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Abstract: Testing for complex serial dependence in economic and financial time series is a crucial
task that bears many practical implications. However, the linear paradigm remains pervasive among
practitioners as the autocorrelation function, because, despite its known shortcomings, it is still one
of the most used tools in time series analysis. We propose a solution to the problem, by introducing
the R package tseriesEntropy, dedicated to testing for serial/cross dependence and nonlinear serial
dependence in time series, based on the entropy metric Sρ. The package implements tests for both
continuous and categorical data. The nonparametric tests, based on Sρ, rely on minimal assumptions
and have also been shown to be powerful for small sample sizes. The measure can be used as a
nonlinear auto/cross-dependence function, both as an exploratory tool, or as a diagnostic measure, if
computed on the residuals from a fitted model. Different null hypotheses of either independence or
linear dependence can be tested by means of resampling methods, backed up by a sound theoretical
background. We showcase our methods on a panel of commodity price time series. The results
hint at the presence of a complex dependence in the conditional mean, together with conditional
heteroskedasticity, and indicate the need for an appropriate nonlinear specification.

Keywords: nonlinear time series; entropy; Hellinger distance; testing for nonlinear serial dependence;
bootstrap; surrogate time series; tseriesEntropy; commodity prices

MSC: 37M10

1. Introduction

The problem of measuring and testing dependence between two or more random
variables is as old as statistics itself; still, it is subject to very active development and
research. In the time series context, especially in economics and finance, there is a clear need
to measure the serial/cross dependence beyond the information conveyed by the linear
paradigm through the correlograms. For instance, a proper diagnostic test on the residuals
of a statistical model should enforce the null hypothesis of serial independence. Testing
for nonlinear serial dependence is also important in view of the practical implications
of the nonlinear nature of the series. Departures from the linear hypothesis can occur in
many different directions, since, contrarily to the linear case, there is no formal operational
definition of a nonlinear process that can be tested directly. As a result, a test for a nonlinear
effect is often either a test for a specific feature or the comparison of two specifications.
For instance, it is well known that the business cycle is strongly asymmetric, since it is
characterised by a slow growth phase, followed by a fast recession. As a result, all the
macroeconomic time series that depend upon the economic activity present an asymmetry,
which is not possible to describe through linear models. These include, for instance,
unemployment rates, strikes rates, and wages. Another peculiar nonlinear feature observed
in many economic and financial time series is the presence of multiple regimes. This
is observed, for instance, in the dynamics of real exchange rates, where mean reversion
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is triggered by crossing a certain threshold. One way to model regime switching time
series is to adopt the well known threshold autoregressive models (TAR) [1] and their
moving-average extension (TARMA) [2]. Nonlinearity and complexity is also present in the
conditional variance and this is especially observed in financial time series, as witnessed
by the proliferation of ARCH-/GARCH-type models and the associated tests aimed at
detecting conditional heteroskedasticity. The interested reader is referred to [3–6] and
references therein for different accounts on the topic and on various testing procedures,
on both the conditional mean and the conditional variance. Recent tests for threshold
effects in the TAR/TARMA framework are introduced in [7–9].

The present paper moves from the works of [10,11], that propose nonparametric
tests for serial/cross dependence and nonlinear serial dependence, relying on minimal
assumptions, and can be used in many different scenarios. Such omnibus tests have good
size and high power against many alternatives for sample sizes as small as 50. Both
works are based upon the entropy-based dependence metric Sρ, that possesses many
desirable properties. We describe the usage of the R package tseriesEntropy [12], which
implements and extends such results and provides user-friendly routines, together with
plotting and summary abilities, so that the measure can be used as a dropout replacement of
the overly-used correlograms. Most tests can be applied both to continuous and categorical
data. We describe the theoretical background underlying inference and testing with the
entropy-based metric Sρ. Then, we focus on describing in detail all the routines present
in the tseriesEntropy package by means of examples and code snippets that can be
used to exactly reproduce some of the results of the paper. Different null hypotheses of
either independence or linear dependence can be tested and the tests can be used both
as exploratory tools or as diagnostic measures, if computed on the residuals from a fitted
model. We also illustrate the practical usage of the package on a panel of time series
of commodities.

Before describing in some detail the functionalities available in tseriesEntropy, to-
gether with providing a sketch of the underlying theoretical background, we provide a
selective review of the software libraries dedicated to the theme of testing for serial/cross
dependence in time series. We also mention some of the packages that are not explicitly
dedicated to time series, but which implement recent notable theoretical results, especially
in the multivariate case. The review is by no means exhaustive and we have selected those
packages that appear to rely upon a sound theoretical background with available mathe-
matical results on the validity of the associated inferences. The package np [13] contains
bootstrap tests for serial and pairwise independence, based on the metric entropy Sρ. These
are implemented in the functions npsdeptest and npdeptest, respectively. The measure
is the same we use in tseriesEntropy, that also implements a similar test in its function
Srho.test.ts and that encompasses both tests. The package NTS [14] contains some tests
for threshold nonlinearity and lack of fit. The package testcorr [15] contains functions
that implement robust tests based on auto/cross-correlation functions and for serial inde-
pendence. Weighted portmanteau tests for goodness-of-fit and serial correlation, based
on the trace of the square of the autocorrelation matrix, are implemented in the package
WeightedPortTest [16]. There, a gamma-based approximation is used to derive the asymp-
totic null distribution of the test statistics. The package SDD [17] implements bootstrap tests
for serial independence, based on generalized divergence functionals, that include, as a
special case, the Hellinger distance. The authors use a nonparametric kernel density esti-
mator for the densities, based upon Gaussian kernels. Then, the divergence measures are
approximated by summation over a finite grid of values. The null distribution is obtained
through permutation. The core function ADF also implements the serial independence test,
based on grouping values in a contingency table and then using Pearson’s Chi-squared
statistic. The package dCovTS [18] includes tests for pairwise/multivariate dependence in
time series, based on the distance covariance/correlation function. The null distribution
is approximated through either the iid or the wild bootstrap scheme. A portmanteau
diagnostic test for vector autoregressive moving average (VARMA) models, based on the
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determinant of the standardized multivariate residual autocorrelations, is implemented
in the portes package [19]. The package tsextreme [20] characterises the extreme depen-
dence structure of time series through Bayesian methods. The package extremogram [21]
implements permutation tests for serial and cross independence based on the extremogram.
The package copula [22] contains tests of serial and multivariate independence, based
on the empirical copula process. Finally, the package tseries [23], which is probably
the first R package dedicated to time series to have appeared on CRAN, implements two
neural network tests for nonlinearity in the mean, either in a single series or in a bivariate
(regression) framework. We mention them even if they are not directly based upon the idea
of measuring the serial/cross dependence. Both tests are asymptotic.

