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Abstract: Determining the attitude of a non-cooperative target in space is an important frontier
issue in the aerospace field, and has important application value in the fields of malfunctioning
satellite state assessment and non-cooperative target detection in space. This paper proposes a
non-cooperative target attitude estimation method based on the deep learning of ground and space
access (GSA) scene radar images to solve this problem. In GSA scenes, the observed target satellite
can be imaged not only by inverse synthetic-aperture radar (ISAR), but also by space-based optical
satellites, with space-based optical images providing more accurate attitude estimates for the target.
The spatial orientation of the intersection of the orbital planes of the target and observation satellites
can be changed by fine tuning the orbit of the observation satellite. The intersection of the orbital
planes is controlled to ensure that it is collinear with the position vector of the target satellite when
it is accessible to the radar. Thus, a series of GSA scenes are generated. In these GSA scenes, the
high-precision attitude values of the target satellite can be estimated from the space-based optical
images obtained by the observation satellite. Thus, the corresponding relationship between a series
of ISAR images and the attitude estimation of the target at this moment can be obtained. Because the
target attitude can be accurately estimated from the GSA scenes obtained by a space-based optical
telescope, these attitude estimation values can be used as training datasets of ISAR images, and
deep learning training can be performed on ISAR images of GSA scenes. This paper proposes an
instantaneous attitude estimation method based on a deep network, which can achieve robust attitude
estimation under different signal-to-noise ratio conditions. First, ISAR observation and imaging
models were created, and the theoretical projection relationship from the three-dimensional point
cloud to the ISAR imaging plane was constructed based on the radar line of sight. Under the premise
that the ISAR imaging plane was fixed, the ISAR imaging results, theoretical projection map, and
target attitude were in a one-to-one correspondence, which meant that the mapping relationship
could be learned using a deep network. Specifically, in order to suppress noise interference, a UNet++
network with strong feature extraction ability was used to learn the mapping relationship between
the ISAR imaging results and the theoretical projection map to achieve ISAR image enhancement.
The shifted window (swin) transformer was then used to learn the mapping relationship between the
enhanced ISAR images and target attitude to achieve instantaneous attitude estimation. Finally, the
effectiveness of the proposed method was verified using electromagnetic simulation data, and it was
found that the average attitude estimation error of the proposed method was less than 1◦.
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1. Introduction

Determining the attitude of a non-cooperative target in space has important application
value in the aerospace field. Potential applications include assessing the flight state of a
malfunctioning satellite, preparing target information for space debris-related missions [1,2],
and estimating the point on the ground where a remote sensing satellite’s lens is pointing
by estimating its attitude [3].

Inverse synthetic-aperture radar (ISAR) is a type of ground-based radar used for space
targets. It can be used to acquire target images under all weather conditions and at all times.

Because the ISAR imaging detection of space targets can obtain information about a
target’s attitude over a long distance, it is an important means of estimating the attitudes of
non-cooperative targets in space.

In terms of ISAR image attitude determination, because a single ISAR image of a
single station is not sufficient for three-dimensional space attitude estimation, multi-station
ground-based radar co-vision has been used in many studies for ISAR image attitude
determination [4,5]. For attitude estimation based on sparse image data, informatics
methods are used, such as multi-feature fusion [6], compressed sensing [7], a hidden
Markov model [8], accommodation parameters [9], and a Gaussian window [10]. In
recent years, with the development of artificial intelligence neural network technology,
the application of a deep learning network to attitude estimation using ISAR images has
obtained better simulation data [3,11,12]. Although various methods are used, ISAR-based
image attitude estimation is still less accurate than optical-image attitude estimation.

In terms of optical-image attitude determination, in recent years, convolutional neural
network (CNN) technology has realized highly accurate reconstruction and attitude estima-
tion based on optical images. In fields such as human-organ image reconstruction [13–15],
multi-view image reconstruction [16,17], wave modeling [18], face modeling [19], archi-
tectural modeling [20], and human pose analysis, a CNN can achieve three-dimensional
reconstruction and attitude estimation [21,22].

