
Citation: Xu, Z. Logistic Regression

Based on Individual-Level Predictors

and Aggregate-Level Responses.

Mathematics 2023, 11, 746. https://

doi.org/10.3390/math11030746

Academic Editors: Niansheng Tang

and Shen-Ming Lee

Received: 17 January 2023

Revised: 27 January 2023

Accepted: 30 January 2023

Published: 2 February 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Logistic Regression Based on Individual-Level Predictors and
Aggregate-Level Responses
Zheng Xu

Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, USA;
zheng.xu@wright.edu; Tel.: +1-937-775-2103

Abstract: We propose estimation methods to conduct logistic regression based on individual-level
predictors and aggregate-level responses. We derive the likelihood of logistic models in this situation
and proposed estimators with different optimization methods. Simulation studies have been con-
ducted to evaluate and compare the performance of the different estimators. A real data-based study
has been conducted to illustrate the use of our estimators and compare the different estimators.

Keywords: Poisson binomial distribution; logistic regression; data aggregation; likelihood; numerical
optimization

MSC: 62J12

1. Introduction

Data can be reported at different levels due to various considerations including eco-
nomic, confidentiality, and data collection difficulty. For example, the US Census Bureau
reports income at the household level. The aggregate-level data in this example are house-
hold income, which is a measure of the combined incomes of all people sharing a particular
household or place of residence. The individual-level data in this example are individuals’
incomes. The aggregate-level data are defined as data aggregated from individual-level
data by groups. Although there are risks in estimating individual-level relationships based
on aggregate-level data, such as unequal correlations between variables in aggregate-level
data and between the same variables in individual-level data [1,2], researchers continue to
use aggregate-level data because in many situations, individual-level data are not available
and valid methods for estimating individual-level relationships based on aggregate-level
data can be derived [1,3]. The terms “individual” and “aggregate” refer to the different
levels and units of analysis [1].

This article intends to solve the problem of estimating models describing an individual-
level relationship based on an aggregate-level response variable Y and individual-level
predictors X. Examples of data situations include survey data, multivariate time series,
social data, and biological data, collected and reported at different levels.

Our interest in developing methods to analyze aggregate data was motivated by
real-life examples. One example is group testing of infectious diseases in bio-statistics.
To reduce the costs, a two-stage sequential testing strategy is applied. In the first stage,
group testing is conducted. Individuals showing positive in the first stage are called
back for a follow-up individual test. With the first-stage group testing data available,
analyses can be conducted. The second example is consumer demand studies in economics.
The consumer’s characteristics data are available at the individual level, whereas the
consumer’s purchase data are available only at the aggregate level. The third example is
the analysis of multivariate time series. It is likely that different time series are reported at
different frequencies. To study the relationships between multiple time series with different
frequencies, researchers need to develop statistical methods.
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Suppose there are n observations in the sample, (Xi, Yi), i = 1, 2, . . . , n, X ∈ Rp, Y ∈ R,
aggregated into K groups, G1, G2, . . . , GK, with group sizes, respectively, of n1, n2, · · · , nK,
∑ ng = n. Denote the set of observations in Group g as Gg = {g1, g2, . . . , gng}. Aggregate-
level X and Y, i.e., (X∗g , Y∗g ), g = 1, 2, . . . , K are

X∗g = ∑
i∈Gg

Xi =
ng

∑
i=1

Xgi and Y∗g = ∑
i∈Gg

Yi =
ng

∑
i=1

Ygi. (1)

Note that Y∗g can be any summary statistic calculated from individual-level Y in Group
g, and we study summation aggregation in this paper.

Researchers have solved this problem for linear models [4–6]. Suppose the linear
model describing individual-level data (Xi, Yi) is

Yi = XT
i β + εi, i = 1, 2, . . . , n.

Then, the corresponding model describing the aggregated data (X∗g , Y∗g ) is

Y∗g = (X∗g)
T β + ε∗g, g = 1, 2, . . . , K,

where ε∗g = ∑i∈Gg εi is the aggregate-level error so that weighted least squares (WLS) can
be applied when εi ∼ i.i.d. N(0, σ2) [4]. More estimators have been proposed for linear
regression based on aggregate data or partially aggregate data including Palm and Nijman’s
MLE estimator [5] and Rawashdeh and Obeidat’s Bayesian estimator [6].

Although the estimations of linear regression models in the above data situation have
been well studied, more studies are needed for the estimations of other regression models.
The aim of this article is to study the estimations of logistic models in the data situation
of aggregate-level Y and individual-level X. We derive the likelihoods and our estimators
with different optimization methods in Section 2, conduct simulation studies to evaluate
and compare the performances of different estimators in Section 3, illustrate the use of
different estimators in real data-based studies in Section 4, provide discussions in Section 5,
and draw conclusions in Section 6.

