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Abstract: Backpropagation (BP)-based gradient descent is the general approach to train a neural
network with a multilayer perceptron. However, BP is inherently slow in learning, and it sometimes
traps at local minima, mainly due to a constant learning rate. This pre-fixed learning rate regularly
leads the BP network towards an unsuccessful stochastic steepest descent. Therefore, to overcome
the limitation of BP, this work addresses an improved method of training the neural network based
on optimal control (OC) theory. State equations in optimal control represent the BP neural network’s
weights and biases. Meanwhile, the learning rate is treated as the input control that adapts during
the neural training process. The effectiveness of the proposed algorithm is evaluated on several
logic gates models such as XOR, AND, and OR, as well as the full adder model. Simulation results
demonstrate that the proposed algorithm outperforms the conventional method in terms of improved
accuracy in output with a shorter time in training. The training via OC also reduces the local minima
trap. The proposed algorithm is almost 40% faster than the steepest descent method, with a marginally
improved accuracy of approximately 60%. Consequently, the proposed algorithm is suitable to be
applied on devices with limited computation resources, since the proposed algorithm is less complex,
thus lowering the circuit’s power consumption.

Keywords: multilayer neural network; optimal control; Pontryagin minimum principle; backpropagation;
logic gates

MSC: 49-00

1. Introduction

Multilayer neural networks (MLNNs) effectively impact various applications, such as
computer vision, robotics, image classification or prediction, etc. The standard artificial neu-
ral networks include learning factors, computing, intelligent signal processing, and machine
learning (ML) [1,2]. Various techniques have been proposed for a nonlinear algorithm for
optimization and learning problems to overcome the limitations of linear computation [3,4].
Furthermore, training MLNNs is essential to verify various parameters, such as several
inputs and hidden layers, output layers, types of activation functions, training rules, etc. It
is necessary to consider a MLNN in two phases: training and prediction. In both phases,
the number of inputs, hidden layers, and output layers must be the same. The most widely
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used method of training MLNNs is the backpropagation algorithm (BP), which depends
on stochastic gradient decent (SGD). The term “train” refers to the steps of the neural net-
work process that consist of feedforward and backward passes [5,6]. Additionally, the loss
function is used in a forwarding pass to evaluate the prediction outputs. The chain rule is
employed in the back pass to compute the gradient using trainable parameters (weights and
biases) [7,8]. Meanwhile, optimization using the optimal control (OC) problem in nonlinear
systems is widely researched, mainly in the design of control systems. The challenge of OC
problems in nonlinear systems is its inherently nonlinear nature, whereby the nonlinear
OC problem cannot be solved analytically [9,10]. Previous researchers have discussed and
concentrated on the hypothesis of control theory for synthesis and evaluation training
algorithms to overcome the OC’s limitations. For instance, Li and Hao [11] proposed an
alternative theoretical and algorithmic basis for deep learning that may apply to many
contexts based on a discrete-time OC viewpoint of deep learning by utilizing Pontryagin’s
Minimum Principle (PMP) and the method of successive approximation (MSA). Chen and
Pung [12] studied the convergence rate analysis by optimizing hidden neurons in distinct
layers instead of choosing a random number that arbitrarily produces various clusters of
hidden parameters and then finding the best number that obtained a small error. Bang
bang OC has been developed to find the optimal step size in each epoch to solve the slow
convergence rate of BP [7]. However, this study does not show the OC viewpoint, such as
states, co-states, and function input. According to neural networks, the numerical system
of fractional optimal control problems (FOCPs) has been discussed in [13] by applying trial
solutions for the state, co-state, and function control; meanwhile, the results are constructed
merely on two-layer perceptron to reduce the error function. Plakias and Boutalis [14]
proposed a novel fusion neural architecture based on Lyapunov’s nonlinear online dy-
namic system. An ordinary differential equations (ODE) solver is more suitable for solving
nonlinear systems [15]. The neural system is combined with the suggested update rule of
neural weights to achieve the fast convergence of the identification processes by utilizing a
discretization of a continuous-time dynamic system [16]. Wen et al. [17] suggested a fuzzy
logic control to adjust the neural network’s learning factor dynamically. Adaptive learning
