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Abstract: Biomedical interaction prediction is essential for the exploration of relationships between
biomedical entities. Predicted biomedical interactions can help researchers with drug discovery,
disease treatment, and more. In recent years, graph neural networks have taken advantage of their
natural structure to achieve great progress in biomedical interaction prediction. However, most of
them use node embedding instead of directly using edge embedding, resulting in information loss.
Moreover, they predict links based on node similarity correlation assumptions, which have poor
generalization. In addition, they do not consider the difference in topological information between
negative and positive sample links, which limits their performance. Therefore, in this paper, we
propose an adaptive line graph contrastive (ALGC) method to convert negative and positive sample
links into two kinds of line graph nodes. By adjusting the number of intra-class line graph edges and
inter-class line graph edges, an augmented line graph is generated and, finally, the information of the
two views is balanced by contrastive learning. Through experiments on four public datasets, it is
proved that the ALGC model outperforms the state-of-the-art methods.

Keywords: biomedical interaction; line graph; contrastive learning; adaptive
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1. Introduction

Biomedical interactions, such as drug–target interactions (DTIs) [1], drug–drug inter-
actions (DDIs) [2], protein–protein interactions (PPIs) [3], and disease–disease associations
(DDAs) [4], are essential in biological systems. Exploiting biomedical interactions can
improve biomedical-related technologies, such as clinical treatments and drug discovery,
as traditional wet experiments are inaccurate and require a lot of manpower.

Machine learning drives progress in biomedical interaction prediction. The most pop-
ular group of methods used for biomedical interaction prediction incorporates similarity-
based features. For instance, Perlman et al. [5] integrated multiple drug–drug and gene–
gene similarity measures to facilitate the prediction task using logistic regression to perform
the prediction. Kastrin et al. [6] adopted physiological and side effects as features to input
into models and established a logistic regression model to predict the interaction between
biomedical entities. These functions could also be defined based on the topological proper-
ties of a multipartite network of existing entity pairs [7]. The accuracy of prediction can be
improved by considering both the entity features and topological properties.

In recent years, numerous computational biomedical interaction prediction methods
have been developed. Owing to the development of deep learning, the ability of graph
representation learning to learn information about graph topological and node features
has been improved [8]. Graph-based deep learning methods have dominated biomedical
interaction prediction and can yield effective predictors and many methods have achieved
state-of-the-art performance on related datasets. The graph contains a set of objects and
relationships as a natural data structure to make full use of both entity features and topo-
logical properties [9]. Therefore, the biomedical interaction prediction task is transformed

Mathematics 2023, 11, 732. https://doi.org/10.3390/math11030732 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11030732
https://doi.org/10.3390/math11030732
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11030732
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11030732?type=check_update&version=1


Mathematics 2023, 11, 732 2 of 14

into a link prediction task by making interactions edges and biomedical entities nodes.
Most of the methods are based on GCN or GAT to obtain node embeddings by aggregating
neighbor node information and they pass through the pooling layer to predict the link.
Decagon [2] constructs a heterogeneous graph to obtain the embedding information of
different types of nodes and utilizes the multi-relational link prediction model to predict
polypharmacy side effects. However, these methods over-rely on the features of nodes and
cause poor generalization. To better exploit the information of the biomedical interaction
network structure and enhance the generalization of the model, SkipGNN [10] obtains
higher-order neighbor information by constructing skip graphs to enhance the use of
topology information. HOGCN [11] proposes a high-order graph convolutional network
to collect neighbor node representations at different distances for biomedical interaction
prediction. Considering the sparse imbalance of positive and negative sample links in
the DTI task, Wang et al. [12] propose the Heterogeneous graph data Augmentation and
node Similarity method, which is named HAS. However, GNN methods mainly focus on
obtaining effective node embeddings and ignore the information associated with edges
that can be beneficial [13].