In space-based optical image attitude determination, CNNs are mainly used in fields
such as space target imaging [23–26] and autonomous rendezvous and docking [27,28]. Its
attitude determination method is often combined with the three-dimensional modeling and
recognition of the target [29,30]. In recent years, artificial neural networks have achieved
good application results in the fields of the three-dimensional reconstruction and the
attitude estimation of targets in space [31–34].

This paper is structured as follows. Section 2 presents a method of non-cooperative
target attitude estimation. This is a non-cooperative target attitude estimation method based
on the machine learning of GSA scene radar images. Section 3 presents the construction
method for the GSA scenes. Section 4 gives the framework used for the machine learning.
Section 5 shows how the effectiveness of the attitude estimation method proposed in this
paper was verified using a test bed with high-fidelity simulation data. Section 6 summarizes
the full text.

2. Non-Cooperative Target Attitude Estimation Method Based on Machine Learning of
Radar Images in GSA Scenes

A direct way to use radar images to determine attitude is to use a deep learning neural
network to learn radar images. After training, the network can output the attitude.

However, this is based on the premise that the training dataset shows a one-to-one
correspondence between the radar images and attitude values.

This requires the training data to meet two necessary conditions.
(1) There is a one-to-one correspondence between the radar images and attitude values.
First, the observation coordinate system shown in Figure 1 needs to be defined.
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Figure 1. Schematic diagram of the observation coordinate system.

The vector direction of the target pointing to the radar is taken as the Z axis, and the
direction of the cross product between the relative velocity direction and the Z axis is taken
as the Y axis. The right-hand rule is used with Z and Y to determine the X axis, and the
origin of the coordinate system is located at the centroid of the target.

The attitude angle in the following observation coordinate system then needs to
be defined.

The Euler angle that rotates from the target body coordinate system, Body, to the
observation coordinate system, Obs, is the attitude angle in the observation system.

Finally, the following lemma needs to be given.

Lemma 1. The attitude angles of a space target in the observation coordinate system have a
one-to-one correspondence with the ISAR images.

Only when the attitudes are defined in the observation coordinate system can the
target radar images have a one-to-one correspondence with the attitude values. In other
words, if two radar images are identical, they must have the same attitude values in the
observation coordinate system. This is because when the attitude angle of the observation
system is determined, the angles between the direction of the radar waves irradiating
the target and the X, Y, and Z axes of the target body coordinate system are uniquely
determined.

(2) The data should come from GSA scenes.
When the radar images the target, in order to obtain an accurate value for the target’s

attitude, a space-based satellite should be used to simultaneously image the target and
estimate the attitude, as shown in Figure 2 below.

As stated in the literature review, methods have been developed to determine the
attitude based on optical images, and determining the attitude of a target based on space-
based optical images is also an engineering problem that has been solved. Therefore, this
is not the research content of this paper. The only problem that needs to be solved is the
simultaneous use of a satellite in space to optically image the target at the moment of radar
imaging. This concerns the construction of GSA scenes, as discussed in the next section.
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Figure 2. GSA scene.

3. Building of GSA Scene with Co-Vision from Space and Earth
3.1. Methods and Ideas

Here, the ground station is designated as GS. The target satellite to be observed by
the GSA is Sat_Target, and the shooting satellite is Sat_Obs. The basic idea of building GSA
scenes is to slightly change the orbital parameters of Sat_Obs, Ha (apogee height) and Hp
(perigee height), so that Sat_Obs is close to Sat_Target while Sat_Target can be observed by
the ISAR of GS, thus generating GSA scenes.

3.2. Method for Solving Orbital Maneuver
3.2.1. Step 1: Alignment Maneuver of the Track Surface Intersection

The intersection vector of the Sat_Obs orbital plane and Sat_Target orbital plane is set
as OC, which can be expressed as follows:

Sat_Targetorbit_normal_vector = [sin(i1)· cos(θ1), sin(i1)· sin(θ1), cos(i1)]
Sat_Obsorbit_normal_vector = [sin(i2)· cos(θ2), sin(i2)· sin(θ2), cos(i2)]

OC = Sat_Targetorbit_normal_vector × Sat_Obsorbit_normal_vector

, (1)

When Sat_Target and GS have access, the geocentric vector of Sat_Target is OT, as
shown in Figure 3.
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As shown in Figure 3, as long as OC and OT coincide, GSA can be generated.