Besides the R packages specifically dedicated to time series, there are a number of
packages that propose tests for independence/goodness-of-fit through diverse approaches.
The packages wdm [24] and testforDEP [25] implement several measures of dependence
and the associated tests for bivariate/multivariate independence. The package LIStest [26]
implements a test for bivariate independence for continuous data, based on the longest
increasing subsequence. The package USP [27] implements various independence tests for
discrete, continuous, and infinite-dimensional data. These are permutation tests based
on U-statistics. The package IndepTest [28] provides implementations of the weighted
Kozachenko–Leonenko entropy estimator and permutation tests of independence based on
it. The package dHSIC [29] contains an implementation of the d-variable Hilbert Schmidt
multivariate independence criterion and several hypothesis tests based on it. A similar test
is also implemented in the package EDMeasure [30], together with several other tests based
upon measures of mutual dependence and conditional mean dependence. Multivariate
independence tests, based on the notion of distance multivariance, are implemented in the
package multivariance [31]. The package steadyICA [32] also implements a similar set
of tests, but these rely on the notion of distance covariance instead. A test for conditional
univariate/multivariate independence, based on the generalized covariance measure, is
implemented in the package GeneralisedCovarianceMeasure [33].

The article is structured as follows: in Section 2 we introduce the entropy metric
Sρ and describe the routines for its nonparametric estimation, both for continuous and
dicrete/categorical time series. The S4 class Srho is also introduced and briefly illustrated.
In Section 3 we introduce the routines to test for serial/cross independence with Sρ. As in
Section 2, there are separate routines for testing both continuous and discrete/categorical
time series and we also describe the S4 class Srho.test designed to work with all the tests
based upon Sρ. Section 4 describes the theoretical background and the routines dedicated
to testing for nonlinear serial dependence in time series. In particular, Section 4.1 illustrates
the routines that implement the test where the null hypothesis is that of a linear Gaussian
random process. The null distribution is based on surrogate data and Simulated Annealing.
The test where the null hypothesis is that of a generic linear process (not necessarily
Gaussian) is described in Section 4.2. In such cases, the null distribution is derived by
means of a smoothed sieve bootstrap scheme. Finally, in Section 5 we show an application
of the tests upon a panel of four monthly commodity price time series.

2. The Measure Sρ for Serial and Cross Dependence

Let {Xt} and {Yt}, t ∈ N, be two stationary random processes, where FXt ,Yt(x, y) =
P(Xt ≤ x, Yt ≤ y), FXt(x) = P(Xt ≤ x), FYt(y) = P(Yt ≤ y). Then, the metric entropy Sρ at
lag k is a normalized version of the Bhattacharya–Hellinger–Matusita distance, defined as

Sρ(k) =
1
2

∫ ∫ (√
dF(Xt ,Yt+k)

(x, y)−
√

dFXt(x) dFYt+k (y)
)2

(1)

= 1−
∫ ∫ √

dF(Xt ,Yt+k)
(x, y) dFXt(x) dFYt+k (y). (2)



Mathematics 2023, 11, 757 4 of 27

In the case where Yt = Xt for all t, Sρ(k) measures the serial dependence of {Xt} at lag
k, this can be interpreted as a nonlinear auto/cross-correlation function that overcomes
the limits of Pearson’s correlation coefficient. As pointed out in [10,11,34], Sρ(k) satisfies
many desirable properties, including the seven Rényi axioms and the additional properties
described in [34]. Moreover, it satisfies the so-called generalized data processing inequal-
ity of Information Theory that, inter alia, implies independence from the margins in the
continuous case (see also [35], for a discussion).

As concerns the relation to Pearson’s correlation coefficient in the Gaussian case, we
have the following:

Proposition 1 ([11]). Let (Xt, Yt+k) ∼ N(0, 1, ρk) be a standard Normal random vector with
correlation coefficient ρk. Then

Sρ(k) = 1−
2
(
1− ρ2

k
)1/4

(4− ρ2
k)

1/2
. (3)

The relation, depicted in Figure 1, presents a sharp steepness around the maximum value of
ρ in modulus. The package tseriesEntropy implements the measure both for continuous
and categorical data.

-1.0 -0.5 0.0 0.5 1.0
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S ρ

Figure 1. Relation between Sρ and the correlation coefficient ρ under the bivariate Gaussian setting.

2.1. Continuous State Space Time Series

In the case of continuous state–space processes that admit a probability density func-
tion with respect to the Lebesgue measure, the entropy measure Sρ becomes:

Sρ(k) =
1
2

∫ ∫ (√
f(Xt ,Yt+k)

(x, y)−
√

fXt(x) fYt+k (y)
)2

dx dy (4)

= 1−
∫ ∫ √

f(Xt ,Yt+k)
(x, y) fXt(x) fYt+k (y) dx dy. (5)

From now on, for simplicity, we use Sk in place of Sρ(k). The nonparametric estimator
of Sk is the following:

Ŝk =
1
2

∫ ∫ (√
f̂(Xt ,Yt+k)

(x, y)−
√

f̂Xt(x) f̂Yt+k (y)
)2

dx dy (6)
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and is implemented through kernel density estimation of the bivariate density f(Xt ,Yt+k)

and of the marginal densities fXt(x) and fYt+k (y):

f̂Xt(x) =
1
n

n

∑
t=1

1
h1

K
(

x− Xt

h1

)
; f̂Yt(y) =

1
n

n

∑
t=1

1
h2

K
(

y−Yt

h2

)
; (7)

f̂(Xt ,Yt+k)
(x, y) =

1
n− k

n−k

∑
t=1

det(H−1)K
(

H−1(x− Xt, y−Yt+k)
ᵀ
)

. (8)

Here, K is a univariate kernel function and h1, h2 are the corresponding bandwidths.
K is a bivariate kernel function and H is the bandwidth matrix. The function Srho.ts
implements the nonparametric estimator of Equation (6). The syntax is the following:

Srho.ts(x, y, lag.max=10, bw=c("reference", "mlcv", "lscv", "scv", "pi"),
method=c("integral", "summation"), bdiag=TRUE, plot=TRUE, tol=0.001, ...)

Here, x and y are numeric vectors/time series. If y is not missing, then the function
computes the entropy measure Sk between Xt and Yt+k, where the lag k ranges from
-lag.max to lag.max. As a simple illustration, we generate a time series x of 50 observations
from an AR(1) process and induce a nonlinear dependence at lag 1 in the series y.

