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Abstract: In this paper, we introduce a generalized complex discrete fractional-order cosine map.
Dynamical analysis of the proposed complex fractional order map is examined. The existence and
stability characteristics of the map’s fixed points are explored. The existence of fractal Mandelbrot sets
and Julia sets, as well as their fractal properties, are examined in detail. Several detailed simulations
illustrate the effects of the fractional-order parameter, as well as the values of the map constant and
exponent. In addition, complex domain controllers are constructed to control Julia sets produced
by the proposed map or to achieve synchronization of two Julia sets in master/slave configurations.
We identify the more realistic synchronization scenario in which the master map’s parameter values
are unknown. Finally, numerical simulations are employed to confirm theoretical results obtained
throughout the work.

Keywords: complex cosine map; discrete fractional; fractal sets; Julia set control; Julia sets
synchronization

MSC: 39A30; 40A05; 92D25; 92C50

1. Introduction

Explaining the behavior of complex fractional-order maps is a huge challenge [1–3].
The complex maps that have been discovered to have fascinating and insightful constructs
in geometry are familiar as Julia and Mandelbrot fractal sets [4–10]. Dimensions of these
sets are known to be fractal and have a variety of intriguing applications, including electric
fields, electromagnetic fields, and secure communication [11–15]. The fractional generalized
Hénon map’s chaotic behavior was looked at in [16], whereas the presence of chaotic
behaviour in the fractional discrete memristor system was shown in [17].

In order to understand the dynamics of spatiotemporal systems in the presence of
memory, coupled fractional maps can be explored. Power-law memory systems can
be found in a variety of branches of physics, from electromagnetic waves in dielectric
media to adaptation through biological systems [18,19]. Discrete-time systems exhibiting
unusual complexity characteristics, such as hidden attractors [20], coexisting multiple
attractors [21], and hyperchaotic behavior, are also of great interest. In [22], the chaos,
0–1 test, C0 complexity, entropy, and control of discrete fractional Duffing systems are
examined. In [23], it is addressed how fractional-order discrete-time chaotic systems can be
synchronized and used for secure communication. In [24], a strategy for utilizing chaotic
behavior in fractional maps to be applied for image encryption was demonstrated as a recent
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example of fractional systems being applied to encryption. Researchers used fractional-
order maps to investigate image encryption in [25,26]. Scholars used a pseudo-random
number generator [27] to help them investigate the links between multiple fractional
chaotic systems.

A fractal is a geometric pattern that is self-similar at all scales and has a non-integer
constant Hausdorff dimension [28]. Since porous media, aquifers, turbulence, and other
media commonly display fractal properties, fractal theory, a compact part of nonlinear
physics, has considerable applicability in these areas [29,30]. In contrast, a fractional
operator is an expression of a fractional differentiation, since it describes the memory
and hereditary aspects of the phenomenon [31]. Complex systems are better modeled by
fractional-order equations than by integer order equations. Fractional-order systems are
used in various fields of engineering and science, including electromagnetics, viscoelasticity,
fluid mechanics, electrochemistry, biological population models, optics, and signal pro-
cessing [32–35]. Memory is a key characteristic of fractional-order differential and discrete
equations. Fractional-order differentiation of fractal geometry sets has limited results [36].
Fractional-order Mandelbrot sets and Julia sets have rarely been discussed [37,38]. There
are several complicated iterative equations that are related to the complex maps and the
related Julia set phenomena. Julia set control is one method for controlling and synchroniz-
ing the fractal properties of a complicated system. Thus, applying fractional calculus to
deterministic non-linear fractals such as Julia and Mandelbrot sets formed by fractional
maps yields an appealing and novel theory with applications in image and data compres-
sion, computer graphics, and encrypted communication. Consequently, the purpose of
this paper is to investigate this challenging task involving fractals and fractional calculus,
including theoretical and numerical features, as well as control and synchronization based
on the complex dynamics of a proposed fractional complex cosine map.