2. Methods

Suppose n independent observations (Xi, Yi) are modeled by a logistic model

log(
P(Yi = 1)

1− P(Yi = 1)
) = XT

i β, i = 1, 2, . . . , n. (2)

Then, Yi ∼ Bernoulli (πi), where πi = P(Yi = 1) = exp(XT
i β)

1+exp(XT
i β)

. When individual-level

X and Y are both available, the logistic model as a general linear model can be estimated
using a range of methods including the Newton–Raphson method and Fisher’s scoring
method [7,8].

2.1. Likelihood of Aggregate-Level Y and Individual-Level X

When individual-level Y is not available, we can derive estimators based on aggregate-
level Y and individual-level X. Suppose the n observations of (Xi, Yi) are aggregated
into K groups, as described in the introduction section, with the aggregated data (X∗g , Y∗g ),
g = 1, . . . , K, defined in Equation (1).

Aggregate-level Y is obtained by summing all Y within each group. Thus, the dis-
tribution of the sum of multiple independent random variables is helpful for studying
data aggregation. In our logistic regression scenario, we need to calculate the sum of
multiple Bernoulli random variables. In statistics, the Poisson binomial distribution is the
distribution of a sum of independent Bernoulli random variables, which do not necessarily
have different success probabilities [9,10]. The term PoissonBinomial(n, (π1, π2, · · · , πn))
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is used to refer to the distribution of the sum of n independent Bernoulli random variables
with success probabilities π1, π2, · · · , πn [9].

Because Y∗g is the sum of ng independent Bernoulli random variables,

Y∗g ∼ PoissonBinomial(ng, (πg1, πg2, · · · , πgng)), (3)

where the success probability for the ith individual in Group g is

πgi = P(Ygi = 1) =
exp(XT

giβ)

1 + exp(XT
giβ)

. (4)

Denote the individual likelihood for Y∗g as Lg(β) = P(Y∗g ; Xg1, . . . , Xgng , β). Then, the
aggregate likelihood L(β) = ∏K

g=1 Lg(β).

2.2. Calculation and Maximization of Likelihood

Computing the likelihood function needs to calculate the probability mass func-
tion for Y∗g ∼ PoissonBinomial(ng, (πg1, πg2, . . . , πgng)). The variable Y∗g will reduce to
Binomial(ng, π) when πg1 = πg2 = · · · = πgng . This case can happen when aggregation is
based on the values of X and the individual-level predictors Xi are the same within each
group. This specific aggregation has been well studied in the topic of logistic regression
based on aggregate data [7,11]. We consider aggregation not based on X, i.e., allowing
different values of X in a group, in this paper.

In general, for a variable Y ∼ PoissonBinomial(n, (π1, π2, . . . , πn)), the probability
mass function is P(Y = y) = ∑A∈Fy ∏i∈A πi ∏j∈Ac(1−πj), where Fy is the set of all subsets
of y integers that can be selected from {1, 2, 3, . . . , n} and Ac is the complement of A [9].
The set Fk contains (n

k) elements so the sum over it is computationally intensive and even
infeasible for large n. Instead, more efficient ways were proposed, including the use of
a recursive formula to calculate P(Y = y) based on Pr(Y = k), k = 0, . . . , y− 1, which
is numerically unstable for large n [12], and the inverse Fourier transform method [13].
Hong [10] further developed it by proposing an algorithm that efficiently implements the
exact formula with a closed expression for the Poisson binomial distribution. We adopted
Hong’s algorithm [10] and exact formula in calculating the likelihood function L(β) since
they are more precise and numerically stable.

Commonly used optimization methods were adopted to maximize the likelihood L(θ),
including (1) Nelder and Mead’s simplex method (NM) [14], (2) the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method [15], and (3) the conjugate gradient (CG) method [16].

2.3. Large-Sample Properties of Estimators

As mentioned above, our proposed estimators are obtained by maximizing the
aggregate likelihood L(β) using different optimization methods (NM, BFGS, and CG).
The MLE β̂MLE is an estimator that maximizes the aggregate likelihood function, i.e.,
β̂MLE = argmaxβL(β). If our three optimization methods can always obtain the maximizer
of L(β), the three estimators will be equal and exactly the same as the MLEs.

