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Abstract: As the centralized unit (CU)—distributed unit (DU) separation in the fifth generation mobile
network (5G), the multi-slice and multi-scenario, can be better applied in wireless communication.
The development of the 5G network to vertical industries makes its resource allocation also have
an obvious hierarchical structure. In this paper, we propose a bi-level resource allocation model.
The up-level objective in this model refers to the profit of the 5G operator through the base station
allocating resources to slices. The lower-level objective in this model refers to the slices allocating the
resource to its users fairly. The resource allocation problem is a complex optimization problem with
mixed-discrete variables, so whether a resource allocation algorithm can quickly and accurately give
the resource allocation scheme is the key to its practical application. According to the characteristics
of the problem, we select the multi-agent twin delayed deep deterministic policy gradient (MATD3)
to solve the upper slice resource allocation and the discrete and continuous twin delayed deep
deterministic policy gradient (DCTD3) to solve the lower user resource allocation. It is crucial to
accurately characterize the state, environment, and reward of reinforcement learning for solving
practical problems. Thus, we provide an effective definition of the environment, state, action, and
reward of MATD3 and DCTD3 for solving the bi-level resource allocation problem. We conduct
some simulation experiments and compare it with the multi-agent deep deterministic policy gradient
(MADDPG) algorithm and nested bi-level evolutionary algorithm (NBLEA). The experimental results
show that the proposed algorithm can quickly provide a better resource allocation scheme.

Keywords: bi-level optimization; multi-slice; resource allocation; reinforcement learning

MSC: 68T07

1. Introduction

With the advent of the fifth generation mobile network (5G) era, the high bandwidth of
5G provides the basis for serving massive users, thus opening a new era of multi-scenario
the Internet of Everything in the orthogonal frequency division multiple access (OFDMA)
system. There are three major application scenarios of the 5G: (1) massive machine type
communications (mMTC) [1]; (2) enhanced mobile broadband (eMBB) [2]; (3) ultra-reliable
and low-latency communication (URLLC) [3]. The overall architecture of the 5G has
undergone big and small changes. For example, the 5G base station integrates the original
remote radio unit (RRU) and antenna into the active antenna unit (AAU) to replace the
RRU of the 4G base station in the wireless access network, which reduces the loss of the
feed line from antennas to the RRU in the previous architecture. In the 5G bearer network,
the building baseband unit (BBU) can separate optionally into a centralized unit (CU) and
a distributed unit (DU), and some non-real-time functions of the BBU are integrated into
DU and then sink to the AAU. The remaining real-time functions are integrated into CU.
Therefore, they can be selectively separated into different application scenarios [4]. This
structure application with the following network function virtualization (NFV) application
will be more extensive. In the core network, different from the serving gateway and the
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packet data network gateway [5] of the 4G network, the 5G completely separates the control
plane (CP) from the user plane (UP). Its advantages are flexible service changes, convenient
network expansion and upgrades, and the user plane can be removed from the “centralized”
position. It can be deployed in the core network or sunk into the access network, meeting
the requirements of low latency 5G networks and providing great convenience for the
maintenance and expansion of the 5G core network. This flexible networking mode brings
great new challenges to the resource allocation of wireless networks and makes it possible
to further improve resource utilization.

From the perspective of users, 5G users are more diverse than 4G users. The 5G users
have stronger diversity, with different scenarios, different fields, diverse forms, and dif-
ferent problem-solving, so they have different demands for networks and other resources.
Thus, the resource allocation models and algorithms of 4G are no longer enough to meet
the requirements of 5G network resource allocation. Network slicing is an effective means
to deal with the requirements of multiple scenarios. The 5G network slicing technology
has been extensively studied. Network slicing is a logical concept that reorganizes re-
sources [6]. Reorganizations select virtual machines [7] and physical resources for specific
communication service types, based on service level agreements [8]. It is defined as a
form of the on-demand network. It can make operators in unity on the infrastructure
of isolated multiple virtual end-to-end networks. Each network slice from the wireless
access network to the bearing network to core online logical isolation to fit a variety of
types of applications. NFV is the core of network-slicing technology [9]. NFV separates the
hardware and software parts from the traditional network. The hardware is deployed by a
unified server, and the software is undertaken by different network functions, in order to
meet the requirements of flexible service assembly. So, it can remodel the network structure
to virtualize the functionality in CU and DU.

These architectural changes are also more applicable to the multi-slice and multi-
scenario. These changes make the 5G operators’ charge mode of innovation [10,11]. The
application of the network section has brought a new operation model, a new business
model, and a new service model. It allows 5G operators to charge for slices. In this new
business model, the base station allocates resources to the slices and charges the slices,
which then allocates the resources to the users. These changes bring about changes in
the issue of sub-channel and power resources allocation. The resource allocation process
has a clear hierarchical structure. The 5G operators may pay more attention to profit, and
the slices may pay more attention to serving their users. The existing resource allocation
models and algorithms rarely consider this hierarchical coupling relationship. It generally
formulates the resource allocation problem as a single-objective optimization problem
or multi-objective optimization problem [12]. The single-objective optimization model
generally aggregates the factors influencing the allocation of resources through weighted
methods [13], but it does not work well for the hierarchical resource allocation problem. The
multi-objective optimization simultaneously optimizes several conflicting objectives, but it
still does not well-address the hierarchical resource allocation problem. Therefore, a bi-level
model is considered in this paper, which can place the base station’s resource allocation to
the slice by the upper-level optimization task, and the slices allocate the resource to their
users by the lower-level optimization task.

The above-mentioned bi-level resource allocation model is a complex bi-level opti-
mization problem. In recent years, bi-level optimization has been widely concerned by
scholars [14]. In the past few years, some scholars used the knowledge of Lagrange duality
theory, based on convex optimization, to transform a bi-level optimization problem into a
single-level optimization problem and solve it. This method assumes that the objectives
and constraints are differentiable and the objectives are convex [15]. However, this method
based on convex optimization is not suitable for the bi-level model with mixed variables.
In addition, some researchers use an evolutionary algorithm to search for a feasible solu-
tion [16]. Generally speaking, evolutionary algorithms can provide an acceptable solution.
However, evolutionary algorithms require the consumption of a large number of real-time
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computing resources and take a long time to provide a solution. It requires the optimization
algorithm to quickly give a good allocation scheme in the case of massive 5G connections.
This leads to these methods encountering great challenges in solving the complex and
changeable resource allocation model of the 5G communication system. Recently, with
the rise of deep learning, reinforcement learning has also been greatly developed [17].
Reinforcement learning has the characteristic of reusability, so it has a good application
prospect in resource allocation. At the expense of certain accuracy, the trained neural
network can quickly and stably give a better feasible solution.