rate clipping (ALRC) was developed to restrict BP losses to several standard deviations [18].
Designing logic gate circuits is proposed in [19,20] by using a multilayer neural network to
train and test models. The results show that the multilayer perceptron has a higher velocity
and minor delay. A full adder (FA) model was designed with two types of sigmoid neural
network functions. The model was implemented on FPGA and compared with the theoreti-
cal value. Kaya [21] proposed a new training neural network, named a hybrid artificial bee
colony, based on an effective scout bee stage. Arithmetic crossover was employed in the
solution generation structures of the employed bee and onlooker bee stages. The execution
of the proposed technique was evaluated on the solution of global optimization problems.
Empirical results illustrated the proposed algorithm had better performance in terms of
convergence speed and solution quality. Mahmood et al. [22] suggested a new design of an
intelligent Bayesian regularization backpropagation neural network based on a stochastics
numerical framework in order to investigate the dynamic motion of a third-grade fluid
in the planner channel using MLNN with efficient Bayesian optimization. Soon et al. [23]
proposed a classification system based on a principal component analysis convolutional
network (PCN), in which convolutional filters were used to extract discriminative and
hierarchical features. According to the experimental results, the proposed PCN system is
feasible for real-time applications because of its robustness against various challenging dis-
tortions such as translations, rotations, illumination conditions, and noise contaminations.
In general, optimal control is a set of mathematical expressions including the objective func-
tion and all the constraints, known as the optimization problem. The constraints include
the state equation, any conditions that must be satisfied at the beginning and at the end of
the time horizon, and any constraints that restrict choices between the beginning and the
end. At a minimum, dynamic optimization problems must include the objective function,
the state equation (s), and the initial conditions for the state variables. The application of a
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backtracking search algorithm (BSA) on fed-batch fermentation processes was proposed
by [24]. Nevertheless, all the case studies presented in this paper consisted of single ob-
jective problems. It is interesting to evaluate the performance of metaheuristics in solving
multi-objectives fed-batch fermentation problems. Therefore, the problem that is being
addressed in this work is to reduce the mean quantization error of SOM by formulating
a conventional self-organizing map algorithm as the optimal control problem. The mean
quantization error equation becomes the objective function to be minimized, and the online
mode weight updating equation becomes the state equation. Jeevan et al. [25] carried out
a genetic algorithm (GA) to determine the optimal chip placement of a multi-chip model
(MCM) and printed circuit board (PCB) under certain thermal constraints. The comparison
results of optimal placement utilizing GA with other placement techniques were elaborated.
However, the evaluation was valid under steady-state conditions and for MCM or PCB
constant characteristics. The chip/component can only be a specific standard size. Further-
more, Hoo et al. [26] developed a Variable Order Ant System (VOAS) to optimize the area
and wirelength by combining VOAS with a floorplan model called Corner List (CL). Two
classes of ants were introduced to determine the local information in this study. The results
showed that the VOAS had better improvement in terms of pure area optimization and the
composite function of area and wirelength compared to other benchmark techniques. In
terms of the new design of a power amplifier (PA) for next-generation wireless communica-
tion, the researchers in [27] suggested a new approach to enhance the performance of PAs
in the context of efficiency and linearity. The aim was to eliminate design cost and space on
board. Further, Mallick [28] tried to determine the effect of two classes of grass-trimming
machine engine noise on the operator in a natural working environment. Experimental
results showed that the sound pressure level of the grass-trimmer machine engine was
higher than the limit of noise recommended by other machine engines for approximately 98
h weekly. Hoo [29] proposed a Hierarchical Congregated Ant System (H-CAS) to perform
a variable order bottom-up hierarchical placer that could generate compact placement in a
chip layout for hard and soft modules of floor planning. Empirical outcomes demonstrated
that the H-CAS performed more efficiently as a placer than a state-of-the-art technique in
terms of circuit size, complexity increase, stability, and scalability. Additionally, the H-CAS
excelled in all other techniques for higher-size issues in area minimization.

