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Abstract: The joint replenishment problem has been extensively studied and the joint replenishment
strategy has been adopted by a large variety of retailers in recent years. However, the joint replen-
ishment problem under minimum order quantity and other constraints does not receive sufficient
attention. This paper analyzes a retailing supply chain involving a supplier that provides quantity
discount schedules and limits the order quantity. The order quantity constraints include minimum
order requirements for each item and as to the total quantity; additionally, the latter cannot exceed the
transport capacity constraint. These are common constraints in the retail industry today and create
greater complexity and difficulty in the retailer’s decision-making. To analyze the problem, an integer
nonlinear programming model is set up to maximize retailers’ profit with all practical constraints. A
two-layer efficient algorithm named the Marginal and Cumulative Profit-Based Algorithm (MCPB) is
then proposed to find whether to order and the optimal order quantity for each item. The results of
computational experiments show that the proposed algorithm can find near-optimal solutions to the
problem efficiently and is a reference for retailers to solve practical joint replenishment problems.

Keywords: order strategy; joint replenishment problem; quantity discount; minimum order quantity;
transport capacity

MSC: 90B05; 90C10

1. Introduction

The joint replenishment problem (JRP) is a cooperative strategy to reduce the total
cost of procurement by sharing fixed costs through an optimal grouping of different types
of purchased items and joint procurement of items in the same group to take advantage of
the economic scale effect [1]. Currently, joint replenishment strategy, both in theory and
practice, has significantly reduced company replenishment and inventory costs [2]. The
joint replenishment strategy has been adopted by a large variety of supermarket chains,
such as Wal-Mart, Carrefour, and other well-known companies. A famous Chinese hyper-
market chain has planned to implement a joint replenishment strategy through an efficient
algorithm. As the problem continues to be studied, researchers have relaxed many assump-
tions to make the problem scenario more relevant to reality, such as the consideration of
positive lead time and shortages. Furthermore, there are various constraints being taken
into account to meet the need of practical applications.

The classical joint replenishment problems were motivated by the fixed shared costs
and the separated individual fixed costs [1,3]. However, grocery retailers or supermarket
retailers have no fixed costs for an individual item ordered. Instead, suppliers constrain
minimum order quantities (MOQ) to ensure their profits for each order and delivery.
Minimum order quantity restrictions are widely used in business. For example, Sports
Obermeyer, a fashion ski-wear distributor, requires MOQ from buyers, and Walmart and
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Alibaba are similarly constrained by their suppliers [4]. Tuncel et al. demonstrate that
MOQ contracts are very popular for suppliers in actual practice [5]. Therefore, retailers
need to develop their inventory optimization algorithms to fit supplier MOQ constraints.

Nevertheless, the joint replenishment problem study under MOQ constraints has still
not received sufficient attention [6]. To the best of our knowledge, only a few papers have
addressed the joint replenishment problem with MOQ constraints. For example, Porras
and Dekker applied a global optimization procedure to solve the JRP with MOQ to derive
the bounds for a primary order cycle [7]. Noh proposed an efficient method to determine
a base cycle length and safety factor that minimizes the buyer’s total cost with quantity
discounts and minimum order constraints [6]. Muriel focused on the optimal order strategy
with a fixed joint-order cycle [8]. To enrich the study of JRP with MOQ, we establish a
mathematical model to describe it and propose an efficient algorithm to solve it.

Unlike most studies on JRP, our model takes the objective function of maximizing
the retailer’s profits and accounts for out-of-stock items. For out-of-stock items, a unit
shortage cost represents the retailer’s potential loss. Additionally, beyond the minimum
order quantities for each item, we should also consider total minimum order quantity and
transport capacity constraints of the total replenishment. More interestingly, although there
are a set of joint replenishment items, not all items need to be ordered at the same order
point. Therefore, in our model, the decision variables include whether each item is ordered
and the amount of replenishment if it is ordered.

The contributions of this study are as follows: (1) We extend the literature of JRP
research by considering shortage, quantity discounts, MOQ for both single item and
total replenishment, and transport capacity at the same time in the model to solve more
realistic issues; (2) We propose an efficient algorithm to solve this JRP in a shorter time and
determine the order quantity for each item to a near-optimal degree.

This paper is organized as follows. Section 2 introduces the related literature and
summarizes the position of our work in the existing literature. Section 3 models a nonlinear
integer programming of the JRP with shortage and MOQ and transport capacity constraints.
The proposed marginal profit-based algorithm is described in Section 4. The computational
experiments and the evaluation of the proposed algorithm are illustrated in Section 5. The
paper is concluded in Section 6.

2. Literature Review

Over the past few decades, researchers have shown increasing attention to JRP, and
different approaches have been proposed to solve both the classical JRP and the constrained
JRP. The JRP is an NP-hard problem, and it is unlikely that a polynomial-time algorithm
exists to solve JRP [9]. Goyal has proposed an algorithm to determine the order quan-
tities for items in a JRP [10]. Moreover, an efficient heuristic algorithm was developed
to solve the JRP problem [11], which was improved by Goyal and Belton [12] and Kaspi
and Rosenblatt [13]. Since then, more and more heuristics have been developed, such
as RAND [14], C-RAND [15], genetic algorithm (GA) [16–18], evolutionary algorithm
(EA) [19–22] and simulated annealing (SA) [23]. Among the heuristics, GA and EA have
been proven effective in solving the classical JRP [24].