Consequently, we propose a bi-level resource allocation model in the 5G OFDMA
system. It fully considers the profit of the 5G operator and the fairness of slice in allocating
resources to its users. The resource contains sub-channels and power resources in the
OFDMA system. The upper-level objective is about the 5G operator taking different prices
for different slices because the slices are serving different scenarios. The base station
allocates sub-channels and power resources to slices based on the upper-level objectives.
After the base station allocates resources to the slices, the slices allocate sub-channel
and power resources to their users according to the lower-level objective. The lower-
level objective is that the slices fairly allocate the resource to their users. The lower-level
objective is dominated by the upper-level objective, that is, the upper-level optimization
task gives the resource scheme for slices, and the lower-level optimization gives the lower-
level optimal solution based on the allocation scheme given by the upper level and then
returns the optimal solution of the lower-level optimization problem to the upper-level
optimization problem. The proposed bi-level model fully considers the situation where
the upper and lower objectives are different. The bi-level resource allocation model is
a complex constrained mixed-variable optimization problem, in which the sub-channel
resource allocation is a discrete variable and the power allocation is a continuous variable.

Reinforcement learning is used to solve the bi-level resource allocation model. Re-
inforcement learning can give a better solution while saving certain real-time computing
resources. The architecture and the components of reinforcement learning play an impor-
tant role in solving practical problems. Consequently, this paper employs the multi-agent
twin delayed deep deterministic policy gradient (MATD3) for the upper-level resources
allocation and the discrete and continuous twin delayed deep deterministic policy gradient
(DCTD3) for the lower-level resources allocation, according to the characteristics of the bi-
level resource optimization problem. Simulation experiments fully verify the effectiveness
of the proposed resource allocation model and its corresponding solving algorithm. The
major contributions in this paper are concluded as follows:

• We propose a bi-level resource allocation model. The base stations allocate the re-
sources to the slices to optimize the operator’s benefits. Additionally, these slices
allocate the resource to their users to improve the service equity of all users.

• We select an effective reinforcement learning network architecture according to the
characteristics of the resource allocation optimization problem. MATD3 is employed for
the upper-level resources allocation and DCTD3 for the lower-level resources allocation.

• We provide an effective definition of the environment, state, action, and reward of
MATD3 and DCTD3 for solving the bi-level resource allocation problem.

• We conduct some simulation experiments to investigate the effectiveness of the pro-
posed model and algorithm. The simulation results show that the proposed algorithm
can quickly provide a better resource allocation scheme.

The rest of this paper is organized as follows. Section 2 makes a review of the re-
lated works. Section 3 describes the proposed bi-level resource allocation model in detail.
Section 4 presents the bi-level resource allocation strategy based on reinforcement learning.
Section 5 provides the simulation results and gives a discussion of the results. Finally,
Section 6 draws a conclusion.
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2. Related Works
2.1. Related Work of the Resource Allocation Model of Wireless Communication Network

Resource allocation is an eternal research topic in wireless communication networks
and another practical engineering problem [18]. Various resource allocation models are
proposed for various application scenarios. These models can be divided into single-
objective optimization models or multi-objective optimization models, according to the
number of objectives. They also can be divided into single-level optimization and multi-
level optimization problems, according to the hierarchical structure [19,20]. For example,
the researchers established a single-level multi-objective optimization model, considering
the best-effort traffic, hard quality of service (QoS) traffic, and soft QoS traffic in [21].
In [22], the authors built a multi-objective optimization model to minimize interference
and maximize resource utilization efficiency. A set of sub-channels and power allocation
schemes were obtained by solving the single-level multi-objective model. In [23], the
researchers built a single objective optimization model by considering the instantaneous
frequency-domain resource allocation problem in OFDMA networks [24]. Paper [25]
presented a single objective optimization model and investigated the energy-efficient
resource allocation problem of sensors and actuators. It aims to maximize the utility
function, while satisfying the rate requirements of each sensor and actuator.

However, the above-mentioned single-level optimization model does not consider
the hierarchical structure of 5G wireless communication network resource allocation. It
makes it so that the allocation of slice resources and the allocation of user resources are
coupled together, which is not conducive to the flexible optimal allocation of resources.
Currently, some studies tried to propose a bi-level resource allocation model. For example,
the researchers [26] formulated the resource allocation problem in a virtualized cloud radio
access network (V-CRAN) as a bi-level non-cooperative pricing problem. The upper-level
optimization problem corresponds to spectrum leasing from the mobile network operator to
mobile virtual network operators (MVNOs), where the mobile network operator aimed to
find an optimal price that maximized its revenue. The lower-level optimization formulated
the channel allocation between an MVNO and its users as a utility surplus maximization
problem. A bi-level optimization model [27] is developed to allocate power and sub-
channels for two levels of service provided by operators with different service qualities
and prices. However, under the CU-DU separation architecture, the research on bi-level
resource allocation for multi-slice and multi-scenario is still lacking.

2.2. Related Work of Optimization Algorithms for Resource Allocation

Various optimization techniques and strategies were developed for solving the opti-
mization problem in radio resource allocation in the past few decades. These strategies
can be broadly classified into classical gradient-based optimization methods and heuristic
random search algorithms. Gradient-based optimization algorithms have been widely used
in resource allocation. For example, Huang et al. [28] presented a task scheduling scheme ac-
count of Lyapunov optimization to reduce energy consumption through resource allocation.
Guo Tao et al. [29] presented a resource allocation in an active long term evolution (LTE)
network, which controls user connections based on the remaining resources of the network
slice. Ying Loong Lee et al. [30] built a two-problem model and used convex optimization
theory to allocate sub-channel and power resources to maximize the total rate of the whole
system, and they made sub-channels resources continuous when allocating them after
the problem was modeled and the Karush–Kuhn–Tucker (KKT) conditions were satisfied.
However, the model is not a strict bi-level model, because no parameters are passing in the
two levels. In [31], Liqing Liu et al. proposed a multi-objective optimization problem to
minimize the energy consumption by using scalarization. However, these algorithms based
on convex optimization theory are not suitable for mixed variable optimization problems.