By analyzing the literature reported above, it can be concluded that there are many
existing works for training MLNNs that employ a conventional method based on analyt-
ical and gradient descent techniques. Nevertheless, minimizing error function with less
computational time by formulating the parameters of MLNNs has more challenges. To the
authors’ knowledge, this aspect has not been previously covered in the literature. Thus,
this paper proposes a new method to train a neural network using OC by formulating
the weights and biases parameters as state equations and the learning rate as the input
control to minimize error function with less computation time. The main contribution of
this paper is to propose a new multilayer neural network training algorithm based on OC
theory by modeling adaptable parameters as state equations, as well as the learning rate as
an input control with the necessary conditions. The weights and biases are the updating
parameters used to develop the Hamiltonian equation and to solve the state, co-state, and
stationary equations. The parameters satisfy the necessary condition based on Hamiltonian
and switch control that find the optimal input at each time. A logic gates model and full
adder are introduced to assess the proposed approach. Furthermore, simulation results
validate that the proposed training algorithm outperforms the typical training approach
regarding speed, time, and ability to escape from local minima. As a result, it takes up less
physical space and is less complex, lowering the circuit’s power consumption.

The remaining sections of this paper are structured as follows: Section 2 introduces
backpropagation and learning training topology. Section 3 presents an optimal control
theory and discrete-time Pontryagin’s Minimum Principle and logic gate circuit. The
simulation results and a discussion are given in Section 4. Finally, the conclusion is
provided in Section 5.



Mathematics 2023, 11, 778 4 of 15

2. Backpropagation Learning Topology

The highly fundamental approach to the training MLNN is the BP developed by
Rumelhart et al. [5,30]. Generally, a BP comprises three layers. The input layer is where
the data is provided to the network. Hidden layers might consist of one or more layers
where data are handled. The output layer carries out the outcomes of the given data
input [31–33]. BP is a suitable and uncomplicated iterative process that normally works
well with complex data, unlike other learning techniques such as the Bayesian technique,
with adequate computational properties with large-scale data [34]. Furthermore, the BP
algorithm is utilized for training a neural network by changing the parameters (weights
and biases) of each neuron. However, the essential goal of the training is to reduce the
discrepancy between the desired data input and output samples, which is called the loss
function, such as the Mean Square Error (MSE) via a gradient descent algorithm, which is
dependent on the error rate obtained in the previous epochs (i.e., iteration). However, the
MSE is given as follows [35]:

MSE(d, y) =
1
n ∑n

i=1(Yi − di)
2 (1)

where n denotes the entire number of data inputs, di corresponds to the desired dataset,
and Yi represents actual output samples from the output layer of the MLNN. Suppose a
simple MLNN model as illustrated in Figure 1 with an input layer X1, X2, X3, X4, . . . XN ,
hidden layer H1, H2, H3, . . . HN , and output layer Y1, Y2, Y3, . . . YN , and the connections
between each layer are the weights and biases vectors. The outputs for each unit in each
layer are obtained to utilize the output for the whole neural network based on the forward
propagate rule that is defined as follows:

Z = ∑n
i=1 θij ∗ Xi(k) (2)Mathematics 2023, 11, x FOR PEER REVIEW 5 of 15 
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Here, θij denotes a weight matrix that links neurons i in the input layers with neurons j
in the hidden layer, as well as between hidden j and output y layers. Xi represents the input
layer vector for the i neuron, n represents several neurons, and k is the pattern. Each iteration
(epoch) will be fed into the network, and each output will be evaluated individually.

