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Abstract: Lattice enumeration is a linear-space algorithm for solving the shortest lattice vector
problem (SVP). Extreme pruning is a practical technique for accelerating lattice enumeration, which
has a mature theoretical analysis and practical implementation. However, these works have yet
to be applied to discrete pruning. In this paper, we improve the discrete pruned enumeration (DP
enumeration) and provide a solution to the problem proposed by Léo Ducas and Damien Stehlé
regarding the cost estimation of discrete pruning. We first rectify the randomness assumption to
more precisely describe the lattice point distribution of DP enumeration. Then, we propose a series of
improvements, including a new polynomial-time binary search algorithm for cell enumeration radius,
a refined cell-decoding algorithm and a rerandomization and reprocessing strategy, all aiming to lift
the efficiency and build a more precise cost-estimation model for DP enumeration. Based on these
theoretical and practical improvements, we build a precise cost-estimation model for DP enumeration
by simulation, which has good accuracy in experiments. This DP simulator enables us to propose
an optimization method of calculating the optimal parameters of DP enumeration to minimize the
running time. The experimental results and asymptotic analysis both show that the discrete pruning
method could outperform extreme pruning, which means that our optimized DP enumeration might
become the most efficient polynomial-space SVP solver to date. An open-source implementation of
DP enumeration with its simulator is also provided.

Keywords: lattice-based cryptanalysis; SVP; enumeration; discrete pruning

MSC: 94A60

1. Introduction

The shortest vector problem (SVP) and closest vector problem (CVP) are hard com-
puting lattice problems, which have become central building blocks in lattice-based crypt-
analysis. The security analysis of many lattice-based cryptographic primitives is usually
reduced to solving the underlying mathematical problems, which are closely related to SVP
and CVP. Some hard computing problems used in classical public-key cryptosystems can
also be converted to a variant version of SVP or CVP, such as the knapsack problem [1–3],
the hidden number problem [4] and the integer factoring problem [5].

Lattice enumeration is a general SVP solver with linear space complexity, which can
be traced back to the early 1980s [6,7]. It outputs a lattice vector (or proves there is none)
that is shorter than the given target length within superexponential time. Enumeration
can also be used as the subroutine of the blockwise lattice basis reduction (BKZ) algorithm,
and therefore plays an important role in the security analysis and parameter assessment of
lattice-based cryptosystems [8–10].

Classical lattice enumeration can be traced back to the early 1980s. Kannan [6] pro-
posed an algorithm to enumerate lattice points in a high-dimensional parallelepiped, which
output the shortest vector, along with a well-reduced HKZ basis, at the cost of a huge time
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consumption. Fincke and Pohst [7,11] proposed using a lighter preprocessing method, such
as LLL or BKZ algorithms, and spending more time on enumerating the lattice vector in a
hyperellipsoid. Fincke–Pohst enumeration has a higher level of time complexity in theory,
but it performs better than Kannan’s enumeration in practice.

Pruning is the most important technique to accelerate lattice enumeration. In the
classical enumeration algorithm, all the coordinate vectors of lattice points are organized as
an enumeration tree and are searched in a depth-first way. The pruning method cuts off the
branch and stops searching in depth when the objective function value at the current node
exceeds the bounding function. This might cut off the correct solution during searching;
hence, enumeration becomes a probability algorithm. Gama, Nguyen and Regev [12]
proposed the extreme pruning method, treating the bounding function as the solution to
an optimization problem. The optimal bounding function can be regarded as an extreme
point, which minimizes the expected total running time (with a given success probability).
Therefore, the extreme pruning method is believed to be the most efficient pruning method
for classical enumeration, which is also called GNR enumeration. The fplll library [13]
provides an open-source implementation of GNR enumeration.

The classical pruned enumeration searches lattice vectors in a hypercylinder intersec-
tion, which is regarded as a continuous region in time analysis. Consequently, the compu-
tation of the expected running time of GNR enumeration is easy to handle, which implies
that the upper bound on the cost of lattice enumeration is clear. Aono et al. also proved a
lower bound on GNR enumeration [14].

The discrete pruning method is quite different. The discrete pruned enumeration (DP
enumeration) originated from a heuristic “Sampling Reduction” algorithm [15], which iter-
atively samples lattice vectors under the restriction on their Gram–Schmidt coefficients and
then rerandomizes the basis using lattice reduction. Ajtai, Buchmann and Ludwig [16,17]
provided some analyses of the time complexity and success probability. Fukase and Kashi-
wabara [18] put forward a series of significant improvements, including the natural number
representation (NNR) of lattice points, to make the sampling reduction method more prac-
tical and provided a heuristic analysis. Teruya et al. [19] designed a parallelized version of
the Fukase–Kashiwabara sampling reduction algorithm and solved a 152-dimensional SVP
challenge, which was the best record of that year. Other relevant studies include [20–22].
The Sampling Reduction algorithm shows good practicality but lacks sufficient theoreti-
cal support, especially regarding the parameter settings and estimation of running time.
The conception of “discrete pruning” was formally put forward in EUROCRYPT’ 17 by
Aono and Nguyen [23]. They proposed a novel conception named “lattice partition” to gen-
eralize the previous sampling methods, and they solved the problem of what kind of lattice
points should be “sampled” using the classical enumeration technique. The success proba-
bility of discrete pruning can be described as the volume of “ball-box intersection”, and can
be calculated efficiently using fast inverse Laplace transform(FILT). Aono et al. [24] made
some modifications to DP enumeration and proposed a quantum variant. The theoretical
foundation of DP enumeration was gradually developed, but some problems still remain.

1. A precise cost estimation: There is a gap between theoretical time complexity and
the actual cost. It has been proved that each subalgorithm of DP enumeration has a
polynomial-time complexity, but the actual running time is not in proportion with the
theoretical upper bound, since subalgorithms with different structures are analyzed
using different arithmetic operations.

2. The optimal parameter setting: The parameters of DP enumeration used to be set
empirically, by hand. An important problem that [23,24] did not clearly explain is how
many points should be enumerated in the iteration. The authors of [18,23] provided
some examples of parameter selection, without further explanation. For a certain SVP
instance, optimal parameter settings should exist to minimize the total running time.
This is based on the solution to the first problem.

To solve the above problems, the whole work is carried out using two steps: First,
we built a precise cost model for DP enumeration, called the “DP simulator”. During this
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procedure, some implementation details regarding DP enumeration are improved, and the
cost model is based on these improvements. Second, we used the optimization method to
find the optimal parameter of DP enumeration.

In the first step, to estimate the precise cost of DP enumeration, we studied and
improved DP enumeration in terms of both mathematical theory and algorithm implemen-
tation. The main work was as follows:

1. Rectification of the theoretical assumption: It is generally assumed that the lattice point
in participating “cells” follows the uniform distribution, but Ludwig [25] (Section 2.4)
pointed out that this randomness assumption does not strictly hold for Schnorr’s
sampling method, i.e., Schnorr’s partition. This defect also exists in the random-
ness assumption of natural number partition and leads to a paradox, where two
symmetric lattice vectors with the same length have a different moment value and
success probability. This will lead to inaccuracies in cell enumeration and success
probability analyses; hence, we provided a rectified assumption to describe lattice
point distribution in cells more cautiously and accurately, and consequently eliminate
the defect.

2. Improvements in algorithm implementation: We propose a new polynomial-time binary
search algorithm to find the cell enumeration radius, which guarantees a more precise
output than [24] and is more conducive to building a precise cost model. We proposed
using a lightweight rerandomization method and a truncated version of BKZ, “k-
tours-BKZ”, as the reprocessing method when DP enumeration fails in one round
and has to be repeated. This method takes both the basis of quality and controllable
running time into consideration. We examined the stabilization of basis quality during
repeated reprocessing and proposed a model to describe the relationship between
orthogonal basis information and the parameters of DP enumeration.

3. A cost simulator of DP enumeration: Based on the above improvements, we provided
an open-source implementation of DP enumeration. To describe the actual running
time of DP enumeration, it is necessary to define a unified “basic operation” for
all subalgorithms of DP enumeration and fit the coefficients of polynomials. We
calculated the fitted time cost formula in CPU-cycles for each subalgorithm of our
implementation. We also modified the calculation procedures of success probability
according to the rectified randomness assumption. Then, we built a cost model, the DP
simulator, to estimate the exact cost of DP enumeration under any given parameters.
In addition, for random lattices with GSA assumption holding, this works in a simple
and efficient way, without computing any specific lattice basis.

In the second step, to predict the optimal parameter for DP enumeration, we proposed
an optimization model. In this model, the DP enumeration parameter is regarded as the
input of the DP simulator, and the output of the DP simulator is the estimated running time.
We found that the Nelder–Mead method is suitable for solving the optimization problem,
since the DP simulator has no explicit expression and has unknown derivatives. As the
cost model is accurate, the parameter that minimizes the output of the DP simulator can
also be considered the optimal parameter of the DP enumeration algorithm.

Contributions of this work: We propose a systematic solution to the open problem
of DP enumeration by combining the improved implementation of DP enumeration, DP
simulator and the optimization method used to find optimal parameters. The experiment
confirms that DP enumeration outperforms the state-of-art enumeration with extreme
pruning and provides concrete crossover points for algorithm performance. Further-
more, the experimental result is extrapolated to higher dimensions, and we provided the
asymptotic expression of the cost of DP enumeration. These results provide valuable
references for lattice-based cryptography. We released our implementation as an open
source (https://github.com/LunaLuan9555/DP-ENUM, accessed on 30 December 2022)
to promote the development of lattice-based cryptography.

Roadmap: Section 2 introduces the fundamental knowledge of lattices and provides
an overview of pruning technologies for lattice enumeration. Section 3 first rectifies the

https://github.com/LunaLuan9555/DP-ENUM
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basic randomness assumption of lattice partition, and then describes the details of three
improvements in discrete pruning enumeration. Section 4 shows the details of our DP
enumeration cost simulator, including the runtime estimation of every subalgorithm and the
rectified success probability model. Section 5 describes how to find the optimal parameter
setting for DP enumeration using our cost simulator. Section 6 provides experimental
results to verify the accuracy of our cost simulator, and compares the efficiency of our
implementation with the extreme pruned enumeration in fplll library. Finally, Section 7
provides the conclusion and discusses some further works.

