd2

5: end for
6: end for
7: return D2

3.2.3. The Training of Generator G

The input of generator G is the original image x, and the output is the perturbation
vector δ about x. On behalf of making the generated AE to fool the target model T, which
needs to maximize the objective function (6). In this way, each update of generator G
needs to query T, and the parameter information of target model T needs to be used in
the backpropagation process, which does not conform to the scenario settings of black-
box attacks. Therefore, we replace the target model T with the discriminator D1 and
approximate (6) as follows (10):

max
x̂

L(D1(x̂; θd1), y), (10)

where L(·, ·) is the cross-entropy function. Since the output of D1 has passed softmax, the
denominator of (11) will not be 0, and (10) is equivalent to the following (11):

min
x̂

1
L(D1(x̂; θd1), y)

, (11)

generator G’s loss function regarding discriminator D1 can be defined as follows (12):

LG_D1 =
1

L(D1(x̂; θd1), y)
. (12)

While the attack is successful in ensuring that the generated AEs are closer to the
distribution of the original image, the loss function of the generator G, with respect to the
discriminator D2, is defined as (13):

LG_D2 = log[1− D2(x̂; θd2)]. (13)

To obtain a high attack success rate, it is necessary to continuously input x̂ into the
target model T and use the loss of output T(x̂) with the ground truth (untargeted attack)
or the target class (targeted attack) to optimize generator G. The objectivate loss function of
the attack can be formulated as follows:

Latt_score =

{
ŷT − ŷt, i f untargeted attack,
ŷt − ŷT , i f targeted attack,

(14)

where ŷt denotes the prediction probability of T for the target class in the targeted attack or
the prediction probability of T for the real class in the untargeted attack, and ŷT denotes
the maximum value among the predicted probabilities of other classes by T.
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To reduce the number of queries and be more consistent with the black-box setting,
we use discriminator D1 instead of T to optimize the training process. The objectivate loss
function can be formulated as follows:

Latt =

{
ŷD1 − ŷt, i f untargeted attack,
ŷt − ŷD1 , i f targeted attack,

(15)

where ŷt denotes the prediction probability of D1 for the target class in the targeted attack or
the prediction probability of D1 for the real class in the untargeted attack, and ŷD1 denotes
the maximum value among the predicted probabilities of other classes by D1.

We train the generator G by minimizing the following objectivate function:

LG = γ1 × LG_D1 + γ2 × LG_D2 + γ3 × Latt, (16)

where γi (i = 1, 2, 3) is the weight factor of the three losses, which controls the relative
importance of the three losses. LG_D1 makes the generated AE deceive discriminator D1
step by step. LG_D2 makes generated AEs to be closer to the actual data distribution. Latt
is the attack loss, and its optimization produces a better attack effect. In this paper, the
generator G and discriminators D1 and D2 are obtained by solving the minimax function
min

G
min

D1
max

D2
LG.

3.2.4. Improved Model

We can find from the training of discriminator D1 that every training update of D1
needs to query T. To reduce the number of queries to T while ensuring the fitting ability of
D1, we design a circular queue to limit the training of D1. We divide the training process of
D1 into two stages: model pre-training and fine-tuning.

First, when the number of iterations iter ≤ n, setting β1 = 3, and β2 = 0. We use
(x, T(x)) to train D1 according to the Equation (7). When the number of iterations iter > n
and iter mod m = 0, we add the query result (x̂, T(x̂)) of this iteration to circular queue H.
So, when iter > n, setting β1 = 2 and β2 = 1 and when using (x, T(x)), the query result
(x̂, T(x̂)) is saved in the circular queue to fine-tuned D1 according to the Equation (7).

In each iteration training, since we constantly use the query results of T to train D1, D1
and T are highly approximate. Therefore, the ultimate goal of generator G can be converted
to realize the discriminator D1’s misclassification of AE. If the AE can successfully lead
to D1 misclassifying them, we can think that the AE can also successfully fool the target
model T with a high probability. Therefore, in the whole training process, we also trained a
surrogate model that can highly simulate the target model while generating the adversarial
perturbation, combining GANs and model-stealing attacks to improve the transferability
of the AEs. Algorithm 3 presents the training procedure of the whole model.