Xt = 0.8Xt−1 + εt, where εt ∼ N(0, 1) (9)

Yt = −0.3 + 0.8X2
t−1. (10)

The results are shown in Figure 2 that shows the peak at lag 1.

-3 -2 -1 0 1 2 3

0.
00

0.
02

0.
04

0.
06

0.
08

lag k

S k

Figure 2. Cross entropy Sk between Xt and Yt+k (k = −3, . . . , 3) from Equation (9).

set.seed(11)
x <- arima.sim(list(order = c(1,0,0), ar = 0.8), n = 50)
y <- c(runif(1),x[-50]^2*0.8-0.3)
S1 <- Srho.ts(x,y,lag.max=3)

Plots can be suppressed by setting plot = FALSE. The choice of the kernel functions in
the nonparametric estimator of Equation (6) has a limited impact and is taken to be Gaussian
for the univariate densities and the product of two Gaussians for the bivariate density.

The bandwidth selection method plays an important role so that tseriesEntropy
implements several options and some of these rely on the package ks [36]. They are
controlled through the option bw and are presented in Table 1.
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Table 1. Overview of the bandwidth selection options in Srho.ts.

bw Option Description Reference

reference Reference [37]
mlcv Maximum Likelihood Cross Validation [37]
lscv Least Squares Cross Validation [38]
scv Smoothed Cross Validation [39]
pi Plug-in [40]

If the bandwidth selector is either reference or mlcv, then the bandwidth matrix for
estimating the bivariate density is diagonal and this implies a spherical Gaussian kernel.
The methods that rely on the package ks, namely, lscv, scv, pi can use both a diagonal
or an unstructured bandwidth matrix through the option bdiag. If bdiag = TRUE (the
default), then a diagonal matrix is used. This option has been introduced in version 0.7-0.

The double integral is computed by means of adaptive cubature methods, imple-
mented in the function hcubature of the package cubature [41]. The maximum tolerance
tol is passed to hcubature and usually there is no need to change its default value. The op-
tion method = “summation” selects an alternative estimator based on summation. As also
remarked in [10], the estimator based upon adaptive integration is generally preferable.

If y is missing, then Srho.ts computes the serial version of the measure. This is
shown in the next example, where we compute Sk, with the Likelihood Cross Validation
bandwidth selector, on a realization from an MA(1) process:

set.seed(10)
x <- arima.sim(list(order = c(0,0,1), ma = 0.8), n = 100)
S2 <- Srho.ts(x,lag.max=5, bw="mlcv")

The result is shown in Figure 3, where the dependence at lag 1 is detected.

1 2 3 4 5

0.
00

0.
01

0.
02

0.
03

0.
04

lag k

S k

Figure 3. Entropy Sk (k = 1, . . . , 5) computed on a realization of a MA(1) process.

2.2. Categorical/Discrete State Space Time Series

In the case of categorical time series, the entropy measure Sk of Equations (1) and (2)
becomes:

Sk =
1
2 ∑

x
∑
y

(√
P(Xt = x, Yt+k = y)−

√
P(Xt = x) P(Yt+k = y)

)2
(11)

= 1−∑
x

∑
y

√
P(Xt = x, Yt+k = y)

√
P(Xt = x) P(Yt+k = y) (12)
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The package implements the maximum likelihood estimator of Sk based on relative
frequencies in the function Srho:

Ŝk =
1
2 ∑

x
∑
y

(√
P̂(Xt = x, Yt+k = y)−

√
P̂(Xt = x) P̂(Yt+k = y)

)2
, (13)

where

P̂(Xt = x, Yt+k = y) = (n− k)−1
n−k

∑
t=1

I(Xt = x, Yt+k = y); (14)

P̂(Xt = x) = n−1
n

∑
t=1

I(Xt = x); P̂(Yt+k = y) = (n− k)−1
n−k

∑
t=1

I(Yt+k = y), (15)

and I(A) is the indicator function that takes value 1 if A is true, 0 otherwise. The syntax of
Srho is the following:

Srho(x, y, lag.max, stationary=TRUE, plot=TRUE, version=c("FORTRAN","R"),
nor=FALSE)

The main difference with Srho.ts lies in the option nor, which has been introduced
to deal with the effects of the margins. While the measure, based on the distance between
densities, is free from the effects of the marginal probability distributions, this is not the
case with discrete/categorical data, so that the maximum reachable value of the measure
is not 1 but depends upon the marginal probabilities. As is pointed out below, this has
no practical effects if Sk is used in hypothesis testing. However, if the actual value of the
measure matters, as is the case when, for instance, one compares the level of dependence of
different series, then the option nor = TRUE normalizes the measure against its maximum
theoretical attainable level so that the actual range is the interval [0, 1], as it should be. This
effect is illustrated in the following example, where we generate 1000 random variates from
a discrete uniform distribution on the first 5 integers and correlate the sequence with itself
so that we should observe perfect dependence at lag 0.

set.seed(12)
K <- 5
smax <- 1-1/sqrt(K)
x <- as.integer(sample(1:K,size=1e3,replace=TRUE))
S <- Srho(x,x,lag.max=2,nor=FALSE,plot=FALSE)
plot(S,lwd=2,col=4)
abline(h=smax,col=2,lty=2)
text(x=-1,y=0.54, labels=paste("theoretical: ",round(smax,4),sep=""),col=2)
text(x=-1,y=0.50, labels=paste("estimated: ",round(S[3],4),sep=""),col=4)

St <- Srho(x,x,lag.max=2,nor=TRUE)
abline(h=1,col=2,lty=2)

The results are shown in Figure 4. Note that, even if we are in the perfect dependence
scenario, the maximum theoretical attainable level of S0 is not 1 but results in 1− 1/

√
5 =

0.5528 (left panel, red dashed line) and this is confirmed by the estimate Ŝ0 = 0.5527
(blue line). By using the option nor = TRUE the normalized measure reaches 1 at lag zero
(right panel).

The option stationary = TRUE assumes stationarity, so that the marginal probabilities
are estimated on the whole sample and this leads to more efficient estimators, even if its
effect on large samples is negligible.
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Figure 4. Cross Entropy Sk for categorical data, in the presence of perfect dependence at lag 1. The left
panel shows the unnormalized measure (blue, solid line), where the maximum attainable level is
indicated in red. The right panel shows the normalized version of the measure (black, solid line).