In this paper, we propose the paradigm of Adaptive Line Graph Contrastive Learning
(ALGC) for biomedical interaction prediction. To obtain more information on sparse
datasets, ALGC adopts line graphs to convert the edges in the graph into line graph nodes;
thus, it enables direct access to edge-to-edge relationships and converts the link prediction
task to a node classification task. Therefore, positive and negative sample links can be
converted into two kinds of line graph nodes. Considering the effect of intra-class and
inter-class line graph edges on model performance, we use an adaptive augmented strategy
based on prediction feedback to adjust the edges for an augmented line graph. Based on
the theory that nodes of the same category in a graph are more inclined to connect, we
increase the number of edges between the line graph nodes of the same class and reduce
the number of edges between the line graph nodes of different classes. Finally, to make the
line graph nodes of the same class more similar and the differences between the different
classes greater, we adopt contrastive learning to maximize the information of double views.

• The proposed ALGC depends mainly on the interaction network topology, rather than
the property features and internal structure features of biomedical entities, leading to
better generalization and prediction performance.

• By converting the edges in the graph to line graph nodes, positive and negative sample
links can be converted into two kinds of line graph nodes. ALGC directly adopts the
relationship between edges. Further, the connection through the edges in the original
graph is represented by inter- and intra-class line graph edges.

• We propose an adaptive augmented strategy to adjust the number of intra- and inter-
class line graph edges to produce an augmented line graph.

• In order to increase the difference between the representations of positive and negative
sample links, we introduce contrastive learning to balance the representation of the
two views, and experiments on four different biomedical interaction network datasets
validate the excellent performance of the model.

2. Related Work
2.1. Link Prediction Methods

These methods can be divided into three categories:
(1) Heuristic methods measure the similarity between entity pairs by the properties

of the network such as structural properties. For instance, the common neighbors (CN) [14]
method calculates the size of the common neighbors for a given pair of nodes. The Katz
index [15] can be considered a variant of the shortest path metric based on global similarity
indices. Li et al. [16] propose a motif-based index to capture local structural information
and mix it with the similarity index in collaborative filtering to enhance its performance.

(2) Network embedding methods optimize an objective function to set up a model
that is composed of several parameters [17]. To improve model accuracy, Gul et al. [18]
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adopt a hill-climbing strategy to learn various local and quasi-topological features. How-
ever, due to the time-consuming calculation process, they are not suitable for real
large networks.

(3) Dimensionality reduction-based methods mainly include graph embedding and
matrix decomposition techniques [10]. Recently, Zhang et al. [19] proposed a new heuristic
learning paradigm that unifies all three types of information (local subgraph, embedding,
and attribute information) and utilizes the graph convolutional network. Sun et al. [13]
represent the edges as subgraphs and line graph nodes separately and balance multi-scale
information by contrastive learning.

2.2. Biomedical Interaction Prediction

The goal of biomedical interaction prediction is to predict whether pairs of biomedical
entities interact. Currently, these methods can be classified into two groups:

(1) Similarity-based methods assume that entities with similar interaction patterns
are more likely to interact. For example, BGMSDDA [20] developed a bipartite graph diffu-
sion algorithm with multiple similarity integration for drug–disease association prediction.
DeepDDI [21] applied a feed-forward neural network to encode structural similarity pro-
files (SSPs) of drugs to predict DDI. However, using similarity criteria based on known
biomedical interactions to model complex biomedical interactions is insufficient, as the
number of interactions identified is still sparse.

(2) Methods based on network topology utilize the network structure with node
information to predict interactions. SkipGNN [10] aggregates higher-order information
to predict interactions by constructing skip graphs. HOCGN [11] aggregates neighbor
information at different distances and exhibits excellent performance on sparse biomed-
ical interaction networks. However, this method uses node embedding to predict links
based on assumptions, cannot directly use edge information, and ignores the difference
between positive and negative sample links, resulting in information loss and limiting the
generalization of the models.