The purpose of this research is to investigate nonlinear dynamics and fractal features
of discrete fractional complex cosine maps that have not yet been examined in the literature.
According to the knowledge of the authors, this is the first attempt to introduce this complex
discrete fractional cosine map. The control and synchronization of fractal sets in integer
order complex maps is a very recent topic of research in the science of nonlinear dynamics.
In this paper, we investigate the problem of controlling and synchronizing discrete-time
fractional complex maps-based fractal sets. This paper’s primary purpose is an extensive
study into the complexity and dynamics of the discrete fractional complex cosine map. The
existence of several periodic and chaotic attractors is highlighted by means of bifurcation
diagrams, maximal Lyapunov exponents, and the 0–1 test.

The structure of this paper is as follows: in Section 2, mathematical basics are explained;
in Section 3, the proposed discrete fractional complex cosine map’s mathematical model is
shown; Section 4 looks at how the proposed map controls and synchronizes Julia sets; and
Section 5 contains the conclusion and final discussion.

2. Mathematical Basics

In this section, we introduce some preliminaries about fractional-order difference
calculus, as follows.

Definition 1 (See [28]). Let the order α > 0, α /∈ N, the start point k ∈ R, t ∈ Nk+m−α,
and m = [α] + 1. Then the following α-order Caputo-like left delta difference of F(t) is written
as follows:

C∆α
k F(t) :=

1
Γ(m− α)

t−(m−α)

∑
s=k

(t− σ(s))(m−α−1)∆m
s F(s), (1)

where σ(s) = s + 1 and t(α) = Γ(t+1)
Γ(t+1−α)

.

From Refs. [39–41], we can directly obtain the following Theorem 1.
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Theorem 1. For the following nonlinear system with the α-order Caputo-like left delta difference
calculus: {C∆α

k X(t) = F(t + α− 1, X(t + α− 1)),

∆jX(k) = Xj, j = 0, . . . , n− 1, n = [α] + 1.
(2)

The equivalent system of system (2) is:

X(t) = X0(t) +
1

Γ(α)

t−α

∑
s=k+n−α

(t− σ(s))(α−1)F(s + α− 1, X(s + α− 1)), t ∈ Nk+n, (3)

where

X0(t) =
n−1

∑
j=0

(t− k)(j)

Γ(j + 1)
∆jX(k).

From Theorem 1, we can directly obtain the following theorem.

Theorem 2. If the start point k = 0, we can simplify system (2) as

X(n) = X(0) +
1

Γ(α)

n

∑
j=1

Γ(n− j + α)

Γ(n− j + 1)
F(X(j− 1)), n ∈ N. (4)

For an N dimensional nonlinear system (2) with fractional-order α ∈ (0, 1) and fixed
point X, if X(t) = (X1(t), X2(t), · · · , XN(t))T and F(t) = (F1(t), F2(t), · · · , FN(t))T are
continuously differentiable at X, and its Jacobian matrix has the following form:

J(X) =
∂ f (X)

∂X

∣∣∣∣
X=X

=


∂F1(X)

∂X1

∂F1(X)
∂X2

· · · ∂F1(X)
∂Xn

∂F2(X)
∂X1

∂F2(X)
∂X2

· · · ∂F2(X)
∂Xn

...
...

. . .
...

∂Fn(X)
∂X1

∂Fn(X)
∂X2

· · · ∂Fn(X)
∂Xn

,

then we can obtain the following theorem by using the linearization theorem.

Theorem 3 (See [39,40]). The N-dimensional system (2) is locally asymptotically stable if all
eigenvalues λi, i = 1, 2, · · ·N of J(X) satisfy

λi ∈
{

z ∈ C : |z| <
(

2 cos
| Argz| − π

2− α

)α

and | Argz| > απ

2

}
, (5)

where the symbol Argz means the argument of the complex value z.