2.3. The S4 Classes Srho-class and Srho.ts-class
The S4 classes Srho-class and its extension Srho.ts-class are designed to store and

manage the results coming from Srho and Srho.ts, respectively. These are equipped with
methods show and plot.

showClass("Srho")

Class "Srho" [package "tseriesEntropy"]

Slots:

Name: .Data lags stationary data.type notes
Class: numeric integer logical character~character

Known Subclasses: "Srho.test", "Srho.ts"

St

Srho computed on 5 lags
--------------------------------------------------------------------------
-2 -1 0 1 2
0.003887 0.001294 1.000000 0.001294 0.003887
--------------------------------------------------------------------------
Data type : integer-categorical
Stationary version : TRUE
Additional notes : normalized

In particular, the plot method allows the achievement of fine tuning and customiza-
tions, as shown in Figure 5.
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plot(St,type='h',lwd=10,col='red4',xlab='lag $k$',ylab='$S_k$');

-2 -1 0 1 2
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0.
4

0.
6

0.
8

1.
0

lag k

S k

Figure 5. The same as Figure 4 (right) but with plot customizations.

3. Tests for Serial and Cross Dependence

The package tseriesEntropy offers specialized functions for testing for serial and
cross dependence. The entropy measure Sk has been shown to provide powerful tests that
overcome many of the issues of the auto- and cross-correlation functions [10]. They can be
used both as exploratory tools to investigate the dependence structure of time series and as
diagnostic tools to assess the presence of residual dependence from a fitted model. Being
based upon a nonparametric estimator, it is model-free and is able to detect departures
from independence in any possible direction. Given two time series of size n, realizations
of stationary random processes Xt and Yt we test the null hypotheses that Xt and Yt+k
are independent, for each k ranging in [-lag.max, lag.max]. The distribution of the test
statistic Sk under H0 is obtained by resampling/permutation.

3.1. Tests for Continuous Time Series
In case of continuous state–space time series, the package implements a test for

serial/cross dependence through the routine Srho.test.ts:

Srho.test.ts(x, y, lag.max=10, B=100, plot=TRUE, quant=c(0.95, 0.99),
bw=c("reference", "mlcv", "lscv", "scv", "pi"), bdiag=TRUE,
method=c("integral","summation"), tol=1e-03, ci.type=c("mbb","perm"),...)

Besides the parameters relevant to Srho.ts, the user needs to specify the number B of
bootstrap resamples used to build the distribution of the test statistic under the null
hypothesis. As before, if y is missing, the routine tests for serial dependence in Xt. We
illustrate this in the following example where we compute Sk on w and x, realizations
from a Gaussian white noise and an AR(1) process, respectively. For convenience, we use
the parallel version of the routine Srho.test.ts.p and B = 40. In practice, the choice
of B depends upon the experimenter. In general, 100 replications are enough to have a
rough idea of the result and the number can be increased for a finer assessment of the
significance level.

set.seed(13)
n <- 120
w <- rnorm(n)
x <- arima.sim(n, model = list(ar=0.8));
res1 <- Srho.test.ts.p(w, lag.max = 5, B = 40) # independence
res2 <- Srho.test.ts.p(x, lag.max = 5, B = 40) # dependence
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The results are displayed in Figure 6. The output is similar to that of Srho.ts, but
the rejection bands at levels, specified by quant, are added, and, by default, they are 95%
(green dashed line) and 99% (blue dashed line). No lag of Sk exceeds the confidence bands
for the white noise w (left panel). As for the AR(1) series x, the test statistic points correctly
to the presence of dependence in the 5 lags. In its serial version, the null distribution of Sk
is obtained by random permutation, as also put forward in [10].
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Figure 6. Serial Entropy Sk for k = 1, . . . , 5 (black, solid line) computed on a realization from a white
noise (left panel) and a AR(1) process (right panel). The rejection bands at 95% (green dashed line)
and 99% (blue dashed line) correspond to the null hypothesis of serial independence.

Srho.test.ts.p is the parallel version of the routine that uses the parallel package.
The user only needs to specify the number of workers to be used through the option nwork.
By default, all the available cores are used.

In the next example, we show testing for cross dependence and the effect of the
resampling scheme selected with ci.type. First, we generate two independent realizations
of the following AR(1) process:

Xt = 0.9Xt−1 + εt, where εt ∼ N(0, 1). (16)

set.seed(11)
x <- arima.sim(list(order = c(1,0,0), ar = 0.9), n = 100)
y <- arima.sim(list(order = c(1,0,0), ar = 0.9), n = 100)

Then, we compute the cross entropy between x and y. Since the two time series are
independent realizations, the test should not reject the null hypothesis at all lags, but the
presence of strong serial dependence in the time series affects the results.

S1 <- Srho.test.ts.p(x,y,lag.max=5, B=40, ci.type='perm',plot=FALSE)
S2 <- Srho.test.ts.p(x,y,lag.max=5, B=40, ci.type='mbb' ,plot=FALSE)
plot(S1,ylim=c(0,0.03))
plot(S2,ylim=c(0,0.03))

This is clear from the left panel of Figure 7 where the null distribution is obtained
by randomly permuting the two series (ci.type = "perm"). This also destroys the serial
correlation of the two series and biases the result of the test since the variance of the null
distribution of the test statistic depends upon the autocorrelation of the series. One way
to overcome this problem would be to prewhiten the series before applying the cross-
entropy test (see e.g., [42,43]). Such an approach has its limits, in that it is tailored to be
used for testing with the cross-correlation function, but its use for general measures of
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dependence is questionable. The solution adopted in Srho.test.ts is to resample the
series by means of a moving block bootstrap that preserves the serial dependence structure
of the series [44]. This is selected by setting ci.type = "mbb", which is the default if y
is not missing. The block length is equal to lag.max. The result of the right panel shows
correctly that no lag of the cross-entropy Sk exceeds the rejection bands at 99%.
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Figure 7. Cross Entropy Sk for k = −5, . . . , 5 (black, solid line), computed between two inde-
pendent realizations of a AR(1) process. The rejection bands at 95% and 99% are indicated as
green and blue dashed lines, respectively. In the left panel they are computed by permutation
(ci.type=‘perm’), whereas in the right panel the bands are computed through a moving block
bootstrap (ci.type=‘mbb’).