2.3. Graph Contrastive Learning

Contrastive learning learns representations by maximizing the consistency of features
across different views. For example, Wang et al. [22] consider the rich semantic relation-
ships between pixels in different images and propose a pixel-based contrastive learning
method that makes pixel embeddings belonging to the same semantic class more similar
than pixel embeddings from different semantic classes. Scholars have extended the meth-
ods applicable to European spaces to non-Euclidean spaces. A typical graph contrastive
learning (GCL) method first builds multiple graph views by random augmentation of the
input data and then learns representations by comparing positive and negative samples.
Graph contrastive learning can be divided into three categories in terms of contrastive
modes, local–local methods, global–local methods, and global–global methods, which are
based on the different scales of the views. The local level represents the node level and the
global level represents the graph level. For example, HeCo [23] proposes a heterogeneous
graph contrastive learning method, which generates two views according to the network
scheme and meta-path to maximize the mutual information of the same nodes in different
views. GRACE [24], GCA [25], and GROC [26] focus on contrasting views at the node level
(local–local). DGI [27] and MVGRL [28] maximize the mutual information between the
cross-view representations of nodes and graphs (global–local). GraphCL [29] applies a
series of graph augmentations to generate an augmented graph and then learns to predict
whether two graphs originate from the same graph (global–global).

3. Methods
3.1. Problem Formulation

Let G be a biomedical interaction network, where biomedical entities form the nodes
of the network. Then, the relationships between the entities form the links. For an arbitrary



Mathematics 2023, 11, 732 4 of 14

graph g(A, X) ∈ G, X represents the biomedical entities’ feature matrix and each node is
represented by a one-hot-encoded feature vector, and A denotes the interaction relations
of the biomedical entities. For any biomedical entity i, j, the purpose of the model is to
predict the value of Aij; if it is 1, there is an interaction between the two biomedical entities;
otherwise, there is not.

The general graph contrastive learning approach enhances model performance by
maximizing the agreement of different views [28]. Given a graph g(A, X) ∈ G, it first
adopts a transformation method to obtain a line graph gL(XL, AL), and thus the line graph
nodes represent the edges, as shown in Equation (1). XL, AL represent the line graph node
feature matrix and the adjacency matrix of the line graph. The graph encoder fθ(·) is
used to obtain the line graph node representation HL in Equation (2), and θ denotes the
parameters of the encoder.

gL(XL, AL) = trans f orm(g(A, X)) (1)

HL = fθ(gL(XL, AL)) (2)

We predict the results p of the node representation through a predictor composed
of two fully connected layers. Then, we adjust the edges of the line graph according to
the prediction results using the graph augmentation method T . Next, the augmented line
graph gA is obtained, as shown in Equation (3):

gA(XA, AA) = Tp(gL) (3)

As shown in Equation (4), we input the augmented line graph into the shared graph
encoder to obtain the new line graph node representations HA. Finally, the objective
function is obtained by maximizing the mutual information of the two views, as shown in
Equation (5):

HA = fθ(gA(XA, AA)) (4)

max
θ

∑
g∈G

MI(HA, HL) (5)

θ denotes the parameters of the shared graph encoder fθ(·).

3.2. Overview

The model description is illustrated in Figure 1. First, the input biomedical interaction
graph is converted into a line graph and the interactions among the biomedical entities
are represented by line graph nodes, and second, the line graph is used to obtain the
representation of the interactions through a shared graph encoder. Then, the classes of the
line graph nodes are predicted, the adjacency matrix of the line graph is obtained according
to the prediction results, the probability of connecting nodes of the same class is increased
to obtain the enhanced graph of the line graph, the augmented line graph is passed through
the graph encoder to obtain the node representation, and finally, the information of the two
views is balanced by contrastive learning.
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Figure 1. Overview of the ALGC. After converting the graph to a line graph, we adopt the pre-
diction results to adjust the number of intra- and inter-class edges in the line graph to produce a
new augmented line graph, and finally, we use contrastive learning to balance the information in
both views.