In practice, the three optimization methods may not obtain the same value as the
MLE. We observed that as the sample size increases, the values obtained using the three
optimizations become closer and nearly the same for a large sample size. In discussing
large-sample properties, we refer to the scenario of an infinite number of observations and
assume that the three optimization methods can always obtain MLEs under the scenario
of large samples, i.e., the scenario of an infinite number of observations. Then, our three
estimators are identical to the MLE and have the same large-sample properties as the MLE.
We add a cautious note that if our estimators are still quite different from the MLE under
the large-sample scenario, we cannot state that our estimators have the same large-sample
properties as the MLE.
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The large-sample properties of the MLE β̂MLE [17] include (i) consistency, i.e., β̂MLE →
β in probability, and (ii) asymptotic normality, i.e., β̂MLE ∼ N(β, I(β)−1), where I(β) is the
expected information matrix, defined as the negative expectation of the second derivative
of the log-likelihood. The expected information matrix can be approximated using the
observed information matrix, which is the negative of the second derivative (the Hessian
matrix) of the log-likelihood function [17].

2.4. Software Implementation

All analyses in this paper were conducted using R software (version 4.2.0). Multiple R
packages were used as follows:

• The PoissonBiomial package. This package implements multiple exact and approxi-
mate methods to calculate Poisson binomial distributions [10]. We used this package
to calculate the Poisson binomial distributions and aggregate likelihood L(β).

• The stats package. This package contains the optim() function, which can conduct
general-purpose optimization based on multiple optimization methods, including
the Nelder–Mead, BFGS, and CG methods. We used this function to obtain our three
estimators using three optimization methods.

• The glm package. This package can be used to fit generalized linear models including
logistic regression. We used this package to conduct logistic regression.

2.5. Computational Burden

The computational burden of our method relies on three factors: (1) p, (2) aggregate-
level data sample size K, and (3) group size ng.

Our estimator for β is obtained by maximizing the aggregate likelihood L(β) =

∏K
g=1 Lg(β), β ∈ Rp using three optimization methods (NM, BFGS, and CG). The number

of evaluations of the optimization function L(β) and the derivatives will increase with
respect to an increase in p. Large p will decrease the performance. Given a small fixed
number p, the number of function evaluations is O(1). Because L(β) = ∏K

g=1 Lg(β), the
computational amount for L(β) is K times the computational amount for Lg(β).

The computation of Lg(β) includes two steps. In Step 1, the success probabilities are
calculated using Equation (4). The computational burden of Step 1 is O(ng). In Step 2,
the probability mass for a Poisson binomial random variable described in Equation (3) is
calculated. This step adopts Hong’s Algorithm A, which is an efficient implementation
of the discrete Fourier transform of the characteristic function (DFT-CF) of the Poisson
binomial distribution [10]. The computational burden of Step 2 is O(n2

g). In total, the
computational burden of our estimation method is O(1)× K×O(n2

g) = O(Kn2
g), given a

small constant p.

3. Simulation Studies

We conducted simulation studies to evaluate the performance of the five estimators. The
first estimator, named individual-LR, is the logistic regression estimator based on individual-
level X and Y. This estimator is infeasible when only aggregate Y is available. Because
aggregate-level Y contains less information compared to individual-level Y, we expect that
this infeasible estimator can provide an upper bound for the performance of feasible estimators
based on aggregate-level Y. The second estimator, named naive LR, is the logistic regression
estimator based on the mean X in each group and the aggregate Y, i.e., Y∗g ∼ Bin(ng, X∗g/ng),
g = 1, 2, . . . , K. This estimator can provide a rough approximate estimation.

Estimators 3 to 5 are our estimators that maximize the aggregate likelihood L(β) using
the Nelder–Mead optimization, CG optimization, and BFGS optimization, named aggregate
LR with NM, aggregate LR with CG, and aggregate LR based on BFGS, respectively.

The performances of the estimators were compared in three scenarios. In each scenario,
simulations were conducted with sample sizes (K = 300, 500, 1000), equal group sizes
(ng = 7, 30), and different parameter values. Data were generated as follows:
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• In Scenario 1, Xi1 ∼ N(0, 1), Xi = (1, Xi1)
T , Yi ∼ Bernoulli(eXT

i β/(1 + eXT
i β)),

β = (1,−2)T (Scenario 1A) or (1, 3)T (Scenario 1B).
• In Scenario 2, Xi1 ∼ N(0, 1), Xi2 ∼ t(d f = 5), Xi = (1, Xi1, Xi2)

T ,

Yi ∼ Bernoulli(eXT
i β/(1 + eXT

i β)), β = (−1, 1, 2)T (Scenario 2A) or (0,−2, 1)T

(Scenario 2B).
• In Scenario 3, (Xi1, Xi2) ∼ BivariateNormal(0, 2, 1, 4, ρ = 0.5), Xi3 ∼ Cauchy(0, 1),

Xi = (1, Xi1, Xi2, Xi3)
T , Yi ∼ Bernoulli(eXT

i β/(1 + eXT
i β)), β = (−1, 1, 0,−1)T

(Scenario 3A) or (0,−2, 1, 1)T (Scenario 3B).