However, if the network has a bias in the neurons, the formula is given as follows:

Z = ∑n
i=1[θij ∗ Xi(k)] + bij (3)

An activation function (Sigmoid, Tanh, Linear, ReLU) is selected to find the output from
each layer. The sigmoid activation function is used in this work because it exists between (0,
1) and the smooth gradient value. Hence, it is proper for a shallow network, especially for
models in which the probability is predicted as an output, which is given as follows [36]:

σ(Z) =
1

1 + exp−Z (4)

The output function of each layer after applying the sigmoid function would be
computed as follows:

Yi(t) =
1

1 + exp−[∑
n
i=1[θij∗Xi(k)]+bij ]

(5)

The loss function formulation MSE, as mentioned in Equation (1), is applied to com-
pute the error between the desired and actual outputs. To minimize error, the BP algorithm
based on stochastic gradient descent is used to update the weights and biases in the k + 1th
iteration via the following form: [

θK+1 = θK − η ∗ DK
bK+1 = bK − η ∗ DK

]
(6)

where η is the learning factor. The step size is highly influential on the convergence rate.
θK, bK denote the weights and biases parameter vectors of the previous iteration, respectively,
and DK indicates the gradient vector, which is given as follows:[

DK = ∂L
∂θij

DK = ∂L
∂bij

]
(7)

In Equation (7), ∂L indicates the loss function MSE of the outputs in the kth step of the
training operation. Alternatively, in each iteration, the weights and biases are updated, where
the ∂L

∂θij
and ∂L

∂bij
terms are the derivation of the MSE error for each trainable parameter θij, bij

vectors. Meanwhile, the derivation of the loss function of all trainable parameters can be
obtained using the chain rule, particularly with a more hidden layer network. Thus, each
iteration’s parameters are updated, and the error function is evaluated consequently [30].
The entire procedure of the BP is given in Algorithm 1.

Algorithm 1: Process of BP algorithm

1. procedure Backpropagation (D, η).
2. input: D = [(XK , YK)]

n
K=1, η = learning factor.

3. randomly initialize all weights and biases.
4. repeat.
5. for all (X(i), Y(i)) ∈ D do
6. compute Y(i)

j according to the current parameter.
7. compute DK
8. update θij, bij via gradient descent method.
9. end for.
10. until achieve some criterion is satisfied.
11. end procedure.
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3. Optimal Control Theory

In the 1950s, dynamic programming with Hamiltonian partial differential equations
and the Pontryagin Minimum Principle (PMP) were used to produce optimal control.
The calculus of variations provides a generalization of Euler Lagrange equations [37].
Furthermore, training MLNNs is formalized using OC theory. Let H ∈ Z+ indicate the
number of layers and [X s,0 ∈ Rdo : s = 0, . . . . . . , S] denote a collection of sample inputs
(time series). Here, S ∈ Z+ is considered as a sample size [38,39]. Assume the deterministic
dynamic system equation given as:

Xk+1 = ft(Xs,k, θk), k = 0, 1, . . . . . . T − 1 (8)

where each k, fk : Rdt × θk → Rdt+1 is a transformation on the state. For instance, in original
MLNNs, this can characterize a trainable affine transformation or nonlinear function [15]. As
mentioned in Section 2, the aim of training MLNNs via BP on a descent gradient algorithm is
to adjust all parameters θ := [θk : k = 0, . . . T − 1], and hence to minimize the loss function
MSE. Hence, to train MLNNs using the OC technique, the MSE function given in Equation (1)
is used as a performance index via PMP, which will be deliberated in the following subsection.
Moreover, the flowchart in Figure 2 illustrates the steps of the proposed algorithm, in which
PMP provides a necessary condition for optimality that must satisfy a boundary condition to
obtain the OC law performance using the Pontryagin Hamiltonian function. The learning
factor (step size) η is treated as the control input u(k) ∈ <m, and the updating parameters
θk,bk,, which are given in Equation (6), are set as state variable equations with discrete-time
k ∈ <. Therefore, the performance index and state variables are presented as:

Min J =
∫ t f

t0

1
n

n

∑
i=1

(Yi − di)
2 dt

Subject to :

 .
θij = −u ∗ ∂L

∂θij.
bij = −u ∗ ∂L

∂bij

 (9)
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3.1. Pontryagin Minimum Principle

A necessary condition for the OC in Equation (9) is known as the PMP, which was devel-
oped by Boltyanskii et al., 1960 and Pontryagin, 1987. The necessary optimality conditions are
utilized in the form of the minimization of a specific Hamiltonian function. The Hamiltonian
H : [0, T] is given as follows:

Hk
(

x(k), u(k), λ(k), k
)
, f0

(
x(k), u(k), k

)
+ [λ(k)]

T ∗ S
(

x(k), u(k), k
)

(10)

where x(k), λ(k) ∈ <n are the state and co-state vectors of the system, respectively, and
u(k) ∈ <m is the input of the state space system, k ∈ <. The optimal parameters’ state,
co-state, and control function are denoted by x∗(k), λ∗(k), and u∗(k) respectively. Hence, a
necessary condition for u∗(k) to minimize the objective function in Equation (9) is given for
all k ∈

[
t0, t f

]
as well as all admissible controls as follows:

Hk
(
x∗(k),λ

∗
(k), u∗(k), k

)
≤ Hk

(
x∗(k), λ∗(k), u(k), k

)
(11)

Equation (11) indicates that the OC must minimize the Hamiltonian function using
PMP, which shows the optimal values of states, co-states, and input control x∗(k), λ∗(k),
u∗(k). It should then satisfy the following conditions:

∂H(x(k), u(k), λ(k), k)
∂x = −

.
λ(k)

∂H(x(k), u(k), λ(k), k)
∂λ =

.
X(k)

∂H(x(k), u(k), λ(k), k)
∂u = 0

(12)

Functions f0 and S denote the performance index and state equations, as illustrated in
Equation (10), substituted into the Hamiltonian Equation (12), which gives a system of an
ordinary differential equation (ODE) that can be offered using numerical methods or an al-
ternative approach. Furthermore, the conditions in Equation (12) present a straightforward
ODE system that can quickly obtain the solution. The summary of minimizing the MSE
using the OC based on PMP is expressed in Algorithm 2.

Algorithm 2: Optimal control based on PMP algorithm

1. system optimal control (D, u, PI).
2. input: D = [(XK , YK)]

n
K=1, u = input control, PI = performance index.

3. randomly initialize θij and bij.
4. set optimal parameters.
5. repeat.
6. for all (X(i), Y(i)) ∈ D do
7. define the Hamiltonian Hk : [0, T].
8. evaluate necessary optimality conditions.
9. obtain states, co-states via ODE solvers.
10. utilizing PMP to minimize u∗(k) with satisfy H∗(k) < H(k).
11. end for.
12. until criteria are satisfied.
13. end procedure.

3.2. Problem Formulation

This section includes an evaluation of the control vector uk, which is modeled as the
learning rate to minimize the error objective function, as mentioned in Equation (9), with
a specific value of the maximum iteration (tmax) utilizing PMP to satisfy the Hamiltonian
equation. A general MLNN model with a sigmoid activation function that includes an
input layer, hidden layers, and an output layer is illustrated in Figure 3, in order to find the
explicit ODE for states, costate variables, and model parameters.
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Based on the gradient descent method [40], the state variables of the general model
can be evaluated as: 

.
θ11 = −u ∗ ∂L(1)

∂θ11

.
b11 = −u ∗ ∂L(1)

∂b11.
θ12 = −u ∗ ∂L(2)

∂θ12

.
b12 = −u ∗ ∂L(2)

∂b12
· , ·
· ·

.
θij = −u ∗ ∂L(n)

∂θij

.
bij = −u ∗ ∂L(n)