3.3. Line Graph Construction

For the given graph G, h-hop subgraphs are first sampled with each edge as the center
to obtain each subgraph gi, and we adopt Double-Radius Node Labeling (DRNL) [19] to assign
features to each node. Then, we can obtain the subgraph g(V , E, X, A) corresponding to
any link. The edges of the subgraph are then represented by the nodes of the line graph, as
shown in Equation (6). The features of a line graph node are obtained by concatenating the
features of two nodes in its corresponding subgraph, as shown in Equation (7), and two
line graph nodes are connected if the corresponding edges in the original graph share a
node. Finally, the line graph gL(XL, AL) is obtained.

VL = {e}, ∀e ∈ E (6)

XL = concate(xa, xb)|∀e(va ,vb)
∈ VL (7)

3.4. Line Graph Encoder

The link prediction task is converted to a node classification task after we convert
the subgraph to a line graph, as described above. Compared to indirect prediction links
by learning node embedding, graph neural networks such as Kipf and Welling [30] show
superior performance in node classification tasks [31]. Therefore, we create a multi-layer
GCN encoder fθ(·) for line graph node classification, as shown in Equation (8).

hl+1
L = σ(D̃

− 1
2 ÃLD̃

− 1
2 hl

LW) (8)

hl
L denotes the line graph node embedding at layer l, σ is an activation function and

ÃL = AL + I, I denotes the normalized identity matrix. D̃ii = ∑j Ãij represents the
normalized degree matrices.

After we obtain the final representation of the node HL, the node representation is
passed through a fully connected layer of two layers FC to obtain the probability value of
the predicted results P in Equation (9).

P = FC(HL) (9)
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Then, the supervised loss LS can be obtained, as shown in Equation (10).

LS = − 1
|VL| ∑

vi∈VL

yi log p̂i + (1− yi) log(1− p̂i) (10)

where |VL| denotes the total number of line graph nodes or edges in the training dataset, pi
denotes the predicted probability value for link i, and yi is the true value for link i.

3.5. Adaptive Line Graph Augmentation

In biomedical interaction networks, the known relational edges are usually referred
to as positive samples, whereas the unknown edges are referred to as negative samples.
After converting the graph to a line graph, the positive and negative samples can be
represented by two types of nodes. Nodes with the same label share similar adjacency
patterns and GCNs have the potential to achieve good performance [32]. On the other
hand, in order to produce a more appropriate contrastive view, based on the “InfoMin
principle”, the downstream task-related information is retained as much as possible by
removing the noise information [33].

Therefore, we generate new views by adjusting the number of inter- and intra-class
line graph edges by a certain ratio. We extend the AdaEdge [34] algorithm to adjust the
intra- and inter-class edges of the line graph according to the prediction results. Finally,
the adjacency matrix of the new augmented line graph is obtained. The details of the
adaptive line graph augmentation algorithm are described in Algorithm 1.

Algorithm 1: Adaptive Line Graph Augmentation algorithm
Input: Line graph adjacency matrix AL, Ratio r, Prediction Results P, Threshold t
Output: AA

1 Get Node number N f rom AL;
2 Get Edge number M f rom AL;
3 add_count = M ∗ r;
4 remove_count = add_count;
5 AA = AL;
6 for i in (0,N) do
7 for j in (i,N) do
8 if max(P[i],P[j])>t and min(P[i],P[j])<t then
9 if AL[i][j]==1 then

10 AA[i][j] = 0, AA[j][i] = 0;
11 remove_count− = 1;
12 if remove_count<=0 then
13 break
14 end
15 end
16 end
17 else
18 if AL[i][j] == 0 then
19 AA[i][j] = 1, AA[j][i] = 1;
20 add_count− = 1;
21 if add_count <= 0 then
22 break;
23 end
24 end
25 end
26 end
27 end
28 Return AA;
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3.6. Contrastive Learning

The contrastive learning of our proposed model is mainly a local–local-level contrast.
We mainly adopt two views of the line graph and the augmented line graph for the contrast
of the line graph nodes. For an arbitrary node v in a line graph, its positive samples are the
corresponding nodes of the augmented line graph and its negative samples are the samples
other than the positive samples. Thus, we can obtain the positive sample set P and the
negative sample set N .