3.2. Tests for Discrete/Categorical Time Series
The test for serial/cross independence for categorical time series is implemented in

the routine Srho.test:

Srho.test(x, y, lag.max=10, B=1000, stationary=TRUE, plot=TRUE,
quant=c(0.95,0.99), nor=FALSE)

There are no new options with respect to Srho.test.ts; moreover, for the cross-
entropy version, only the permutation option is available. The moving block bootstrap
is implemented in a future version of the package. In the next example, we generate y,
a correlated binary sequence (at lag 2) by thresholding over the origin a realization x of a
MA process:

Xt = 0.8εt−2 + εt, where εt ∼ N(0, 1) (17)

Yt = I(Xt > 0), where I is the indicator function. (18)

The results are shown in Figure 8.

set.seed(11)
x <- arima.sim(list(order = c(0,0,2), ma = c(0,0.8)), n = 200)
y <- as.integer(x>0)
S <- Srho.test(y,lag.max=5)
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Figure 8. Serial Entropy Sk for k = 1, . . . , 5 (black, solid line) computed on a correlated binary time
series generated from discretizing a MA(2) process. The rejection bands at 95% (green dashed line)
and 99% (blue dashed line) correspond to the null hypothesis of serial independence.

3.3. The S4 Class Srho.test-class
The S4 class Srho.test-class is an extension of Srho-class, to allow dealing with

the results coming from all the tests implemented in the package.

showClass("Srho.test")

Class "Srho.test" [package "tseriesEntropy"]

Slots:

Name: .Data call call.h
Class: numeric call~call

Name: quantiles test.type significant.lags
Class: matrix character~list

Name: p.value lags stationary
Class: numeric integer~logical

Name: data.type notes
Class: character~character

Extends: "Srho"

S

--------------------------------------------------------------------------
Srho test for serial dependence on lags 1 to 5
--------------------------------------------------------------------------
Call:
Srho.test(x = y, lag.max = 5, plot = FALSE)
--------------------------------------------------------------------------
Stationary version : TRUE
Significant.lags:
$`Q95%`
[1] 2

$`Q99%`
[1] 2
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--------------------------------------------------------------------------
p-values:
1 2 3 4 5
0.454 0.000 0.382 0.323 0.581
--------------------------------------------------------------------------

The show method prints both the significant lags at levels set by quant and the p-
values of the test at each lag. As shown in the previous examples, the plot method adds
the rejection bands of the tests computed on the null distribution at the levels specified
in quant.

4. Tests for Nonlinear Serial Dependence

The most important functions of the package tseriesEntropy implement the tests
for nonlinear serial dependence introduced in [11] where the formal definition of linear
processes is discussed along the lines of [45]. In particular, the null hypothesis assumes
that the data generating process {Xt} follows a zero-mean AR(∞) as follows:

Xt =
∞

∑
j=1

φjXt−j + εt (19)

where both ∑∞
j=1 φ2

j and E(X4
t ) are finite. The nature of the innovation process {εt} deter-

mines the two null hypotheses discussed:

H0 : Xt =
∞

∑
j=1

φjXt−j + εt εt ∼ i.i.d. N(0, σ2) (20)

H′0 : Xt =
∞

∑
j=1

φjXt−j + εt εt ∼ i.i.d. f (0, σ2), (21)

where f is a generic probability distribution. In practice, H0 specifies the hypothesis of a
linear Gaussian process and the alternative hypothesis can include linear non-Gaussian
processes, whereas H′0 defines a generic linear process driven by possibly non-Gaussian
innovations. In the latter case, the alternative hypothesis is that of a (fully) non-linear
process that does not admit the AR(∞) representation of Equation (19). The two hypotheses
H0 and H′0 are tested by means of the two statistics T̂k = Ŝk − Ŝp

k and Ŝk, where Ŝp
k is a

restricted parametric estimator of Sk based upon Equation (3).
Since the derivation of the asymptotic distribution of the two statistics T̂k and Ŝk is

either unfeasible, or requires large sample sizes to hold in practice, Ref. [11] discusses two
resampling schemes and prove their asymptotic validity. These are summarized in the
following two sections.

4.1. Tests for Linear Gaussian Dependence with Surrogate Data
The first scheme is based upon surrogate data, a class of Monte Carlo-based tests for

nonlinearity where the null distribution is derived by generating random time series that
possess the same mean and linear dependence as the original series. This can be achieved by
randomizing the phase of the Fourier transform of the original time series, and this was the
original proposal of [46]. The asymptotic validity of the proposal under the null hypothesis
of a (circular) linear Gaussian process was established in [47]. Subsequent studies showed
that the phase-randomization approach led to tests with biased size [48]. One solution
to this problem is to see the generation of time series under the null hypothesis as a
constrained stochastic optimization problem that can be solved by Simulated Annealing.
This is implemented in the function surrogate.SA:

surrogate.SA(x, nlag, nsurr, Te=0.0015, RT=0.9, eps.SA=0.05, nsuccmax=30,
nmax=300, che=1e+05)
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The function takes, as input, the original time series x, the number of lags of the
autocorrelation to be matched by surrogates (nlag), and the number of surrogates nsurr.
The remaining parameters pertain to the Simulated Annealing algorithm and are further
discussed below in Section 4.1.1. We illustrate the use of the routine in the following
example. First, we generate the original time series x from a AR(1) process. Then, we
generate 2 surrogates and plot all the series, see Figure 9.

set.seed(1345)
x <- arima.sim(n=120, model = list(ar=0.8));
x.surr <- surrogate.SA(x, nlag=10, nsurr=2);
xx <- ts.union(x,x.surr$surr)
colnames(xx) <- c('x','surr1','surr2')
plot(xx,col=4,main='');
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Figure 9. Time series from a AR(1) process together with two surrogate time series generated through
Simulated Annealing.

Now, we check that the surrogates have the same ACF of x (up to eps.SA).

corig <- acf(x,10,plot=FALSE)$acf[-1,,1];
csurr1 <- acf(xx[,2],10,plot=FALSE)$acf[-1,,1];
csurr2 <- acf(xx[,3],10,plot=FALSE)$acf[-1,,1];
cx <- round(rbind(corig,csurr1,csurr2),2)
colnames(cx) <- 1:10
rownames(cx) <- c('x','surr1','surr2')
cx

1 2 3 4 5 6 7 8 9 10
x 0.74 0.49 0.32 0.21 0.10 0.03 0.01 -0.07 -0.12 -0.11
surr1 0.76 0.52 0.36 0.22 0.12 0.04 -0.01 -0.06 -0.11 -0.13
surr2 0.75 0.54 0.33 0.19 0.10 0.02 0.00 -0.09 -0.14 -0.12

As expected, for each lag, the difference between the ACF of the original series and
that of the surrogates does not exceed eps.SA = 0.05.