The bias, variance, mean square error (MSE), and mean absolute deviation (MAD) of
each of the five estimators’ (E1 to E5) model parameters (β0, . . . , βp) were calculated. De-
note the bias, variance, MSE, and MAD of the q-th estimator of β j as Bias(β̂ j,Eq),Var(β̂ j,Eq),
MSE(β̂ j,Eq), andMAD(β̂ j,Eq). The average squared bias, variance, MSE, and MAD of the
qth estimator were calculated as

Bias2(Eq) = [(Bias2(β̂0,Eq) + · · ·+ (Bias2(β̂p,Eq)]/(p + 1),

Var(Eq) = [Var(β̂0,Eq) + · · ·+ Var(β̂p,Eq)]/(p + 1),

MSE(Eq) = [MSE(β̂0,Eq) + · · ·+ (MSE(β̂p,Eq)]/(p + 1),

MAD(Eq) = [MAD(β̂0,Eq) + · · ·+ (MAD(β̂p,Eq)]/(p + 1).

Please note that we averaged over the squared bias instead of the bias because the
positive bias and negative bias can cancel out when averaging the bias. The average across
the parameters allows us to obtain the average performance in terms of the squared bias,
variance, MSE, and MAD and still maintain the equality of the bias, variance, and MSE, i.e.,

MSE(Eq) = Bias2(Eq) + Var(Eq).

In Table 1, we report the average squared biases and variances for the five estimators
(E1 to E5) under the different scenarios, sample sizes K, and aggregation sizes ng. As
we expected, there was a relatively large bias for the naive estimator E2, which used
an approximate likelihood by conducting logistic regressions using the average X. Our
estimators (E3 to E5) had relatively small biases because these estimators were working
on the correct and exact likelihood functions. The first estimator E1 had the smallest bias
by working on individual-level X and individual-level Y. This estimator is widely used
when individual-level Y is available. However, under the scenario we intended to solve,
only aggregate-level Y was available. Thus, the E1 estimator is infeasible. We still report
the performance of E1 to provide some measurements of the possible upper bound of the
performance. Because data aggregation will discard information, we expect that estimator
E1 will generally perform better than the estimators based on aggregate Y.

Next, we check the variances of all five estimators. The variances of all five estimators
were similar in the same magnitude level. There was no estimator that performed uniformly
better or even generally better than the other estimators. The naive estimator E2 had similar
performance or even slightly better performance in the average variance compared with
the other estimators (E1, E3–E5). Our estimators (E3 to E5) were slightly worse in terms of
variance. We think the slightly worse performance of our estimators (E3–E5) was likely due
to the nonlinear optimization to find the MLE in our estimators. In comparison, the logistic
regression estimators (E1 and E2) were calculated using iteratively re-weighted least squares
(IRLS) (logistic regression ensures global concavity so that it is simpler to find the MLE), which
was numerically more stable compared to the nonlinear optimization of a general likelihood
function using (1) Nelder and Mead’s simplex method [14], (2) the BFGS method [15], and
(3) the conjugate gradient (CG) method [16].



Mathematics 2023, 11, 746 6 of 12

Table 1. Average Squared Bias and Variance of Estimators E1 to E5 in Scenarios 1A to 3B. K is the
sample size of the aggregate data. ng is the group size in the aggregation.