Algorithm 3 Training procedure of the DDSG-GAN.

input:
Target model T, generator G and it’s parameters θg, discriminator D1 and its
parameters θd1, discriminator D2 and it’s parameters θd2, original image–label
pair (x, y) the learning rate ηg, ηd1 and ηd2.

output: The trained generator G.
1: Initialize the model of G, D1 and D2.
2: for i← 1 to N do
3: for j← 1 to n1 do
4: δ← G

(
x; θg

)
5: if norm = 2 do
6: x′ = x + δ

7: x̂ ← Clip(x′, x)
8: elif norm = ∞ do
9: δ′ = clip(δ, α1, α2)
10: x̂ ← x + δ′

11: end if
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Algorithm 3 Cont.

12: x̂ ← clip(x̂, 0, 1) B query example
13: if i > n and i mod m = 0 do
14: Input x̂ into the targeted model T to get the query result

Add (x̂; T(x̂)) to the circular queue H
16: end if
17: if i ≤ n do B pre-training of D1
18: LD1 = d(D1(x; θd1), T(x))
19: elif i > n do B fine tuning of D1

20:
LD1 = β1 × d(D1(x; θd1), T(x)) + β2 × d(D1(x̂; θd1), T(x̂))

B(x̂; T(x̂)) is taken from the circular queue H
21: end if
22: θd1 ← θd1 − ηd1∇d1LD1(θd1)
23: end for
24: for j← 1 to n2 do
25: LD2 = Ex∼Pdata(x)

[log(D2(x; θd2)) + log(1− D2(x̂; θd2))]

26: θd2 ← θd2 + ηd2 ×∇LD2 (θd2)
27: end for
28: for j← 1 to n3 do
29: LG = γ1 × LG_D1 + γ2 × LG_D2 + γ3 × Latt
30: θg ← θg − ηg ×∇LG

(
θg
)

31: end for
32: end for
33: return G

3.2.5. Generate Adversarial Examples

Firstly, according to algorithm 3, the adversary trains the generator G for the target
model T under a specific attack setting. Secondly, we input the original image x into the
trained generator G to obtain the corresponding perturbation vector δ, and then add δ to
the original sample to get the initial AE x′ = x + δ. In order to ensure that the perturbation
of the AE is within a small range, we perform the corresponding clipping operation on x′

to obtain the AE x̂. If it is a l2 norm attack, the clipping operation is performed according
to the formula (3). If it is a l2 norm attack, the clipping operation is performed according to
the formula (4). Input the AE x̂ to the corresponding target T model to attack.

Figure 2 shows the specific attack process of the MNIST dataset. As shown in Figure 2,
after the training of DDSG-GAN, we input the original image x into the trained generator
to make AE x̂. Then, input x̂ into the corresponding target model to attack. The generator
designed in this paper consists of an encoder and a decoder. The encoder is a 5-layer
convolution network, and the decoder is a 3-layer convolution network. For different target
models, DDSG-GAN will train different generators and get different attack results.
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4. Experiment
4.1. Experiment Setting

In this section, we will introduce the specific details of the experiment, including
datasets, target model architecture, method settings, and evaluation indicators.

Dataset: We evaluate the effectiveness of the proposed method through experimental
results on MNIST, CIFAR10, and Tiny-ImageNet. For these datasets, we select images with
the correct classification of the target model in their testing sets as their respective testing
sets for evaluation. The number of selected images is 1000, 1000, and 1600, respectively.

Attack scenario: We use a decision-based attack in the black-box attack setting to
evaluate the proposed method. The attackers can acquire the output results of the target
model but cannot obtain any structure and parameter information about the target model.

Target model architecture: In the l∞ norm attack, for the MNIST dataset, we follow
the advGAN [12] trained three image classification models for attack testing. Models A
and B are from the paper [31], and model C is from the paper [8]. In the l∞ norm attack, we
trained model D as the target model. The structure of these models is shown in Table 1.

Table 1. MNIST classification model.