X = cos(i2)· sin(i1)· sin(θ1)− cos(i1)· sin(i2)· sin(θ2)
Y = cos(i1)· sin(i2)· cos(θ2)− sin(i1)· cos(i2)· cos(θ1)
Z = sin(i1)· sin(i2)· sin(θ2 − θ1)

OCx = X√
X2+Y2+Z2

OCy = Y√
X2+Y2+Z2

OCz =
Z√

X2+Y2+Z2

, (2)

where θ1 and θ2 are defined as follows:

θ1 =
(
Ω1 − π

2
)
+

.
Ω1·∆t

.
Ω1 = − 3·n1·J2·R2

e

2·a2
1(1−e2

1)
2 · cos(i1)

θ2 =
(
Ω2 − π

2
)
+

.
Ω2·∆t

.
Ω2 = − 3·n2·J2·R2

e

2·a2
2(1−e2

2)
2 · cos(i2)

, (3)

where Ω, n, i, a, and e are the right ascension, horizontal velocity, inclination, semi-major
axis, and eccentricity of the ascending node of satellite Sat_Target and satellite Sat_Obs,
respectively. Re is the Earth’s radius, and J2 is the J2-perturbed parameter.

The required orbital adjustment can be obtained using the following algorithm. This
algorithm mainly realizes the alignment of the two orbital plane intersections by using the
change in the orbital plane intersection caused by the orbital plane precession of the J2
gravitational term.

Algorithm 1. Step A: Calculate all the access of Sat_Target to GS, and get the sequence
of [T_access, XYZ_access], where T_access is the sequence of all the access moments, and
XYZ_access is the XYZ position coordinates in the J2000 coordinate system corresponding
to these access moments.

Step B: Search for a suitable T_access within the acceptable range of a and e changes,
so as to satisfy the following:

OC = XYZ_access, (4)

As long as the above equation is satisfied, intersection point C of the orbital planes of
the two satellites can be made accessible to GS, thereby completing the alignment of the
intersecting orbital planes.

3.2.2. Step 2: In-Plane Pursuit Orbital Maneuver

Only the orbital plane conditions are produced in the last step, and it is necessary to
carry out orbit control of Sat_Obs in the orbital plane one or two orbital periods before
reaching the intersection point, as well as mild control of a, e, and ω (argument of perigee),
so that Sat_Obs can chase after Sat_Target in the orbital plane and reach XYZ_access at time
T_access. This problem can be solved as a Lambert problem. This kind of in-plane catching-
up problem has been well solved in academia, so no further description is given here.

3.3. Calculation Example

The initial conditions are listed in Table 1. The latitude and longitude of GS are 31.1 N
121.3 E.
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Table 1. Initial calculation conditions.

Sat_Target Sat_Obs

Epoch (UTC) 27 November 2022 16:00:00.000 27 November 2022 16:00:00.000
Ha (km) 700 700
Hp (km) 600 350

i (◦) 43 99
Ω (◦) 290 10
ω (◦) 100 0
M (◦) 200 316.5

ω is Augment of Perigee and M is Mean Anomaly.

Based on Sat_Target and GS, the [T_access, XYZ_access] sequence is calculated first, and
then shooting changes Ha and Hp to minimize the difference between

[
OCx, OCy, OCz

]
and XYZ_access.

This example shows that when the apogee altitude of Sat_Obs increases by 19 km
and the perigee altitude increases by 29.3 km,

[
OCx, OCy, OCz

]
can almost coincide with

XYZ_access when T_access is 2022-12-4 11:28:29, and the difference is equivalent to a distance
between them of only 6 km, as shown in Figure 4. This distance is sufficient for Sat_Obs to
perform high-definition imaging and high-precision attitude determination of Sat_Target
using an optical telescope.
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4. Attitude Estimation Based on Deep Network
4.1. Brief Introduction