Average Squared Bias Average Variance

Scen. K ng E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

1A 300 7 0.001 0.281 0.001 0.001 0.001 0.027 0.025 0.077 0.077 0.077

1A 300 30 0.000 0.344 0.001 0.001 0.001 0.006 0.018 0.071 0.071 0.071

1A 500 7 0.000 0.293 0.000 0.000 0.000 0.009 0.008 0.020 0.020 0.020

1A 500 30 0.000 0.358 0.000 0.000 0.000 0.002 0.005 0.017 0.017 0.017

1A 1000 7 0.000 0.288 0.000 0.000 0.000 0.005 0.005 0.011 0.011 0.011

1A 1000 30 0.000 0.351 0.000 0.000 0.000 0.001 0.003 0.012 0.012 0.012

1B 300 7 0.001 1.176 0.002 0.002 0.002 0.050 0.025 0.108 0.108 0.108

1B 300 30 0.000 1.367 0.000 0.000 0.000 0.012 0.014 0.099 0.098 0.099

1B 500 7 0.000 1.193 0.000 0.000 0.000 0.017 0.006 0.032 0.032 0.032

1B 500 30 0.000 1.369 0.000 0.000 0.000 0.004 0.004 0.032 0.030 0.033

1B 1000 7 0.000 1.181 0.000 0.000 0.000 0.009 0.004 0.018 0.018 0.018

1B 1000 30 0.000 1.388 0.000 0.000 0.000 0.002 0.003 0.019 0.019 0.019

2A 300 7 0.000 0.471 0.002 0.002 0.002 0.031 0.023 0.073 0.073 0.073

2A 300 30 0.000 0.523 0.004 0.004 0.004 0.007 0.016 0.071 0.071 0.071

2A 500 7 0.000 0.462 0.000 0.000 0.000 0.008 0.007 0.020 0.020 0.020

2A 500 30 0.000 0.538 0.000 0.000 0.000 0.002 0.006 0.019 0.019 0.019

2A 1000 7 0.000 0.464 0.000 0.000 0.000 0.005 0.004 0.012 0.012 0.012

2A 1000 30 0.000 0.532 0.000 0.000 0.000 0.001 0.003 0.013 0.013 0.013

2B 300 7 0.000 0.291 0.000 0.000 0.000 0.025 0.018 0.059 0.059 0.059

2B 300 30 0.000 0.336 0.003 0.003 0.003 0.006 0.016 0.066 0.066 0.066

2B 500 7 0.000 0.277 0.000 0.000 0.000 0.007 0.007 0.017 0.017 0.017

2B 500 30 0.000 0.340 0.000 0.000 0.000 0.002 0.005 0.017 0.017 0.017

2B 1000 7 0.000 0.282 0.000 0.000 0.000 0.005 0.004 0.012 0.012 0.012

2B 1000 30 0.000 0.340 0.000 0.000 0.000 0.001 0.003 0.012 0.012 0.012

3A 300 7 0.000 0.332 0.001 0.000 0.000 0.018 0.020 0.045 0.052 0.055

3A 300 30 0.000 0.345 0.003 0.002 0.001 0.004 0.019 0.045 0.049 0.055

3A 500 7 0.000 0.336 0.000 0.000 0.000 0.006 0.006 0.014 0.015 0.015

3A 500 30 0.000 0.344 0.000 0.000 0.000 0.001 0.006 0.013 0.016 0.017

3A 1000 7 0.000 0.340 0.000 0.000 0.000 0.003 0.004 0.008 0.009 0.009

3A 1000 30 0.000 0.346 0.000 0.000 0.000 0.001 0.004 0.008 0.008 0.010

3B 300 7 0.000 0.567 0.002 0.001 0.001 0.025 0.020 0.056 0.064 0.068

3B 300 30 0.000 0.603 0.005 0.004 0.003 0.006 0.014 0.063 0.069 0.077

3B 500 7 0.000 0.578 0.001 0.000 0.000 0.007 0.005 0.015 0.019 0.018

3B 500 30 0.000 0.614 0.000 0.000 0.000 0.002 0.005 0.018 0.025 0.022

3B 1000 7 0.000 0.587 0.000 0.000 0.000 0.005 0.003 0.010 0.010 0.010

3B 1000 30 0.000 0.608 0.000 0.000 0.000 0.001 0.003 0.010 0.012 0.012

We point out that although the naive estimator E2 worked on an incorrect (or approx-
imate) likelihood function, which can lead to a large bias due to the incorrect likelihood
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function, the performance of the variance of E2 did not necessarily become worse. A similar
phenomenon was the under-fitting in the data analysis. Suppose the true relationship is
a quadratic function. If a linear function is used in model fitting, the estimator will have
a large bias due to model mis-specification, whereas the variance may not increase. We
note that the main disadvantage of estimator E2 was the use of an incorrect or approximate
likelihood function, which can lead to a large bias. Using the correct exact likelihood, i.e.,
our estimators (E3 to E5), can solve the issue of bias due to the slight increase in variance
from the switch in finding the MLE from iteratively reweighted least squares (IRLS) to
nonlinear optimization using the Nelder and Mead’s simplex, BFGS, and CG methods. We
compared the decrease in bias and increase in variance and think the bias reduction will
dominate the variance increase in our estimators. We calculated the overall performance in
terms of the MSE and MAD to confirm it.

Our simulation results showed that the naive estimator had a large bias due to the
use of an incorrect or approximate likelihood function, which can hurt the MSE. Thus, in
Table 2, we report the average performance of the five estimators (E1 to E5) in terms of the
MSE and MAD. Our simulation results indicated that our proposed estimators (E3 to E5)
were better than the naive LR estimator (E2). As expected, the infeasible estimator (E1)
based on individual-level Y performed better than the other four feasible estimators (E2 to
E5) based on aggregate-level Y due to the loss of information in the data aggregation. Our
estimator based on Nelder and Mead’s simplex optimization (E3) performed slightly better
than our estimator based on BFGS optimization (E4) and CG optimization (E5).