A B C D

Conv(64,5,5) + Relu
Conv(64,5,5) + Relu

Dropout(0.25)
FC(128) + Relu
Dropout(0.5)
FC + Softmax

Dropout (0.2)
Conv(64,8,8) + Relu

Conv(128,6,6) + Relu
Conv(128,5,5) + Relu

Dropout(0.5)
FC + Softmax

Conv(32,3,3) + Relu
Conv(32,3,) + Relu

Conv(64,3,3) + Relu
Conv(64,3,3) + Relu

FC(200) + Relu
Dropout (0.5)

FC(200) + Relu
FC + Softmax

Conv(128,3,3) + tanh
Conv(64,3,3) + tanh

FC(128) + Relu
FC + Softmax

For the CIFAR10 dataset, we perform an l∞ norm attack. We also follow advGAN to
train ResNet32 as the target model. In a Tiny-ImageNet dataset, we train the ResNet34
classification model as the target model, and perform l2 norm attack.

DDSG-GAN model details: The DDSG-GAN model contains dual discriminators
and a single generator. The generator consists of an encoder and a decoder. For MNIST
and CIFAR10 data sets, we design the same generator structure. The encoder is a 5-layer
convolutional network, and the decoder is a 3-layer convolutional network. Refer to
Figure 2 for the specific generator structure. For the Tiny-ImageNet, we add a convolution
layer in the encoder and generator, respectively. For the MNIST data set, the discriminator
D1 is a 4-layer convolutional neural network. The discriminator D1 for the CIFAR10 data
set is ResNet18 without pre-training. For the Tiny-ImageNet data set, there are two types
of discriminators D1, ResNet18 and ResNet50, which are pre-trained. We design the same
discriminator D2 for all data sets. The discriminator D2 is a 2-classification network model
composed of a 4-layer convolutional network, which is used to distinguish whether the
sample is sampled from the original images.

Method setting: Multiple classification models are trained for MNIST, CIFAR10, and
Tiny-ImageNet datasets. First, algorithm 3 is used to train the generator G. Then, the
trained G is used to generate the adversarial perturbation. Then, it is added to the original
sample, and the AE is obtained by clipping operation. Finally, we use these AEs to attack
classification models. In the targeted attack, the target class is set to t = (y + 1) mod C,
where y is the ground truth, and C is the total number of categories.

Evaluation indicators: (1) Attack success rate. In the untargeted attack, it is the
proportion of the AE successfully divided into any other classes. In the targeted attack, it
is the probability of classifying the image into a specific target class. (2) The magnitude
of the perturbation. We conduct attack experiments under the l2 and l∞ norm and set the
corresponding perturbation threshold.
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4.2. Experiments on MNIST

In this section, we use the l2 and l∞ norms to perform targeted and untargeted attacks
on MNIST, respectively. Table 2 shows the specific parameter settings. The untargeted
attack aims to generate AEs that make the classification result of the target model different
from the ground truth. The targeted attack aims to generate AEs that make the classification
result of the target model in the specified category. The experimental results are shown in
Tables 3–5.

Table 2. Experimental parameter setting of MNIST.

Name l∞ Norm l2Norm Description

ηd1 0.0001 0.0001 the learning rate for updating θd1
ηd2 0.0001 0.0001 the learning rate for updating θd2
ηg 0.001 0.001 the learning rate for updating θg
H 20 10 query target model’s interval

H
′
s length 60,001 60,001 the maximum length of H

n 20 5 updating queue H’s interval
γ1 1 1 weight factor of γ1 (15)
γ2 1 1 weight factor of γ2 (15)

γ3
10 (epoch ≤ 20)

1 weight factor of γ3 (15)
20 (epoch > 20)

Table 3. Training results of the surrogate model.

Target Model A Target Model B Target Model C

Untargeted attack Accuracy 99.33% 99.01% 99.16%
Similarity 99.19% 99.04% 99.13%

Targeted attack Accuracy 99.29% 99.12% 99.27%
Similarity 99.19% 99.16% 99.22%

Table 4. Experimental results of untargeted attack under l∞ norm (ASR: the attack success rate).