Following the overall design of the GRACE [35] model, in this paper, we use a form of
the lower bound representation of mutual information, and the goal of InfoNCE [36] is to
maximize the scores of the positive sample pairs and minimize the scores of the negative
sample pairs, which takes the form shown in Equation (11).

LCons = −
1
|T| ∑

vi∈T
∑

pj∈P(vi)

log
eS(vi ,pj)/τ

eS(vi ,pj)/τ + ∑qj∈N (vi)e
S(vi ,qj)/τ

(11)

S(µ, v) =
µTv
‖µ‖‖v‖ (12)

S denotes the similarity measure function and for the two kinds of representations of
nodes µ, v, their similarity measures are shown in Equation (12). Moreover, T represents
the training datasets of the line graph nodes and |T| denotes the number of line graph
nodes in T.

The objective function of our model is obtained by combining the contrastive learning
loss LCons with the supervised loss LS, as shown in Equation (13).

Ltotal = αLS + βLCons (13)

Here, α and β are the hyperparameters corresponding to the different loss components.
The procedure of our proposed framework is shown in Algorithm 2.

Algorithm 2: Adaptive Line Graph Contrastive Learning algorithm
input : Biomedical interaction network G, training edges T, shared graph encoder

fθ(·), augmented function T
output :Trained encoder fθ(·) and parameters θ

1 for biomedical node pair (va, vb) ∈ T do
2 Extract h− hop subgraph g(A, X);
3 Obtain line graph gL(XL, AL) via Equation (6)(7);
4 Put line graph gL(XL, AL) in Line Graph Set TL;
5 end
6 for epoch = 1, ..., nepochs do
7 Randomly split TL in n/b batches Bi o f size b;
8 foreach batch Bi do
9 Obtain line graph node representation via Equation (8);

10 Obtain supervised losses, as shown in Equation (10);
11 Obtain the probability value o f the predicted result P via Equation (9);
12 Delete and add edges to obtain augmented line graph via Equation (3);
13 Obtain the augmented line graph node representation HA via Equation (4);
14 Obtain contrastive learning loss LCons, as shown in Equation (11);
15 Calculate the total loss Ltotal , as shown in Equation (13);
16 Update model parameters;
17 end
18 end
19 Return Encoder fθ(·), The parameters θ obtained after training;
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4. Experiment
4.1. Datasets and Experiment Setup

We conducted experiments on four datasets, ChCh-Miner (DDI) [37], ChG-Miner
(DTI) [37], HuRI-PPI (PPI) [3], and DD-Miner (DDA) [37]. They are diverse biomedical
interaction networks and include a drug–drug interaction network, drug–target interaction
network, protein–protein interaction network, and disease–disease association network.
The descriptions of the different biomedical interaction datasets are shown in Table 1.

We ran the ALGC model and baselines with the Inspur heterogeneous cluster (GPU:
12*32G Tesla V100s, memory: 640Gh DDR2). In the h− hop subgraph sampling method,
the default h was 2, and the parameters were mainly optimized by Optuna [38]. The
implementation of the ALGC model was based on PyGCL [39], which is a battery-included
toolkit for implementing graph contrastive learning models. As for the evaluation metrics,
we adopted the average precision (AP) and area under the receiver operating characteristic
(AUROC).

Table 1. Summary of datasets used in our experiments.