Table 2. Average MSE and MAD of Estimators E1 to E5 in Scenarios 1A to 3B. K is the sample size of
the aggregate data. ng is the group size in the aggregation.

Average MSE Average MAD

Scen. K ng E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

1A 300 7 0.027 0.307 0.078 0.078 0.078 0.129 0.504 0.198 0.198 0.198

1A 300 30 0.006 0.362 0.072 0.072 0.072 0.062 0.558 0.192 0.192 0.192

1A 500 7 0.009 0.302 0.020 0.020 0.020 0.075 0.515 0.109 0.109 0.109

1A 500 30 0.002 0.363 0.017 0.017 0.017 0.036 0.568 0.093 0.093 0.093

1A 1000 7 0.005 0.293 0.011 0.011 0.011 0.057 0.509 0.080 0.080 0.080

1A 1000 30 0.001 0.354 0.012 0.012 0.012 0.028 0.563 0.078 0.078 0.078

1B 300 7 0.051 1.200 0.109 0.109 0.109 0.173 0.970 0.235 0.235 0.235

1B 300 30 0.012 1.380 0.099 0.098 0.099 0.084 1.046 0.222 0.221 0.222

1B 500 7 0.017 1.200 0.032 0.032 0.032 0.098 0.977 0.130 0.130 0.130

1B 500 30 0.004 1.373 0.033 0.031 0.033 0.048 1.048 0.129 0.125 0.129

1B 1000 7 0.009 1.185 0.018 0.018 0.018 0.072 0.973 0.100 0.100 0.100

1B 1000 30 0.002 1.390 0.019 0.019 0.019 0.038 1.054 0.098 0.098 0.098

2A 300 7 0.031 0.494 0.075 0.075 0.075 0.138 0.627 0.204 0.204 0.204

2A 300 30 0.007 0.539 0.075 0.075 0.075 0.065 0.661 0.200 0.200 0.200

2A 500 7 0.008 0.469 0.021 0.021 0.021 0.070 0.622 0.111 0.111 0.111

2A 500 30 0.002 0.543 0.020 0.020 0.020 0.036 0.669 0.106 0.106 0.106

2A 1000 7 0.005 0.468 0.012 0.012 0.012 0.057 0.620 0.084 0.084 0.084

2A 1000 30 0.001 0.535 0.013 0.013 0.013 0.030 0.667 0.085 0.085 0.085

2B 300 7 0.025 0.309 0.059 0.059 0.059 0.124 0.445 0.182 0.182 0.182

2B 300 30 0.006 0.352 0.068 0.068 0.068 0.060 0.464 0.180 0.180 0.180

2B 500 7 0.007 0.284 0.017 0.017 0.017 0.065 0.424 0.099 0.099 0.099
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Table 2. Cont.

Average MSE Average MAD

Scen. K ng E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

2B 500 30 0.002 0.344 0.018 0.018 0.018 0.034 0.463 0.093 0.093 0.093

2B 1000 7 0.005 0.286 0.012 0.012 0.012 0.054 0.425 0.081 0.081 0.081

2B 1000 30 0.001 0.343 0.012 0.012 0.012 0.024 0.461 0.075 0.075 0.075

3A 300 7 0.018 0.352 0.046 0.052 0.055 0.104 0.486 0.162 0.168 0.170

3A 300 30 0.004 0.364 0.047 0.051 0.056 0.049 0.495 0.161 0.165 0.170

3A 500 7 0.006 0.342 0.014 0.015 0.015 0.058 0.474 0.090 0.091 0.091

3A 500 30 0.001 0.350 0.014 0.016 0.017 0.028 0.481 0.088 0.090 0.091

3A 1000 7 0.003 0.344 0.008 0.009 0.009 0.043 0.475 0.066 0.067 0.067

3A 1000 30 0.001 0.350 0.008 0.008 0.009 0.022 0.480 0.069 0.069 0.070

3B 300 7 0.025 0.587 0.058 0.065 0.069 0.119 0.645 0.178 0.184 0.188

3B 300 30 0.006 0.617 0.068 0.073 0.079 0.057 0.656 0.180 0.184 0.190

3B 500 7 0.007 0.584 0.015 0.019 0.018 0.066 0.644 0.092 0.095 0.095

3B 500 30 0.002 0.619 0.019 0.025 0.022 0.033 0.659 0.096 0.102 0.099

3B 1000 7 0.005 0.590 0.010 0.010 0.010 0.055 0.647 0.075 0.075 0.075

3B 1000 30 0.001 0.611 0.011 0.012 0.012 0.026 0.655 0.072 0.074 0.074

We found the performances of our estimators (E3, E4, E5) were slightly worse when
the group size ng = 30 compared with the performances of our estimators when the group
size ng = 7. We expect that the performance of our estimators may decrease for a large
group size ng due to rounding errors in computation.