Target Model Accuracy Method ASR ε

A 98.97%

Black-box (Surrogate Model [32] + FGSM) 69.4% 0.4
Black-box (Surrogate Model [32] + PGD) 68.0% 0.4

Black-box (D1 as Surrogate Model + FGSM) 74.1% 0.3
Black-box (D1 as Surrogate Model + PGD) 90.2% 0.3

DaST [30] 76.4% 0.3
DDSG-GAN (Proposed) 100% 0.3

B 99.6%

Black-box (Surrogate Model [32]+ FGSM) 74.7% 0.4
Black-box (Surrogate Model [32]+ PGD) 70.6% 0.4

Black-box (D1 as Surrogate Model + FGSM) 77.1% 0.3
Black-box (D1 as Surrogate Model + PGD) 82.8% 0.3

DaST [30] 82.3% 0.3
DDSG-GAN (Proposed) 99.9% 0.3

C 99.17%

Black-box (Surrogate Model [32]+ FGSM) 69.2% 0.4
Black-box (Surrogate Model [32]+ PGD) 67.4% 0.4

Black-box (D1 as Surrogate Model + FGSM) 73.5% 0.3
Black-box (D1 as Surrogate Model + PGD) 91.3% 0.3

DaST [30] 68.4% 0.3
DDSG-GAN (Proposed) 100% 0.3
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Table 5. Experimental results of targeted attack under l∞ norm.

Target Model Accuracy Method ASR ε

A 98.97%

Black-box (Surrogate Model [32]+ FGSM) 11.3% 0.4
Black-box (Surrogate Model [32]+ PGD) 24.9% 0.4

AdvGAN [12] 93.4% 0.3
Black-box (D1 as Surrogate Model + FGSM) 18.3% 0.3
Black-box (D1 as Surrogate Model + FGSM) 50.3% 0.3

DaST [30] 28.7% 0.3
DDGS-GAN (proposed) 98.0% 0.3

B 99.6%

Black-box (Surrogate Model [32]+ FGSM) 17.6% 0.4
Black-box (Surrogate Model [32]+ PGD) 22.3% 0.4

AdvGAN [12] 90.1% 0.3
Black-box (D1 as Surrogate Model + FGSM) 25.1% 0.3
Black-box (D1 as Surrogate Model + PGD) 53.9% 0.3

DaST [30] 40.3% 0.3
DDGS-GAN (proposed) 97.6% 0.3

C 99.17%

Black-box (Surrogate Model [32]+ FGSM) 11.0% 0.4
Black-box (Surrogate Model [32]+ PGD) 29.3% 0.4

AdvGAN [12] 94.02% 0.3
Black-box (D1 as Surrogate Model + FGSM) 18.0% 0.3
Black-box (D1 as Surrogate Model + PGD) 65.8% 0.3

DaST [30] 25.6% 0.3
DDGS-GAN (proposed) 94.6% 0.3

First, we attack the target models under l∞ norm. We train discriminator D1 as a T’s
surrogate model. We calculate the classification accuracy and similarity with the model T
(the proportion of the same number of output results of the surrogate model and that of the
target model) against the MNSIT test set. The experimental results are shown in Table 3.
The classification accuracy of several surrogate models and the similarity between them
and the target model is close to above 99%, indicating that the surrogate model we trained
can replace the target model’s function.

In the l∞ norm attack, we set the maximum perturbation threshold ε = 0.30 to evaluate
the proposed approach. We compare DDSG-GAN with surrogate model-based black-attack,
DaST, and advGAN. The surrogate model is trained by two methods, respectively. The first
is to train the surrogate model according to [32]. This method uses 150 images in the test set
as the original training set S0, which sets the Jacobian augmentation parameter λ = 1, and
runs 30 Jacobian augmentation iterations. The second is to use the trained discriminator
D1 as the surrogate model and combine FGSM and PGD for the black-box attacks. We set
an upper bound on the number of queries to the target model in the DaST method. For
MNIST data sets, the query of each image is set to 1000. Under this premise, the total query
upper bound of the DaST method is 6× 107.