2. Preliminaries
2.1. Lattice

Lattice: Let Rm denote the m-dimensional Euclidean space. Given n linear inde-
pendent vectors b1, . . . , bn ∈ Rm (m ≥ n), a lattice L is defined by a set of points in
Rm: L = {∑n

i=1 xibi : xi ∈ Z}. The vector set {b1, . . . , bn} is called a basis of lattice L and
can be written in the form of column matrix B = [b1, . . . , bn]. The rank of matrix B is n,
which is also known as the dimension of lattice. From a computational perspective, we can
only consider the case that bi ∈ Zm for i = 1, . . . , n for convenience, since the real number
is represented by a rational number in the computer, and a lattice with a rational basis can
always be scaled to one with an integral basis. The lattice is full-rank when m = n, which is
a common case in lattice-based cryptanalysis. In the following, we only consider the case
B ∈ Zn×n.

A lattice has many different bases. Given two bases B1, B2 ∈ Zm×n of a lattice L,
there exists a unimodular matrix U such that B1 = B2U. A basis of the lattice corresponds
to a fundamental parallelepiped P(B) = {∑n

i=1 bixi : 0 ≤ xi < 1, i = 1, . . . , n}. The shape
of fundamental parallelepiped varies depending on the basis, but the volume of those
fundamental parallelepipeds is an invariant of the lattice, which is denoted by vol(L).
This is also called the determinant det(L) of a lattice, and we have det(L) = vol(L) =√

det(BTB).
Random lattice: The formal definition and generation algorithm of a random lattice can

refer to Goldstein and Mayer’s work in [26]. The SVP challenge also adopts the Goldstein–
Mayer lattice. The lattice of an n-dimensional SVP challenge instance has a volume of
about 210n.

Gaussian heuristic: For a lattice L and a measurable set S in Rn, we intuitively expect
that the set contains vol(S)/vol(L) fundamental parallelepipeds; therefore, there should
be the same number of points in S ∩ L.

Assumption 1. Gaussian heuristic. Let L be a n-dimensional lattice in Rn and S be a measurable
set of Rn. Then,

#{S ∩ L} ≈ vol(S)/vol(L)

We note that the Gaussian heuristic should be used carefully, because in some “bad”
cases, this assumption does not hold (see Section 2.1.2 in [27]). However, in random lattice,
this assumption generally holds, especially for some “nice” set S; therefore, we can use the
Gaussian heuristic to predict λ1(L):

GH(L) = vol(L)1/n

Bn(1)1/n =
1√
π

Γ
(n

2
+ 1
) 1

n vol(L)
1
n ≈

√
n

2πe
vol(L)

1
n (1)

In fact, GH(L) is exactly the radius of an n-dimensional ball with volume vol(L). It is
widely believed that GH(L) is a good estimation of λ1(L) when n ' 45.

Shortest vector problem (SVP): For a lattice L = L(B) with basis B ∈ Zm×n, one can
find a lattice vector Bx with x ∈ Zn \ {0} such that ‖Bx‖ ≤ ‖By‖ for any y ∈ Zn \ {0}.
The length of the shortest vector is denoted by λ1(L).

It is of great interest to find the shortest nonzero vector of a lattice in the fields of
complexity theory, computational algebra and cryptanalysis. However, a more common
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case in cryptanalysis is to find a lattice vector that is shorter than a given bound. In other
words, researchers are more interested in finding an approximate solution to SVP. For ex-
ample, the target of the SVP challenge [28] is to find a lattice vector v ∈ L such that
‖v‖2 ≤ 1.05 ·GH(L) ≈ 1.05λ1(L).

Orthogonal projection: The Gram–Schmidt orthogonalization can be considered a direct
decomposition of lattice and is frequently used in lattice problems.

Definition 1. Gram–Schmidt orthogonalization. Let B = [b1, . . . bn] ∈ Zm×n be a lattice basis,
The Gram–Schmidt orthogonal basis B∗ = [b∗1 , . . . b∗n] ∈ Qm×n is defined with

b∗i = bi −∑i−1
j=1 µi,jb∗j , where the orthogonal coefficient µi,j =

〈bi ,b∗j 〉
〈b∗j ,b∗j 〉

.

Definition 2. Orthogonal projection. Let πi : Rm → span(b1, . . . , bi−1)
⊥ be the i-th orthogonal

projection. For v ∈ Rm, we define πi(v) = v−∑i−1
j=1
〈v,b∗j 〉
‖b∗j ‖2 b∗j . Since any lattice vector v can be

represented by the orthogonal basis B∗ as v = ∑n
i=1 uib∗i , we also have πi(v) = ∑n

j=i ujb∗j .

For lattice L(B) and i = 1, . . . , n, we can define the n− i + 1-dimensional projected
lattice πi(L(B)) = L([πi(bi), πi(bi+1), . . . , πi(bn)]). Note that the orthogonal basis of
πi(L(B)) is exactly [b∗i , b∗i+1, . . . , b∗n].

2.2. Discrete Pruning

In classical enumeration, we search for lattice points directly, according to their coor-
dinates (x1, . . . , xn) with respect to basis B, such that ‖v‖ = ‖∑n

i=1 xibi‖ ≤ R. However,
enumeration with discrete pruning behaves in a very different way.

Considering the representation v = ∑n
j=1 ujb∗j , it is intuitive to search for a lattice

vector with a small |uj|, especially for index j, corresponding to a very large ‖b∗j ‖. This
idea is first applied in a heuristic vector sampling method proposed by Schnorr [15] and
dramatically improved by Fukase and Kashiwabara [18]. These sampling strategies are
summarized by Aono and Nguyen, and they defined lattice partition to generalize these
sampling methods.

Definition 3 (Lattice partition [23]). LetL to be a full-rank lattice in Zn. An L-partition (C(), T)
is a partition of Rn such that:

• Rn = ∪t∈TC(t) and C(t) ∩ C(t′) = ∅. The index set T is a countable set.
• There is exactly one lattice point in each cell C(t), and there is a polynomial time algorithm to

convert a tag t to the corresponding lattice vector v ∈ C(t) ∩ L.

A nontrivial partition is generally related to the orthogonal basis B∗. Some examples
are given in [23]. Here, we only introduce natural partition, which was first proposed by
Fukase and Kashiwabara [18], since it has smaller moments than other lattice partitions
such as Babai’s and Schnorr’s, implying that enumeration with natural partition tends to
have more efficiency. In this paper, we only discuss discrete pruning based on natural
partition, following the work of [18,23,24].

Definition 4. Given a lattice L with the basis B ∈ Zn×n, and a lattice vector v = ∑n
j=1 ujb∗j ,

the natural number representation (NNR) of v is a vector t = (t1, . . . , tn) ∈ Nn such that
uj ∈

(
− tj+1

2 , − tj
2

]
∪
( tj

2 ,
tj+1

2

]
for all j = 1, . . . , n. Then, natural number representation t ∈ Nn

leads to the natural partition (C(),Nn) by defining

C(t) =
{

n

∑
i=1

xib∗i ,− ti + 1
2

< xi ≤ −
ti
2

or
ti
2
< xi ≤

ti + 1
2

}
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The shape of C(t) =
{

∑n
i=1 xib∗i ,− ti+1

2 < xi ≤ − ti
2 or ti

2 < xi ≤ ti+1
2

}
( Rn is a union

of 2j hypercuboids (boxes), which are centrosymmetric and disjoint, where j is the number
of nonzero coefficients in t.

Given a certain cell, the lattice vector lying in it can be determined by the tag and
lattice basis; however, if we randomly pick some cells, the position of the lattice vector in
C(t) always shows a kind of randomness. We can naturally assume that the lattice point
belonging to C(t) follows a random uniform distribution. The prototype of this assumption
was first proposed by Schnorr [15] and generalized by Fukase and Kashiwabara [18]. Aono,
Nguyen and Shen [23,24] also use this assumption by default.

Assumption 2 (Randomness Assumption [18]). Given a lattice L(B) ∈ Zn×n with orthogonal
basis B∗ and a natural number vector t ∈ Nn, for the lattice vector v = ∑n

j=1 ujb∗j contained in C(t),

the Gram–Schmidt coefficients uj (j = 1, . . . , n) are uniformly distributed over
(
− tj+1

2 , − tj
2

]
∪( tj

2 ,
tj+1

2

]
and statistically independent with respect to j.

In such an ideal situation, by considering the GS coefficients uj of v as random
variables, one can compute the expectation and variance value of ‖v‖2, since ‖v‖2 can also
be considered a random variable. They are also defined as the first moment of cell C(t) [23]:

E[C(t)] = 1
12

n

∑
j=1

(3t2
j + 3tj + 1)‖b∗j ‖2 (2)

This means that, for a given tag t, we can predict the length of the lattice vector
v ∈ C(t) immediately without converting t to v, which is precise but takes a rather long
time. This leads to the core idea of the discrete pruning method: we first search for a batch
of cells ∪t∈SC(t) that are “most likely” to contain very short lattice vectors; then, we decode
them to obtain the corresponding lattice vectors and check if there is a v such that ‖v‖ ≤ R.
The pruning set is P = ∪t∈SC(t). If the randomness assumption and Gaussian heuristic
hold, the probability that P contains a lattice vector shorter than R can be easily described
by the volume of the intersection vol(Balln(R) ∩ P) = ∑t∈S vol(Balln(R) ∩ C(t)).

The outline of discrete pruned enumeration is given in Algorithm 1.

Algorithm 1 Discrete Pruned Enumeration

Require: well-reduced lattice basis B, number of tags M, target vector length R
Ensure: vL(B) such that ‖v‖ < R = 1.05 ·GH(L)

1: Reduce lattice basis B
2: while true do
3: S← ∅
4: Use binary search to find bound r such that there are M tags t satisfying f (t) < r;
5: Enumerate all these M tags and save them in set S
6: for t ∈ S do
7: Decode t to recover the corresponding v such that v ∈ C(t) ;
8: if ‖v‖2 < R2 then return v; // Find a solution
9: end if

10: end for
11: Rerandomize B by multiplying a unimodular matrix Q ∈ Zn×n, i.e., B← BQ
12: Reprocess B using lattice reduction algorithms such as BKZ or LLL
13: end while

3. Improvements in Discrete Pruning Method
3.1. Rectification of Randomness Assumption

Most of the studies on discrete pruning take randomness assumption as a foundation
of their analyses; therefore, they can apply Equation (2) to predict vector length. However,
we can easily point out a paradox if the following assumption holds: for two cells with tag
t = [t1, . . . , tk 6= 0, 0, . . . , 0] and t′ = [t1, . . . , tk + 1 6= 0, 0, . . . , 0], if tk is odd; then, it is easy
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to verify that the corresponding lattice vectors of t and t′ are in opposite directions with the
same length. However, the Equation (2) indicates E[C(t)] < E[C(t′)]. In fact, we also have
vol(Balln(R) ∩ C(t)) 6= vol(Balln(R) ∩ C(t′)), which means these two cells have different
success probabilities, while the lattice vectors contained in them are essentially the same.