Space target state estimation aims to obtain state parameters such as the target’s on-
orbit attitude movement and geometric structure. It is a key technology for completing
tasks such as target action intention analysis, troubleshooting potential failure threats,
and predicting on-orbit situations. This study had the goal of providing a method for
determining the real attitude of a target using an optical telescope and learning the mapping
relationship between ISAR images and the real attitudes using a deep network so as to
efficiently realize instantaneous attitude estimation based on single-frame ISAR images.
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4.2. Attitude Estimation Modeling

In the orbital coordinate system, the on-orbit attitude of a three-axis stable space target
remains unchanged. ISAR is used to observe the target for a long time. The movement
of the target along its orbit makes the target rotate relative to the radar line of sight and
produce Doppler modulation on the echo. A sequence of high-resolution ISAR images
of the target can be obtained by the sub-aperture division and imaging processing of the
echo data.

An ISAR observation and imaging model of a three-axis stable space target is shown
in Figure 5, in which O-XYZ represents the orbital coordinate system. In the long-term
continuous observation process, the radar line of sight at each observation moment forms
a green curved surface in Figure 5. Among these, the direction vector of the radar line of
sight at time tm is determined by pitch angle αtm and azimuth angle βtm . Specifically, αtm

is the angle between the radar line of sight and its projection vector ltm on the XOY plane,
and βtm is the rotation angle of ltm and the X axis in the counterclockwise direction, with
α(tm) ∈ [−π/2, π/2] and β(tm) ∈ [0, 2π]. The radar line-of-sight direction vector at time
tm can be expressed as follows:

rtm = (cos αtm cos βtm , cos αtm sin βtm , sin αtm)
T , (5)
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For the kth scattering center, Pk, on the target, its coordinates are recorded as (xk, yk, zk)
T .

The projection of the scattering center in the distance direction of the ISAR imaging plane
is shown as follows:

rk(tm) = rT
tm ·(xk, yk, zk)

T , (6)

The velocity of the scattering center along the distance direction is calculated as follows:

vk(tm) = dT
tm ·(xk, yk, zk)

T , (7)

where
dtm =

·
rtm

=
(
− sin αtm cos βtm

.
αtm − cos αtm sin βtm

.
βtm

,

− sin αtm sin βtm

.
αtm + cos αtm cos βtm

.
βtm

, cos αtm

.
αtm

)T
, (8)

and
.
αtm and

.
βtm

represent the change rates of the pitch angle and azimuth angle at time tm,
respectively. Then, the Doppler of scattering center Pk at time tm can be obtained:

dk(tm) = −
2vk(tm)

λ
, (9)
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where λ is the wavelength of the signal emitted by the radar. Therefore, at time tm, the pro-
jection position of scattering center Pk on the imaging plane satisfies the following equation:

(
rk(tm)
dk(tm)

)
=

(
rT

tm

dT
tm

)
·

xk
yk
zk

, (10)

where (rk(tm), dk(tm))
T is the projection coordinates of the scattering center, and Atm =

(rtm , dtm)
T is the imaging projection matrix.

The on-orbit attitude of the target is defined by the Euler angle, and α, β, and γ
represent the azimuth, pitch, and yaw of the attitude angle, respectively. Compared to
the target body coordinate system, the target attitude in the orbit coordinate system is
determined by the three-dimensional rotation matrix, R, as follows:

R = Rα·Rβ·Rγ, (11)

where Rα, Rβ, and Rγ represent the rotation matrices corresponding to the Euler angles.

Assuming that the coordinates of scattering center Pk are
(
xr

k, yr
k, zr

k
)T in the target body

coordinate system, the following equation is obtained:xk
yk
zk

 = R·

xr
k

yr
k

zr
k

, (12)

Then, considering the attitude of the target in the orbital coordinates, the projection
relation of the ISAR imaging of the scattering center at time tm can be completely expressed
as follows: (

rk(tm)
dk(tm)

)
=

(
rT

tm

dT
tm

)
·

R·

xr
k

yr
k

zr
k

. (13)

4.3. Attitude Estimation Based on Deep Network

In order to realize the instantaneous attitude estimation of the space target, this section
proposes instantaneous attitude estimation methods based on a deep network, namely
ISAR image enhancement based on UNet++ [35] and instantaneous attitude estimation
based on the shifted window (swin) transformer [36]. Finally, the training steps of the
proposed methods are given.