3. The Discrete Fractional-Order Complex Cosine Map

We propose a new discrete fractional cosine map which appears as this:

C∆α
a z(t) = cos[z(t + α− 1)p + q], (6)

where z and q ∈ C, whereas q takes positive real values greater than or equal to one. The
fixed points of the discrete fractional map (6) can be obtained by solving

cos[z∗
p
+ q] = 0,

which results in different scenarios for fixed points depending on the value of p as follows:

(1) For p = 1, the fixed point is z∗ = (2m + 1)
π

2
− q, where m ∈ Z.
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(2) For p = 2, the fixed point is z∗ = [((2m + 1)
π

2
− qr)2 + qi

2]
1
4 [cos( θ∗

2 ) + i sin( θ∗
2 )],

[((2m + 1)
π

2
− qr)2 + qi

2]
1
4 [cos( θ∗+2π

2 ) + i sin( θ∗+2π
2 )], where q is assumed in the form

q = qr + iqi and θ∗ is the principal argument of (2m + 1)
π

2
− qr − iqi.

(3) For p = 3, the fixed point is z∗ = [((2m + 1)
π

2
− qr)2 + qi

2]
1
6 [cos( θ∗

3 ) + i sin( θ∗
3 )],

[((2m + 1)
π

2
− qr)2 + qi

2]
1
6 [cos( θ∗+2π

3 ) + i sin( θ∗+2π
3 )] and [((2m + 1)

π

2
− qr)2 + qi

2]
1
4

[cos( θ∗+4π
3 ) + i sin( θ∗+4π

3 )].

(4) In a general case for any value of p, the fixed point is z∗ = η
1
p [cos( θ∗+2kπ

p ) +

i sin( θ∗+2kπ
p )], η = [((2m + 1)

π

2
− qr)2 + qi

2]
1
2 , k ∈ Z.

Next, certain analytical results on the asymptotic stability of complex fractional map
fixed points (6) are provided.

3.1. Stability Analysis of Fixed Points

Theorem 4. The fractional complex cosine map (6) has a locally asymptotically stable fixed point
z∗ if and only if:∣∣∣(−1)m+1 pz∗
p−1
∣∣∣ < (2 cos

Arg((−1)m+1 pz∗
p−1

)− π

2− α
)α,
∣∣∣Arg((−1)m+1 pz∗

p−1
)
∣∣∣ > απ

2
. (7)

Proof. Let δ(t) = z(t) − z∗ and consider the following linearized map derived from
Equation (6):

C∆α
a δ(t) = −pz∗

p−1
sin[z∗

p
+ q]δ(t + α− 1),

= (−1)m+1 pz∗
p−1

δ(t + α− 1),

= λδ(t + α− 1). (8)

The real and imaginary parts of (8) are separated as follows

C∆α
a δr(t) + iC∆α

a δi(t) = (λr + iλi)(δr(t + α− 1) + iδi(t + α− 1)),

and hence the following two dimensional discrete fractional system is obtained

C∆α
a δr(t) = λrδr(t + α− 1)− λiδi(t + α− 1),

C∆α
a δi(t) = λiδr(t + α− 1) + λrδi(t + α− 1).

The above system can be expressed in the form( C∆α
a δr(t)

C∆α
a δi(t)

)
=

(
λr −λi
λi λr

)(
δr(t + α− 1)
δi(t + α− 1)

)
, (9)

where the eigenvalues of the 2× 2 coefficients matrix is found to be Λ = λr ± iλi = λ, λ̄.
Let

B =

(
λr −λi
λi λr

)
,

with tr(B) = 2λr and det(B) = λ2
r + λ2

i > 0, then the origin of (9) satisfies the following
conditions for asymptotic stability:

√
λ2

r + λ2
i < (2 cos

∣∣∣cot−1( λr
λi
)
∣∣∣− π

2− α
)α,

∣∣∣∣cot−1(
λr

λi
)

∣∣∣∣ > απ

2
.

Equivalently,
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∣∣∣(−1)m+1 pz∗
p−1
∣∣∣ < (2 cos

∣∣∣Arg((−1)m+1 pz∗
p−1

)
∣∣∣− π

2− α
)α,
∣∣∣Arg((−1)m+1 pz∗

p−1
)
∣∣∣ > απ

2
.

In particular, satisfying the above conditions implies that ‖δ(t)‖ = O(t−α) as t →
∞, i.e., the solutions δr and δi algebraically decay to zero in the way that z∗ is locally
asymptotically stable for the fractional complex map (6).