For a surrogate model-based attack, we use the same DNN model as the surrogate
model and attack the target model by combining FGSM and PGD attack algorithms. To
make the surrogate model trained by the first method have a better attack effect, set
ε = 0.40, and the perturbation thresholds of other methods are set to ε = 0.30. Table 4
shows that our proposed method (DDSG-GAN) achieves an attack success rate of nearly
100%, which is much higher than black-box attacks based on surrogate models and DaST.
At the same time, we also calculated the average query numbers of the target model. For
the target models A, B, and C, the query numbers of each image in the train set were 15,
20, and 28, respectively, which ensured a low query quantity. Because the target model is
unknown, black-box attacks based on the surrogate model have a low success rate. If D1
is the surrogate model, compared with the surrogate model trained by [32], if combined
with the FGSM algorithm to attack, the attack success rate is increased by 3.8% (4.7%, 2.4%,
4.3%) on average. If combined with the PGD algorithm to attack, the attack success rate is
increased by 19.4% (22.2%, 12.2%, 23.9%) on average, and the attack effect is significantly
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improved. It demonstrates that the surrogate model we trained can replace the target
model to a large extent, and this method can also achieve a good attack effect.

Table 5 shows the result of the targeted attack under the l∞ norm, and we also compare
it with the advGAN method. Compared with advGAN, the attack success rate of DDSG-
GAN is 4.23% (6.5%, 7.5%, 0.58%) higher than advGAN on average, and three–four times
higher than DaST. It also is much higher than the surrogate-model-based black-box attack.
For target models A, B, and C, each image query numbers in the train set are 70, 75,
and 109 times, respectively, also maintained at a low level. If D1 is the surrogate model,
compared with the surrogate model trained by [32], if combined with the FGSM algorithm
to attack, the ASR is increased by 7.17% (7%, 7.5%, 7%) on average. If combined with the
PGD algorithm to attack, the ASR is increased by 31.17% (25.4%, 31.6%, 36.5%) on average.
The attack effect has also been significantly improved. In this attack setting, we visualize
the generated AEs by DDSG-GAN on MNIST, which is shown in Figure 3. The top row
shows the original samples of each class randomly selected from the training set. Other
rows show the AEs generated by DDSG-GAN for the corresponding target model. The
probability that each AE is classified into the target class is shown below the image.
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Figure 3. Visualization of the AE in targeted l2 attack.

We also carried out an untargeted attack under the l2 norm, and the results are shown
in Table 6. In the l2 norm attack, DDSG-GAN achieved comparable ASR and perturbation
size to other attack methods but reduced the number of queries.

Table 6. Experimental results of untargeted attack under l2 norm.

Attack Type Method ASR ε Agv. Queries

Untargeted attack

Bandits [17] 73% 1.99 2771
Decision Boundary [33] 100% 1.85 13,630

Opt-attack [34] 100% 1.85 12,925
DDSG-GAN 90.6% 1.85 1431

4.3. Experiments on CIFAR10 and Tiny-ImageNet

We perform the untargeted and targeted attacks on CIFAR10 under l∞ norm. Different
from the setting of experimental parameters of MNIST, we set m = n = 1, ηg = 0.00001,
ηd1 = 0.001, and the maximum length of H is set to 50,001. The target model of the attack
is ResNet32, and its classification accuracy is 92.4%. In the targeted attack, the classification
accuracy of the trained D1 for the test set reaches 54.82%, and the similarity with the target
model is 73.26%. The classification accuracy of the surrogate model trained by DaST is
only 20.35%, and the accuracy of D1 is 2.69 times higher. To verify the effectiveness of
DDSG-GAN, we also compare it with DaST, advGAN, and the black-box attack based on
the surrogate model on CIFAR10. The results are shown in Table 7.
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Table 7. Attack results under l∞ norm on CIFAR10.

Target Model/
Accuracy

Attack
Type Method ASR ε

ResNet-32/
92.4%

Untargeted
attack

Black-box (Surrogate Model [32]+ FGSM) 79.5% 0.4
Black-box (Surrogate Model [32] + PGD) 20.7% 0.031

Black-box (D1 as Surrogate Model + FGSM) 84.4% 0.031
Black-box (D1 as Surrogate Model + PGD) 86.9% 0.031

DaST [30] 68.0% 0.031
DDSG-GAN (Proposed) 89.5% 0.031

Targeted
attack

Black-box (Surrogate Model [32]+ FGSM) 7.6% 0.4
Black-box (Surrogate Model [32]+ PGD) 4.7% 0.031