∂bij

(13)

where L denotes the loss function MSE. The terms of the derivation loss function need to be
found for the vectors of each trainable parameter θij , bij by applying the chin rule starting
from the last layer and towards the entire network with the required parameters θij , bij
until the first layer. Thus, the following equation can be obtained:

∂L(n)
∂θij

=
∂L(n)
∂Yk
· ∂Yk

∂ok
· ∂ok

∂yij
· ∂yij

∂hij
· ∂hij

∂yi
· ∂yi

∂hi
· ∂hi

∂θij
∂L(n)
∂bij

=
∂L(n)
∂Yk
· ∂Yk

∂ok
· ∂ok

∂yij
· ∂yij

∂hij
· ∂hij

∂yi
· ∂yi

∂hi
· ∂hi

∂bij

(14)

To apply the OC with a particular discretized time horizon and to minimize the loss
function considered in Equation (9), it is necessary to obtain the Hamiltonian equation
rewritten as follows:

H = 1
n ∑n

i=1(Yi − di)
2 + [λk]

T ∗

 .
θij = −u ∗ ∂L(n)

∂θij.
bij = −u ∗ ∂L(n)

∂bij


H = 1

n ∑n
i=1(Yi − di)

2 − u ∗ (λ1 ∗
∂L(n)
∂θij

+ λ2 ∗
∂L(n)
∂bij

)

, k = 1, 2, . . . n (15)

The necessary conditions for optimality are expressed as:
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∂H(θ(k),u(k),λ(k),k)
∂θij

= ∂
∂θij

(
1
n

n
∑

i=1
(Yi − di)

2
)
+ ∂

∂θij

(
−u ∗

(
λ1 ∗

∂L(n)
∂θij

+ λ2 ∗
∂L(n)
∂bij

))
= −

.
λ1

∂H(θ(k),u(k),λ(k),k)
∂bij

= ∂
∂bij

(
1
n

n
∑

i=1
(Yi − di)

2
)
+ ∂

∂bij

(
−u ∗

(
λ1 ∗

∂L(n)
∂θij

+ λ2 ∗
∂L(n)
∂bij

))
= −

.
λ2

∂H(θ(k),u(k),λ(k),k)
∂λ1

= −u ∗ ∂L(n)
∂θij

=
.
θij

∂H(θ(k),u(k),λ(k),k)
∂λ2

= −u ∗ ∂L(n)
∂bij

=
.
bij

∂H(θ(k),u(k),λ(k),k)
∂u = −λ1 ∗

∂L(n)
∂θij
− λ2 ∗

∂L(n)
∂bij

= 0

(16)

The minimization principle indicates that the OC input u∗(k) ought to satisfy H∗(k) < H(k),
which implies that:

1
n ∑n

i=1(Yi − di)
2 − u∗ ∗ (λ∗1 ∗

∂L(n)

∂θij
+ λ∗2 ∗

∂L(n)

∂bij
) <

1
n ∑n

i=1(Yi − di)
2 − u ∗ (λ∗1 ∗

∂L(n)

∂θij
+ λ∗2 ∗

∂L(n)

∂bij
) (17)

Equation (17) concludes with a switching control, which is given depending on the
value of ∂H

∂u that is computed from Equation (16). However, the switching control is
provided by: {

u∗ = umin, if ∂H
∂u > 0

u∗ = umax, if ∂H
∂u < 0

(18)

3.3. Logic Gate and Full Adder

In this section, logic gates pattern models are used (OR, XOR, AND, NAND, NOR,
and XNOR), e.g., gates with two inputs and one output, as shown in Table 1. This includes
a four-bit ripple carry full adder (FA), including one OR, two XOR, and two AND gates to
evaluate the proposed training.

Table 1. Logic gate truth table.