4.3.1. ISAR Image Enhancement Based on UNet++

ISAR observes and receives the echoes from non-cooperative targets, compensates
the translation components, which are not beneficial to imaging, and then transforms
them into turntable models for imaging. However, because of the occlusion effect, the
key components of the target can be missing in the imaging results, and the quality of
the imaging results can be poor under noisy conditions. These problems can lead to a
low-accuracy attitude estimation based on a deep network. To enhance the ISAR imaging
results, UNet++, which has strong feature extraction ability, is used to learn the mapping
relationship between the ISAR imaging results and theoretical binary projection images,
and to provide high-quality imaging results for subsequent attitude estimation.

A flow chart of the ISAR image enhancement based on UNet++ is shown in Figure 6.
The network input is the ISAR imaging result, and the deep features of the ISAR image are
extracted through a series of convolution and down-sampling operations. The image is
then restored by up-sampling, and more high-resolution information is obtained by using
a dense jump connection. Thus, the details of the input image can be more completely
restored, and the restoration accuracy can be improved. In order to make full use of the
structural advantages of UNet++ and to apply it to ISAR image enhancement, a convolution
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layer with one channel is added after X0,1, X0,2, X0,3, and X0,4, and its output is averaged to
obtain the final ISAR image enhancement result.
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Let oi,j represent the output of node Xi,j, where i represents the down-sampling layer
number of the encoder, and j represents the convolution layer number of the dense hopping
connection. The output of each node can then be expressed as follows:

oi,j =

H
(
D
(
oi−1,j)), j = 0

H
([[

oi,k
]j

k=0
,U
(
oi+1,j−1)]), j > 0

, (14)

whereH(·) represents two convolution layers with linear rectification activation functions.
The convolution kernel size is 3× 3, and the number of convolution kernels is shown in
Table 2. As shown by the red downward arrow in Figure 6, D(·) represents the down-
sampling operation, which is realized by a pool layer with 2× 2 kernels, as shown by
the blue upward arrow in Figure 6. U (·) represents the up-sampling operation, which is
realized by a deconvolution layer with 2× 2 kernels and a step size of 2. In addition, [·]
indicates a splicing operation, and the brown arrow indicates a dense jump connection.

Table 2. Number of convolution kernels.

Node X0,0–4 X1,0–3 X2,0–2 X3,0–1 X4,0

Number of convolution kernels 32 64 128 256 512

To achieve better ISAR image enhancement results, the proposed method uses theo-
retical binary projection images as labels for end-to-end training, and the loss function is
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defined as the normalized mean square error between network output Xoutput and label
Xlabel ,

L1

(
Xoutput, Xlabel

)
=
‖Xoutput − Xlabel‖F

‖Xlabel‖F
, (15)

where ‖·‖F represents the Frobenius norm.

4.3.2. Instantaneous Attitude Estimation Based on Swin Transformer

When the radar line of sight is fixed, the attitude angle has a one-to-one correspondence
to the enhanced ISAR image. Therefore, this study used the swin transformer to learn the
mapping relationship.

A flow chart of the instantaneous attitude estimation based on the swin transformer
is shown in Figure 7. First, an enhanced ISAR imaging result with a size of H×W× 1
is inputted into the network. It is then divided into non-overlapping patch sets by patch
partition, based on a patch of 4 × 4 adjacent pixels, and each patch is flattened in the
channel direction to obtain a feature map of H

4 ×
W
4 × 16. Four stages are then stacked

to build feature maps of different sizes for attention calculation. The first stage changes
the feature dimension from 16 to C using linear embedding, and the other three stages
are down-sampled by patch merging. Thus, the height and width of the feature maps are
halved, and the depth is doubled. The feature map sizes are H