With the advent of 5G, there is more and more research on the heuristic random search
algorithm for solving the resource allocation problem. In [32], the researchers proposed a
bi-level distributed cooperative co-evolution (DCC) architecture with adaptive computing
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resource allocation for a large-scale optimization problem. The first level is the DCC model,
which takes charge of calculating the importance of sub-components and accordingly
allocating resources. The second level is the pool model, which takes charge of making full
utilization of imbalanced resource allocation. In [32,33], the authors used an evolutionary
algorithm to repeatedly optimize the resource distribution. The researchers proposed an
optimization method called the divide-and-conquer bi-level optimization algorithm to
allocate resources in [34]. The above-mentioned evolutionary algorithms should have to
be fully calculated, as the problem changes and may consume much real-time computing
resources. Therefore, limited by real-time computing resources, these algorithms may not
be able to give a resource allocation scheme quickly.

With the development of machine learning, reinforcement learning has also been
greatly developed, and the advantage of reinforcement learning is that it has a certain level
of general intelligence to solve complex problems [35]. Therefore, some researchers have
begun to use reinforcement learning to solve the resource allocation in a communication
system. Reinforcement learning is a type of machine learning, and it is inspired by behav-
ioral psychology. Reinforcement learning is mainly composed of agents, environments,
states, actions, and rewards. After the agent acts, the environment state will also change,
and the environment will give a positive reward or a negative reward. The original Q-
learning [36] uses tables to save the Q-value of actions in the state and the agent queries
the table to choose the action which can obtain the maximal reward. With the development
of the neural network, deep reinforcement learning (DRL) uses the neural network to fit
the decision function and Q-value function, which makes it can be applied to continuous
actions and the environment. A deep Q-learning network (DQN) was proposed for a
single agent in [37]—it used a neural network to fit the Q-value function and built a target
neural network to calculate the Q-value of the next action at the next state, and the loss was
the error between two values of neural network. To solve the case where the action and
the state are continuous, the deep deterministic policy gradient (DDPG) based DQN was
proposed in [38–40], and it takes the actor–critic structure. This structure of reinforcement
learning is widely used in many industrial fields [41,42]. The safety and effectiveness of
this structure were demonstrated in detail in [43]. The actor’s neural network is to make
the continuous action, and the critic’s neural network will judge the action that the actor’s
neural provided and give the Q-value of the action. A multi-agent deep deterministic
policy gradient (MADDPG) was proposed in [44], and it used centralized training and
distributed execution.

Due to the excellent performance of DRL in handling complex optimization problems,
researchers have begun to use DRL to solve resource allocation. For example, the researchers
use the distributed cooperative online Q-learning to allocate the computing resources to
maximize utility and fairness in edge Internet of Things networks in [45]. It improves
the resource allocation process and converges to better application utility. A cooperative
Q-learning-based algorithm was presented to solve the power allocation in a multi-antenna
downlink non-orthogonal multiple access (NOMA) communication system in [46], in which
the power allocation model was a non-convex optimization problem. Paper [47] proposed
a pure-DQN approach, a hybrid DQN-optimization (opt-DQN) approach, and a hybrid
Q-table-optimization (opt-QL) approach to solve two resource allocation sub-problems.
In [48], the author converted the transformed resource management problems into multi-
agent problems in multi-access edge computing and unmanned aerial vehicles and used the
MADDPG algorithm to resolve them. Paper [47] proposed a DRL-based resource allocation
framework, continuous DRL-based resource allocation, and joint DRL and optimal resource
allocation algorithm to allocate the sub-channels and power resources.

3. The Proposed Bi-Level Resource Allocation Model
3.1. Hierarchical Architecture of Resource Allocation in 5G Communication System

Network function virtualization and slice technique are the core technologies for the
5G communication system. The CU-DU separation architecture based on these technologies
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makes it possible to flexibly network for different scenarios. Figure 1 plots a 5G network
architecture. Station 1 connects to the DU, DU then connects to CU, and CU connects to
the 5G core network. Station 2 connects to the BBU indirectly, and the BBU connects to
the 5G core network. Because of the dividing of the user plane and the control plane in
5G, the data stream is divided into the actual data stream and the control signaling stream.
The solid line refers to the actual stream from the user plane function (UPF) to the CU of
station 1 and the BBU of station 2. Then, the dotted line refers to the control signaling from
the UPF to the session management function (SMF), then from the SMF to the access and
mobility management function (AMF), and then from the AMF to the CU of station 1.
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5G Core 
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NFV Cloud Computing
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Layer
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Figure 1. The structure of the two base stations serve the three slices together under CU-DU separation.

Three scenarios, i.e., eMBB, mMTC, and uRLLC, are considered in this paper, and
one slice serves one application scenario. Thus, three slices corresponding to these three
5G scenarios are considered in this paper. The mMTC scenario focuses on the number of
connections, and it does not require low latency strictly, such as the Internet of Things users.
It can apply the CU and DU separation scheme, so the user in this slice is appropriately
connected to the base station 1, as shown in Figure 1. The eMBB scenario focuses on the
peaking rate, capacity, and spectrum efficiency and requires low latency, such as for mobile
users. It is more appropriate for taking the CU and DU setting together scheme, so the
user in this slice is connected to base station 2. The uRLLC focuses on ultra-reliability and
low-latency communication, such as the vehicle network. It is most suitable for adopting
the CU and DU setting together, so the user in this slice is connected to base station 2.

This means that different slices and different users have different demands for com-
munication resources. Moreover, resource allocation has a clear hierarchical relationship.
The base stations allocate resources to the slices, and then the slices allocate resources to the
users contained in this slice. This hierarchy brings great challenges to resource allocation.
An efficient resource allocation strategy is crucial for improving resource utilization and,
thus, improving the economic benefits of operators. Therefore, we proposed a bi-level
resource allocation model in which the NFV clouding computing makes the 5G base station
allocate the sub-channels and power sources to the three slices, and the slices allocate the
sub-channels and power resources obtained from the base station to their users.