4. Real Data-Based Studies

We used real data to illustrate the use of our estimators and compare the different
estimators. The dataset used was the “Social-Network-Ads” dataset from the Kaggle
Machine Learning Forum (https://www.kaggle.com, accessed on 12 January 2023).

The dataset has been used by statisticians and data scientists to illustrate the use of
logistic regression in categorical data analysis. We used the dataset to illustrate the use of
our method to conduct logistic regression in the presence of data aggregation.

The Social-Network-Ads dataset in Kaggle is a categorical dataset for determining
whether a user purchased a particular product. The dataset (https://www.kaggle.com/
datasets, accessed on 12 January 2023) contains 400 people/observations. The informa-
tion about the person’s purchase action (purchased with a binary variable of 1 denotes
purchased and 0 denotes not purchased), as well as the person’s age and estimated salary,
is provided. Logistic regression has been recommended in Kaggle to model the person’s
purchase action based on the person’s age and estimated salary. We intend to apply our
method to this dataset in the presence of data aggregation.

The original dataset is at the individual level, which allows us to conduct logistic regres-
sion based on individual-level Y and X. We standardized X by X∗ = (X−mean(X))/sd(X)
in data pre-processing. Standardization of X allows for better estimation and interpretation.
Standardized coefficients β∗ are obtained by logistics regression of Y on standardized data
X∗. The original slope coefficients in β can be calculated by the formula β̂ = β̂∗ × sd(X)
and then the intercept coefficient can be calculated.

We imposed data aggregation on this dataset with an aggregation size ng = 3, 5, 7. We
randomly divided the persons into groups of size ng and calculated the group aggregate of
the purchase actions Y. Due to confidentiality and the cost of collecting individual-level
data, businesses and organizations can choose to post data information at an aggregate

https://www.kaggle.com
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
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level. We mimicked the data aggregation process by random grouping and calculated
the aggregate-level Y based on the individual-level Y. We repeated the data aggregation
300 times. In this way, we generated 300 datasets, with the individual-level X and aggregate-
level Y calculated.

For each dataset, we conducted logistic regression based on individual-level X and Y
and obtained our estimator E1. Since data aggregation discards information, we evaluated
the other estimators by checking whether they were close to estimator E1. Because the true
values of the coefficients in individual-level logistic regression models are not known in real
data-based studies, we used estimator E1 as a gold-standard estimator. We compared the
other estimators based on aggregate-level Y to determine which estimator was closer to our
gold-standard estimator E1. Note that E1 is an infeasible estimator when individual-level
X is not available.

The estimator E1 was calculated based on individual-level X and individual-level Y.
The estimated value of estimator E1 remained the same in our 300 generated datasets and
E1 was treated as the gold-standard estimator; thus, we denote it as (β0, β1, β2).

Denote the estimated value of βi for the j-th estimator in the k-th dataset by β̂i,Ej(Dk).
The bias, variance, MSE, and MAD of estimators E2 to E5 for β0,β1, and β2 were calculated
by the formulae

β̂i,Ej =
300

∑
k=1

β̂i,Ej(Dk)/300

Bias(β̂i,Ej) = β̂i,Ej − βi

Var(β̂i,Ej) =
300

∑
k=1
{β̂i,Ej(Dk)− β̂i,Ej}2/300

MSE(β̂i,Ej) =
300

∑
k=1
{β̂i,Ej(Dk)− βi}2/300

MAD(β̂i,Ej) =
300

∑
k=1
|β̂i,Ej(Dk)− βi|/300

For the four estimators based on aggregate-level Y and individual-level X, i.e., E2 to
E5, we report the biases and variances in Table 3. We can see that in most cases, there
are large biases in estimating β0 and β2 and relatively smaller biases in estimating β1
using the naive estimator E2. Our proposed estimators (E3 to E5) always achieved smaller
biases compared to the naive estimator E2. This is because the naive estimator E2 used
an approximate likelihood instead of an exact likelihood, which our proposed estimators
are based on. In terms of variance, the naive estimator had a relatively smaller variance
compared with our estimators E3 to E5. We point out that the calculation algorithm used in
E2, i.e., iteratively reweighted least squares (IRLS), was more numerically stable compared
with the nonlinear optimization algorithms adopted by our estimators, i.e., Nelder and
Mead’s simplex method, the BFGS method, and the conjugate gradient method.