Datasets Entities Nodes Links Density

DDI [37] drug, drug 1514 48,514 4.23%
DTI [37] drug, target 7343 15,139 0.06%
PPI [3] protein, protein 5604 23,322 0.15%

DDA [37] disease, disease 6878 6877 0.03%

4.2. Dataset Visualization and Analysis

To obtain a macroscopic understanding of the datasets of the four different biomedical
interaction networks, we visualized them to observe their network topology information.
In each dataset, the size of the node and the shade of color were positively correlated with
the degree of the node. The topologies of the four biomedical interaction networks were
relatively different, as shown in Figure 2. Overall, the drug–drug interaction (DDI) network
was dense; the larger the degree, the larger the node and the darker the node color. The
drug–target interaction (DTI) network and disease–disease association (DDA) network
were relatively sparse. According to the size and color of the nodes, it was found that the
distribution of the node degrees in the DTI network was relatively uniform, whereas the
distribution of the node degrees in the DDA network was imbalanced.

(a) DDI (b) DTI

Figure 2. Cont.
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(c) PPI (d) DDA

Figure 2. Dataset visualization for the four datasets. The size and color shade of a node are positively
correlated with the degree of the node. The network topologies of the four datasets vary greatly,
and the DDI dataset is the densest.

4.3. Baselines
Comparison Methods

1. Heuristic methods:

• Common neighbors (CN) [40]: The simplest similarity metric based on node-
local information is the common neighbors indicator. This metric is defined as
the number of common neighbors between two nodes, that is, if there are more
common neighbors between two nodes, they are more inclined to connect.

2. Network embedding methods:

• DeepWalk [41] adopts the node-to-node co-occurrence relationship in the graph
to learn the representation of the node.

• LINE [42] directly models the first-order and second-order neighbors of the
graph. Unlike DeepWalk, LINE is modeled with the weights on the edges.

• Node2vec(N2V) [43] optimizes the random walk process of Deepwalk. This
method comprehensively considers the wandering mode of BFS and DFS and pro-
poses a bias random walk.

3. Graph representation learning methods:

• SkipGNN [10] takes a biomedical interaction network as input to build a skip
graph. This second-order network aims to capture skip similarity.

• HOGCN [11] collects neighbor feature representations at different distances to
obtain the representation of the biomedical entity.

4.4. Results and Analysis

We compared ALGC with different kinds of baseline methods on four different biomed-
ical interaction datasets including drug–drug interaction (DDI), drug–target interaction
(DTI), protein–protein interaction (PPI), and disease–disease association (DDA) datasets.

In order to verify the superiority of the method, we took 70% of the training edges as
the training dataset, where the number of samples for the positive and negative edges were
the same and the rest were used as the test samples.

As shown in Tables 2 and 3, compared with heuristic methods such as CN, ALGC
significantly improved the performance of the network embedding-based methods, such as
N2V, DeepWalk, and LINE, across all datasets. Overall, heuristic methods such as CN only
consider the common neighbor situation and their performance is not as good as the method
based on network embedding methods, which consider both the network topology and
global information. N2V and DeepWalk expect nodes with higher second-order proximity
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to produce similar low-dimensional representations, whereas LINE maintains both first-
and second-order proximity so it has better performance.

Table 2. Comparison with baselines on training percentages (70%) (AUROC).

Model DDI DTI PPI DDA

CN [40] 0.7956 0.7183 0.7695 0.5543
DeepWalk [41] 0.8681 0.8348 0.8472 0.4145
LINE [42] 0.8947 0.8505 0.8493 0.6973
N2V [43] 0.7689 0.8051 0.7751 0.5032
SkipGNN [10] 0.8853 0.9215 0.9142 0.7245
HOGCN [11] 0.9125 0.9321 0.9216 0.7413
ALGC (Ours) 0.9542 0.9530 0.9481 0.8985

Table 3. Comparison with baselines on training percentages (70%) (AP).