With the continuous study of JRPs, there are more and more factors and constraints
being considered in the problems. First, shortage is an important issue in JRPs. To address
this important issue, several studies [25–27] employ a penalty cost per unit because of
the shortages, representing the probable loss of profit. Furthermore, some extensions
of the analysis that are closely related to this paper are quantity discounts, minimum
order quantity constraints, and transport capacity constraints. Cha and Moon [28] firstly
considered all-units quantity discounts for each item in JRP under constant demand.
Moon [29] extended this research to multiple suppliers offering quantity discounts and
proposed a hybrid genetic algorithm with resource constraints. Duran and Pérez Pozo [30]
used techniques based on particle swarm optimization and a genetic algorithm to deal with
a JRP regarding spare parts.
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Furthermore, offering a quantity discount is a common approach of suppliers to
encourage retailers to order more, and there are several researchers who have considered
this issue in the study of inventory management. Paul [31] investigated two different
models, with and without price discount, to determine the length of the family’s cycle
and the integer number of intervals that the replenishment quantity of each item will last.
Cui [32] simultaneously considered two quantity discounts, an all-unit quantity discount
and an incremental quantity discount, in the JRP and solved it by the locust swarms
algorithm. Ai [33] constructed a mathematical model with a supplier selection system and
a JRP where suppliers have different quantity discount schemes.

MOQ constraint was perhaps first considered by Fisher [34]. They considered a
two-phase problem for multiple projects with a realistic setup in which MOQ constrains
low-cost procurement. Robb [35] studied a periodic review system with MOQ constraints
and proposed heuristic approaches for when the recommended order quantity is less than
the specified minimum quantity. Similarly, Zhou [36] considered a single-item, periodic-
review inventory system with MOQ and tested a simple heuristic policy specified by only
two parameters (s, t) which was demonstrated to consistently outperform the best feasible
(s, S) policy. Based on the same inventory system settings, Kiesmüller [37] proposed a
periodic review policy, called (R, S, Qmin) policy, where the order quantity of a single item
was calculated as the inventory on hand plus orders on hand minus stalled orders, equal
to or greater than level S. A more straightforward one-parameter policy called S policy
was proposed when considering a single-item inventory system with both MOQ and batch
orders [38]. Shen studied a two-echelon inventory system with one warehouse and multiple
retailers [39]. In particular, the warehouse had a minimum order quantity requirement
according to the supplier’s regulations. They assumed that retailers had adopted the
base-stock policy and designed a new heuristic ordering for the warehouse. All the above
studies were conducted for single-item inventory systems with MOQ constraints. Only
a few articles have investigated joint replenishment systems with MOQ constraints [6–8].
Therefore, to fill the research gap in this area, this paper focuses on joint replenishment
systems with MOQ and derives the optimal order quantity of each item.

In addition, there are several other constraints besides MOQ constraints. For example,
Moon and Cha [15] introduced resource constraints to the JRP. Houque considered the
capacity and budget constraints of the joint replenishment with a shortage [40]. Shipment
constraints and defective items that cannot be delivered together have also been studied [17].
Similarly, Otero-Palencia considered real-life capacity constraints such as finite storage and
transport and solved them via genetic algorithms [41].

This study aims to model a constrained JRP for multiple items, in which demand is
stochastic and shortage is allowed, with individual MOQ constraints for each item and
total MOQ and transport capacity for total replenishment. This extended JRP is very critical
for the retail industry during COVID-19. For example, this problem can be found in a
supermarket where the same brand of goods is ordered from the same supplier as a group
of joint replenishment items with MOQ constraints and transport capacity constraints from
suppliers with different quantity discount schedules.

Table 1 summarizes how our work compares to other works and its position in the
existing literature. It shows that there are several papers that have studied the relevant
constraints in JRP. A few papers including [6,7] have analyzed JRP with MOQ constraint,
even though the decision variables are not the order quantity. Muriel et al. analyzed JRP
with MOQ constraint and aimed to get the optimal order quantity in the model, but the
transport capacity and quantity discounts were not considered [8]. On the contrary, this
paper simultaneously analyzes an extended JRP with stochastic customer demands, a
discount schedule for each item, MOQ constraints for each item and as to total quantity,
and transport capacity constraints at the. Thus, the current work can extend the literature
of JRP research by allowing for these four realistic conditions and focusing on the optimal
order quantity for each item.
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Table 1. Position of Our Work in the Existing Literature.

Research Paper JRP MOQ Transport
Capacity

Quantity
Discount

Shortage
Allowed

Optimal
Order Quantity

Stochastic
Demand

Goyal & Belton [12]
√ √

Robb & Silver [35]
√ √

Cha & Moon [28]
√ √

Porras & Dekker [7]
√ √

Moon & Cha [15]
√ √

Zhou et al. [36]
√ √ √

Moon et al. [29]
√ √

Kiesmüller et al. [37]
√ √ √

Zhu et al. [38]
√ √ √

Cui et al. [32]
√ √

Ongkunaruk et al. [17]
√ √

Chen et al. [25]
√ √ √

Noh et al. [6]
√ √ √ √ √

Ai et al. [33]
√ √

Muriel et al. [8]
√ √ √

This paper
√ √ √ √ √ √ √

3. Problem Description and Model Formulation

Large supermarket chains such as Wal-Mart and Yonghui sell various items from
suppliers. They usually prefer joint replenishment strategies to reduce shipping costs by
regularly ordering multiple items from each supplier simultaneously. This study considers
a grocery supply chain with a single retailer and a single supplier who provides quantity
discount schedules and has MOQ constraints for each item and as to total replenishment.
Furthermore, transport capacity is an upper limit for total replenishment. The order for
each item can be fulfilled when the retailer places the order with the supplier. The main
goal of this paper is to determine the optimal joint replenishment policy for this retailer,
i.e., the items to be ordered in each order point and the order quantity of each item with
the constraints above, such that the total expected profit of the retailer is maximized.