X1 X2 YAND YOR YNAND YXOR YXNOR YNOR

0 0 0 0 1 0 1 1
0 1 0 1 1 1 0 0
1 0 0 1 1 1 0 0
1 1 1 1 0 0 1 0

Moreover, FA includes three inputs and two outputs as depicted in Figure 4; however,
two input data bits are utilized first, and the third input is used as a carrying bit. On the
other hand, the output carries a bit on the FA circuit, transfers the carry bit to the next FA,
and it achieves the addition by considering three input values. The logic circuit and truth
table of the FA are portrayed in Figure 5. The neural network used in this model with one
hidden layer has two neurons.

Then, the Boolean expression for a FA is given as follows:(
SUM = (A⊕ B)⊕ Cin

Cout = A.B + Cin(A⊕ B)

)
(19)

In training a four-bit FA, the optimal training parameters of the logic gates that are
combined are taken to generate a FA circuit to calculate the sum (SUM) and (CARRY-OUT).
It is then compared with the Boolean expression mentioned in Equation (19) as well as the
standard algorithm.
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4. Results and Discussion

The training of MLNNs using two conventional BP methods with certain step size
values and several iterations for each epoch and the proposed OC with minimum time
and minimum loss function is discussed in this section. Moreover, training logic gates
such as the XOR gate and four-bit FA using typical and proposed training approaches are
proposed. In addition, the values of the weights and biases have been chosen randomly. For
the proposed training method, the ODE15’s function is utilized to obtain the values of the
states and co-states, respectively. In addition, numerical comparisons between the results
of the two approaches are introduced. Since the proposed approach has better results in
terms of the shorter time of training by reducing the local minima trap, as well as improved
accuracy with less errors compared to the conventional method, the benefits of the proposed
method could be suitably applied on devices with limited computational resources, since
the proposed algorithm is less complex, thus lowering the circuit’s power consumption. The
simulation result of the MSE of the XOR model is shown in Figure 6. Experimental results
were conducted using MATLAB 2022B, Intel(R) Core™ i7-8565U CPU @ 1.8GHZ.

Figure 6 illustrates that the MSE using the standard BP method after 37294 epochs
is 2.563 × 10−6, whereas the proposed results of the OC training method with tmax = 1,
discretization = 0.1, and Max_iter = 2 are equal to 5.679× 10−10. In addition, the simulation
time of the proposed method needs only 2.31 s. In contrast, BP takes more than 4.16 s. This
indicates that the proposed OC-based training is much faster towards the convergence
of local minima than BP training. Meanwhile, the proposed training approach is more
adaptive and robust in training MLNNs. The states and co-states of the system have been
solved using the hybrid Runge–Kutta order 1 and 5, as demonstrated in Figure 7, and
the input control u with a switching function ∂H

∂u of the proposed method are exhibited in
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Figure 8. In addition, switching control is obtained based on the optimality condition value
mentioned in Equation (18). Table 2 shows that the proposed training approach is more
rapid than the BP neural network’s final outputs and training time. Thus, it is suitably
utilized on limited computational devices, since the proposed algorithm is less complex,
and hence lowers the power consumption circuit.
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Table 2. Comparison results of two training algorithms with different models.

Training
Models Loss Function Yresults Ydesired

Average
Error (%)

Training
Time (s)