The routine Trho.test.SA, and its parallel version Trho.test.SA.p, implement the
test statistic Tk together with the surrogate data approach based on Simulated Annealing.
The null hypothesis tested is that of Equation (20) and the syntax is the following:

Trho.test.SA(x, y, lag.max=10, B=100, plot=TRUE, quant=c(0.95, 0.99),
bw=c("reference","mlcv", "lscv", "scv", "pi"), bdiag=TRUE,
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method=c("integral","summation"), tol=1e-03, nlag=trunc(length(x)/4),
Te=0.0015, RT=0.9, eps.SA=0.05, nsuccmax=30, nmax=300, che=100000, ...)

Most options are passed either to Srho.ts or surrogate.SA so that they are not
discussed again. Note that even if the syntax allows for the presence of the bivariate version
of the test, this has not yet been implemented. Indeed, it requires the extension of the theory
put forward in [11] and is the subject of future investigations. We illustrate the typical usage
of the routine in the following example, where we generate two realizations of a linear
MA(1) process: x1 has Gaussian innovations, whereas x2 has Student’s t innovations (with
3 degrees of freedom). In both cases, in order to expedite the computations, the number of
surrogates was 40 and the target criterion was set to 0.1.

set.seed(13)
x1 <- arima.sim(n=50, model=list(order=c(0,0,1), ma=0.8));
res1 <- Trho.test.SA.p(x1, lag.max=6, B=40, bw='mlcv', eps.SA=0.1)

x2 <- arima.sim(n=50, model=list(order=c(0,0,1), ma=0.8),
rand.gen=function(n){rt(n,df=3)});
res2 <- Trho.test.SA.p(x2, lag.max=6, B=40, bw='mlcv',eps.SA=0.1)

The results are displayed in Figure 10. The test did reject the null hypothesis for
x1 (left panel), while it rejected it for x2 (right panel). Note that, as suggested in [11],
the mlcv bandwidth selector was used and gave the best performance in conjunction with
T̂k. The Simulated Annealing algorithm for generating surrogate time series is discussed in
some detail in the next section.
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Figure 10. Test statistic Tk for k = 1, . . . , 6 (black, solid line), computed on a linear Gaussian MA(1)
process (left panel) and on a linear MA(1) process driven by Student’s t innovations (right panel).
The rejection bands at 95% (green dashed line) and 99% (blue dashed line) correspond to the null
hypothesis of a linear Gaussian process.

4.1.1. Generating Surrogate Time Series with Simulated Annealing

The simulated annealing is stochastic optimization algorithm that can minimize com-
plex multidimensional functions with many false minima (see e.g., [49]). The cost function
C can be interpreted as the energy of a thermodynamic system and the annealing is used to
bring a glassy solid close to the optimal state by first heating it and then cooling it. The simu-
lation of this tempering procedure exploited the fact that, in thermodynamic equilibrium at
some finite temperature T, the configurations of the system are visited with a probability ac-
cording to the Boltzmann distribution of the canonical ensemble p = exp{−C/T}. Hence,
the algorithm accepts changes of the configuration with a probability p = 1 if the energy is
decreased (∆C < 0) or p = exp{−∆C/T} if the energy is increased (∆C > 0) (Metropolis
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step). The temperature T is the parameter of the Boltzmann distribution that determines
the probability of accepting the unfavourable changes needed to avoid false minima.

Let x be an observed series of length n and let ρ̂k, k ∈ N be its sample autocorrelation
function. We denoted with x∗ the candidate surrogate, with autocorrelation function ρ̂∗k .
The cost function implemented is:

C(x, x∗) =
3kmaxmax
k=1
|1.05ρ̂k − ρ̂∗k |. (22)

The algorithm starts with a temperature Te = T and with x∗, a random permutation
of the original series x. For each temperature value T:

1. swap two observations of x∗ and obtain the series x∗(s);

2. compute ∆C =
[
C(x, x∗(s))− C(x, x∗)

]
;

3. if ∆C < 0 accept the swap, that is, x∗ = x∗(s)

if ∆C > 0 accept the swap with probability p = exp(−∆C/T);
4. repeat step (1)–(3) until either the number of accepted swaps reaches nsuccmax×n or

the number of trials reaches nmax×n;
5. lower the temperature T, for instance by setting T = αT where α = RT < 1;
6. repeat the whole procedure until the cost function reaches a specified threshold

eps.SA.

In general, the choice of the parameters for the algorithm is problem-specific and a
certain amount of experimentation and tuning is expected in order to obtain good results.
The following parameter settings can be used almost automatically as follows:

Parameter Value Description

Te 0.001 initial temperature
RT 0.9 reduction factor for Te
eps.SA 0.05 threshold
nsuccmax 30 Te is decreased after nsuccmax×n successes
nmax 300 Te is decreased after nmax×n trials
che 1 × 105 after che× 2n global iterations the algorithm starts again

Ideally, eps.SA should depend upon the sample size n and one can try increasing it to
speed up the computations.

4.2. Tests for General Nonlinear Serial Dependence

The hypothesis of a generic non-linear serial dependence of Equation (21) was tested
by means of the entropy metric Ŝk of Equation (6), paired with a smoothed sieve bootstrap
scheme [50]. The smoothed version of the sieve bootstrap extends the classic sieve boot-
strap for AR(∞) processes [51]. While the latter is valid for smooth functions of linear
statistics, the smoothed sieve bootstrap leads to valid inferences for statistics, like Ŝk, that
are compactly differentiable nonlinear functionals of empirical measures. The main steps
of the scheme are the following:

1. Given a time series (x1, . . . , xn), fit an AR(p) model upon it

Xt =
p

∑
i=1

φiXt−i + εt (23)

and obtain the estimated parameters {φ̂1(p), . . . , φ̂p(p)};
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2. derive the centered residuals ε̂c
t:

ε̂c
t = ε̂t − n−1

n

∑
t=1

ε̂t, where (24)

ε̂t = xt −
p

∑
i=1

φ̂i(p)xt−i t = p + 1, . . . , n; (25)

3. compute the kernel density estimate of ε̂c
t:

f̂εt(ε) =
1

n− p

n

∑
t=p+1

1
h

K
(

ε− ε̂c
t

h

)
, (26)

where h = h(n) is a bandwidth such that h(n)→ 0 and h(n)−1 = o(n);
4. draw the bootstrap innovations ε̂∗t from the kernel density estimate

ε̂∗t ∼ i.i.d. f̂εt(x)dx;

5. obtain the bootstrapped time series x∗1 , . . . , x∗n according to:

x∗t =
p

∑
i=1

φ̂i(p)x∗t−i + ε̂∗t t = −Q, . . . , n (27)

where the initial values are x∗−Q−1 = · · · = x∗−Q−p = 0.
6. Repeat steps (4)–(5) B times.