Specifically, let *= = {1, 2, . . .D=} denote the users in the =th slice, where = = 1, 2, 3
and D= are the number of users. We assume that there are  sub-channels and denote the
set of sub-channels as k = {1, 2, 3, . . . , }. In the upper-level resources allocation of the
base station to the slices, the upper-level optimization variables include power allocation
P = (?=)1×3 and sub-channel allocation V = (E=,: )1×(3· ) . ?= is the power allocated to the
=th slice, and E=,: = 1 denotes that the :th sub-channel is allocated to the =th slice, otherwise
E=,: = 0. When the base station’s allocation of resources (P, V) to the slices has been given,
we can obtain the number  = of sub-channel resource allocated by the base station to the
=th slice. In the lower-level resource allocation of the slices to their users, the lower-level
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optimization variables contain the power allocation P̃ = (P̃1, P̃2, P̃3), with P̃= = (?: )1× = ,
sub-channel allocation for users Ṽ = (Ṽ1, Ṽ2, Ṽ3), with Ṽ= = (E=,D,: )1×(D= · =) , = = 1, 2, 3.
?: refers to the power allocated to the :th sub-channel, and E=,D,: ∈ {0, 1} refers to the
sub-channel allocation. E=,D,: = 1 denotes that the :th sub-channel is allocated to the Dth
user in the =th slice, otherwise, E=,D,: = 0.

3.2. Upper-Level Optimization: 5G Base Stations Allocate Resources to the Slices

The upper-level optimization problem of the bi-level model refers to the base stations
allocating the sub-channels and power resources to the slices. The slices apply these
resources to customize the service. The 5G operator benefits from the tenants which
maintain the slice. The upper-level optimization aims to optimize the benefit of the operator
and improve resource utilization and cover more users. Thus, it can be given as:

max
P,V

3∑
==1

2=

∑
:∈k

E=,:'=,: + _
3∑
==1

∑
D∈*=

1=,D

s.t.
∑
=

?= ≤ %C>C0;∑
=

E=,: ≤ 1.

(1)

where 2= (2= > 0) is the unit prices of the =th slice, and %C>C0; is the total power resource
that the NFV cloud computing layer can be allocated. '=,: =

∑
D∈*=

ED,=,:'=,D,: is the rate in
the =th slices on the :th sub-channel. '=,D,: is the rate of user D in the =th slices obtained on
the :th sub-channel, which is given by the resource allocation scheme in the lower-level
optimization task. The first term of the objective is the total revenue, and the second term
is the total number of covered users. _ is a parameter that is used to balance the revenue
and the number of covered users.

The first constraint means that the allocating power cannot exceed the total power,
and the second constraint means that each sub-channel only can be allocated to one slice at
most. Additionally, 1=,D ∈ {0, 1} denotes the connection identifier that is given by the lower-
level optimization task. It is given a detailed description in Section 3.3. The sub-channel
allocation V is discrete, but the power allocation P is continuous. Therefore, the upper-level
optimization problem is a complex constrained mixed variable optimization problem.

3.3. Lower-Level Optimization: Slices Allocate Resources to Their Users

The lower-level optimization of the proposed bi-level resource allocation model is that
the slices further allocate the sub-channel and power resources obtained from the based
stations to their users. Since different slices correspond to different scenarios, the resource
allocation of each slice is relatively independent, we allocate the resources of each slice,
respectively. The sub-channel and power resources are allocated according to the channel
gain and desired rate of the users. The lower-level optimization task aims to optimize the
service equity of all users in each slice. Thus, the lower-level optimization problem can be
given as:

max
P̃,Ṽ

3∑
==1

∑
D∈*=

1=,D
©«

∑
:∈k

E=,D,:'=,D,:

A3=,D

ª®¬
∑

:∈k
E=,D,: ?=,D,:

?=

s.t. ?<8=E=,D,: ≤ ?=,D,:E=,D,: ≤ ?<0GE=,D,:∑
D∈*=

∑
:∈k

E=,D,: ?=,D,: ≤ ?=

E=,: =
∑
D∈*=

E=,D,:

(2)
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where '=,D,: is the rate of user D in the =th slice obtained on the :th sub-channel. It is
calculated by

'=,D,: = F ∗ log
(
1 +

?=,D,: × E=,D,: × 6=,D,:

f2

)
, (3)

where F is the bandwidth of the sub-channel and f2 is the noise power, G= =
(
6=,D,:

)
1×(D= · )

is the channel gain matrix, and 6=,D,: is the channel gain on the sub-channel : between the
user D in the =th slice and the 5G base station, which is calculated as 6=,D,: = 10−%! (3=,D)/10,
where %! (.) is the path loss function with a shadow fading that follows a normal distribu-
tion, according to the actual scene, and 3=,D is the distance between the user and the base
station. Rd= = (A3=,D)1×D= is the desired rate of the users in the =th slice.

The first constraint of problem (2) makes that the power allocated to each sub-channel
must be in the range ?<8= and ?<0G . The second constraint of problem (2) states that the
power allocated to the users in the =th slice cannot exceed the power allocated to the =th
slice. The third constraint means that each sub-channel only can be allocated to one user at
most. The connection identifier 1=,D is calculated as follows. 1=,D = 1 represents that the
Dth user is connecting and its communication rate meets the minimum communication
requirement of the =th slice, otherwise, 1=,D = 0. That is

1=,D =


1 if

∑
:∈k

'=,D,:E=,D,: ≥ '<8== ;

0 otherwise.
(4)

where '<8== is the minimum rate promised by joining the =th slice.
The lower-level optimization variable P̃ is continuous, and Ṽ is 0–1 discrete optimiza-

tion variables. The lower-level optimization problem is also a constrained mixed variable
optimization problem. Therefore, the proposed bi-level resource allocation model is a
nonlinear constraint mixed-discrete variable optimization problem. Additionally, in the
actual 5G application scenarios, the services that the slices request change rapidly, which
puts forward higher requirements and challenges for the speed of the algorithm. Thus,
we need to present a fast resource allocation algorithm. We use a reinforcement learning
method to solve the proposed bi-level resource allocation model in this paper.