8 ×
W
8 × 2C, H

16 ×
W
16 × 4C,

and H
32 ×

W
32 × 8C. After changing the dimension of the feature maps, the swin transformer

modules are repeatedly stacked, with the swin transformer modules in subsequent stages
stacked 2, 2, 6, and 2 times. A single swin transformer module is shown in the dashed box
on the right side of Figure 7. It is connected using layer normalization (LN) with a windows
multi-head self-attention (W-MSA) module, or a shifted windows multi-head self-attention
(SW-MSA) module, in which the LN layer is used to normalize different channels of the
same sample to ensure the stability of the data feature distribution. Among them, the
self-attention mechanism [37] is the key module of the transformer, and its calculation
method is as follows:

A = Attention(Q, K, V) = SoftMax
(

QKT/
√

d
)

V, (16)

where Q is the query, K is the key, V is the value, and d is the query dimension.
Multi-head self-attention is used to process the original input sequence into self-

attention groups, splice the results, and perform a linear transformation to obtain the final
output result:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO

where headi = Attention
(

QWQ
i , KWK

i , VWV
i

) , (17)

where each self-attention module defines dk = dv = dmodel/h, and the weight matrix
satisfies the following:

WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dk , WO

i ∈ Rhdv×dmodel , (18)
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W-MSA in the swin transformer module further divides the image block into non-
overlapping areas and calculates the multi-head self-attention in the areas. In W-MSA, only
the self-attention calculation is performed in each window. Thus, the information cannot
be transmitted between windows. Therefore, the SW-MSA module is introduced. After
the non-overlapping windows are divided in the Lth layer, the windows are re-divided in
the Lth+1 layer with an offset of half the window distance, which allows the information
of some windows in different layers to interact. Next, another LN layer is inputted to
connect the multilayer perceptron (MLP). The MLP is a feedforward network that uses
the GeLU function as an activation function, with the goal of completing the non-linear
transformation and improving the fitting ability of the algorithm. In addition, subsequent
stages have 3, 6, 12, and 24 heads. The residual connection added to each swin transformer
module is shown in the yellow line in Figure 7. This module has two different structures
and needs to be used in pairs: the first structure uses W-MSA, and the second structure
connects with SW-MSA. During the process of passing through this module, the output of
each part is shown in Equations (19)–(22):

ẑl = W_MSA
(

LN
(

zl−1
))

+ zl−1, (19)
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zl = MLP
(

LN
(

ẑl
))

+ ẑl (20)

ẑl+1 = SW_MSA
(

LN
(

zl
))

+ zl (21)

zl+1 = MLP
(

LN
(

ẑl+1
))

+ ẑl+1 (22)

The dimension of the last stage output feature is H
32 ×

W
32 × 8C. A feature vector with a

length of 8C can be obtained by a one-dimensional AdaptiveAvgPool1d with an output
dimension of 1, and the Euler angle estimation can be obtained by a fully connected layer
with a dimension of 3.

The network loss function is defined as the mean square error between output Euler
angle youtput and label Euler angle ylabel :

L2

(
youtput, ylabel

)
=

1
N

N

∑
i=1

(
youtput

i − ylabel
i

)2
, (23)

where three Euler angles are represented as N = 3.
The swin transformer has the hierarchy, locality, and translation invariance character-

istics. The hierarchy is reflected in the feature extraction stage, which uses a hierarchical
construction method similar to a CNN. The input image is down-sampled 4 times, 8 times,
and 16 times to obtain a multi-scale feature map. The locality is mainly reflected in the
process of the self-attention calculation, in which the calculation is constrained in a divided
local non-overlapping window. The calculation complexity of W-MSA and traditional MSA
is as follows:

Ω(MSA) = 4hwC2 + 2(hw)2C
Ω(W-MSA) = 4hwC2 + 2M2hwC

, (24)

where M is the window size for the self-attention calculation. It can be seen that the
complexity of the algorithm has changed from a square relationship with the image size to
a linear relationship, which greatly reduces the amount of calculation and improves the
efficiency of the algorithm. In SW-MSA, the division of non-overlapping windows is offset
by half a window compared with W-MSA, which allows the information of the upper and
lower windows to effectively interact. Compared with the common sliding window design
in a CNN, it retains the translation invariability without reducing the accuracy.