OC (XOR) 5.677 × 10−10 3.165 × 10−5 0.9999 0.9999 3.207 × 10−5

0 1 1 0 1.3 × 10−6
2.306

BP (XOR) 2.563 × 10−6 0.002 0.997 0.9974 0.002 4.165

OC (OR) 2.598 × 10−11 1.0196 × 10−5 0.999 0.999 1
0 1 1 1 2.49 × 10−7

2.324

BP (OR) 4.98 × 10−7 0.0040 0.997 0.997 0.999 4.28

OC (AND) 5.236 × 10−11 4.427 × 10−6 1.054 × 10−5 1.056 × 10−5 0.999
0 0 0 1 1.04× 10−6

2.283

BP (AND) 2.08 × 10−6 0.0003 0.002 0.002 0.997 4.120

OC (NAND) 2.774 × 10−11 1 0.999 0.999 1.045 × 10−5

1 1 1 0 3.53 × 10−7
2.636

BP (NAND) 7.07 × 10−7 0.999 0.998 0.998 0.0019 3.197

OC (XNOR) 1.13 × 10−10 0.9999 1.428 × 10−5 1.422 × 10−5 0.999
1 0 0 1 2.38 × 10−6

2.354

BP (XNOR) 4.76 × 10−6 0.997 0.0033 0.0033 0.997 3.836

OC (NOR) 2.59 × 10−11 0.9999 7.051 × 10−6 7.0503 × 10−6 2.33 × 10−6

1 0 0 0 5.06 × 10−7
2.227

BP (NOR) 1.012 × 10−6 0.997 0.001 0.0011 0.00025 3.9811

As mentioned in Section 3.3, the FA has three inputs (A, B, Cin), and the sum with
carrying is represented as an output, using Boolean expression as a typical technique to
obtain the full adder’s output. However, two different methods are used to achieve the
output by reducing the power consumption of the circuit. Some logic gates with training
parameters based on the logic circuit of the FA are used. Hence, XOR, AND, and OR trainable
parameters are used for conventional and OC training, and feedforward propagation is used
to find the outputs. The comparison results are presented in Table 3. Often, in the case of
a design circuit that includes 4-, 8-, 16-, 32-bit, and N-bit FA, it is necessary to repeat the
whole operation, and each carryout of a FA will be input to the next FA.
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Table 3. Comparison results of FA output.

Inputs Boolean
Expression BPNN Percentage Error

(%) OC Percentage Error
(%)

A B Cin SUM Cout SUM Cout SUM Cout SUM Cout SUM Cout

0 0 0 0 0 3.488 × 10−5 1.122 × 10−5 0 0 1.415 × 10−5 1.019 × 10−5 0 0

0 0 1 1 0 0.995 1.123 × 10−5 0.5 0 0.998 1.02 × 10−5 0.2 0

0 1 0 1 0 0.995 1.123 × 10−5 0.5 0 0.998 1.02 × 10−5 0.2 0

0 1 1 0 1 5.312 × 10−5 0.999 0 0.1 1.431 × 10−5 0.999 0 0.1

1 0 0 1 0 0.995 1.123 × 10−5 0.5 0 0.999 1.097 × 10−5 0.1 0

1 0 1 0 1 5.311 × 10−5 0.999 0 0.1 1.431 × 10−5 0.999 0 0.1

1 1 0 0 1 3.488 × 10−5 0.999 0 0.1 1.415 × 10−5 0.999 0 0.1

1 1 1 1 1 0.994 0.999 0.6 0.1 0.999 0.999 0.1 0.1

5. Conclusions

This paper proposed a new approach in training MLNNs. In particular, a solution of
OC theory based on PMP has been presented to train a neural network with discrete-time
optimal control viewpoints of the MLNNs’ differentiable functions (states, co-states, and
input control). In other words, the proposed training method is a more accurate solution
than the conventional BP method, which depends on a gradient descent algorithm to reduce
the loss function MSE. The output and computation time are superior to the BP algorithm.
Furthermore, the theoretical results have been validated by numerical simulations to demon-
strate the efficiency of the proposed method. Different logic models (XOR, AND, NAND,
etc.) and FA models are presented to evaluate the proposed method. The proposed training
algorithm performs well in speed and ability to escape from local minima, with approxi-
mately 40% faster time than the steep decent technique and a marginally improved accuracy
of almost 60%. Hence, it is suitable to be applied on devices with limited computational
resources, since the proposed algorithm is less complex, thus lowering the circuit’s power
consumption. Further study with a different application with huge parameters, e.g., UCI
datasets, can be employed to evaluate the effectiveness of the proposed algorithm. Moreover,
we can utilize more hidden layers, more training points, and also heuristic algorithms in the
optimization step, such as the genetic algorithm and particle swarm optimization, or other
existing unconstrained optimization techniques could be another option.
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