In summary, the bi-level resource allocation model can be formulated as the following
mathematical model.

max
P,V,P̃,Ṽ

3∑
==1

2=

∑
:∈k

E=,:'=,: + _
3∑
==1

∑
D∈*=

1=,D

s.t.
∑
=

?= ≤ %C>C0; ,∑
=

E=,: ≤ 1,

P̃, Ṽ ∈ arg max
P̃,Ṽ


3∑
==1

∑
D∈*=

1=,D

(∑
:∈k E=,D,:'=,D,:

A3=,D

) ∑
:∈k

E=,D,: ?=,D,:

?=

,

s.t. ?<8=E=,D,: ≤ ?=,D,:E=,D,: ≤ ?<0GE=,D,: ,∑
D∈*=

∑
:∈k

E=,D,: ?=,D,: ≤ ?=,

E=,: =
∑
D∈*=

E=,D,:

}
.

(5)
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4. Resource Allocating Based on Reinforcement Learning
4.1. The Flow of the Proposed Resource Allocation Algorithm

Reinforcement learning can give a better resource allocation scheme with a certain real-
time computing resource, which has been widely used in practice. However, the selection
of the architecture and the components of reinforcement learning has a great impact on
the performance of the algorithm. It is necessary to choose the appropriate reinforcement
learning architecture for different problems. We employ MATD3 for the upper-level
resources allocation and DCTD3 for the lower-level resources allocation, according to the
challenges of the proposed resource allocation model. In the actual scenario, we must
ensure mutual isolation and security between slices, so we do not use multiple agents
in the process of slice resource allocation to users, but train one agent for each slice for
resource allocation.

Figure 2 plots the flow of the proposed resource allocation process. The MATD3
reinforcement learning algorithm contains two agents. One agent is for the base station
allocating the discrete sub-channel resources (V) to the slice, and the other agent is for the
base station allocating continuous power resources (P) to the slice. DCTD3 is employed for
the lower-level optimization task, which enables each slice to simultaneously allocate the
discrete sub-channel resources (Ṽ=) and continuous power resources (P̃=) obtained from the
base station to its users. The agent in the lower level is trained according to the reward of
the lower-level objective. After the resources are allocated to users by the lower-level slices,
the agents in the upper level will get a reward by calculating the upper-level objective
according to the results of the lower-level resource allocation.
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Figure 2. The flow of the proposed resource allocation.

4.2. The Upper-Level Resource Allocation by Using MATD3

How to effectively and accurately define the components, i.e., state, environment,
action, and reward, of reinforcement learning is the key to applying reinforcement learning
to solve practical problems. We will give a detailed description of the components of rein-
forcement learning. In the upper-level optimization, the power allocation is a continuous
variable and the sub-channel allocation is a 0-1 discrete variable. In addition, there are more
and more slices in the actual scenario under CD-DU separation. The increase in dimension
brings challenges to the convergence of reinforcement learning. Therefore, MATD3 with
two agents is employed for the upper-level resource allocation. Algorithm 1 provides
the pseudo-code flow of the algorithm. The first agent is used to allocate sub-channels
resources, and the second agent is to allocate power resources. Additionally, the two agents
cooperate for the same upper-level objective.
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Algorithm 1 MATD3 for the upper-level optimization.

1: for agent < = 1 to 2 do
2: Randomly initialize two current critic networks&1 (SC ,<, AC | \&<,1),&2 (SC ,<, AC | \&<,2)

and one current actor network `(SC ,< | \`<) with weights \&
<,1, \&

<,2 and \`<.

3: Initialize target critic networks & ′1 (SC ,<, AC | \&
′

<,1), &
′
2 (SC ,<, AC | \&

′

<,2) and target actor

`′(SC ,< | \`
′

< ) with weights \&
′

<,1 ←− \
&

<,1, \&
′

<,2 ←− \
&

<,2, \`
′

< ←− \`<.
4: end for
5: for episode=1 to �<0G do
6: Initialize the state of the agents SC = (SC ,1, SC ,2)C=0.
7: for C=1 to )<0G do
8: Select the action aC ,< = `(SC ,< | \`<) + n by the current actor network, < = 1, 2.
9: The first agent executes action aC ,1 to allocate sub-channels to slices.

10: The second agent executes action aC ,2 to allocate power resource to slices.
11: Observe reward AC and observe new state SC+1 = (SC+1,1, SC+1,2).
12: Store transition(SC , AC , AC , SC+1) in �.
13: Sample a random minibatch of S transition (S8 , A8 , A8 , S8+1) from �.
14: Set SC = SC+1.
15: for agent <=1 to 2 do
16: Calculate the value of & ′C0A64C of <th agent according to Equation (13).
17: Update the current critic networks by minimizing the loss according to

Equation (14).
18: Update the current actor network according to Equation (15) or Equation (16).
19: Update the target critic networks according to Equation (17).
20: Update the target actor network according to Equation (18).
21: end for
22: end for
23: end for

4.2.1. State

At each time-step, the state of the <th agent of MATD3 consists of the following four
aspects in this paper.

• The average channel gain G0E : G0E = (6=,: )1×(3· ) with 6=,: is the average channel

gain of users is the =th slice on the :th sub-channel, 6=,: =

∑D=
D=1 6=,D,:

D=
.

• The percentage of the request rate PRA0C4: PRA0C4 = (?AA0C4= )1×3, with ?AA0C4= being the

percentage of the request rate of the =th slice. ?AA0C4= =

∑D=
D=1 A3=,D∑

=

∑D=
D=1 A3=,D

.

• The sub-channels assignment V(C) at time C.
• The power resource allocation P(C) at time C.

We denote SC ,< =
(
G0E , PRA0C4, V(C), P(C)

)
as the state of the <th agent and SC =(

SC ,1, SC ,2
)

as the state of the two agents at time C.

4.2.2. Multi-Agent Actor and Critic Networks

The action aC ,1 =
(
0=,: (C)

)
1×(3· ) of the first agent is the action regarding the sub-

channels allocation for three slices at time C. For each : sub-channel, we assign it to the
=∗ slice with the maximum value, that is, =∗ = arg max

=
(0=,: (C))—the value of E=∗,: is set to

1, and the value of E=,: for the other slice is set to 0 at time C + 1. Therefore, the action aC ,1
impacts the sub-channel allocation V(C + 1) of the state of the two agents.