It is assumed that the order cycle and the lead time of items from the same supplier
are stable, and that the retailer can only order at the order point. There are no supply
constraints on suppliers, and retailers can have their orders fully met. Moreover, shortages
are allowed, and out-of-stock items are lost without backlogging. The demand for each
item is assumed to be independent, and the expected probability distribution of each item
can be obtained (through machine learning, for example). As grocery supply chains are
concentrated, there are no individual item setup costs, since minimum order quantities
ensure that orders can cover any existing fixed costs [8].

To model the proposed JRP, indices, parameters, decision variables, and auxiliary
variables are defined in Table 2.

The retailer’s expected profit is determined based on expected demand and available
inventory. Inventory is fully used to meet demand, without inventory hoarding. If there
is a surplus of inventory after demand is fulfilled, inventory holding costs are incurred;
if demand is not fully met, out-of-stock losses result. Similar to the periodic strategies, it
is believed that the replenishment quantity should meet the total demand for the order
cycle and lead time, which means Dij = dij ∗ (0 + L), and this is used as a benchmark to
measure the out-of-stock loss. Thus, if Dij > (Ii + qi), which implies the item is out-of-
stock, the retailer will have a unit shortage cost si for each out-of-stock item. Similarly, if
Dij ≤ (Ii + qi), items not sold will be placed in the warehouse and incur the unit-holding
cost hi. Meanwhile, the retailer will have a corresponding revenue pi for each item sold
and pay a purchase cost for each item ordered. This paper assumes that the supplier is
providing a full-unit quantity discount schedule.
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Table 2. Description of symbols.

Indices:

i item index, i ∈ N, where N is the set of items
ij the probable demand index of item i

(
0 < pij ≤ 1

)
k The price break index

Parameters:

O the order interval of joint replenishment
L the lead time of joint replenishment

dij the average probable demand rate of item i during the order cycle and lead time
Proij the probability of dij of item i

Ii the existing inventory of item i at the order point
pi the unit revenue of item i
hi the unit holding cost of item i
si the unit shortage cost of item i

bi,k kth price break quantity required of item i
ci,k the unit purchase cost with price break k under all-unit quantity discounts

moqi the minimum order quantity of item i
Moq the total minimum order quantity for all items
Tr the transport capacity

Decision variables:

qi The order quantity of item i (integer variable)
yi =

{
1, if item i is ordered
0, otherwise

Auxiliary variable:

Xij =

{
1, if item i is out of stock
0, otherwise

Furthermore, there is a probability Proij connected to each demand Dij . Thus, the
expected profit of each kind of item in an order quantity qi and a probable demand Dij can
be calculated as follows:

Ri

(
qi, Dij

)
=

 Proij

(
pi(qi + Ii)− si

(
Dij − (Ii + qi)

))
− Ciqi, Dij ≥ Ii + qi

Proij

(
piDij − hi

(
Ii + qi − Dij

))
− Ciqi, Dij < Ii + qi

(1)

The discount schedule Ci is described as follows:

Ci =


ci,1, if bi,1 ≤ qi < bi,2
ci,2, if bi,2 ≤ qi < bi,3

. . .
ci,k, if bi,k ≤ qi

(2)

where qi is the order quantity and bi,1 = moqi. In the schedule, the first price break bi,1 is the
minimum order quantity constraint, and it is assumed that ci,k < cik < . . . < ci2 < ci1 [6].
Thus, the total expected profit of each item is a function of the order quantity qi as:

Ri(qi) = ∑
j

Ri

(
qi, Dij

)
(3)

The MOQ constraint includes the MOQ constraint for a single item moqi and the MOQ
for total replenishment Moq. For a single item, the MOQ constraint can be understood
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as being if an item is ordered, it must meet the minimum order quantity requirement.
Otherwise, it will not be ordered, which can be symbolized as follows:{

if yi = 1 then qi ≥ moqi
if yi = 0 then qi = 0

(4)

Based on the discussion above, the proposed JRP with MOQ and transport capacity
constraints can be formulated as follows:

Max ∑
i

∑
j

Proij

(1− Xij

)(
pi(qi + Ii)− si

(
Dij − (Ii + qi)

))
+Xij

(
piDij − hi

(
Ii + qi − Dij

)) − Ciqi (5)

s.t.



Myi − qi ≥ 0 (6)
M(1− yi) + qi ≥ moqi (7)

Dij − (Ii + qiyi) ≤ M
(

1− Xij

)
(8)

Dij − (Ii + qiyi) ≥ −MXij (9)

Moq ≤ ∑
i

qi (10)

∑
i

qi ≤ Tr (11)

∑
j

Proij = 1 (12)

qi ≥ 0, qi ∈ Z ∀ i (13)
yi ∈ {0, 1}, ∀ i (14)
Xij ∈ {0, 1}, ∀ i, j (15)

The objective function Equation (5) represents the total expected profit of the retailer,
where Xij is an auxiliary variable defined to distinguish the two scenes in (1) as follows:

Xij =

{
1, if Dij > (Ii + qi)

0, if Dij ≤ (Ii + qi)
(16)

Equations (6) and (7) represent the single-item MOQ constraints for each kind of item
and are consistent with the relationship in Equation (4) where M is a finitely large enough
positive number. Equations (8) and (9) ensure that the value of Xij meets the constraints in
Equation (16). The total MOQ and transport capacity constraints are shown in Equations
(10) and (11), respectively. Equation (12) is the expression of the probability distribution, in
which the sum of probabilities is one. Equations (13)–(15) imply that qi must be a positive
integer and that yi and Xij are binary.