Corollary 1. For p = 1 and m = 0, the fixed point z∗ = π
2 − q is locally asymptotically stable

when 0 < α ≤ 1.

Proof. For p = 1 and m = 0, we obtain (−1)m+1 pz∗
p−1

= −1, and so
∣∣∣Arg((−1)m+1 pz∗

p−1
)
∣∣∣ =

π. Thus the conditions (7) reduce to

1 < 2α, π >
απ

2
,

which are satisfied at 0 < α ≤ 1.

Corollary 2. For p = 2 and m = 0, the fixed points z∗ =
∣∣π

2 − q
∣∣ 1

2 ei θ∗
2 and

∣∣π
2 − q

∣∣ 1
2 ei θ∗+2π

2 are
locally asymptotically stable when

∣∣∣π
2
− q
∣∣∣ 1

2
< 2α−1(cos

∣∣∣∣ θ∗2 + π

∣∣∣∣− π

2− α
)α,
∣∣∣∣ θ∗2 + π

∣∣∣∣ > απ

2
,

and ∣∣∣π
2
− q
∣∣∣ 1

2
< 2α−1(cos

∣∣∣∣ θ∗2 + 2π

∣∣∣∣− π

2− α
)α,
∣∣∣∣ θ∗2 + 2π

∣∣∣∣ > απ

2
.

Proof. For p = 2 and m = 0, weobtain (−1)m+1 pz∗
p−1

= 2
∣∣π

2 − q
∣∣ 1

2 ei( θ∗
2 +π), 2

∣∣π
2 − q

∣∣ 1
2 ei( θ∗

2 +2π)

and hence
∣∣∣Arg((−1)m+1 pz∗

p−1
)
∣∣∣ = ∣∣∣∣ θ∗2 + π

∣∣∣∣, ∣∣∣∣ θ∗2 + 2π

∣∣∣∣, for the two fixed points, respec-

tively. Thus the conditions (7) reduce to

2
∣∣∣π

2
− q
∣∣∣ 1

2
< (2 cos

∣∣∣∣ θ∗2 + π

∣∣∣∣− π

2− α
)α,
∣∣∣∣ θ∗2 + π

∣∣∣∣ > απ

2
,

for the first fixed point and for the second fixed point it follows that

2
∣∣∣π

2
− q
∣∣∣ 1

2
< (2 cos

∣∣∣∣ θ∗2 + 2π

∣∣∣∣− π

2− α
)α,
∣∣∣∣ θ∗2 + 2π

∣∣∣∣ > απ

2
.

The previous theoretical results are validated using numerical simulations. In the first
case, let p = 1, α = 0.95, q = 2− 1.5i and m = 0. Then the fixed point z∗ = −0.429204+ 1.5i
is locally asymptotically stable according to Corollary 2, see Figure 1a,b. Now, consider
the second case where p = 2, α = 0.85, q = 1.2− 0.2i and m = 0, and the fixed points are
0.629322 + 0.158901i and −0.629322− 0.158901i. The conditions for asymptotic stability
indicate that the first fixed point 0.629322 + 0.158901i is asymptotically stable whereas the
second one is unstable, as shown in Figure 1c,d. In the third case, taking p = 2, α = 0.7,
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q = 1 + 0.3i and m = 0, the fixed points are found to be 0.7796− 0.1924i and −0.779624 +
0.1924i. Stability conditions reveal that the first fixed point is asymptotically stable while
the second one is unstable. Numerical simulations in Figure 1e,f verify these predictions.

Figure 1. The time series solutions of the generalized fractional complex cosine map at (a,b) p = 1,
α = 0.95, q = 2− 1.5i, (c,d) p = 2, α = 0.85, q = 1.2− 0.2i, and (e,f) p = 2, α = 0.7, q = 1 + 0.3i.