This paradox implies that the distribution of lattice points in cells is not completely uni-
form. As a matter of fact, for a tag t = [t1, . . . , tk 6= 0, 0, . . . , 0], GS coefficient uk, uk+1, . . . , un
of the corresponding lattice vector, v ∈ C(t) are fixed integers rather than uniformly dis-
tributed real numbers. The exact values of uk, uk+1, . . . , un are given in Proposition 1.

Proposition 1. Given a lattice L(B) with orthogonal basis B∗ and a tag t = [t1, . . . , tk 6=
0, 0, . . . , 0], the corresponded lattice vector is denoted by v = ∑n

j=1 ujb∗j ∈ C(t), then

uk =


−tk

2
, if tk is even

tk + 1
2

, if tk is odd

uk+1 = . . . = un = 0

(3)

Proof. We can verify the proposition through the procedures of decoding algorithm, and a
brief theoretical proof is also provided. For lattice vector v = ∑n

i=1 xibi = ∑n
i=1 uib∗i ∈ C(t),

where uk = xk + ∑n
i=k+1 µi,kxi, the last nonzero coefficient of x is xk if, and only if, uk is the

last nonzero coefficient of u, and uk = xk. Then, according to Definition 4, we have tj = 0
for all j > k; uk is non-negative if, and only if, tk = 2xk − 1 is odd; uk < 0 if and only if
tk = −2xk is even. For brevity, the tags with odd and even numbers in the last nonzero
coefficient are called the “odd-ended tag” and “even-ended tag”, respectively.

Based on Proposition 1, the rectified randomness assumption is given below, and the
moments of natural partition are also modified.

Assumption 3 (The Rectified Randomness Assumption). Let L(B) be an n-dimensional lattice
with orthogonal basis B∗. Given a tag t with corresponding lattice vector v = ∑n

j=1 ujb∗j ∈ C(t),
suppose the last nonzero coefficient of t is tk; then, for j < k, we assume that uj is uniformly

distributed over
(
− tj+1

2 , − tj
2

]
∪
( tj

2 ,
tj+1

2

]
and independent with respect to j, for j ≥ k, uj can be

directly given by proposition (3).

Then, the moments of lattice partition should also be modified, since the last several
coefficients are not random variables after the rectification. For a tag t = [t1, . . . , tk 6=
0, 0, . . . , 0], the expectation of the corresponding ‖v‖2 is

E′[C(t)] = 1
12

k−1

∑
j=1

(3t2
j + 3tj + 1)‖b∗j ‖2 + u2

k‖b
∗
k‖

2 (4)

where uk is defined by Equation (3).
After the rectification, for two tags t, t′, which only differ by 1 in the last nonzero

coefficient, we have E′[C(t)] = E′[C(t′)], and the paradox mentioned in the beginning of
this subsection is eliminated.

3.2. Binary Search and Cell Enumeration

A crucial step of Algorithm 1 is called cell enumeration (line 5), aiming to find the “best”
M cells. We use the objective function f (t) to measure how good the cells are. E[C(t)]
(Equation (2)) is a tacit indicator for searching for the proper t, since it is exactly the expected
squared length of lattice vector v ∈ C(t). Aono and Gama [23] directly use E[C(t)] as the
objective function f (t) in cell enumeration, and Aono et al. [24] use a modified version of
E[C(t)] to guarantee its polynomial runtime. They require the function f (t) = ∑n

i=1 f (i, ti)
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satisfying f (i, 0) = 0 and f (i, j) ≥ f (i, j′) for all i and j > j′, which means we have to
drop the constants in E[C(t)], i.e., let f (i, j) = 1

4 (j2 + j)‖b∗i ‖2. Based on their work and
the rectification above, we propose a modified objective function. Given a tag vector
t = [t1, . . . , tk 6= 0, 0, . . . , 0] as input, we first define

f (i, ti)
def
=


0, for i > k

u2
i ‖b∗i ‖2, for i = k

1
4
(t2

i + ti)‖b∗i ‖2, else

(5)

where ui is defined by Equation (3). Then, the objective function of cell enumeration is

f (t) def
=

n

∑
i=1

f (i, ti) =
1
4

n

∑
i=1

(t2
i + ti)‖b∗i ‖2 =

1
4

k

∑
i=1

(t2
i + ti)‖b∗i ‖2 + u2

k‖b
∗
k‖

2 (6)

The complete cell enumeration procedure is given below:

Remark 1. Remark. Considering the symmetry of the lattice vector, we only search for even-ended
tags (line 17 and line 31).

The time complexity of Algorithm 2 is similar to that of [24]: the number of times that
Algorithm 2 enters the loop is, at most, (2n− 1) ·M/2, where M is the number of tags such
that f (t) ≤ r. For each loop iteration, the number of arithmetic operations performed is
O(1), and the number of calls to f () is exactly one. The proof is essentially the same as that
of theorem 11 in [24]. (Note that, although we change the definition of f (i, ti), and therefore
change the value calculated in line 3, this does not affect the total number of while loops in
the asymptotic sense. Furthermore, the modification of f (t) does not change the key step
in the proof: each partial assignment ∑n

i=i0 f (i, ti) ≤ R of a middle node can be expanded
to a larger sum ∑n

i=1 f (i, ti) ≤ R. )
In cell enumeration, a bound r should be determined as in the previous section, such

that there are exactly M tags satisfying f (t) ≤ r. Aono and Nugyen [23] first proposed the
idea to use the binary search method to find a proper r. Aono et al. [24] gave a detailed
binary search algorithm (Algorithm 5 in [24]), which was proved to have a polynomial
running time O(n(n + 1)M) + nO(1) + O(log2 M). Their algorithm uses the input (radius
r) precision to control the termination of the binary search, but a slight vibration of the
radius r will cause a large disturbance to the number of valid tags, since the number of tags
is t, such that f (t) < r grows exponentially with r. Therefore, their binary search method
could only guarantee an output of N tags with N ∈ [M, (n + 1)M], which is a relatively
large interval. Then, it would be intractable to estimate the precise cost of the subsequent
tagwise calculation, such as in the decoding algorithm.

Since the current termination condition in the binary search of DP enumeration will
bring uncertainty into the total cost-estimation model, we provide a more practical and
stable polynomial-time binary search strategy to determine the parameter r for cell enu-
meration. The essential difference with ANS18 [24] is that we use the number of output
tags as the bisection indicator of binary search. This method guarantees that cell enumera-
tion algorithm (Algorithm 1, line 5) outputs about (1− ε)M to (1 + ε)M tags t, satisfying
f (t) < r. When ε is small, the number of output tags can be approximately counted as M.
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Algorithm 2 CellENUM

Require: Orthongonal basis B∗ = [b∗1 , . . . , b∗n], r
Ensure: All t ∈ Nn such that f (t) ≤ r where f (t), as defined in Equation (6), and t is

even-ended
1: S← ∅
2: t1 = t2 = . . . = tn = 0;
3: c1 = c2 = . . . = cn+1 = 0;
4: k← 1
5: while true do
6: if tk = tk+1 = tn = 0 then
7: ck ← 0
8: else if tk is the last nonzero component of t then
9: ck ← u2

k‖b
∗
k‖

2 // uk is calculated using Equation (3)
10: else
11: ck ← ck+1 +

1
4 (t

2
i + ti)‖b∗i ‖2;

12: end if // calculating f (k, tk), defined by Equation (5)
13: if ck < r then
14: if k = 1 then
15: S← S ∪ {t = (t1, t2, . . . , tn)}
16: if tk+1 = . . . = tn = 0 then
17: tk ← tk + 2 // Only output “even-ended” tags
18: else
19: tk ← tk + 1
20: end if
21: else
22: k← k− 1
23: tk ← 0
24: end if
25: else
26: k← k + 1
27: if k = n + 1 then
28: exit
29: else
30: if tk+1 = . . . = tn = 0 or k = n then
31: tk ← tk + 2;
32: else
33: tk ← tk + 1;
34: end if
35: end if
36: end if
37: end whilereturn S

Remark 2. In Algorithm 3, CellENUM in line 3 is actually a variant of the original Algorithm 2.
It only needs to count the number of qualified tags and return early when #S > (1 + ε)M, and
it has no need to store the valid tags.



Mathematics 2023, 11, 766 10 of 33

Algorithm 3 ComputeRadius

Require: M, ε, B∗
Ensure: r ∈ R such that #{t : f (t) < r} ≈ M

1: Rl ← ∑n
i=1 f (i, 0) = 0

2: Rr ← ∑n
i=1 f (i, dM 1

n e)
3: while Rl < Rr do
4: Rm ← Rl+Rr

2
5: S← CellENUM(B, Rm)
6: if #S < (1− ε)M then
7: Rl ← Rm // Rm is too small
8: else if #S > (1 + ε)M then
9: Rr ← Rm // Rm is too large

10: elsereturn r ← Rm // Rm is acceptable
11: end if
12: end while

Theorem 1 gives the asymptotic time complexity of Algorithm 3:

Theorem 1. Given lattice L(B), M, a relaxation factor ε, Algorithm 3 ends within
O
(

log n + log 1
ε+ n log

(
ndet(L)

2
n

))
loops and output the enumeration parameter r, such that

(1− ε)M ≤ #{t ∈ Nn : f (t) < R} ≤ (1 + ε)M. In each loop, subalgorithm cellENUM is called
exactly once.

The approximate proof of Theorem 1 is given in Appendix A. In the following experi-
ments, we set ε = 0.005.

3.3. Lattice Decoding

The decoding algorithm converts a tag t ∈ Nn to a lattice vector v ∈ L(B) ⊂ Rn.
The complete algorithm is described both in [18,23]. However, in discrete pruned enumera-
tion, almost all the tags we process do not correspond to the solution for SVP, and there is
no need to recover the coordinates of those lattice vectors. Instead, inspired by classical
enumeration, we use an intermediate result, the partial sum of the squared length of lattice
vector (line 14 in Algorithm 4), as an early-abort indicator: when the projected squared

length of lattice vector ρ =
n
∑

k=i
|xk +

n
∑

i=k+1
µikxi|2‖b∗k‖

2 is larger than the target length of

SVP, we stop the decoding, since it is not a short lattice vector. Therefore, we avoid a
vector–matrix multiplication with time O(n2).

Algorithm 4 has O(n) loops and, in each loop, there are about O(n) arithmetic opera-
tions, which are mainly organized by line 7. Therefore, the time complexity of Algorithm 4
is O(n2). During experiments, we noticed that, for the SVP challenge, decoding terminates
at index i ≈ 0.21n on average, which means that the early-abort technique works and saves
decoding time.