The action aC ,2 = (0= (C))1×3 of the second agent regards the power allocation for the
three slices at time C. At each time-step, the action of power increases or decreases ∇?1 at
time C, where ∇?1 is the power action bound at time C in the upper-level optimization. The
power allocation P(C + 1) is computed with the action of the second agent by Equation (6):
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P(C + 1) = P(C) + aC ,2 ∗ ∇?1. (6)

Therefore, the actions aC ,2 will impact the state P(C + 1) of the agents and the entire environment.
Two current critic networks &1 (SC ,<, AC | \&<,1) and &2 (SC ,<, AC | \&<,2) with weights

\
&

<,1, \&
<,2 are randomly initialized, which are used to approximate the Q-function for the

<th agent in MATD3. Moreover, we initialize one current actor network `(SC ,< | \`<) with
weights \&

<,1 for each <th agent as shown in line 2 of Algorithm 1, where AC =
(
aC ,1, aC ,2

)
.

The current actor network chooses a deterministic action based on the state SC ,< at time C
by using the deterministic policy gradient. Then, the action aC ,< of the <th agent at time C
can be given as:

aC ,< = c(SC ,<) = `
(
SC ,< | \`<

)
+ n1. (7)

where n1 ∼ N(0,f2
1 (C)) is a normal random noise. It is used to explore more move-

ments. The variance of this noise decreases with the number of training epochs, that
is, f2

1 (C + 1) = [f2
1 (C), where [ is a constant less than one. The action is compressed to

(−1, 1) by the Tanh activation function in the actor network.

Moreover, we initialize two critic target networks,& ′1
(
SC ,<, A′C |\

&′

<,1

)
and& ′2

(
SC ,<, A′C |\

&′

<,2

)
,

and one target actor network, `′
(
SC ,< | \`

′
<

)
, where A′C =

(
a′
C ,1, a′

C ,2

)
. The parameters \&

′

<,1,

\
&′

<,2 and \
`′
< are initialized with that of the corresponding current actor networks. The

action a′C ,< is given as:

a′C ,< = `′
(
SC+1,< | \`

′
<

)
+ n1. (8)

4.2.3. Reward

After the two agents execute theirs action aC ,<, the environment state is changed from
SC ,< to SC+1,<. The <th agent gets a reward AC ,< from the environment, < = 1, 2. In upper-
level optimization, two agents are assigned to allocate sub-channels and power resources
for the same upper-level optimization objective. Therefore, we set the same reward function
for these two agents at time C, that is, AC ,1 = AC ,2, according to the objective function and the
constraint violation of the upper-level optimization (1).

AC ,< =
∑
=

2=

∑
:

E=,:'=,: + _
∑
=

∑
D∈*=

1=,D (C) − ]r, < = 1, 2. (9)

where the r is the degree of constraint violation and ] is the penalty coefficient. Therefore,
the total reward 'C>C0;C ,< of the <th agent can be given as

'C>C0;C ,< =

)∑
g=0

WgAC+g,<. (10)

where W ∈ [0, 1] is a discount factor. The Q-value function based on the Belman function
can evaluate the expected total return per action. It can be denoted as follows

& c ((C ,<, 0C ,1, 0C ,2) = �c
[
'C>C0;C | (C ,<, 0C ,1, 0C ,2

]
= �c

[
)∑
g=0

WgAC+g,< | (C ,<, 0C ,1, 0C ,2

]
= �c

[
AC ,< + W& c ((C+1,<, 0C+1,1, 0C+1,2) | (C ,<, 0C ,1, 0C ,2

]
.

(11)

We select actions AC =
(
aC ,1, aC ,2

)
of agents according to Equation (7) for a given state SC .

Then, we execute action aC ,< to get the rewards of agents AC =
(
AC ,1, AC ,2

)
and the new states

of the two agents SC+1 =
(
SC+1,1, SC+1,2

)
. Transition (SC , AC , AC , SC+1) is stored in the memory

replay �, as shown in line 13 of Algorithm 1.
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4.2.4. Training Process of MATD3

We extract samples (S8 , A8 , A8 , S8+1) from �, with a batch size # for training the net-
works at each time-step. Figure 3 plots the training process of agent 1 of MATD3. Global
information is required to be adopted for training the networks in multiple agents-based
reinforcement learning. Therefore, we need to input the actions of all agents into the current
critic networks. The parameters of the current critic networks are updated to minimize the
loss. The loss function of the 9th current critic network of the <th agent is given as

! (\&
<, 9 ) =

1
#

∑
8

[
H8,< −& 9

(
S8,<, A8 | \&<, 9

)]2
, 9 = 1, 2. (12)

where H8,< = A8,< + W& ′C0A64C is an approximation of policy. The values of & ′C0A64C are the
minimum Q-values of the target critic networks & ′1 and & ′2. That is,

& ′C0A64C = min(& ′1 (S8+1,<, A′8 | \
&′

<,1),&
′
2 (S8+1,<, A′8 | \

&′

<,2)), (13)

where A′
8
= (a′

8,1, a′
8,2) contains actions of the target actor network of the two agents. Then,

the parameters \&
<, 9 of the 9th current critic network of the<th agent is updated to minimize

the loss function. That is,

\
&

<, 9 ← arg min ! (\&
<, 9 ), 9 = 1, 2. (14)

(Si  , Ai , ri ,Si+1)
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Figure 3. The training process of MATD3 in optimizing the upper level resource allocation problem.

The parameters of the current actor network of the agents are updated by using a
deterministic policy gradient strategy. We can get to the Q-value through any one of the
current critic networks, We choose the Q-value from the first current critic network in this
paper. Accordingly, we can derive the gradient of the ensemble objective concerning the
first agent, i.e., < = 1 as follows:

∇\`1 � = �
[
∇a&1 (S8,1, a, a8,2 | \&1 )∇\`1 `(S8,1 | \

`

1 )
����
a=` (S8,1 |\`1 )

]
. (15)

For the second agent,

∇\`2 � = �
[
∇a&1 (S8,2, a8,1, a | \&1 )∇\`2 `(S8,2 | \

`

2 )
����
a=` (S8,2 |\`2 )

]
. (16)
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In this paper, we use the Adam optimizer [49] with a learning rate of U = 0.001 and
V1 = 0.9, V2 = 0.999 to update the parameters of the current actor networks. The learning
rate U is allowed to adjust during the training phase.