4. Marginal and Cumulative Profit-Based Algorithm (MCPB)

The traditional joint replenishment problem is defined as an NP-hard problem [9],
and it is difficult to solve. In previous papers, most integer programming problems
with constraints are solved by heuristic algorithms such as genetic algorithms [16–18].
However, heuristic algorithms have limitations in that the performance of the algorithms
is unstable. In our model, there are multiple breakpoints in the profit function due to the
minimum starting order constraint for a single item and the quantity discount. Thus, this
paper proposes a Marginal and Cumulative Profit-Based Joint Replenishment Algorithm
(MCPB). The main idea of this algorithm is to minimize marginal and cumulative profit
loss principles to deal with the discontinuous profit function.

Based on Equations (5)–(15), it is easy to split the problem into several subproblems,
as Equations (17) and (18), to find the optimal order quantity of each item without the total



Mathematics 2023, 11, 1012 7 of 18

constraints of MOQ and transport capacity. The optimal solutions are the initial input of
the proposed algorithm to determine the ideal profit without any resource constraints.

maxRi(qi, yi) = ∑
j

Proij

(1− Xij

)(
(qi + Ii)pi − si

(
Dij − (Ii + qi)

))
+Xij

(
Dij pi − hi

(
Ii + qi − Dij

)) − Ciqi (17)

s.t.


Myi − qi ≥ 0
M(1− yi) + qi ≥ moqi

Dij − (Ii + qiyi) ≤ M
(

1− Xij

)
Dij − (Ii + qiyi) ≥ −MXij

(18)

Property 1. If quantity discounts are not considered, the optimal replenishment amount of each
subproblem is

qi = Dij − Ii

Proof of Property 1. For each Dij , the objective function of each subproblem can be
rewritten as:

maxRi(qi) =

pi(qi + Ii)− si

(
Dij − (Ii + qi)

)
− cqi, qi ≤ Dij − Ii

Dij pi − hi

(
Ii + qi − Dij

)
− cqi, qi > Dij − Ii

(19)

For the first scenario,
dRi(qi)

dqi
= pi + si − c (20)

It is assumed that, if pi + si − c > 0, then Ri(qi) is an increasing function with respect
to qi. Therefore, based on the range of values of qi, the maximum value of the objective
function is obtained at q∗i = Dij − Ii.

Similarly, for the second one,

dRi(qi)

dqi
= −(hi + c) (21)

Therefore, Ri(qi) is a decreasing function and the optimal solution is q∗i = Dij − Ii.
Thus, q∗i = Dij − Ii is the global optimal solution if there are no quantity discounts. �

According to Property 1, for each ci,k in discount schedules Ci, the optimal solution is
q∗i = Dij − Ii, regardless of price break. Then, comparing q∗i with price interval, the optimal
solution for each price interval can be written as:

q∗i,k =


bi,2 − 1, q∗i > bi,2

. . .
q∗i , bi,m ≤ q∗i ≤ bi,m+1
. . .

bi,k, q∗i < bi,k

(22)

Thus, the global optimal solution for each item with a quantity discount is:

q∗i = max
(

Ri

(
q∗i,k
)

f or k = 1, 2, 3 . . . , Ri(0)
)

(23)

The profit of each item can be easily calculated by Equation (17), and the marginal
profit loss of each item at a specific order quantity is the loss of profit when increasing or
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decreasing one order relative to the current order quantity. If the order quantity is at the
boundary of zero quantity and its individual minimum order quantity, the marginal profit
loss is the loss of profit when increasing to the individual MOQ or decreasing to zero. What
is more, the total MOQ and transport capacity constraints should be considered. Equations
(24) and (25) show the marginal profit when the total MOQ constraint is not satisfied and
the total transport capacity is not satisfied, respectively, where Sum refers to the current
sum of order quantities.

mari =


Ri(qi, yi)− Ri(qi + 1, yi), if qi 6= 0 and qi + 1 ≤ Tr
Ri(qi, yi)− Ri(moqi, yi), if qi = 0 and moqi + Sum ≤ Tr
M, else

(24)

mari =


Ri(qi, yi)− Ri(qi − 1, yi), if qi 6= 0 and qi − 1 ≤ Moq
Ri(qi, yi)− Ri(0, yi), if qi = moqi and Sum−moqi ≥ Moq
M, else

(25)

Considering this JRP, a two-layer optimization method can be designed to solve it.
The first layer’s optimization is based on minimizing marginal profit loss, regarded as the
Marginal Profit-Based Algorithm (MPB). The second layer is designed to evaluate the result
from the MPB by the principle of minimizing cumulative profit loss, and is named the
Cumulative Profit-Based Algorithm (CPB). The whole algorithm, called the Marginal and
Cumulative Profit-Based Joint Replenishment Algorithm (MCPB), controls the iterative
process of MPB and CPB to satisfy all constraints and achieve global optimization. The
process of the first layer optimization MPB can be described in Algorithm 1 in Python
syntax for matrices.

Algorithm 1. Process of Marginal Profit-Based Algorithm (MPB).