Space complexity of DP enumeration. We note that Decode can be embedded into
line 15 in CellENUM. In other words, the decoding procedure can be instantly determined
when a candidate tag is found, and then we can decide whether to output the final solution
to SVP or throw out the tag. This indicates that DP enumeration essentially has polynomial
space complexity, since it has no need to store any tags.
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Algorithm 4 Decode

Require: tag t ∈ Nn, SVP target length R = 1.05 ·GH(L), orthogonalization information
U = (µi,j)n×n, B∗ ∈ Rn×n ;

Ensure: lattice vector v such that ‖v‖2 < R2 or output ∅
1: ρ← 0
2: ∆← 1 // to indicate whether we should stop decoding;
3: for i = i to n do
4: ui = 0
5: end for
6: for i = n to 1 do
7: y = −∑n

j=i+1 ujµj,i
8: ui = by + 0.5c
9: if ui ≤ y then

10: ui = ui − (−1)tidti/2e
11: else
12: ui = ui + (−1)tidti/2e
13: end if
14: ρ← ρ + (ui − y)2‖b∗i ‖2 // ρ =

n
∑

k=i
|xk +

n
∑

i=k+1
µikxi|2‖b∗k‖

2

15: if ρ > R then
16: ∆← 0
17: exit
18: else
19: ∆← 1 // find a solution to SVP
20: end if
21: end for
22: if ∆ = 1 then return v = Bu
23: else return ∅
24: end if

3.4. Lattice Reduction for Reprocessing
3.4.1. Rerandomization and Reduction

To solve an SVP instance, the DP enumeration should be repeatedly run on many
different bases, which means that the lattice basis should be rerandomized when DP
enumeration restarts; hence, it should be reprocessed to maintain good quality. A plain
reduction method is to use the polynomial-time LLL reduction as the reprocessing method,
which only guarantees some primary properties and is not as good as BKZ reduction.
However, a complete BKZ reduction will take a long time, and the estimation of its runtime
requires a sophisticated method. Additionally, the BKZ algorithm produces diminishing
returns: after the first dozens of iterations, the quality of the basis, such as the root Hermite
factor, changes slowly during iterations, as illustrated in [29,30].

A complete reduction is unnecessary, since our DP enumeration algorithm does not
require that the lattice basis is strictly BKZ-reduced. The key point of reprocessing for
DP enumeration is to achieve a compromise between time consumption and basis quality.
An early-abort strategy called terminating BKZ [31] is a good attempt to decrease the
number of iterations of BKZ reduction while maintaining some good properties. However,
the runtime of BKZ is still hard to estimate, since the number of iterations is not fixed,
and those properties mainly describe the shortness of b1, providing little help for our
cost estimation.

Another idea is to use a BKZ algorithm with limited tours of reduction, which is
convenient for runtime analysis and also efficiently produces a well-reduced basis. This is
what we call the “k-tours-BKZ” algorithm (Algorithm 5), which restricts the total number of
“tours” (lines 4–18 in Algorithm 5) of BKZ within k. Given BKZ blocksize β and k, the time
consumption of Algorithm 5 can be approximately estimated by multiplying k(n− β) and
the cost of solving a single β-dimensional SVP oracle. This is explained in Section 4.
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Algorithm 5 k-tours-BKZ

Require: Lattice basisB; BKZ blocksize β, k
Ensure: a reprocessed lattice basis B′

1: Z ← 0; i← 0; // Z is used to judge the termination condition for original BKZ;
2: K ← 0; // K records the tours;
3: LLL(b1, . . . , bn);
4: while Z < n− 1 or K < k do
5: K ++
6: for i = 1 to n− 1 do
7: j← min(i + β− 1, n);
8: h← min(j + 1, n);
9: v← ENUM(πi(bi), . . . , πi(bj)); // call the SVP oracle

10: if v 6= 0 then
11: Z ← 0;
12: LLL( b1, . . . , bi−1, ∑

j
s=i vsbs, bi, . . . , bh );

13: else
14: z ++;
15: LLL( b1, . . . , bh);
16: end if
17: end for
18: end while

The value of k is tightly related to the rerandomization; hence, the rerandomization
method should also be cautiously discussed. The essence of this idea is to generate a uni-
modular matrix Q as the elementary column transformation performed on B; therefore, BQ
will become the new basis waiting to be reprocessed. A very “heavy” matrix Q means the
basis is transformed with high intensity, which implies that the basis will lose many good
properties after rerandomization, e.g., some very short basis vectors, which were achieved
by the previous reduction, and the reprocessing procedure needs a long time to reach the
well-reduced status. However, a very sparse Q may lead to insufficient randomness during
transformation, which may not guarantee a very different basis. To balance the randomness
and reprocessing cost, we heuristically require a Hamming distance between Q and an
identity matrix I satisfying

d1(Q, I)
de f
= ∑

1≤i≤n
∑

1≤j≤n
|Qij − Iij| ∼ O(n)

A practical way to generate such a Q is to randomly select n position (i, j) with i < j
and let Qij ← {±1,±2, . . .} as a small integer, as well as let Qii = 1 for all 1 ≤ i ≤ n. This
forms an upper-triangular unimodular matrix and immediately satisfies the above formula.

In practice, we find that this method can guarantee a new basis after reprocessing
and will not destroy or reduce the basis quality too much; therefore, this can help the
k-tours-BKZ to achieve a stable basis quality again in only few tours (see Figures 1–3).
The experiments in the next subsection suggest that we can set a very small k to save
time in the reprocessing procedure. There is a broad consensus that “the most significant
improvements of BKZ reduction only occurs in the first few rounds” [27], and this is proved
in [31]. Some cryptanalyses also use an optimistically small constant c as the number of BKZ
tours used to estimate the attack overhead (like c = 8 in [32]). Considering the previous
literature and the following experiments, we set k = 8 for our k-tours-BKZ method.

3.4.2. Average Quality of Lattice Basis During Reprocessing

Even when using the same parameters, DP enumeration will have different runtimes
and probabilities of success when used on different bases of a lattice. We expect the basis
to have a stable quality that will remain largely unchanged by the reprocessing operation
and can be easily simulated or predicted without conducting a real lattice reduction.
The very first work aims to define the quality of the lattice basis and study how it changes
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during enumeration loops. We chose three indicators to describe the quality of the basis
and observe their behavior during reprocessing.

Gram–Schmidt Sum.
For DP-enumeration, its success probability is tightly related to the lengths of the

Gram–Schmidt basis vectors {‖b∗1‖, . . . , ‖b∗n‖}, and Fukase et al. [18] proposed using Gram–
Schmidt Sum as a measurement of lattice basis quality and also gave an intuitive and
approximate analysis of the strong negative correlation between GSS(B) and the efficiency
of finding a short lattice vector: the larger the Gram–Schmidt Sum is, the smaller the success
probability becomes. The Gram–Schmidt Sum is defined as

GSS(B)
de f
=

n

∑
i=1
‖b∗i ‖2 (7)

We generated an n = 120 dimensional SVP challenge basis at random and showed
how the k-tours-BKZ change the GSS(B) of the basis during reprocessing. They started
to form a BKZβ-reduced basis; then, the lattice basis was rerandomized and reprocessed
by k-tours-BKZ for every k = 8 tours with blocksize β. As shown in Figure 1, the peak
that comes up before every k = 8 tours of BKZ reduction corresponds to the GSS(B) of
the rerandomized basis without reprocessing. The peak indicates that the lattice basis is
evidently disturbed by our rerandomization method and GSS(B) becomes worse, while,
in the following k tours, the value of GSS(B) quickly returns to a similar state to the
well-reduced initial state and hardly changes again. In general, when the lattice basis is
iteratively reprocessed, the value of GSS(B) only shows mild fluctuations, which implies
that the success probability when finding very short lattice vectors is quite stable.

×10⁸

×10⁸

×10⁸

×10⁸

×10⁸

×10⁸

×10⁸

×10⁸

×10⁸

Figure 1. The Evolution of GSS(B) During reprocessing, n = 120, k = 8, β = 25, 30, 35, 40.

Geometry Series Assumption and GS Slope.
For a well-reduced basis of a random lattice, such as the lattice of the SVP challenge,

the Gram–Schmidt orthogonal basis generally has a regular pattern, which is called the
Geometry Series Assumption (GSA). For an n-dimensional lattice with a BKZβ-reduced basis
B, GSA means there is a q ∈ (0, 1), such that

log ‖b∗i ‖ = (i− 1) · log q + log ‖b1‖, i = 1, . . . , n (8)

If GSA holds, the points {(i, log ‖b∗i ‖)}n
i=1 form a straight line with a slope of log q.

In other words, q defines the “shape” of Gram–Schmidt sequence {‖b∗i ‖}n
i=1. In the

following, we call q ∈ (0, 1) the GS slope. In the real case of lattice reduction, the points{
(i, log ‖b∗i )

}n
i=1 do not strictly lie on a straight line, and the approximate value of q can

be obtained by least square fitting. Generally, a q closer to 1 means that the basis is more
reduced and vice versa. Figure 2 shows the evolution of fitted q in reprocessing. The value
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of q sharply decreases after each rerandomization and returns in the next few reprocessing
tours, showing a stable trend during the iterative rerandomization and BKZ tours.
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0.971

0.972

0.973

0.974

0.975

0.976

G
S 

sl
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e 
q
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Figure 2. The evolution of GS slope q during reprocessing, n = 120, k = 8, β = 25, 30, 35, 40.

Root Hermite Factor.
In the studies of BKZ algorithm, the root Hermite factor δ is used to describe the

“ability” of BKZ to find a short lattice vector, which is given as the first basis vector b1 in
the output basis:

δ
def
=

(
‖b∗1‖

(vol(L)1/n)

)1/n

(9)

Gama and Nguyen [8] pointed out the phenomenon that, for BKZ algorithm, when
blocksize parameter β 5 n, the root Hermite factor is only affected by the blocksize
parameter β but has no relationship with the lattice dimension. Additional observations of
root Hermite factor are given by Table 2 of [29].

As in GSS(B) and GS slope q, Figure 3 shows the evolution of the root Hermite factor
δ of the reprocessed basis. The peaks arising before reprocessing tours also indicate that
the first basis vector b1 is frequently changed by our rerandomization method, and in the
following k tours, the value of δ quickly returns to a similar state to the well-reduced initial
state and hardly changes again.
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(

b* 1
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t(L
)1/

n
)1/

n
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Figure 3. The evolution of δ during reprocessing, n = 120, k = 8, β = 25, 30, 35, 40.

Based on the above observations, we believe that, during the reprocessing stage, only
a few BKZ reduction tours can stabilize the properties of the lattice bases.
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4. Precise Cost Estimation of DP-ENUM

The precise cost estimation of DP enumeration is a great concern and remains an open
problem for cryptanalysis. However, there are several obstacles to building a good runtime
model that is consistent with the experimental results of a viable dimension and can be
extrapolated to a very high dimension.