After an epoch of training, we update the parameters of the target critic networks of
the <th agent as follows:

\
&′

<, 9 ←− e\
&

<, 9 + (1 − e)\
&′

<, 9 , 9 = 1, 2. (17)

The parameters of the target actor network of the <th agent are updated as:

\
`′

< ←− e\`< + (1 − e)\
`′

< , (18)

where e < 1 is a smaller constant to update target networks. The calculation of reward in
upper-level optimization depends on the lower-level optimization scheme given by the
actor network of the lower-level optimization.

4.3. The Lower-Level Resource Allocation by Using DCTD3

Because slices are securely isolated from each other and there is an interaction between
agents in multi-agent reinforcement learning, we use only one agent to complete discrete
sub-channel resource allocation and continuous power resource allocation from slices
to users. Therefore, we employ DCTD3 for this resource allocation model to solve the
problem of simultaneously allocating discrete resources and continuous resources. Each
slice corresponds to an agent.

To deal with the resource allocation of the =th slice, we denote the state of the agent
in the =th slice as S=C = (G=, Rd=, Ṽ= (C), P̃= (C)), where G= =

(
6=,D,:

)
1×(D= · =) is the channel

gain vector about the users on these  = sub-channels, 6=,D,: is the channel gain on the sub-
channel : between the user D in the =th slice and the 5G base station, and Rd= = (A3=,D)1×D=
is the desired rate of the users in the =th slice. Ṽ= (C) and P̃= (C) are the sub-channel allocation
and power allocation in the =th slice at time C, respectively.

The action of the =th agent consists of two parts: a=C = (a=1 (C), a=2 (C)). It is compressed to
(−1, 1) by using the Tanh function. It also adds a noise, as used in MATD3 for exploration.
The action a=1 (C) = (0

=,1
D,: (C))1×(D= · =) is about sub-channels allocation for users in the =

slice. For each sub-channel : , we assign it to the D∗ user with the maximal value, that is,
D∗ = arg max

D
(0=,1
D,: (C)), and the E=,D∗,: is set to 1 at time C + 1. The action a=2 (C) = (0

=,2
:
(C))1×( =)

is about power allocation for  = sub-channels. At each time-step, the action of power
increases or decreases ∇?2 at time C, where ∇?2 is the power action bound at time C in the
lower-level optimization.

P= (C + 1) = P= (C) + a=2 (C)∇?2. (19)

Therefore, the discrete subchannels resource and continuous power resources can be
allocated together by using only one agent.

The state of the environment changes according to these processed actions, that is,
S=C becomes S=

C+1. First of all, we need to generate training samples, that is, to extract a
certain batch of training samples of reinforcement learning and store it in experience replay.
The states of the input neural network are composed of the channel gain, desired rate,
and allocated power. After taking enough samples, we start to train the critic and actor
networks. The reward is defined according to the objective and constraint violation of the
lower-level optimization (2) at time C:

A=C =
∑
D∈*=

1=,D (C)
(∑

: '=,D,: (C)
A3=,D

) (∑: ?: (C)∗E=,D,: )/?=
− ]r. (20)

where the r is the degree of constraint violation and ] is the penalty coefficient.
The training process is similar to MATD3 in the upper-level optimization on the whole,

except that, in the critic network, we only need the actions of the current agent, but not the
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actions of other agents. Therefore, we extract samples with a batch size # , and the update
formula through gradient ascent of the actor network of each agent with parameter \` in
the =th slice is as follows

∇\` � = �
[
∇a=

8
&1 (S=8 , a=8 | \

&

1 )∇\`1 `(S
=
8 | \

`

1 )
]
. (21)

Then, the loss that we want to reduce of the agent’s current critic networks with
parameter \&1 , \&2 in the =th slice can be calculated as

! (\&
9
) = 1

#

[
H8 −& 9 (S=8 , a=8 | \

&

9
)
]2

, 9 = 1, 2. (22)

Additionally, the target networks are updated by Equations (17) and (18), the same as
MATD3 for the upper-level optimization. In case of similar problems, we can input its state
into the actor network to a good solution for lower optimization by iterating a certain time.
We then give the lower allocation scheme to the upper optimization.

5. Simulation Results and Analysis

To demonstrate the effectiveness of the proposed model and algorithm, we conducted
a lot of simulated training. We assumed that there were two stations deployed on the
center of a square region 400 m × 400 m. They jointly served three slices, corresponding
to different application scenarios (mMTC, eMBB, uRLLC) of 5G under CU-DU separation.
We also assumed that there were two users in the first slice, three users in the second slice,
and four users in the third slice. The desired rates A31,D , A32,D , A33,D of each of the users are
randomly initialized in [3, 6] MB/s, [6, 9] MB/s and [9, 12] MB/s, respectively. The path
loss model used in this paper is 22;>610 (3) + 28 + 20;>610 ( 52) + f(� , where 3 is the distance
between the user and the connected base station and 52 is the central frequency of the 5G
band, which is set to 52 = 3 GHz. Because the user’s channel gain for each sub-channel is
constantly changing in real scenarios, we re-initialize the normally distributed variables
f(� ∼ N(0, 32) for each epoch. The learning rate of the proposed algorithm is set to 0.0001,
memory capacity � = 10,000, and batch size # = 64. Each network of agents has one hidden
layer with 128 dimensions. All simulation results are provided with pytorch-gpu 1.12.1 on
Python 3.8 platform. A summary of the parameters is listed in Table 1.

Table 1. Summary of simulation parameters.

Notation Description

D1, D2, D3 2, 3, 4
%C>C0; 12 W
'<8=1 , '<8=2 , '<8=3 3 MB/s, 6 MB/s, 9 MB/s
F 180 kHz
W 0.99
Noise power spectral density f2 −174 dBm/Hz
Pathloss 22;>610 (3) + 28 + 20;>610 ( 52) + f(�
Fading shadow f(� f(� ∼ N(0, 32)
Rate unit price 21, 22, 23 0.5, 0.3, 0.2
_ 3
?<8=, ?<0G 120 mW, 800 mW
∇?1,∇?2 100 mW, 50 mW
K 20
e 0.998
[ 0.9999
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5.1. The Performance of MATD3 for the Upper-Level Resource Allocation

The �<0G was set to 2500, and the )<0G was set to 50 in upper-level optimization.
Figure 4 shows the training results of MATD3 for the upper-level resource allocation.
Specifically, Figure 4a plots the total reward vs the epoch. From this figure, we can see
that the total reward in each epoch of the agents converges after 2250 epochs. Figure 4b,c
plot the loss values of the first agent and the second agent, respectively. From this figure,
we can see that the loss function of the first agent to allocate sub-channels dropped off by
1450 epochs, and by 2300 epochs, it was already below 0.1. The loss function of the second
agent dropped by 1400 epochs, and by 2250 epochs, it was already below 0.1. From these
figures, we can see that the proposed algorithm has better convergence.
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Figure 4. The MATD3 training results of base stations allocating resources to the slices.