4.3.3. Network Training

The proposed method consists of two deep networks, the UNet++ for ISAR image
enhancement and the swin transformer for attitude estimation. During network training,
the epoch is set to 100, the batch size is set to 32, and the initial learning rate is set to
2e− 4. With an increase in the epoch, exponential attenuation is then performed with an
attenuation rate of 0.98. Finally, the network parameters are optimized using the Adam
optimizer. For each epoch, the network training steps can be summarized as follows:

(1) Randomly obtain an ISAR imaging result for the batch size from a training dataset;
(2) Input the ISAR imaging results into UNet++, output the enhanced ISAR imaging

results, and calculate the loss function according to Equation (15);
(3) Input the enhanced ISAR imaging results into the swin transformer, output the

Euler angle estimation values, and calculate the loss function according to Equation (22);
(4) Update the swin transformer network parameters;
(5) Update the UNet++ network parameters;
(6) Repeat steps 1–5 until all the training data are taken.
After the network is trained, any ISAR imaging result can be inputted into the network

to simultaneously realize ISAR image enhancement and instantaneous attitude estimation.
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5. Data Simulation Verification Results
5.1. Basic Settings

This section shows how Tiangong was chosen as the observation target. Its three-
dimensional model is shown in Figure 8. After obtaining a three-dimensional model, an
attitude estimation simulation experiment was carried out to verify the effectiveness of
the proposed method. First, an echo was simulated by FEKO electromagnetic calculation
software using the simulation parameters listed in Table 3.
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Table 3. Radar simulation parameters.

Carrier frequency 15 GHz
Bandwidth 1.6 GHz
Pitch angle 0◦

Accumulation angle 5.1◦

Distance points 256
Azimuth points 256

5.2. Data Generation and Processing

(1) Data set generation: As can be seen from Table 3, the radar line of sight was
fixed, the pitch angle was 0◦, the azimuth angle varied from −2.55 to +2.55, and the
angular interval was 0.02◦. At this time, the ISAR imaging results showed a one-to-one
correspondence to its attitude angle (namely the Euler angle). Therefore, in order to
obtain the training dataset, a total of 5000 ISAR imaging results with randomly varying
attitude angles were generated by simulation, and a theoretical binary projection diagram
was generated by Equation (10). The ISAR imaging results, theoretical binary projection
diagram, and attitude angles were used for training. Three Euler angles were randomly
distributed between −45◦ and +45◦, with 4000 ISAR imaging results used for training sets
and 1000 used for testing sets.

(2) ISAR image enhancement: First, ISAR imaging results were taken as network
inputs, and UNet++ was trained with theoretical binary projection as the label. After
training UNet++, ISAR imaging results were randomly used for testing. An imaging result
is shown in Figure 9. It can be seen that the network output and theoretical binary projection
results were similar after the ISAR imaging results were enhanced by the proposed method,
which proved the effectiveness of the proposed method.

(3) Instantaneous attitude estimation: In order to realize instantaneous attitude estima-
tion, the original ISAR images and image enhancement results were used as inputs, and the
true value of the Euler angle was used as a label to train the swin transformer. Table 4 lists
the average Euler angle estimation error on 1000 test datasets after training. It can be seen
that the attitude estimation error with image enhancement was smaller than that without
image enhancement, which proved the effectiveness of the proposed method. Random
ISAR imaging results were taken for testing. Test data 1 is shown in Figures 10 and 11,
and the attitude estimation results are listed in Tables 5 and 6. It can be seen that the data
enhancement results were clear enough to show the structural components of the target,
and the attitude estimation result was more accurate with less error, which proved the
effectiveness of the proposed method.
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Table 4. Euler angle estimation error based on swin transformer.

z/◦ y/◦ x/◦

Without image enhancement 1.3867 1.2231 1.7971
With image enhancement 0.7302 0.7050 0.9579
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Table 6. The attitude estimation results of test data 2. 
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Error 1.2125 1.0634 1.3158 
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Table 5. The attitude estimation results of test data 1.

z/◦ y/◦ x/◦

Label −27.0569 −20.4094 20.2146

Without image enhancement Estimated value −27.9102 −21.9417 19.6320
Error 0.8533 1.5322 0.5827

With image enhancement Estimated value −27.1155 −19.9481 19.5822
Error 0.0587 −0.4613 0.6325