3.2. The Fractional Cosine Map Generates Fractal Sets

We extend the ideas of Julia and Mandelbrot fractal sets to the more general case of
discrete fractional-order complex-valued maps. Consider the following fractional-order
map

C∆α
a z(t) = f (z(t + α− 1), q), (10)

where f : C→ C and q ∈ C, then the Julia set induced by (10) is defined as follows [9–11]:

Definition 2. The filled-in Julia set of discrete fractional map (10) is the set Ψ of initial points
z ∈ C whose evolutions under (10) are limited. The boundary of Ψ, i.e., ∂Ψ, is referred to as the
Julia set of discrete fractional map (10) and it is denoted by Jα

f .
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The key properties of Julia set Jα
f are listed below [9–11]:

(1) Jα
f 6= ∅, i.e., it is a non-empty set.

(2) Jα
f is fully invariant with respect to (10) in both forward and backward directions

of iterations.
(3) Assume that the fractional map (10) has an attractive fixed point of period p at

some specific values of α, then Jα
f contains the basin of attraction for this fixed point, namely,

∂βα
p. The same is true for infinity fixed point.

The Mandelbrot set, introduced by Benoit Mandelbrot in 1979 [9,10], is generalized to
our fractional case in the way that the Mandelbrot set Φα

f is composed of the set of points in
the plane of complex-valued parameter q at which the evolution from initial point z(0) = 0
is bounded at the specified fixed value of α.

The quantification of fractal properties of Julia and Mandelbrot sets can be carried
out by calculating the associated space filling capacity or dimension. The well-known
box-counting dimension is the most accessible among scientists and it can be defined
as follows:

Definition 3. For non-empty bounded subset Ω of Rn, consider the collections of boxes with side
lengths ε required to cover Ω. The Minkowski–Bouligand dimension or the box-counting dimension
is defined as

dimΩ = lim
ε→0

log(Nε)

log(1/ε)
,

where Nε is the number of boxes to cover Ω. In addition, the lower box dimension (lower Minkowski
dimension) and the upper box dimension (Kolmogorov dimension) of Ω are also defined by

dimΩ = lim
ε→0

log(Nε)

log(1/ε)
, dimΩ = lim

ε→0

log(Nε)

log(1/ε)
,

respectively.

Numerical simulations are carried out to explore the generation of Mandelbrot and
Julia sets from the dynamics of the proposed generalized fractional cosine map. The results
for different values of the fractional order α, the constant q, and the exponent p are shown
in the next table. In addition, Table 1 provides the box-counting dimensions for the various
simulation scenarios investigated.

Table 1. Summary of cases considered in numerical simulations and the associated fractal dimensions.

Figure Fractal Set Parameters Fractal Dimension

Figure 2 Mandelbrot sets α = 1, different values of p. 1.5244, 1.582, 1.6148, 1.6594, 1.5615, 1.5442

Figure 3 Mandelbrot sets α = 0.9, different values of p. 1.8838, 1.8836, 1.8994, 1.8893

Figure 4 Mandelbrot sets α = 0.75, different values of p. 1.8643, 1.8828, 1.8748, 1.909, 1.8762, 1.8967

Figure 5 Mandelbrot sets α = 0.5, different values of p. 1.633, 1.6722, 1.6782, 1.6838, 1.6857, 1.6337, 1.5536

Figure 6 Mandelbrot sets α = 0.3, different values of p. 1.8572, 1.8908, 1.8904, 1.5768

Figure 7 Julia sets α = 1, different values of p and q. 1.8426, 1.8665, 1.4931, 1.5469

Figure 8 Julia sets α = 0.8, different values of p and q. 1.8765, 1.489, 1.8525, 1.8503

Figure 9 Julia sets α = 0.5, different values of p and q. 1.5016, 1.8864, 1.5078, 1.4836, 1.8021, 1.8034
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Figure 2. The Mandelbrot sets generated by the generalized fractional cosine map at α = 1, where
(a) p = 2, (b) p = 2.5, (c) p = 3, (d) p = 4.3, (e) p = 5, and (f) p = 7.7.
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Figure 3. The Mandelbrot sets generated by the generalized fractional cosine map at α = 0.9, where
(a) p = 2, (b) p = 2.5, (c) p = 3, and (d) p = 4.3.