Step 0: Input current order strategy set, the sum of total order quantities set and the profit set
Step 1: Calculate the marginal profit of each item

Step 1.1: If the MOQ constraint is not satisfied, use Equation (24)

Step 1.2:
If the transport capacity constraint is not satisfied, use Equation
(25)

Step 2:
Select an item to update order quantity based on the principle of minimal loss of
marginal profit as j = min(mar[i], i = 0, 1, 2, . . . , n)

Step 3: Update the order strategy
Step 3.1: If the MOQ constraint is not satisfied:

Step 3.1.1: If q[j] = 0, set q[j]← moq[j]
Step 3.1.2: If q[j] ≥ moq[j], set q[j]← q[j] + 1

Step 3.2: If the transport capacity constraint is not satisfied:
Step 3.2.1: If q[j] = moq[j], set q[j]← 0
Step 3.2.2: If q[j] ≥ moq[j], set q[j]← q[j]− 1

Step 3.3:
Update the total order quantities Sum, the order strategy
{y[i][Sum], i ∈ N} and the profit P[Sum]

Step 4: Update the breakpoints set A
If the item selected is in A, delete it

Step 5: Output the updated order strategy and the breakpoints set into CPB and stop

The input of MPB is the current order strategy and corresponding parameters. Step 1
calculates the marginal profit loss of each item according to different scenarios in Step 1.1
and Step 1.2. Step 2 is to select an item with the lowest marginal profit loss. Based on the
result of Step 2, Step 3 updates the new order quantity, as determined by the equations in
Step 3.1 and Step 3.2. Furthermore, in order to evaluate the result, Step 3.3 calculates the
new total order quantities and profit. Then, Step 4 deletes the item if it is in the breakpoints
set. Finally, the updated order strategy is output into the second layer algorithm CPB in
Step 5.
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After optimizing the first layer, the second layer algorithm, CPB, can be implemented.
During the following layer algorithm, the result will be evaluated by the principle of
minimizing cumulative profit loss. According to Figure 1, there are several breakpoints
in profit functions. Thus, there are certain limitations to its results which can be solved by
the next layer algorithm CPB. Algorithm 2 is the formalized scheme of the procedure in
Python syntax for matrices.

Algorithm 2. Process of Cumulative Profit-Based Algorithm (CPB).

Step 0: Input the result of the first layer MPB
Step 1: Check if there are better solutions for the current total order quantities

Step 1.1: Check the item and order quantity in the breakpoints set A

Step 1.2:
if cumulative loss of profit exceeds marginal profit in A, go to
step 2

Step 1.3: else, go to step 4

Step 2:
Select an item m to update the order quantity with the lowest cumulative profit
loss

Step 3: Update the order strategy
Step 3.1: Set q[i]← q[i][Sum− (A[m]− q[m])], i ∈ N/m
Step 3.2: Set q[m]← A[m]
Step 3.3: Update the total order quantities Sum and the profit P[Sum]

Step 4: Output the order strategy into the whole algorithm MCPB and stop
Mathematics 2023, 11, 1012 10 of 19 
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In Step 0, the result of MPB is input. Step 1 checks if the input is the optimized solution
of the current total order quantities based on minimizing the cumulative profit loss. In
this process, the cumulative reduction of total order quantities and the cumulative profit
loss are compared with the order quantities and cumulative profit loss in the breakpoints
set. If there exists any item satisfying both conditions, it means the current result is not
optimal and needs to be updated later, while if it does not exist, it goes to Step 4 directly.
Step 2 chooses the item with the lowest profit loss for those satisfied items. Then, Step 3
updates the optimal solution by dating back to the previous state. For example, suppose
the MOQ constraint is not satisfied now. In that case, all the order quantities except the
item selected will be updated by the order strategy in which the sum is Sum−moq[m] and
the item selected is replaced by zero. The process is similar when the transport capacity is
unsatisfied, as shown in Step 3.2. After running the CPB, the final result is transferred to
the whole MCPB algorithm in Algorithm 3 in Python syntax for matrices.

Algorithm 3. Process of Marginal Profit-Based and Cumulative Profit-Based Algorithm (MCPB).

Step 0: Input the joint replenishment problem:
Input joint replenishment item group N = {i, i = 0, 1, 2, . . . , n}
Input parameters (d[i][j], Pro[i], I[i], p[i], C[i], S[i], moq[i]) of each item and
(O, L, Moq, Tr) of the inventory system

Step 1: Initialization

Step 1.1:
Initialize order strategy by maximizing subproblems based on
Equation (23)

Step 1.2:
Record the sum of initial order quantities as Sumo and the sum of
maximum profit by the dictionary as P[Sumo]

Step 1.3:
Record decision variables by dictionary form as {y[i][Sumo], i ∈ N}
where i and Sum are the key values

Step 2: Check the MOQ and transport capacity constraints
Step 2.1: If both are satisfied, output the order strategy and stop
Step 2.2: If either of them is unsatisfied:

prepare the breakpoints set A in Equation (22) and go to Step 3
Step 2.2.1: If the MOQ constraint is not satisfied:

A = {j | q[j][Sum] = 0 and Sumo + moq[j] ≤ Tr} ∪{
j
∣∣max(Pro[j][q], q ∈

[
bi,0+z, bi.k

]
, z = 0, 1, . . . k

}
Step 2.2.2: If the transport capacity constraint is not satisfied:

A =
{j | q[j][Sum] = moq[j] and Sumo −moq[j] ≥ Moq} ∪{

j
∣∣max(Pro[j][q], q ∈

[
bi,0+z, bi.k

]
, z = 0, 1, . . . k

}
Step 3: Perform MPB with current order strategy
Step 4: Perform CPB with the updated order strategy obtained from Step 3 above
Step 5: Save the current order strategy and go to Step 2

MCPB is the main algorithm, synthesizing the previous two functions. Step 0 inputs
the basic parameters of the joint replenishment problem. In Step 1, the order strategy is
initialized by the subproblems’ results of each item, and the order quantities, sum quantity,
and profit are recorded in dictionary form with unique keys. Step 2 checks the constraints
to control the iterative of MPB and CPB. If all constraints are satisfied in Step 2, the result
will be output as the optimal solution. If not, a breakpoint set is set up, one which contains
breakpoints for minimum order quantities, optimal solutions for each quantity discount
interval of each item, and the corresponding profit loss at each breakpoint. Then, Step 3
and Step 4 are implemented, and unless the termination condition is met, the process will
return to Step 2 and continue to the next iteration. The flow chart of the whole MCPB is
shown in Figure 1.

The main contribution of the proposed algorithm is the combination of marginal profit
loss and cumulative profit loss. The minimum margin profit principle ensures that the
solution produced in every loop is nearly optimal, and the cumulative profit principle
modifies the calculation for possible deviations from the minimum marginal profit principle



Mathematics 2023, 11, 1012 11 of 18

given the gaps in the profit functions because of the quantity discounts. Thus, the proposed
marginal profit-based algorithm can be used to solve these joint replenishment problems
with constraints to maximize retailers’ profits. In the next section, several computational
experiments are designed to check the efficiency and accuracy of the MCPB.

5. Computational Experiments

Our experiments are designed based on a practical application scenario referencing
a large supermarket chain in China. The supermarket sells a large number of items from
different suppliers and requires a replenishment order regularly from the supplier, which
provides a set of items with minimum order quantities, transport capacity constraints at a
fixed cycle replenishment point, and quantity discount schedules for the purchase cost.

We have conducted three experiments to check the performance of the proposed
solutions in various settings. To evaluate the performance of the proposed algorithm, solver
CPLEX 22.1.0.0 is used as the benchmark. CPLEX is able to solve integer programming
problems and has been proven to outperform other solvers to obtain the primary optimal
solution [42,43]. The measurement of the accuracy of MCPB solutions can be defined as a
percent deviation = 100(TP− TP∗)/TP, where TP denotes the total profit obtained from
the CPLEX and TP∗ denotes the total profit of the solution from MCPB. All experiments
are programmed in Python 3.9 and implemented on a PC (CPU: Apple M1; RAM: 16 GB;
OS: macOS Monterey 12.5.1).

5.1. Experiment I: A Small-Scale Sample of the MCPB Algorithm

To evaluate the accuracy of the proposed algorithm, a joint replenishment example
with 10 items is conducted first. The order interval is 3 days and the lead time is 2 days.
The other values are in Table 3. Table 4 specifies the price discount schedule of each item.
The total MOQ constraint and the maximum transport capacity vary to test the accuracy of
the proposed algorithm in different scenarios.

Table 3. Values of parameters of item i in Experiment I.

Item (i) 1 2 3 4 5 6 7 8 9 10

Ii 5 2 3 20 0 6 5 4 3 0
pi 30 50 40 35 25 30 30 20 30 35
si 15 25 20 18 15 10 12 10 15 12
hi 2 5 4 1 2 3 2.5 2 1.5 1
ci,1 10 20 15 10 12 18 16 10 12 14

moqi 60 50 30 70 80 30 40 70 44 50

Table 4. Discount schedule.

Price Break Purchase Cost

moqi ≤ qi < 1.5moqi ci,1
1.5moqi ≤ qi < 2moqi 0.9ci,1
2moqi ≤ qi < 2.5moqi 0.8ci,1

qi ≥ 2.5moqi 0.7ci,1

There are eight to-be-tested pairs of MOQ and transport capacity in Experiment I, and
all eight results are shown in Table 5. Calculating the percent deviation between MCPB
and CPLEX shows that the MCPB algorithm can achieve the same results in six scenarios,
and in the remaining two scenarios, the maximum percent deviation is no more than 1%.
In the scenario where MOQ is 300 and transport capacity is 600, we find that the deviation
between MCPB and CPLEX mainly comes from the selection of replenishment items. In the
scenario where MOQ is 500 and transport capacity is 800, the total order quantity of MCPB
and CPLEX is different because of the termination conditions set by MCPB to meet the
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constraints. Thus, MCPB can successfully generate nearly optimal solutions for small-scale
problems.

Table 5. The comparison of output under different scenarios.