Model DDI DTI PPI DDA

CN [40] 0.7603 0.6471 0.7105 0.4133
DeepWalk [41] 0.8390 0.5617 0.7108 0.1053
LINE [42] 0.8802 0.7732 0.7814 0.5556
N2V [43] 0.6075 0.4327 0.3415 0.1029
SkipGNN [10] 0.8587 0.9092 0.9092 0.7325
HOGCN [11] 0.8995 0.9334 0.9324 0.7512
ALGC (Ours) 0.9568 0.9594 0.9536 0.8902

Methods based on graph neural networks not only consider topological informa-
tion but also effectively learn node representations so their performance is significantly
improved compared with other methods. Compared to SkipGNN, which aggregates
second-order neighbor information by a skip graph, HOGCN achieves better performance
by using the node information of neighbors at different distances. However, none of these
methods can directly use the edge information, causing information loss. Additionally, they
do not take into account the topological information of the negative samples. ALGC first
uses the line graph to convert the edges into nodes, directly uses the edge information,
and utilizes the topology information of the negative samples through contrastive learning.
Therefore, the ALGC has better performance and robustness.

4.5. Parametric Sensitivity Analysis

In our loss function calculation in Equation (13), there are two main hyperparameters α
and β. In addition, there is an adjustment ratio r for the intra-class line graph edges and the
inter-class edges in Algorithm 1. We explored the effects among the different parameters
through experiments on the DDA datasets. We used 70% of the links as the training set and
the rest as the test set.

In order to analyze the relationship between α, β, and r in more detail, we used
Optuna [38] to optimize the parameter search and set α from {0.1, 0.3, 0.5, 0.7, 0.9}, β from
{0.01, 0.1, 1, 10, 100}, and r from {0.3, 0.5, 0.7, 0.9}. Figure 3a shows the effects of α and β
and Figure 3b shows the importance between α, β, and r. We assess the importance of
three parameters by an importance evaluation algorithm of Optuna, which is an automatic
hyperparameter optimization software framework.

To better demonstrate the effects of the different parameter combinations, we plotted a
parallel coordinate plot with Optuna. The figure shows the effects of the different parameter
combinations. In Figure 4, we can see that α = 0.7, β = 0.01, and r = 0.9 when the model
performance is the best, and if Beta is too large or Ratio is too small, it will limit the
performance of the model.
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(a) Effects of different parameter values
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(b) Parameter importance analysis

Figure 3. We adopt the Tree-structured Parzen Estimator algorithm to sample the parameters and
optimize the value of the AUROC as the objective value, and denote α, β, and r by Alpha, Beta,
and Ratio.
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Figure 4. Parallel coordinate plot with Optuna.

4.6. Visualization Analysis

In this section, in the DDA and DTI networks, we visually analyze the learned line
graph node representation of the trained model. The learned representation is reduced to a
two-dimensional space by t-SNE [44], and finally, is visualized by matplotlib. As shown
in Figure 5a,b, the red points represent the positive sample links and the green points
represent the negative sample links. ALGC effectively distinguished the different types of
edges and achieved perfect results.
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(a) DDA
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Figure 5. Visualization of learned representation for links in DDA and DTI networks. The red dots
indicate the positive sample links and the green dots indicate the negative sample links.

5. Conclusions

In order to directly exploit the relationship between positive and negative sample
links in biomedical interaction networks, in this paper, we propose an adaptive line graph
contrastive learning method by converting the graph to a line graph. The edges can
be converted into line graph nodes to consider the topological relationship between the
positive and negative sample links and the influence of the intra- and inter-class edges in
the line graph on model performance. ALGC adopts the prediction results of the model
to adjust the intra- and inter-class edges in the line graph to produce an augmented line
graph. Finally, the information of the two views is balanced using contrastive learning.
Comprehensive experiments prove that ALGC outperforms the state-of-the-art models on
all four datasets.

We still have a lot of problems to solve and in future work, we will continue to explore
the application of line graphs when the number of positive and negative sample links
is unbalanced, as well as the application of line graphs in multi-relationship biomedical
interaction predictions. We will also take advantage of rich information in the chemical
structure of molecules to conduct in-depth exploration in the field of biomedicine. In ad-
dition, some works have begun to explore the relationship between hypergraphs and
line graphs, using their topological characteristics to achieve information aggregation at
different scales [45]. We will also consider integrating line graphs into hypergraphs for
biomedical interaction predictions.
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