First, DP enumeration contains many subalgorithms with different structures, such as
binary search, cell enumeration, decoding and reprocessing. Although the asymptotic time
complexity expression of each part is clearly discussed in Section 3, the real runtime of the
DP enumeration still needs to be handled carefully. These subalgorithms involve a variety
of arithmetic operations and logic operations, which make it hard to define a universal
“basic operation” for all the DP enumeration procedures. To build a runtime model for DP
enumeration, our key idea is to use CPU cycles as the basic operation unit, since this can
avoid the differences caused by different types of operations and is also easy to count.

Second, the searching space of DP enumeration is a union of many discrete boxes
irregularly distributed in Rn. It is quite hard to compute the volume of the pruning set,
which directly determines the probability for pruning success. Aono et al. proposed using
FILT to compute the volume of its pruning set [23], but this calculation model should be
modified to achieve better accuracy, according to the rectification of the original randomness
assumption we made in Section 3.

According to Algorithm 1, the cost of each loop in DP enumeration can be divided
into four parts:

• Tbin: Use binary search to determine cell enumeration parameter r (Algorithm 3)
• Tcell : Enumerate all the tags of candidate cells (Algorithm 2)
• Tdecode: Decode a tag and check the length of the corresponding lattice vector

(Algorithm 4)
• Trepro: If there is no valid solution to SVP, rerandomize the lattice basis and reprocess

it by k-tours-BKZ algorithm (Algorithm 5)

Denote the success probability when finding a lattice vector shorter than R in a single
loop of DP enumeration by psucc and assume that psucc is stable during rerandomizing; then,
the expected number of loops is about 1

psucc
according to geometric distribution, and the

total runtime Ttotal of DP enumeration can be estimated by

Ttotal = Tpre +
Trepro + Tbin + Tcell + M · Tdecode

psucc
(10)

We assume that the preprocessing time for Tpre, which denotes the time for a full-
tour BKZβ reduction on the initial lattice basis, is far less than the time spent in the main
iteration and can be ignored when β � n. In this section, our aim is to determine the
explicit expression of Trepro, Tbin, Tcell and Tdecode, as well as provide an accurate estimation
of psucc.

For all the experiments in this paper, the computing platform is a server with Intel
Xeon E5-2620 CPUs, with eight physical cores running at 2.10 GHz, and 64GB RAM.
To obtain accurate CPU cycles for the DP enumeration algorithm, we fixed the CPU basic
frequency and set the CPU affinity, and all the time data for fitting were obtained from our
single-thread implementation.

4.1. Simulation of Lattice Basis

Some parts in the total time cost model Equation (10) are hugely dependent on the
quality of the basis: more precisely, the vector lengths of Gram–Schmidt orthogonal basis
{‖b∗i ‖}n

i=1. Based on the reprocessing method and the stability analysis in Section 3.4, we
can reasonably assume the Gram–Schmidt sequence {‖b∗i ‖}n

i=1 will not severely change in
the loops of DP enumeration. Then, the issue is to simulate an “average” GS sequence for a
BKZβ-reduced basis.
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BKZ simulator [29,30] is a universal method, especially when β is quite large, since
the Gaussian heuristic generally holds in β-dimensional blocks where β & 45. In this case,
the probabilistic BKZ simulator proposed by Bai et al. [30] is an appropriate model due to
its reliable depiction of the “head concavity” phenomenon. Based on Algorithm 3 in [30],
we provide this BKZ simulator in C++ as a component of our implementation.

However, the BKZ simulator does not work well for small- and medium-sized β
(β < 45), because the keystone of the BKZ simulator is to estimate the shortest vector length
in a β-dimensional sublattice (block) L[i,j] by computing GH(L[i,j]), which will decrease
in accuracy when β < 45. This is rarely the case with asymptotic cryptanalysis. However,
this is a prevailing case in preprocessing and also needs investigation; hence, we have to
propose a method that considers this case and fills the vacancy in GS sequence simulation.

If we combine

vol(L) =
n

∏
i=1
‖b∗i ‖

and Equation (8), then we have

n · log ‖b1‖+
n(n− 1)

2
log q = log(vol(L)) (11)

Using Equation (11), we can approximately calculate the whole Gram–Schmidt se-
quence {‖b∗i ‖}n

i=1 if GSA holds and one of ‖b1‖ or q is known. Here, we prefer to use
the GS slope q rather than the value of ‖b1‖, since it contains more information on the
Gram–Schmidt orthogonal basis. Additionally, using ‖b1‖ = δnvol(L)1/n to recover the
Gram–Schmidt sequence might lead to an overly optimistic estimation, since the “head
concavity” phenomenon [30] indicates that the ‖b1‖might significantly deviate from the
prediction given by GSA. Then, the feasible approach is to give an average estimation of q
for a given lattice and BKZ parameter β.

We find that the GS slope has similar properties to the root Hermite factor: when
β� n, the GS slope of a reduced basis is mostly related to its blocksize β but not its lattice
dimension. For each parameter set (n, β) ∈ {120, . . . , 180} × {11, 13, . . . , 45}, we generate
50 random SVP challenge instances and apply BKZβ on the n-dimensional lattice basis to
verify this phenomenon. Then, we use the least square method to fit the log q of reduced
bases. Figure 4 shows the relationship between q and lattice dimension n, indicating that q
is hardly dependent on lattice dimension n and mostly varies with β.
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Figure 4. The relation between q and lattice dimension n.

Figure 5 illustrates the positive correlation of q and β, which is consistent with the idea
that a larger blocksize β makes the lattice basis better, and the GS slope is milder, which
means that q < 1 is closer to 1.
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Figure 5. The relation between q and BKZ blocksize β.

Table 1 gives an estimated value of qβ.

Table 1. The estimated GS slope q of BKZβ-reduced lattice basis.

β 11 13 15 17 19 21 23 25 27

q 0.9698 0.9703 0.9708 0.9713 0.9718 0.9723 0.9727 0.9733 0.9737

β 29 31 33 35 37 39 41 43 45

q 0.9742 0.9746 0.9751 0.9755 0.9759 0.9763 0.9767 0.9772 0.9776

By using the empirical data of qβ, we can generate a virtual GS sequence {B1, B2, . . . , Bn}
to simulate the real behavior of the Gram–Schmidt orthogonal basis of a BKZβ-reduced
lattice basis by solving the following equations:

vol(L) = ∏n
i=1 Bi

n · log B1 +
n(n−1)

2 log qβ = log(vol(L))
log Bi = (i− 1) · log qβ + log B1, i = 1, . . . , n

(12)

Remark 3. All the explicit values of qβ for β ≤ 45 are given in our open-source implementation.
Note that the method proposed above only takes effect when β ≤ 45, while we still give an
extrapolation as an alternative reference. Since q < 1 holds for all β > 0 and qβ is an increasing

function of β, which implies a trend q
β→∞−−−→ 1, we heuristically assume this function has a form of

q = 1− exp(−aβ + b); then, the fitting result of Table 1 is

qβ = 1− exp(−0.0092200β− 3.3919) (13)

The fitting curve is also illustrated in Figure 5.

4.2. Cost of Subalgorithms

Cost of Binary Search and Cell Enumeration.
For the cell enumeration algorithm (Algorithm 2), the asymptotic time complexity

is O((2n− 1) ·M). We take n = 60, . . . , 160, M = 1.0× 104, 1.5× 104, . . . , 1.0× 105 and,
for each parameter set (n, M), we generate 100 SVP lattices at random. The fitting result is

Tcell ≈ 2.4339nM + 108.74M− 17455n + 1334139 (14)
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For the binary search algorithm (Algorithm 3), Theorem 1 indicates that the asymptotic
time complexity has an asymptotic upperbound

(
log n + log 1

ε + n log(ndet(L)
2
n )
)
× (2n−

1)M. To simplify the fitting function and retain accuracy, we only take the dominant term
of the complete expansion, which is n log

(
ndet(L)

2
n

)
· (2n− 1)M. For the SVP challenge

lattice, we have vol(L) ∼ 210n. Then, the fitting function of Tbin is

Tbin ≈ 0.11341Mn2 + 13.155Mn log n + 265.65M− 84679n + 15455380 (15)

Both fitting functions obtained by the least square method have a coefficient of deter-
mination (R-squared) larger than 0.95.

Cost of Decoding.
To decode one tag by running Algorithm 4, the number of times to enter the for loop

is O(n), and in each loop, this performs O(n) arithmetic operations. Therefore, Tdecode can
be regarded as a quadratic function of n. We take n = 60, . . . , 160 and fix M = 1.0× 105,
and we generate 100 SVP lattices at random for each n. The expected runtime Tdecode of
decoding algorithm is fitted by

Tdecode = 0.39045n2 + 167.06n− 4350.4 (16)

Figure 6 shows that the fitting curve of Tdecode is almost strictly consistent with the
experimental data. The fitting function also has a coefficient of determination (R-squared)
larger than 0.95.
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Figure 6. The relation between Tdecode and dimension n.

Cost of Reprocessing.
The cost of the k-tours-BKZ algorithm is a little complicated, since it iteratively calls

an O(β)-dimensional SVP oracle. Our implementation of k-tours-BKZ is based on the BKZ
2.0 algorithm in fplll library [13]. In one tour of BKZβ, the total runtime is composed of the
processing time on n− 1 blocks. For each block L[i, j] = L(bi, . . . , bj) with i = 1, . . . , n− 1
and j = min(n, i + β− 1), the main steps are classical enumeration and LLL reduction
for updating:

BlockCost(i, j) = BlockProcess(j, n, log A) + Cnode · EnumCost(i, j) (17)

Then, the cost of k-tours-BKZ can be estimated by

BKZCost(L) = k ·
n−1

∑
i=1

BlockCost(i, j), j = min(n, i + β− 1) (18)
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In Equation (17), BlockProcess(j, n, log A) is the cost of updating basis (Algorithm 5,
line 12). The asymptotic time complexity of this part is O(j3m log A), which is mainly
donated by LLL reduction [33], where A . 210n for the SVP challenge lattice. When β is
small, the cost of updating cannot be ignored. For the cost of classical pruned enumeration,
Cnode is the CPU cycles for processing a single node in the enumeration tree, which is said to
be Cnode ≈ 200 [34]; EnumCost(i, j) is the total amount of nodes that needs to be traversed
to find a short vector on L[i, j].