The scheme is similar to the classic sieve bootstrap, except for the key idea of re-
sampling from the smooth density of the residuals, which ensures that the bootstrap
process inherits the mixing properties needed to prove asymptotic results. The scheme is
implemented in the routine surrogate.ARs:

surrogate.ARs(x, order.max=NULL, fit.method=c("yule-walker", "burg", "ols",
"mle", "yw"), nsurr)

The routine uses stats::ar to fit the AR model and the arguments order.max and
fit.methods are passed to it. The default options ensure that the best AR(p) model, where
p ranges from 1 to order.max, is selected by means of the AIC and order.max depends
upon the length of the series. The following example illustrates the usage of the routine
and the results are presented in Figure 11.

set.seed(1345)
x <- arima.sim(n=120, model = list(ar=0.8));
x.surr <- surrogate.ARs(x, nsurr=2);
xx <- ts.union(x,x.surr$surr)
colnames(xx) <- c('x','surr1','surr2')
plot(xx,col=4,main='');
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Figure 11. Time series from a AR(1) process together with two surrogate/resampled time series
generated through the smoothed sieve bootstrap scheme.

Now we compare the correlograms of the series.

corig <- acf(x,10,plot=FALSE)$acf[-1,,1];
csurr1 <- acf(xx[,2],10,plot=FALSE)$acf[-1,,1];
csurr2 <- acf(xx[,3],10,plot=FALSE)$acf[-1,,1];
cx <- round(rbind(corig,csurr1,csurr2),2)
colnames(cx) <- 1:10
rownames(cx) <- c('x','surr1','surr2')
cx

1 2 3 4 5 6 7 8 9 10
x 0.74 0.49 0.32 0.21 0.10 0.03 0.01 -0.07 -0.12 -0.11
surr1 0.74 0.55 0.44 0.32 0.30 0.22 0.15 0.03 -0.01 -0.03
surr2 0.79 0.59 0.46 0.30 0.15 0.03 -0.04 -0.11 -0.18 -0.23

Note that the package also contains the routine surrogate.AR that implements the
standard sieve bootstrap [51].

The routines Srho.test.AR and Srho.test.AR.p implement the test statistic Ŝk to-
gether with the sieve bootstrap scheme. The null hypothesis tested is that of Equation (21)
and the syntax is the following:

Srho.test.AR(x, y, lag.max=10, B=100, plot=TRUE, quant=c(0.95, 0.99),
bw=c("reference", "mlcv", "lscv", "scv", "pi"), bdiag=TRUE,
method=c("integral", "summation"), tol=0.001, order.max=NULL,
fit.method=c("yule-walker", "burg", "ols", "mle", "yw"), smoothed=TRUE ,...)

The option smoothed selects either the smoothed sieve scheme of surrogate.ARs or
the standard sieve of surrogate.AR. The remaining option has already been discussed
above. According to the results of [11], this is the most powerful and flexible test and its
use is recommended in conjunction with the reference bandwidth selection criterion. We
show its use on a time series from a nonlinear moving average process with nonlinear
dependence at lag k.

Xt = θε2
t−k + εt where εt ∼ N(0, 1). (28)

With this aim in mind, we introduce the nlma function:
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nlma <- function(n,th, k, rand.gen = rnorm, innov = rand.gen(n, ...),
n.start = 50, start.innov = rand.gen(n.start, ...),...){
if (!missing(start.innov) && length(start.innov) < n.start)
stop(gettextf("'start.innov' is too short: need %d points", n.start), domain=NA)
e <- c(start.innov[1L:n.start], innov[1L:n])
ntot <- length(e)
x <- double(ntot)
x[1:k] <- e[1:k];
for (i in (k+1):ntot){
x[i]<- th*e[i-k]^2+ e[i];
}
if (n.start > 0) x <- x[-(1L:n.start)]
return(ts(x));
}

First, we generate a series x of 50 observations from nlma and show the inability of the
analysis based upon the autocorrelation, to detect the nonlinear dependence, see Figure 12.
Then, we compute the bootstrap test of nonlinear serial dependence, based on Sk and
present the results in Figure 13:

S1 <- Srho.test.AR.p(x, lag.max=5, B=40);

Even with a sample size as small as 50 the test correctly identified the nonlinear dependence
at lag 2.

set.seed(11)
x <- nlma(n=50, th=-0.8, k=2)
acf(x,lag.max=5,lwd=4,col='red4',ylim=c(-1,1),main='');grid();
pacf(x,lag.max=5,lwd=4,col='red4',ylim=c(-1,1),main='');grid();
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Figure 12. Correlograms computed on a realization of a nonlinear MA process.
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Figure 13. Serial entropy Sk for k = 1, . . . , 5 (black, solid line), computed on a realization of a
nonlinear MA(1) process. The rejection bands at 95% (green dashed line) and 99% (blue dashed line)
correspond to the null hypothesis of a general linear process.

4.3. Discussion

In this section, we highlight the difference between the test for serial dependence
Srho.test.ts and that of nonlinear serial dependence Srho.test.AR and address why
the two cannot be used interchangeably. In literature, several diagnostic tests to verify the
independence of the residuals of a fitted model have been proposed. These can be based
upon dependence measures, akin to Sk, or rely on ad hoc measures, such as generalized
correlations. Contrarily to some of the claims, finding structure in the residuals of a linear
model does not necessarily imply a nonlinear specification, but can simply point to a
misspecified (linear) model. Hence, a proper test for nonlinear serial dependence should
explicitly enforce the null hypothesis of linearity on the test statistic and this is the approach
adopted here. We illustrate the matter in the following example, where the time series x
came from an ARMA(1,1) process. Then, we fitted a MA(1) model to the series and tested for
independence of both x and the residuals res with the permutation test of Srho.test.ts.

set.seed(10)
x <- arima.sim(n=50, model=list(order=c(1,0,1),ar=0.8,ma=0.5));
res <- residuals(arima(x,order=c(0,0,1)))
S1 <- Srho.test.ts.p(x, lag.max=5, B=40);
S2 <- Srho.test.ts.p(res, lag.max=5, B=40);

From Figure 14 it is clear that the test rejected the null hypothesis of serial indepen-
dence for both the original series x (left panel) and the residuals res of the fitted MA(1)
(right panel). In the latter case, rejection implied lack of fit but not nonlinearity. This was
further confirmed by applying the test for nonlinear serial dependence of Srho.test.AR.
The results are plotted in Figure 15:

S3 <- Srho.test.AR.p(x, lag.max=5, B=40);
S4 <- Srho.test.AR.p(res, lag.max=5, B=40);

This time, the test did not reject the null hypothesis in both series and correctly
indicated that the data generating process was linear.