Moq/Tr
Total Order Quantity Total Profit Percent

DeviationMCPB CPLEX MCPB CPLEX

300/600 600 600 10,667.61 10,766.34 0.926
400/700 700 700 12,719.18 12,719.18 0.000
500/800 800 777 13,060.18 13,151.43 0.694
800/1000 847 847 13,208.13 13,208.13 0.000
950/1200 950 950 12,592.55 12,592.55 0.000

1000/1500 1000 1000 12,283.56 12,283.56 0.000
1100/1400 1100 1100 11,665.15 11,665.15 0.000
1200/1500 1200 1200 10,965.15 10,965.15 0.000

5.2. Experiment II: A Large-Scale Sample of the MCPB Algorithm

To test our algorithm for more realistic problems, a second experiment is designed in
which the problem size varies from 15 to 30. There is a mild assumption that, in practice,
the unit lost-sales penalty cost usually exceeds the unit holding cost (i.e., si > hi) and that
the selling price must exceed the unit ordering cost (i.e., pi > ci,1) so that the retailer can
make a profit [44]. The discount schedule of each item still follows the principle in Table 4.
Three pairs of minimum order quantity (Moq) and transport capacity (Tr) constraints are
set for each problem size. Thus, a total of 12 different problems are designed in the test. For
each type of problem, five sets of items’ parameters are prepared by generating random
numbers from the probability distributions given in Table 6. Thus, the total number of
computational experiments is 60. The primary results of all computational experiments
including total order quantity and total profit are summarized in Table A1 in Appendix A.

Table 6. Parameters setting of Experiment II.

Ii pi si hi ci,1 moqi di

[0, 20] a [20, 50] a [10, 25] a [1, 5] a [10, 30] a [30, 150] a [5, 50] a

a Uniform distribution.

The average, maximum, minimum, and standard deviation of the five percent devi-
ations between MCPB and CPLEX for each problem size and each set of constraints are
summarized in Table 7. It shows that the average percent deviation ranges from 0.000% to
0.744% in 20-item problem sets. In all experiments, the MCPB finds the exact solutions 33
times out of 60 cases, and the worst deviation from CPLEX is no larger than 0.8%, which
can be considered a near-optimum solution. Encouragingly, the standard deviations of
the percentage deviations are minimal, ranging from 0.000% to 0.383%, which implies that
MCPB has robust performance and is minimally affected by the randomness of the input
data. More importantly, the deviation of MCPB does not become more extensive with
the increase in the problem size. Furthermore, to test the performance on large problems,
the problem size was expanded to 100 to 140 in the extended experiments and the results
are summarized in Table A2. The results show that the percent deviation is no greater
than 0.9% within a shorter time, as compared with CPLEX. The feature of MCPB is very
promising for real-world applications, as MCPB’s error for a sizeable real-world problem is
expected to be within a practically-acceptable limit.
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Table 7. Output of percent deviation in Experiment II.

Problem
Size

Moq/Tr
Percent Deviation

Average Maximum Minimum Standard
Deviation

15
1200/1800 0.417 0.740 0.000 0.383
1500/2000 0.000 0.000 0.000 0.000
2000/2500 0.003 0.016 0.000 0.007

20
2000/2500 0.166 0.744 0.000 0.325
2500/3000 0.000 0.000 0.000 0.000
3000/3500 0.000 0.000 0.000 0.000

25
2500/3000 0.124 0.394 0.000 0.172
3000/3500 0.000 0.000 0.000 0.000
3500/4000 0.003 0.009 0.000 0.004

30
3000/3500 0.385 0.628 0.000 0.236
3500/4000 0.054 0.245 0.000 0.108
4000/4500 0.025 0.127 0.000 0.057

5.3. Experiment III: Comparison of MCPB and CPLEX

The final experiment is designed to test the speed of MCPB. Based on the above
experimental scenarios, the average solution times for MCPB and CPLEX are calculated
for each problem size and summarized in Table 8 and Figure 2. MCPB can solve a given
problem in less than 0.8 s and CPLEX consumes over 0.3 s with the simplest problem. It is
clear from Figure 2 that there is a significant rise in CPLEX’s time when the problem size
exceeds 15 items, while MCPB remains at a low level for all problem sizes. The experimental
results clearly show that MCPB can be a very effective tool for retailers facing a variety of
real-world JRPs with price discount schedules, minimum order quantities, and transport
capacity constraints.

Table 8. The comparison of average computational time for MCPB and CPLEX.

Problem Size
Average Computational Time (in s) Average Percent

DeviationMCPB CPLEX

10 0.072 0.376 0.025
15 0.098 0.376 0.053
20 0.115 0.481 0.055
25 0.139 0.580 0.042
30 0.168 0.619 0.155

100 0.253 1.262 0.000
110 0.339 1.694 0.046
120 0.355 1.602 0.169
130 0.423 1.615 0.275
140 0.738 1.743 0.309
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6. Conclusions

This paper analyzes a retail supply chain involving a supplier that provides many
types of items and a retailer that orders items from suppliers on a known fixed cycle based
on the demand of each item. Suppliers provide quantity discount schedules and accept
orders that meet pre-set minimum order requirements for each item and as to the total
quantity, which additionally does not exceed the transport capacity constraint. The retailer
then tries to determine whether to order each item and the optimal order quantity to
maximize its profit, which becomes an extended form of the JRP.

To solve the JRP, an integer nonlinear programming model is established. Based on
the properties of the model, a two-layer algorithm called MCPB is proposed. To test the
performance of the MCPB algorithm, we conduct small-scale and large-scale experiments.
The results show that MCPB can obtain a nearly optimal solution with a bias below 1%
both in the small-scale experiments and the large-scale experiments and achieve a speed
about four times faster than CPLEX. Thus, the computational results show that the MCPB
can find near-optimum solutions in a short time. The significance of our study is that
retailers faced with similar JRP can use MCPB to decide whether to order items and the
corresponding order quantity to maximize their profits. A large supermarket chain has now
tested the algorithm proposed in this paper in China in a real-world scenario. It worked
well during the test period and effectively improved the efficiency of joint replenishment
and the retailer’s revenue.