Table 6. The attitude estimation results of test data 2.

z/◦ y/◦ x/◦

Label −13.5862 −35.0809 −14.4134

Without image enhancement Estimated value −14.7988 −36.1443 −15.7292
Error 1.2125 1.0634 1.3158

With image enhancement Estimated value −13.5347 −35.6672 −14.7969
Error −0.0515 0.5863 0.3835

5.3. Noise Robustness Analysis

To analyze the robustness of the proposed method to noise, the signal-to-noise ratio
(SNR) of the training dataset was set to randomly change within a range of −3 dB to
+15 dB, and the test SNR was set to 0, 5, and 10 dB. Table 7 shows the average Euler angle
estimation error of 1000 test samples after the network training. It can be seen that the
proposed method had the smallest estimation error under the different SNR conditions,
and the fluctuation was small, which proved that the proposed method is robust to noise.

Table 7. Average Euler angle estimation error values of test set under different SNR conditions.

SNR z/◦ y/◦ x/◦

Without image enhancement
0 dB 1.4405 1.4354 1.9950
5 dB 1.3620 1.3414 1.8249

10 dB 1.3100 1.3210 1.7834

With image enhancement
0 dB 0.6179 0.8326 0.8755
5 dB 0.6193 0.8047 0.8147

10 dB 0.6163 0.8052 0.8047

At the same time, two random test images were selected for visual analysis. The
imaging results are shown in Figures 12 and 13, and the Euler angle estimation results are
listed in Tables 8 and 9.
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Figure 12. The imaging results of test data 3 under different SNRs. Figure 12. The imaging results of test data 3 under different SNRs.

Table 8. The Euler angle estimation results of test data 3.

SNR z/◦ y/◦ x/◦

Label 36.9615 −36.9176 −21.4118

Without image enhancement

0 dB
Estimated value 37.9141 −37.9030 −18.1337

Error −0.9525 0.9853 −3.2781

5 dB
Estimated value 37.4324 −37.2864 −19.9296

Error −0.4708 0.3687 −1.4822

10 dB
Estimated value 37.6068 −36.9699 −19.4128

Error −0.6452 0.0522 −1.9990

With image enhancement

0 dB
Estimated value 37.0437 −37.0494 −21.7160

Error −0.0821 0.1318 0.3042

5 dB
Estimated value 36.8439 −37.1574 −21.9101

Error 0.1177 0.2398 0.4983

10 dB
Estimated value 36.9237 −36.8922 −21.3185

Error 0.0379 −0.0254 −0.0933
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Table 9. The Euler angle estimation results of test data 4.

SNR z/◦ y/◦ x/◦

Label −10.3241 −17.8594 −41.7762

Without image enhancement

0 dB
Estimated value −9.9148 −18.7568 −42.4823

Error −0.4093 0.8973 0.7061

5 dB
Estimated value −11.0111 −20.0738 −42.1863

Error 0.6869 2.2144 0.4101

10 dB
Estimated value −11.3889 −19.4947 −41.9493

Error 1.0647 1.6352 0.1731

With image enhancement

0 dB
Estimated value −10.9262 −17.8358 −41.8396

Error 0.6021 −0.0236 0.0634

5 dB
Estimated value −10.7412 −17.5429 −42.0876

Error 0.4171 −0.3165 0.3114

10 dB
Estimated value −10.9565 −17.6848 −41.9112

Error 0.6323 −0.1746 0.1350

6. Conclusions

This paper presented an effective method for estimating the attitude of a non-cooperative
target in space using deep learning based on radar images of GSA scenes. This method
generates many GSA scenes through orbital maneuvers. Taking advantage of the fact that
the attitude of the target in the GSA scenes can be estimated more accurately by space-based
optical telescopes, these attitude estimates are used as a training dataset of ISAR images.
Deep learning training is then carried out on the ISAR images of the GSA scenes. An
experimental verification under simulation conditions showed that the attitude estimation
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accuracy of the method for non-cooperative targets could reach a level of within 1◦. The
high estimation accuracy of this method would allow it to be widely used in fields such as
malfunctioning satellite state analysis and space target detection.
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