In addition, due to the randomness of reinforcement learning, the trained agents may
not be able to explore high-value areas. High-value areas can be regarded as optimal
solutions in reinforcement learning. We conducted the proposed algorithm 10 times
independently to verify the stability of the proposed algorithm by different random number
seeds. Table 2 lists the best value, the mean value, and the value of the variance of the
reward and the loss of the critic networks of agents. The results from the statistical analyses
yielded that the proposed algorithm is robust and accurate.

Table 2. Statistical analyses of the rewards and the loss of the agents.

Reward Loss of Agent 1 Loss of Agent 2

Best Mean Variance Best Mean Variance Best Mean Variance

49.5 47.97143 3.23238 0.001 0.71429 0.0981 0.001 0.52357 0.0487

We conducted the proposed algorithm with different learning rates in the Adam
optimizer and compared it with the MADDPG algorithm and nested bi-level evolutionary
algorithm (NBLEA) [50] to further investigate the performance of the proposed algorithm.
The Adam optimizer is used to optimize the parameters of the current critic networks of
MATD3. The learning rates of the Adam optimizer were set to 0.001, 0.0001, and 0.00001,
respectively. After the cumulative reward converges, we saved the actor neural network,
which can quickly get a better solution through a simple calculation. Figure ?? shows the
comparison results for 10 independent runs. From this figure, we can see that MATD3,
with a learning rate of 0.0001, can obtain a promising result. The results obtained by
NBLEA are superior to that of MATD3. Nested evolutionary algorithms are a popular
approach for handling bi-level problems, where lower-level optimization problem is solved,
corresponding to each upper-level member. Though NBLEA is superior to MATD3, in
terms of accuracy, nested strategies are computationally very expensive.
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Figure 5. Comparison of different algorithms with ten different initialization.

5.2. The Performance of DCTD3 for the Lower-Level Optimization

The parameter )<0G of DCTD3 was set to 30 in all slices. The �<0G was set to 2000
in slice 1, 5000 in slice 2, and 10,000 in slice 3. We interacted with the environment and
collected 9000 samples and stored them in the experience replay. Figure 6 plots the total
rewards of the agent in different slices. Specifically, Figure 6a plots the total reward of
the agent in the first slice. This figure shows that a higher reward is achieved in about
50 epochs. Figure 6b plots the total reward of the agent in the second slice. This figure
shows that a higher reward is achieved in less than 1000 epochs. The total reward of agent
in the third slice is shown in Figure 6c. From this figure, we can see that we can obtain a
higher reward with about 1000 epochs. This means that the proposed algorithm can obtain
a promising result with a smaller number of iterations.
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Figure 6. The total reward of the agents in the lower-level resource allocation.

Figure 7 plots the values of the loss functions of the critic networks, which are used to
allocate the resources to the users. From this figure, we can see that the values of the loss
functions gradually decrease with the increase in the number of training epochs. In the first
slice, the loss of DCTD3 critic networks converges when the training epoch was about 2000
with 64 batch size samples, as shown in Figure 7a. In the second slice, the loss converges
when the training epoch was about 2000 epochs, as shown in Figure 7b. The training epoch
needed to be at 3000 epochs for loss converges for the third slice, as shown in Figure 7c.
In these three slices, the different epochs to achieve loss convergence were caused by the
different numbers of users in the slices and the different numbers of allocated sub-channels.
The loss functions of all agents could achieve convergence. After the training, we only
saved the actor-network of each slice. We could input the state into the actor network
and iterate it for a certain number of time steps to quickly get a better resource allocation
scheme within a certain time.
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Figure 7. The loss of the agents of the critic networks in the lower-level resource allocation.

6. Conclusions

In this paper, we established a bi-level resource allocation model for the 5G wire-
less communication system under the CU-DU separation architecture. The upper-level
optimization is about the base stations allocating the resources to the slices to optimize
the operator’s benefits, and the lower-level optimization is about the slices allocating the
resource to their users to improve the service equity of all users. In the actual application of
this scenario, because the situation in the slice changed rapidly, it required an algorithm
that can quickly give a better allocation scheme. Thus, this paper employed MATD3 for the
upper-level resource allocation and DCTD3 for the lower-level resource allocation. Finally,
we conducted a lot of simulation experiments. The results demonstrated the efficiency and
feasibility of the proposed algorithm.

In the future, we will try to study how to allocate different amounts of resource blocks
with fixed input action dimensions to realize the training of only one agent for each slice in
a real sense. However, due to this kind of reinforcement learning based on neural networks,
a different allocation of resource blocks have different dimensions during training, which
brings many restrictions in the actual landing. We will make some improvements in this
area to make the algorithm generalize better.
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The following abbreviations are used in this manuscript:

AAU Active antenna unit
AMF Access and mobility management function
BBU Building baseband unit
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CU-DU Centralized unit-distributed unit
DCTD3 Discrete and continuous twin delayed deep deterministic policy gradient
DDPG Deep deterministic policy gradient
DRL Deep reinforcement learning
DQN Deep Q-learning network
eMBB Enhanced mobile broadband
LTE Long term evolution
MADDPG Multi-agent deep deterministic policy gradient
MATD3 Multi-agent twin deep deterministic policy gradient
mMTC Massive machine type communications
MVNO Mobile virtual network operators
NOMA Non-orthogonal multiple access
NFV Network function virtualization
NBLEA Nested bi-level evolutionary algorithm
OFDMA Orthogonal frequency division multiple access
PRB Physical resource block
QoS Quality of service
RL Reinforcement learning
RRU Remote radio unit
SMF Session management function
UPF User plane function
URLLC Ultra-reliable and low-latency communication
V-CRAN Virtualized cloud radio access network
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