We then checked the overall performance of the different estimators and report the
MSE and MAD in Table 4. We found that our estimators (E3 to E5) had better performance
than the naive estimator (E2) in terms of the MSE and MAD in all situations based on the
Social-Network-Ads dataset.
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Table 3. Biases and Variances of Estimators E2 to E5 based on Aggregate-Level Y and Individual-Level
X. ng is the group size in the aggregation.

Bias Variance

Coef. ng E2 E3 E4 E5 E2 E3 E4 E5

β0 3 1.580 −0.018 0.620 −0.017 0.094 0.160 0.125 0.160

β0 5 1.721 −0.054 0.877 −0.054 0.115 0.383 0.218 0.383

β0 7 1.769 −0.156 1.019 −0.156 0.194 0.721 0.319 0.721

β1 3 −0.163 0.001 −0.073 0.001 0.002 0.003 0.002 0.003

β1 5 −0.176 0.005 −0.108 0.005 0.002 0.006 0.004 0.006

β1 7 −0.180 0.016 −0.127 0.016 0.004 0.012 0.006 0.012

β2 3 −1.007 0.039 −0.195 0.039 0.025 0.062 0.026 0.062

β2 5 −1.123 0.075 −0.258 0.075 0.043 0.174 0.053 0.174

β2 7 −1.141 0.150 −0.266 0.150 0.053 0.260 0.087 0.260

Table 4. MSE and MAD of Estimators E2 to E5 based on Aggregate-Level Y and Individual-Level X.
ng is the group size in the aggregation.

MSE MAD

Coef. ng E2 E3 E4 E5 E2 E3 E4 E5

β0 3 2.591 0.160 0.509 0.160 1.580 0.317 0.644 0.317

β0 5 3.076 0.385 0.986 0.385 1.721 0.480 0.909 0.480

β0 7 3.322 0.743 1.356 0.742 1.769 0.651 1.036 0.650

β1 3 0.028 0.003 0.008 0.003 0.163 0.041 0.077 0.041

β1 5 0.033 0.006 0.016 0.006 0.176 0.060 0.112 0.060

β1 7 0.036 0.012 0.023 0.012 0.181 0.085 0.130 0.085

β2 3 1.039 0.063 0.064 0.063 1.007 0.186 0.222 0.186

β2 5 1.304 0.179 0.120 0.179 1.123 0.325 0.297 0.325

β2 7 1.356 0.282 0.157 0.282 1.141 0.409 0.331 0.409

5. Discussion

Our estimators are obtained by maximizing the nonlinear likelihood function L(β),
β ∈ Rp. Different optimization methods can influence the performance of our estimators.
Further studies can be conducted on other optimization methods such as the genetic
algorithm or using multiple starting values. The performance of optimization is expected
to decrease when p increases.

We only consider independent individual-level data, i.e., (Xi, Yi), i = 1, 2, · · · , n. The
n observations are randomly divided into groups of size ng and the aggregate-level Y
is calculated after grouping. In this paper, we only consider the situation of “grouping
completely at random”, which means that the grouping mechanism is completely random.
The values of X and Y do not influence the grouping. Further studies can be conducted
beyond this type of grouping mechanism.

Our aggregation scheme is based on independent individual-level data. There are
more aggregations schemes. For example, temporal aggregation can aggregate dependent
data, which can generate aggregated low-frequency time series based on high-frequency
time series by summing every m consecutive time points. For example, we can aggregate
daily time series into weekly time series by summing every m = 7 consecutive daily
observations. Temporal aggregation is often based on a time series model such as an
integer-valued generalized autoregressive conditional heteroskedasticity (INGARCH) [18].
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We note that the proposed methods also allow for other link functions in addition to
the logit link. For example, when a probit link function is used, we can estimate individual-
level probit models based on aggregate-level Y and individual-level X. In addition, we
only consider binary responses in this paper. A follow-up study to extend our methods to
handle responses with more than two levels are under development.

6. Conclusions

We proposed methods to estimate logistic models based on individual-level predictors
and aggregate-level responses. We conducted simulation studies to evaluate the perfor-
mance of the estimators and show the advantage of our estimators. We then used the
Social-Network-Ads dataset to illustrate the use of our estimators in the presence of data
aggregation and compared the different estimators. Both the simulation studies and real
data-based studies have shown the advantage of our estimators in estimating logistics mod-
els describing individual-level behaviors based on aggregate-level Y and individual-level
X, i.e., when there is data aggregation in the response variable.
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The following abbreviations are used in this manuscript:

BFGS Broyden–Fletcher–Goldfarb–Shanno method
CF Characteristic function
CG Conjugate gradient
DFT Discrete Fourier transform
IRLS Iteratively re-weighted least squares
LR Logistics regression
MAD Mean Absolute Deviation
MSE Mean Square Error
NM Nelder-Mead method
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