Let n = 60, . . . , 150, β = 11, 13, . . . , 43 and k = 8, we record the cost of each stage
(including runtime and the number of nodes) of k-tours-BKZβ on 50 random lattices.
The least squares fitting shows Cnode ≈ 205.45, and

BlockProcess(j, n, log A) ≈ 0.000904381× j3n2 + 28752188 (19)

The remaining part is EnumCost(i, j), which is the number of nodes of enumeration
on block L[i, j]. For a full enumeration of L[i, j], the total number of nodes can easily be
derived from the Gaussian heuristic, which can be considered a baseline enumeration cost:

FullEnumCost(i, j) =
1
2

j−i+1

∑
k=1

Vk(‖b∗i ‖)

∏
j
`=j−k+1 ‖b

∗
`‖

(20)

where Vk(R) denotes the volume of a k-dimensional ball with radius R.
However, in our implementation of k-tours-BKZ, the SVP oracle uses extreme prun-

ing and heuristic enumeration radius c = min(1.1GH(L[i, j]), ‖b∗i ‖) for acceleration. We
assume that, for classical enumeration on a β′ = j− i + 1 dimensional block L[i, j], these
methods offer a speedup ratio of rβ′ in total, and rβ′ is independent with the block index i
and lattice dimension n. The key point is obtaining an explicit expression of rβ′ . (An alter-
native (lowerbound) estimation of enumeration cost is provided by Chen and Nguyen [29].
The coefficients of their model are given in LWE estimator [35]. However, their model is
more suitable for when β is very high and is not very precise when the blocksize is small).

rβ′ =
FullEnumCostβ′

ExtremeEnumCostβ′
(21)

The value of FullEnumCostβ′ can be calculated by Equation (20) with GS sequence
{‖b∗i ‖}n

i=1, and the actual number of enumeration nodes ExtremeEnumCostβ′ is obtained
from experiments. We recorded the number of enumeration nodes ExtremeEnumCostβ′ to
calculate the speedup ratio data. To fit rβ′ , we run k-tours-BKZβ on BKZβ-reduced bases
with n = 60, . . . , 150 and β = 11, 13, . . . , 43; then, all the data of the same blocksize were
gathered and averaged. It is well known that extreme pruning can offer an exponential
speedup [12], and tightening the radius also leads to a superexponential speedup. We
assume rβ′ ∼ exp O(β′ log β′), and by fitting, we can obtain

log rβ′ = 0.35461β′ log β′ − 1.5331β′ + 4.8982 log β′ − 2.9084 (22)

Figure 7 shows the fitting results and the value of rβ′ in experiments, reflecting that
the assumptions we made are reasonable.

To predict EnumCost(i, j) without any information on a specific lattice basis, the GS se-
quence contained Equation (21) should be replaced by the simulated values {B1, B2, . . . , Bn}
derived by equations set using the (12) or BKZ simulator.
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Figure 7. Speedup ratio of extreme pruning.

Algorithm 6 gives the procedures of calculating Trepro, i.e., the cost of reprocessing.

Algorithm 6 Calculating Trepro

Require: β, lattice dimension n, k, vol(L)
Ensure: The running time Trepro of reprocessing with k-tours-BKZβ

1: if β < 45 then
2: Find q corresponding to β // See Table 1 or Equation (13)
3: log B1 ← 1

n

(
log(vol(L))− 1

2 n(n− 1)
)

// Equation (11)
4: B1 ← exp(log B1)
5: for i = 2 to n do
6: log Bi ← (i− 1) · log q + log B1 // Equation (8)
7: Bi ← exp(log Bi)
8: end for
9: else

10: {Bi}n
i=1 ←BKZSim() // Use BKZ simulator in [30], Algorithm 3

11: end if
12: i← 0
13: Cost← 0
14: while i = 1 to n− 1 do
15: β′ = min(β, n− i + 1)
16: rβ′ ← exp (0.35461β′ log β′ − 1.5331β′ + 4.8982 log β′ − 2.9084) // Equation (22)
17: Cost = Cost + 1

rβ′
·FullENUMCost(Bi, . . . , Bi+β′−1) + BlockProcess(i + β′ − 1, n) //

by replacing ‖b∗i ‖ with Bi in Equation (20)
18: end while
19: return k · Cnode · Cost

4.3. Success Probability

Under a Gaussian heuristic, the success probability of pruned enumeration can be di-
rectly reduced to computing the volume of the pruning set. For discrete pruning, the shape
of the pruning set has always been considered a union of “ball-box intersections”, which is
not easy to compute. Aono et al. [23] proposed an efficient numerical method based on fast
inverse Laplace transform (FILT) to compute the volume of a single “ball-box intersection”
C(t) ∪ Balln(R) and used stratified sampling to deduce the total volume of the union.

However, the imperfections in original randomness assumption (Assumption 2) lead
to reduced accuracy of the success probability model for discrete pruning. For two cells
with tag t = [t1, . . . , tk 6= 0, 0, . . . , 0] and t′ = [t1, . . . , tk + 1 6= 0, 0, . . . , 0], if tk is odd, i.e., t
is odd-ended and t′ is the corresponding even-ended tags, they will have different success
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probabilities according to the model given by [23]. However, the lattice vectors contained
in C(t) and C(t′) have exactly the same length.

Figure 8 illustrates the gap at a larger scale. For the parameter settings n = 60, . . . , 84,
M = 50,000 and β = 20, 30, we used 30 BKZβ-reduced n-dimensional lattice bases to
compute the average value of theoretical success probability psucc,odd of M odd-ended
cells enumerated by Algorithm 2, as well as compute psucc,even of their corresponding
even-ended cells, both using the method provided by [23]. Then, we ran a complete DP
enumeration on each lattice basis using the same parameters and recorded the number
of iteration rounds. Figure 8 shows that the actual number of rounds of DP enumeration
is in the apparent gap between expectation value 1/psucc,odd and 1/psucc,odd, which were
estimated using odd-ended and even-ended cells, respectively.
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Figure 8. The difference of psucc estimated with odd-ended cells and even-ended cells.

This phenomenon calls for a proper rectification of the success probability model. As
a matter of fact, in Section 3.1, Proposition 1 and the rectified Assumption 3 indicate that
lattice point is actually randomly distributed in an hyperplane contained in C(t)∪ Balln(R),
which can be described by the assumption below:

Assumption 4. Given lattice basis B and its orthogonal basis B∗, for a tag vector t = [t1, . . . , tk 6=
0, 0, . . . , 0], the lattice vector of C(t) can be considered to be uniformly distributed over C ′(t) ⊂
C(t), where

C ′(t) de f
=


n

∑
i=1

xib∗i , xi ∈ R and

{xi ∈ (−ti + 1/2,−ti/2] ∪ (ti/2, ti + 1/2] for i < k

xk = uk as defined in Equation (3)

xk+1 = . . . xn = 0

 (23)

This assumption gives a more precise distribution of the lattice vector in the cell.
In fact, C ′(t) is the union of a 2k−1 k− 1-dimensional “box”, which is formally denoted by

Ck−1(t)
de f
=

{
k−1

∑
i=1

xib∗i , xi ∈
(
− ti + 1

2
,− ti

2

]
∪
(

ti
2

,
ti + 1

2

]}
Based on Proposition 1 and the new assumption of lattice vector distribution, we

redefine the success probability of DP enumeration on a single cell. For a C(t) with
t = [t1, . . . , tk 6= 0, 0, . . . , 0], denoting the lattice vector v ∈ C(t) by v = ∑n

j=1 ujb∗j , the prob-
ability that ‖v‖ ≤ R is defined by
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psucc(t)
de f
= Prob

v←C ′(t)

(
‖v‖2 ≤ R2

)
= Prob

v←C ′(t)

(
k−1

∑
i=1

u2
i ‖b∗i ‖2 < (R2 − u2

k‖b
∗
k‖

2)

)

=
vol
(

Ballk−1(
√

R2 − u2
k‖b

∗
k‖2) ∩ Ck−1(t)

)
vol(Ck−1(t))

=
vol
(

Ballk−1(
√

R2 − u2
k‖b

∗
k‖2) ∩ Ck−1(t)

)
∏k−1

i=1 ‖b∗i ‖2

(24)

Let R′ =
√

R2 − u2
k‖b

∗
k‖2, αi =

ti
2R′ ‖b

∗
i ‖ and βi =

ti+1
2R′ ‖b

∗
i ‖; then, the numerator part

in Equation (24) can be written as

vol
(

Ballk−1(R′) ∩ Ck−1(t)
)

=2k−1 · R′k−1 ·
k−1

∏
i=1

(βi − αi) · Pr
(x1,...,xk−1)←∏k−1

i=1 [αi ,βi ]

{
k−1

∑
i=1

x2
i ≤ 1

}
(25)

Then, the calculation of psucc(t) is reduced to computing the sum distribution of k − 1
independent and identically distributed variables x2

1, . . . , x2
k−1, which can be approximated

by the FILT method combined with Euler transformation. The details of these methods are
given in Appendix B.

For a set of tags U , which is the output of cellENUM (Algorithm 2), the total success
probability of finding a short lattice vector among U is

psucc ≈ min

(
1, ∑

t∈U
psucc(t)

)
(26)

To extrapolate the probability model to higher-dimensional SVP instances without
performing any time-consuming computation of real lattice reduction, the concrete value
of the GS sequence involved in the calculation of psucc should be replaced by the simulated
GS sequence {B1, B2, . . . , Bn}.

Figure 9 verifies the accuracy of the rectified success probability model (Equations (24)
and (26)). We take the SVP instances with n = 60, . . . , 84, β = 20, 30 and M = 50,000 as
examples, and we run the DP enumeration algorithm to solve the SVP challenge on each
SVP instance to record the total iteration rounds. The experiment was repeated 30 times
on each parameter set to obtain the average value. The dashed line shows the expected
iteration rounds 1/psucc calculated using the original {‖b∗i ‖}n

i=1 of the real reduced basis,
and the dotted line was only calculated with the simulated GS sequence {Bi}n

i=1. The results
illustrate that the rectified model gives a more precise estimation of success probability
than the original method provided in [23].
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Figure 9. Verification of the rectified success probability model.

4.4. Simulator for DP Enumeration

Based on all the works in this section, the runtime of DP enumeration can be estimated
by Algorithm 7, shown below. This simulator only needs minimal information for a
lattice L.