From a theoretical perspective, our research effectively enriches the field of research
on JRP with constraints such as MOQ and transport capacity. From a practical perspective,
our proposed algorithm can help retailers solve practical joint replenishment order quantity
decision problems with several practical constraints in an efficient way. As to the future,
there are several ways to further extend the study. One promising approach is to incorporate
multiple suppliers into the current problem, thus making it a problem of collaborative
replenishment between multiple suppliers. Another interesting approach might be to
extend JRP by considering time-invariant dynamic joint replenishment.
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Appendix A

The total order quantity and total profit of all scenarios in Experiment II are shown in
Table A1.

Table A1. The results of all scenarios in Experiment II.

Problem
Size

Moq/Tr
Total Order Quantity Total Profit

MCPB CPLEX MCPB CPLEX

15

1200/1800

1800 1800 41,336.09 41,336.1
1800 1800 60,134.2 60,521.6
1800 1800 32,418.88 32,649.5
1800 1800 58,393.4 58,393.4
1800 1800 40,696.89 41,000.3

1500/2000

1851 1851 41,977.70 41,977.7
2000 2000 66,475.92 66,475.9
2000 2000 38,004.12 38,004.1
1941 1941 61,186.40 61,186.4
1971 1971 44,734.39 44,734.4

2000/2500

2000 2000 41,589.70 41,589.70
2145 2145 68,419.10 68,419.09
2155 2155 40,505.59 40,505.59
2000 2000 60,806.00 60,806.00
2000 2007 44,507.80 44,514.80

20

2000/2500

2500 2500 62,100.1 62,100.1
2500 2483 79,029.9 79,621.89
2500 2500 45,700.95 45,739.93
2500 2500 86,557.75 86,557.75
2450 2450 51,923.39 51,923.39

2500/3000

2519 2519 62,264.7 62,264.7
2563 2563 80,354.4 80,354.4
2825 2825 52,507.75 52,507.75
2795 2795 92,607.14 92,607.14
2500 2500 51,609.39 51,609.39

3000/3500

3000 3000 60,136.7 60,136.7
3000 3000 77,582.7 77,582.7
3000 3000 51,418.75 51,418.75
3000 3000 91,526.35 91,526.35
3000 3000 46,847.79 46,847.79

25

2500/3000

3000 2961 74,716.1 74,727.69
3000 2995 89,460.9 89,641.4
3000 3000 53,976.07 54,189.38
3000 3000 99,468.76 99,478.18
3000 3000 67,422.3 67,422.3

3000/3500

3085 3085 75,595.7 75,595.7
3228 3228 93,368.4 93,368.4
3500 3500 65,901.47 65,901.46
3470 3470 110,258.95 110,258.94
3052 3052 68,290.9 68,290.9

3500/4000

3500 3500 74,071.69 74,071.69
3500 3500 91,742.19 91,742.19
3530 3530 66,164.25 66,164.25
3500 3500 110,155.85 110,165.55
3500 3503 64,589.3 64,592.29
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Table A1. Cont.

Problem
Size

Moq/Tr
Total Order Quantity Total Profit

MCPB CPLEX MCPB CPLEX

30

3000/3500

3500 3500 82,927.1 83,346.1
3500 3495 105,211.4 105,659
3500 3500 72,782.99 73,054.9
3500 3500 118,282.42 119,030
3500 3500 80,054.3 80,054.3

3500/4000

3957 3957 90,636.2 90,636.2
3722 3722 108,890 108,890
4000 3997 83,873.89 84,080.3
4000 3999 129,375.69 129,405
3552 3552 80,922.9 80,922.9

4000/4500

4000 4055 90,486.7 90,602.2
4000 4000 107,644.9 107,645
4068 4068 84,892.5 84,887.6
4010 4010 129,414.47 129,414
4000 4000 78,722.3 78,722.3

Appendix B

In order to reflect more realistic problems, the problem size is expanded to 100 to 140
in the extended experiment. Following the setting of Experiment II, each item’s data is
designed by generating random numbers from the probability distributions specified in
Table 6 and the discount schedule of each item still follows the principle in Table 4. For
each problem size, three pairs of constraints are set. The total profit and the computational
time of MCPB and CPLEX are shown in Table A2.

Table A2. The results of extended experiments on larger scales.

Size Moq/Tr
MCPB CPLEX

Percent
DeviationTotal

Profit Time (in s) Total
Profit Time (in s)

100
11,000/12,000 228,662.6 0.254 228,663 1.089 0.000
12,000/13,000 228,590 0.137 228,590 1.348 0.000
13,000/14,000 225,831.7 0.368 225,832 1.348 0.000

110
12,000/13,000 24,759.2 0.298 247,935 1.872 0.138
13,000/14,000 248,189.5 0.368 248,190 1.721 0.000
14,000/15,000 24,648.67 0.352 246,487 1.490 0.000

120
12,000/13,000 253,828.45 0.691 255,105 1.562 0.500
13,000/14,000 267,000 0.247 267,019 1.684 0.007
14,000/15,000 268,088.86 0.126 268,089 1.561 0.000

130
13,000/14,000 268,940.95 0.424 271,097 1.623 0.795
14,000/15,000 282,736.07 0.381 282,818 1.724 0.029
15,000/16,000 284,296.57 0.465 284,297 1.497 0.000

140
14,000/15,000 284,689.63 0.720 287,051 1.823 0.823
15,000/16,000 300,190.61 0.741 300,507 1.714 0.105
16,000/17,000 305,011.06 0.752 305,011 1.691 0.000
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