Being based upon resampling methods, most of the tests presented a high computa-
tional burden. In particular, as shown in the supplement of [11], the test Trho.test.SA,
based upon Simulated Annealing and paired with the mlcv bandwidth selector, had a
computational complexity of O(n2) (n being the length of the series), whereas the test
Srho.test.AR, paired with the reference criterion, had a complexity of O(n), which made
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it generally preferable, in view of its superior performance. In order to (partly) overcome
the burden, and to parallelize the functions, the key code portions for estimating Ŝk, and
for the resampling schemes, were coded in Fortran. In any case, we recommend running
the tests with a small initial number of resamples, especially if the series is long.
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Figure 14. Serial entropy Sk for k = 1, . . . , 5 (black, solid line), computed on a realization of a linear
ARMA(1,1) process (left panel) and on the residuals of a fitted MA(1) model upon the series (right
panel). The rejection bands at 95% (green dashed line) and 99% (blue dashed line) corresponded to
the null hypothesis of serial independence.
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Figure 15. Serial entropy Sk for k = 1, . . . , 5 (black, solid line), computed on a realization of a
linear ARMA(1,1) process (left panel) and on the residuals of a fitted MA(1) model upon the series.
The rejection bands at 95% (green dashed line) and 99% (blue dashed line) corresponded to the null
hypothesis of a general linear process.

5. Detecting Complex Dependence in Commodity Prices

In this section we apply the entropy-based tests to a panel of 4 commodity price time
series. Commodities are primary agricultural products or raw materials and they are used
in the production of other goods. Their prices are crucial in individual, country-level
economies, in that they respond quickly to economic shocks, such as increase in demand.
Hence, they are used to predict the behavior of other economic variables, and they are
traded in the cash market, or as derivatives [52].
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We considered 347 monthly observations, from January, 1994, to November, 2022, for
the price of the four commodities. The two energy commodities were the WTI crude oil
price index and the US natural gas spot price at the Henry Hub in Louisiana. The two
precious commodities were gold and silver prices traded in London, with afternoon fixing.
The series were obtained from the World Bank website https://www.worldbank.org/en/
research/commodity-markets (accessed on 27 December 2022). For each commodity, we
modeled log returns of their prices, that is xt,i = ∇ log(yt,i) = log(yt,i/yt−1,i), where yt,i
denoted the price of commodity i (i = 1, . . . , 4) at time t. The time plot reported in Figure 16
highlighted that the series had different variabilities, which were lower for gold, while
more pronounced for WTI oil and natural gas.
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Figure 16. Time plots of the four monthly commodities series January, 1994–November, 2022. Left
column: raw commodities yt. Right column: log-returns xt = ∇ log(yt).

The correlograms of the series, presented in Figure 17, showed a white noise-like
structure, whereas the correlograms of the squared series, shown in Figure 18, pointed to
the possible presence of a nonlinear structure in the conditional variance (ARCH effect).

https://www.worldbank.org/en/research/commodity-markets
https://www.worldbank.org/en/research/commodity-markets
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As a first step, we tested the series of the log-returns for the presence of general nonlin-
ear dependence up to lag 13, by using the smoothed sieve bootstrap version implemented
in Srho.test.AR. In all the tests, the number of bootstrap replications was set to 1000 and
we used the reference bandwidth, as suggested in [11].

As shown in Figure 19, the entropy measure Sk exceeded the rejection bands under
the null hypothesis of linearity for all the four series, but at different lags. Furthermore,
the evidence was less striking for silver, where the test rejected only for lag 7, at level
95%. Now, since in [11] it was shown that the test had power against nonlinear serial
dependence both in the conditional mean and in the conditional variance, we repeated the
test on the residuals of a ARMA(1, 1)–GARCH(1, 1) model fitted upon the series. The order
of the ARMA model was chosen by means of the consistent Hannan–Rissanen criterion,
see [53,54] for more details.

The results are presented in Figure 20 and clearly show rejections for all the series.
In particular, the energy commodities presented a significant nonlinear dependence at lag 1
that could not be ascribed to conditional heteroskedasticity, but hinted at a nonlinearity
in the conditional mean dynamics. The results were consistent with those of [55], where
the authors showed the predictive superiority of a threshold ARMA model over linear
specifications. Overall, the entropy-based tests were used both as an exploratory tool,
when applied to the raw series, and as a diagnostic tool, if applied to the residuals of a
fitted model. They seemed to indicate the presence of a complex (nonlinear) dependence
in the conditional mean, together with conditional heteroskedasticity. The complexity of
commodity prices was recognised in literature and investigated from different perspectives.
For instance, Ref. [56] studied the presence of spillover effects in commodity prices through
the continuous wavelet transform, whereas [57] investigated the presence of long-range
dependence in hourly electricity prices.
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Figure 17. Sample correlograms for the four commodities up to one year. The confidence bands at
level 99% under the white noise hypothesis are indicated as blue dashed horizontal lines.
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Figure 18. Sample correlograms for the squared series of the four commodities up to one year.
The confidence bands at level 99% under the white noise hypothesis are indicated as blue dashed
horizontal lines.
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Figure 19. Serial entropy Sk for lag k = 1, . . . , 13 (black, solid line), computed on the commodity price
series. The rejection bands at 95% (green dashed line) and 99% (blue dashed line) correspond to the
null hypothesis of a general linear process.
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Figure 20. Serial entropy Sk for lag k = 1, . . . , 13 (black, solid line), computed on the residuals of a
ARMA(1, 1)–GARCH(1, 1) model fitted upon the series of commodity prices. The rejection bands at
95% (green dashed line) and 99% (blue dashed line) correspond to the null hypothesis of a general
linear process.

The procedures followed in the article should provide some guidance to the prac-
titioner on how to deal with complex dependence and/or perform diagnostic analysis
upon the residuals of a fitted model, which should go beyond the simple usage of the
autocorrelation function. As mentioned in the introduction, nonlinearity has many different
aspects and each of them would require a separate, specific treatment. The tests presented
are general, in that they have power against all sorts of dependence and nonlinearity so
they can be used in many different situations and at various steps of the investigation,
from exploratory analysis to the diagnostic phase.
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