Algorithm 7 DP-simulator

Require: Lattice dimension and volume n, vol(L), k, β, M, target length R of SVP
Ensure: Expected runtime (CPU cycles) to find v ∈ L such that ‖v‖ ≤ R by DP enumera-

tion
1: if β < 45 then
2: Generate the simulated GS sequence B1, . . . , Bn by solving Equation (12)
3: else
4: Generate the simulated GS sequence B1, . . . , Bn by BKZ simulator
5: end if
6: Calculate rβ by Equation (22)
7: Calculate Trepro by calling Algorithm 6 with parameters(β, n, k, vol(L)) as input
8: Calculate Tcell by Equation (14) with M, n
9: Calculate Tbin by Equation (15) with M, n

10: Calculate Tdecode by Equation (16) with n
11: Call Algorithms 2 and 3 with B1, . . . , Bn as the GS sequence and output the M tags with

minimal value of f (t)
12: Calculate the total success probability psucc on the M tags, with GS sequence B1, . . . , Bn

return Trepro+Tbin+Tcell+M·Tdecode
psucc

Remark 4. The simulating method of GS sequence (line 1) only works for lattice bases that meet
GSA. For those lattices that lack good “randomness” and do not satisfy GSA, one has to use a real
BKZβ reduction algorithm on several lattice bases and compute an averaged GS sequence B1, . . . , Bn
as a good simulation of {‖b∗i ‖}n

i=1.
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5. The Optimal Parameters for DP-ENUM

To solve a certain SVP instance, the parameters of DP enumeration that need to be
manually determined are as follows: β of BKZ reduction algorithm, k of preprocessing and
M of cell enumeration.

It should be noted that k could be a fixed constant. There is no need to set a very large
k because of the “diminishing returns” of lattice reduction, which means the improvement
in basis quality would slow down with an increase in k. We heuristically set k = 8 for SVP
instances with n ≤ 200, which is also roughly consistent with the observation of [32] (see
Section 2.5 of [32] ). Then, only β and M should be determined with restrictions 0 < β ≤ n
and M > 0. The two parameters should minimize the total cost of DP enumeration,
i.e., the expression value of (10). This value is calculated by Algorithm 7 and can barely be
represented by a differentiable function. The Nelder–Mead simplex method is an effective
method to solve this type of optimization problem. Since there are only two independent
variables, it is reasonable to believe that the Nelder–Mead method can quickly converge to
the optimal solution.

Algorithm 8 gives the optimal values of β, M for a certain SVP instance based on the
standard version of the Nelder–Mead method.

Table 2 gives some concrete values of optimal parameter sets for solving medium-size
SVP challenges (R = 1.05GH(L)) and the corresponding estimation of running time. For
the medium-size SVP challenges, the optimal parameter set basically follows M ∼ 105 and
β < n/2. Neither of them increase very rapidly with the growth of n.

Table 2. Optimal parameters of DP-ENUM for solving SVP challenge.

n β M Expected Time (CPU Cycles)

80 39 65,000 9.08 × 1010

82 42 110,000 1.22 × 1011

84 42 95,000 1.96 × 1011

86 42 175,000 2.92 × 1011

88 42 155,000 4.83 × 1011

90 42 100,000 8.90 × 1011

92 39 150,000 1.52 × 1012

94 42 150,000 2.09 × 1012

96 39 170,000 6.88 × 1012

98 42 180,000 1.08 × 1013

100 42 145,000 2.15 × 1013

102 39 195,000 4.16 × 1013

104 39 190,000 1.11 × 1014

106 42 130,000 1.34 × 1014

108 42 175,000 4.24 × 1014

110 44 190,000 1.23 × 1015
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Algorithm 8 Finding optimal parameters for DP enumeration

Require: lattice dimension n, lattice volume vol(L) and the target vector length R of SVP
Ensure: (β, M) that minimizes the output of DP-simulator (n, β, M, R)

1: S(β, M) := DP-simulator (n, β, M, R) + P(β, M) // P(β, M) is a penalty function to
avoid parameters exceeding the feasible region, i.e., β > n or M < 0.

2: N ← 2 // 2 independent variables
3: Select initial points x1 = [β1, M1], . . . , xN+1 = [βN+1, MN+1] at random
4: while true do
5: reorder the N + 1 points, such that S(x1) < . . . < S(xN+1)
6: y1 ← S(x1), . . . , yN+1 ← S(xN+1)
7: if |β1 − βN+1| < 2 and |M1 −MN+1| < 1000 then
8: break;
9: end if

10: xm ← 1
N ∑N

i=0 xi // calculate the centroid (midpoint)
11: xr ← 2xm − xN+1 // reflection
12: yr ← S(xr)
13: if y1 ≤ yr < yN then
14: xN+1 ← xr
15: continue;
16: else if [ thenexpansion]yr < y1
17: xe ← xm + 2(xr − xm)
18: if S(xe) < yr then
19: xN+1 ← xe
20: else
21: xN+1 ← xr
22: end if
23: else if [ thencontraction]yN ≤ yr < yN+1
24: xc ← xm + (xr − xm)/2
25: if S(xc) < yr then
26: xN+1 ← xc
27: continue;
28: end if
29: else
30: xc ← xm + (xN+1 − xm)/2
31: if S(xc) < yr then
32: xN+1 ← xc
33: continue;
34: end if
35: end if
36: for [ doshrink]i = 2 to N + 1
37: xi ← x1 + (xi − x1)/2
38: end for
39: end while return The optimal parameters xmin ← x1 = [β1, M1] and the corresponding

cost estimation S(xmin)

6. Experiments and Analysis

We compared the performance of our optimized DP enumeration with different SVP
solvers, including the polynomial-space extreme pruned enumeration and exponential-
space sieving. For each n, the experiments were repeated on 40 different SVP challenge
instances. We ran our optimized DP enumeration with parameters given by Algorithm 8.
The lattice dimension n ranged from 60 to 110, and the time cost predicted by DP simulator
is also provided. The extreme pruned enumeration was implemented by fplll library [13]
with the default pruning function up to n = 90. The data of sieving were implemented by
G6K library [36] with the dimension-for-free method, i.e., G6K’s WorkOut (s = 0, f+ = 1)
from n = 60 to 110. Figure 10 illustrates the prediction of the DP simulator, as well as the
experimental results of our optimized DP enumeration, extreme pruning and G6K sieving.
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Figure 10. The performance of optimized discrete pruning and other SVP solvers.

The experiments confirm the accuracy of our cost model proposed in Section 4. The pre-
diction (orange dotted line) is quite consistent with the actual performance of DP enu-
meration (orange broken line). For n . 75, the DP enumeration algorithm sometimes
finds a solution before the first round ends; therefore, the actual running time is slightly
smaller than the simulated time. However, n > 80 shows that our implementation of DP
enumeration (with optimal parameter set) coincides with the DP simulator very well.

Compared with extreme pruning, Figure 10 shows that when n & 67, the optimized DP
enumeration has a shorter runtime than the state-of-the-art extreme pruning enumeration.
As for sieving, Albrecht et al. [37] has observed that the state-of-the-art sieving algorithm
outperforms classical enumeration at dimension n & 70, which is also verified in our
experiments. The experimental results reveal that the crossover point of DP enumeration
and sieving is around n ≈ 82, which is an update of the crossover dimension between
enumeration and sieving.

In addition to the experimental performance, we also compared the asymptotic behav-
ior of extreme pruned enumeration, G6K sieving and our implementation.

A commonly accepted cost model of extreme pruned enumeration originates from the
work of Chen and Nguyen in ASIACRYPT’11 [29]. An explicit fitting function is given by
LWE estimator estimator.BKZ.CheNgu12 [35]:

TCN11 = Cnode × 20.27019n ln(n)−1.0192n+16.103

However, a more recent work [38] (denoted by [ABF+20] in Figure 11) suggests that
the fitting formula should strictly follow the form 21/(2e)n log(n)+an+b, and their fitting result
of [29] is

Textreme = Cnode × 2
1
2e n log(n)−0.995n+16.25

The time complexity of sieving is believed to be 20.292+o(n) [10], and G6K gives an even
better result by fitting [37]:

Tsieve = 20.249n−14.7 ∗CPUfreq

Here, CPUfreq = 2.3× 109 according to their implementation; thus, the metric of Tsieve is
unified to CPU cycles.

Since the cost model of (optimized) DP enumeration can accurately estimate the actual
runtime in a high dimension, we used the DP simulator with an optimal parameter set to
predict the runtime of discrete pruning during SVP challenge (from n = 80 to n = 160) and
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provide an asymptotic prediction. We required the fitting function to have a fixed form
21/(2e)n log(n)+an+b to be consistent with [38]. The fitting result is

Tdiscrete = 2
1
2e n log(n)−1.0232n+24.590

Figure 11 shows the asymptotic behavior of extreme pruned enumeration (Textreme),
sieved with the dimension-for-free technique (Tsieve), and the fitting function of DP simula-
tor (Tdiscrete). Both the experimental and asymptotic comparison indicate that the discrete
pruned enumeration might have more practical potential than the (classical) extreme prun-
ing in solving high-dimensional SVP, and it might become the most efficient polynomial-
space SVP solver known to date.
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Figure 11. The asymptotic behavior of DP enumeration and other SVP solvers.

7. Conclusions

In this paper, the discrete pruned enumeration algorithm for solving SVP was thor-
oughly studied and improved. We refined the mathematical theory underlying DP enu-
meration and propose some improvements to the DP enumeration algorithm to make it
more practical. The most valuable part is that our discrete pruning simulator combined
theoretical analysis and many numerical techniques. The experimental results verify that
the DP simulator can precisely predict the performance of DP enumeration. For a certain
SVP instance, we can use the DP simulator to find optimal parameters to minimize the DP
enumeration runtime. The explicit time and space consumption is also given by the simula-
tor. Using simulation experiments, we believe that the time complexity of DP enumeration
is still superexponential, and the space complexity is still linear, which does not change the
conclusion of the enumeration algorithm.

When comparing the performance of our implementation and extreme pruned enu-
meration, we show that DP enumeration, under optimal parameter settings, could out-
perform extreme pruning when n & 67. By comparing this with the state-of-the-art
exponential-space SVP algorithm, sieving with dimension for free [36,37], we report an
updated crossover point of enumeration and sieving at n ≈ 82, which is slightly higher
than previously observed. Then, at a higher dimension (80 < n < 300), we compared
the asymptotic behavior of DP enumeration, extreme pruned enumeration and sieving,
which also shows the advantage of the discrete pruning method compared with other
polynomial-space SVP solvers.
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We provide the analytical cost formula of DP enumeration as an asymptotic estimation
for cryptanalysis reference, and we hope that the open-source implementation of this work
could help cryptologists to further develop the algorithm.

There are several possible directions for improvement:

• Using a stronger reduction algorithm: As the results indicate, when n & 67, DP
enumeration outperforms classical enumeration with extreme pruning, which means
that the BKZ algorithm for preprocessing and reprocessing should use DP enumeration
as an SVP oracle to achieve higher efficiency, and sieving is also an alternative SVP
oracle. The structure of progressive BKZ algorithm [34] also shows high power,
although it has a very complicated runtime estimator.