Black-box (D1 as Surrogate Model + FGSM) 19.5% 0.031
Black-box (D1 as Surrogate Model + PGD) 16.9% 0.031

AdvGAN [12] 78.47% 0.032
DaST [30] 18.4% 0.031

DDSG-GAN (Proposed) 79.4% 0.031

Under the setting of a targeted attack and untargeted attack, we have realized FGSM
and PGD attacks based on the surrogate model. For FGSM, we set ε = 0.4, as it is shown
to be effective in [32]. For the other attack methods, we uniformly set the perturbation
threshold to ε = 0.031. We also set an upper bound on the number of queries to the target
model in the DaST method on CIFAR10. We set the query of each image to 1000. Under this
premise, the total query upper bound of the DaST method is 5× 107. As can be seen from
Table 7, DDSG-GAN has an obvious advantage over the other attack methods. Compared
with advGAN, DDSG-GAN’s ARS in targeted attack is improved by 0.93%, and it is much
higher than the black box attack based on the surrogate model and DaST. At the same
time, the surrogate model we trained also achieved a good fitting effect. In the untargeted
attack (targeted attack), if D1 as the surrogate model combined with the FGSM algorithm to
attack the target model, the ASR is 4.9% (10.9%) higher than the surrogate trained by [32],
and the ASR combined with the PGD algorithm is increased by 10% (8.1%). The attack
effect has obviously been improved. In the untargeted attack setting, visualization of
AE generated by DDSG-GAN is shown in Figure 4. Figure 4a denotes original samples
randomly selected from the training set. Figure 4b denotes AE generated by DDSG-GAN
for the corresponding target model.
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We perform an untargeted attack on Tiny-ImageNet under l2 norm. Because the
Tiny-ImageNet data set is large, only about 1/3 of the training set, that is, 32,000 pictures,
are randomly selected for training in each iterative training. We set m = n = 1, ηg = 0.001,
ηd1 = ηd2 = 0.0001, and ε = 4.6. The maximum length of H is set to 32,001. The pre-trained
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ResNet18 and ResNet50 are used as discriminators D1. The classification accuracy of the
trained D1 for the test set is 52.3% and 45.8%, respectively. The results are shown in Table 8.
As can be seen from Table 8, the more complex the surrogate model, the better the attack
effect. Therefore, in order to improve the attack effect, the complexity of the surrogate
model can be appropriately increased.

Table 8. Attack results under l2 norm on Tiny-ImageNet.

Attack Type ε D1 ASR

Untargeted attack 4.6
ResNet18 72.15%
ResNet50 83.76%

4.4. Model Analysis

As can be seen from the above experimental results, compared with the black-box
attack based on the surrogate model (under l∞ norm), DDSG-GAN has great advantages
and a significantly higher attack success rate. In a black-box attack experiment based on
the surrogate model, the surrogate model trained in this paper has a higher success rate of
attack. In the l2 norm attack, we can find that the query requirement of the target model
is greatly reduced, and the success rate is kept at a high level. In addition, the attack
effect of the model depends largely on the network architecture of the generator and the
discriminator. When we use a fully connected neural network as the generator to perform
algorithm 3, the ASR of the untargeted attack is only 80%. Therefore, designing a better
network architecture helps improve the attack ability of the model.

5. Conclusions

Based on the structure of GAN, we design the architecture of generating AE with dual
discriminators and a single generator and use the generator to generate the adversarial
perturbation. Two discriminators constrain the generated perturbation, respectively. While
ensuring the attack success rate and low image distortion, it also ensures a low query
level. While training the generator, the discriminator D1 gradually fits the target model,
and, finally, it is trained as a surrogate model that can highly simulate the target model.
In this way, D1 combined with the white-box attack algorithm can carry out a black-box
attack based on a surrogate model, and this attack method reaches a higher attack level,
which shows that the surrogate model we trained has a good effect. When training the
discriminator D1, we added the structure of a circular queue to save the query results,
which made efficient use of the query results and greatly reduced the query requirements.
In future work, we will consider adding perturbation in key areas to ensure the attack effect
and reduce unnecessary image distortion. At the same time, it is considered to select a
broader data set, such as ImageNet, to improve the universality of the method.
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