• Discussing the efficiency of many heuristic methods: Fukase and Kashiwabara [18]
tried to improve the quality of the basis by inserting short lattice vectors into the basis,
but this barely has theoretical proof. Since this method will influence the psucc in every
round, the success probability model of the FK algorithm should be modified.

• A parallelized implementation of DP enumeration, as well as an adaptive optimiza-
tion model.
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Appendix A. Proof of Theorem 1

Let f (t) = ∑n
i=1 f (i, ti) = ∑n

i=1(t
2
i + ti)‖bi‖2 be the original objective function pro-

posed in [24]. We only prove Theorem 1 in the case that Algorithm 3 uses f (t) as objective
function. When GSA holds, f (t) ≈ f (t), and we assume the conclusion of f (t) is asymptot-
ically the same with the f (t) case.

We note that the initial value R1 ← ∑n
i=1 f (i, dM 1

n e) guarantees that there are at
least M tags, such that f (t) < R1, which is a necessary condition of the correctness of
Algorithm 3.

Proof. LetR0 = 0, R1 = ∑n
i=1 f (i, dM 1

n e), and denote an n-dimensional ellipsoid by

En(a, R) =

{
x ∈ Rn :

n

∑
i=1

x2
i

a2
i
≤ R

}

In Algorithm 3, for any R ∈ [R0, R1], the inequality f (t) ≤ R is equivalent to

n

∑
i=1

f (i, ti) =
n

∑
i=1

(ti +
1
2
)2‖bi‖2 − 1

4

n

∑
i=1
‖bi‖2 ≤ R,

i.e.,
n

∑
i=1

(ti +
1
2
)2‖bi‖2 ≤ R +

1
4

n

∑
i=1
‖bi‖2

The number of tags t ∈ Zn, such that satisfies the inequality above, is exactly the num-
ber of integer points in an n-dimensional ellipsoid centered on (− 1

2 , . . . ,− 1
2 ). To simplify

http://www.latticechallenge.org/svp-challenge/
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the problem, we assume that a translation operation on the ellipsoid would not change the
total number of integer points in it, and then we can focus on a centrosymmetric ellipsoid
En(a, R′), where ai =

1
‖bi‖

and R′ = R + 1
4 ∑n

i=1 ‖bi‖2. Then, we define

M(R)
de f
= #{t : f (t) ≤ R} ∼ #

{
En(a, R′) ∩Zn}

It is obvious that M(R) is a monotone undecreasing function of R. Assume that binary
search Algorithm 3 terminates at the k-th iteration, and denote the upper bound and lower
bound of radius by Rlk and Rrk, then we have (1 − ε)M0 ≤ M( Rrk+Rlk

2 ) ≤ (1 + ε)M0,
with M0 being the input of Algorithm 3. The target of our proof is to find a ∆R such that
Rrk − Rlk > ∆R holds for all possible terminating values of (Rlk, Rrk). Then, it is easy to
prove that the binary search ends in log R1−R0

∆R rounds of iteration.
Now, assume Rlk, Rrk satisfying M(Rlk) < (1− ε)M0 ≤ M( Rrk+Rlk

2 ) ≤ (1 + ε)M0 <
M(Rrk). Then we have

M(Rrk)−M(Rlk) > 2εM0 (A1)

Let An(R′) = #En(a, R′ = R + 1
4 ∑n

i=1 ‖bi‖2) ∩Zn; we can investigate the asymptotic
behavior of M(R) by estimating the value of An(R′) .

There are some mature conclusions on the estimation of An(x) [39,40]. An(x) can be
written as

An(x) =
V(Bn)

∏n
i=1 ‖bi‖

xn/2 + Pn(x) (A2)

where Pn(x) � x
n
2 ·

n−1
n+1 and can be written as Pn(x) = O(xn), and V(Bn) is the volume of

n-dimensional unit sphere:

V(Bn) =
πn/2

Γ( 1
2 + 1)

≈
(

2πe
n

) n
2

Although M(R) is a discrete function of R, we can use the value of An(x) at x = R +
1
4 ∑n

i=1 ‖bi‖2 as an approximation. In this case An(x) = O(2xn/2) in an asymptotic sense,
and then according to the Lagrange mean value theorem, for xlk = Rlk +

1
4 ∑n

i=1 ‖bi‖2, xrk =

Rrk +
1
4 ∑n

i=1 ‖bi‖2, there exists xξ ∈ (xlk, xrk) such that

An(xrk)− An(xlk)

xrk − xlk
= A′n(xξ) ≤ nxξ

n
2−1 < nxrk

n
2−1 (A3)

Combining Equations (A1) and (A3), we have

Rrk − Rlk = xrk − xlk =
An(xrk)− An(xlk)

A′n(xξ)
'

2εM0

nxrk
n/2−1 (A4)

Therefore, the total rounds of iterations of Algorithm 3 is at most

log
R1 − R0

Rrk − Rlk

< log n +
n
2

log (R1 +
1
4

n

∑
i=1
‖bi‖2)− log 2εM0

= log n +
n
2

log

((
dM

1
n
0 e+

1
2

)2
GSS(B)

)
− log 2εM0

(A5)

where GSS(B) = ∑n
i=1 ‖bi‖2 ≤ ndet(L)

2
n . By further approximation and simplification,

we can know that the algorithm ends in at most O
(

log n + log 1
ε + n log

(
ndet(L)

2
n

))
rounds.
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Appendix B. Calculating Success Probability by FILT and Euler Transformation

In this part, we introduce some detailed derivation of the numerical methods for
computing success probability.

Let xi be uniformly distributed on [αi, βi], then the probability density function of x2
i is

ρx2
i
(z) =


1

2(βi−α)
√

z , z ∈ [α2
i , β2

i ]

0, else

Therefore, the p.d.f. of ∑n
i=1 x2

i is

ρ∑n
i=1 x2

i
(z) =

(
ρx2

1
∗ ρx2

2
∗ . . . ∗ ρx2

n

)
(z)

where “∗” denotes the convolution operation f ∗ g(z)
de f
===

∫ z
0 f (τ)g(z− τ) dτ.

To estimate the success probability of DP enumeration, our goal is to calculate
Pr
{

∑n
i=1 x2

i ≤ 1
}

.
Step 1. Fast inverse Laplace transform

Theorem A1. If the random variable X is non-negative and has p.d.f. p(x), then the c.d.f of X is

D(x) = L−1
{

1
s
L{p}(s)

}
(x)

Here, the symbol L specially refers to the Laplace transform, which satisfies

L
{

ρ∑n
i=1 x2

i
(z)
}
= L{ρx2

1
} · . . . · L{ρx2

n
}

Then, our goal is to calculate the value

D(1) = Pr

{
n

∑
i=1

x2
i ≤ 1

}
= L−1

{
1
s
L{ρ∑n

i=1 x2
i
}(s)

}
(t) |t=1 (A6)

Note that s ∈ C, since Laplace inverse transform is an integral in a complex field with
an integral path perpendicular to the x-axis.

To calculate D(1) in Equation (A6), we first perform the Laplace transform

F(s)
de f
===

1
s
L{ρ∑n

i=1 x2
i
}(s)

=
1
s
L{ρx2

1
} · . . . · L{ρx2

n
} = πn/2

s
n
2 +1

n

∏
i=1

erf(βi
√

s)− erf(αi
√

s)
2(βi − αi)

and then apply inverse Laplace transform

D(1) =Pr

{
n

∑
i=1

x2
i ≤ 1

}

=
1

2πi

∫ c+∞i

c−∞i
F(s)est ds |t=1

=
1

2πi

∫ c+∞i

c−∞i
F(s)es ds

=
1

2πi

∫ c+∞i

c−∞i

{
π

n
2

s
n
2 +1
·

n

∏
j=1

erf(β j
√

s)− erf(αj
√

s)
2(β j − αj)

}
· es ds

(A7)

Step 2. Approximate integral calculation with series



Mathematics 2023, 11, 766 31 of 33

Put the approximation of es in complex field

es ≈ Eec(s, a)
de f
===

exp(a)
2 cosh(a− s)

=
ea

2

+∞

∑
m=−∞

i(−1)m

s− a− (m− 1
2 )πi

into Equation (A7), (here, the value of a should guarantee the convergence of series. For ex-
ample, Hosono [41] claimed that the error is very small when a � 1, and Aono and
Nugyen [23] recommended to use a = max(50, 30 + 3

√
n)); now, notice that the integral

has singularity points sm = a + (m− 1
2 )πi, m = 1, . . . , ∞ (in Equation (A7), the integral

path should be to the right of all singularities, i.e., c > a. Additionally, for the
√

s in
F(s), since s is a complex variable, the argument of

√
s should satisfy | arg(z)| < π

4 to be
consistent with the integration path).

According to the residue theorem and Jordan theorem, Equation (A7) can be approxi-
mated by

D(1) ≈ ea ·
+∞

∑
m=1

ImF
(

a + (m− 1
2
)πi
)

(A8)

Step 3. Using Euler transformation to accelerate the convergence of series
Since the series in Equation (A8) converges slowly, the Euler transformation is a

practical method to accelerate the convergence. Therefore, we can use fewer terms to
approximate the infinite series.

Let Fm = ImF
(

a + (m− 1
2 )πi

)
, then the value of Equation (A8) can be calculated by

finite terms:

+∞

∑
m=1

(−1)mFm ≈
K

∑
m=1

(−1)mFm + (−1)K
J

∑
j=1

(−1)j∆j−1FK+1

2j

where ∆j−1FK+1 = ∑
j−1
i=0(−1)j(j−1

i )Fj+K−1 is the “forward difference” that can be iteratively
computed by van Wijingaarden transformation. In our implementation, we set K = 40,
J = 30 by default.

Remark A1. Remarks. The computation of ImF(s) at s = a + (m− 1
2 )πi is a time-consuming

procedure. It involves the computation of erf(·) over complex field C, which also needs to be
approximated by series expansion. In the original computation model, since αi and βi only have a
few fixed values only related with the GS sequence, we can accelerate the computation by building
an “erf table” to record some values of erf(αi

√
s) and erf(βi

√
s) that would be repeatedly used in

the calculation. However, for the rectified success probability model, the values of αi and βi are
also connected with the explicit value of cell tag t, which makes the “erf table” invalid, and the
running time could be very long. Fortunately, we still find that the original computation model
could help us to estimate the rectified success probability. In our implementation of DP enumeration,
in addition to the step-by-step computation, we also provide a heuristic method using the harmonic
average of psucc,odd and psucc,even, which can be calculated efficiently, to roughly estimate the actual
success probability.
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