Figure 4. Cont.
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Figure 4. The Mandelbrot sets generated by the generalized fractional cosine map at α = 0.75, where
(a) p = 2, (b) p = 2.5, (c) p = 3, (d) p = 4.3, (e) p = 5, and (f) p = 7.7.

Figure 5. Cont.
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Figure 5. The Mandelbrot sets generated by the generalized fractional cosine map at α = 0.5, where
(a) p = 2, (b) p = 2.5, (c) p = 3, (d) p = 4.3, (e) p = 5 and (f) p = 7.7.

Figure 6. Cont.
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Figure 6. The Mandelbrot sets generated by the generalized fractional cosine map at α = 0.3, where
(a) p = 2, (b) p = 2.5, (c) p = 7.7, and (d) p = 11.3.

Figure 7. The Julia sets generated by the generalized fractional cosine map at α = 1 and q = 0.5+ 0.52i,
where (a) p = 2, (b) p = 2.5, (c) p = 4.3, and (d) p = 7.7.
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Figure 8. The Julia sets generated by the generalized fractional cosine map at α = 0.8 and
q = 1.9− 0.25i, where (a) p = 2, (b) p = 3.5, (c) p = 5, and (d) p = 11.5.

Figure 9. Cont.
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Figure 9. (a–c) The Julia sets generated by the generalized fractional cosine map at α = 0.5 and
q = 0.41 + 0.65i, where (a) p = 1, (b) p = 2, (c) p = 3.8. (d–f) The values of the parameters are α = 0.5
and q = −0.1− 0.7i, where (d) p = 5.3, (e) p = 7, (f) p = 11.5.

4. The Control and Synchronization of Julia Sets

This section examines the regulation and synchronization of Julia sets generated by
the fractional-order cosine map. This section begins with a brief mathematical overall view.

Consider two different fractional-order cosine maps The first is called the master
(driving) map and has the output z1(t) whereas the second map is referred to as the slave
(response) map and it gives the output z2(t).

Definition 4. The synchronization is said to be achieved between z1(t) and z2(t) if z2 → z1 as
t→ ∞. Equivalently, it can be written as [11–13]

lim
t→∞
|z2(t)− z1(t)| = 0.

The synchronization of two solution trajectories indicates that their convergence and
divergence characteristics are identical. Let Jα

f1
and Jα

f2
denote the Julia sets of fractional

master and fractional slave maps, respectively, where they have fractional order α. The
definition of synchronization between two Julia sets is as follows [11–14].
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Definition 5. The asymptotic synchronization of two Julia sets Jα
f1

and Jα
f2

is achieved if

lim
t→∞

(Jα
f1
∪ Jα

f2
− Jα

f1
∩ Jα

f2
) = ∅.

4.1. Control of Julia Sets Generated by the Fractional Cosine Map

The Julia sets created by the fractional cosine map are controlled by varying the type
of stability of a particular fixed point on the map. The proposed form of the feedback
controller is

υ(t) = −κ(z(t)− z̄)− cos[z(t + α− 1)p + q], (11)

where z̄ is the target fixed point and the complex-valued controller gain κ = κr + iκi is
calculated as follows:

Theorem 5. Suppose that the feedback controller (11) satisfies the following conditions

κr > 0,
√

κ2
r + κ2

i < 2α,

subsequently, the unstable fixed point z̄ of controlled fractional-order cosine map

C∆α
a z(t) = cos[z(t + α− 1)p + q] + υ(t + α− 1),

is stabilized by changing the Julia set in its neighborhood.

Proof. Using control signal (11), the controlled fractional cosine map can be written as:

C∆α
a z(t) = −κ(z(t + α− 1)− z̄). (12)

Let u(t) = z(t)− z̄, then (12) represents a structure

C∆α
a u(t) = −κu(t + α− 1),

and the associated real-valued two dimensional fractional map is obtained as

C∆α
a ur(t) = −κrur(t + α− 1) + κiui(t + α− 1),

C∆α
a ui(t) = −κiur(t + α− 1)− κrui(t + α− 1).

Define matrix J by

J =
(
−κr κi
−κi −κr

)
,

and hence the eigenvalues of J are given by −κr ± iκi. The sufficient conditions for local

asymptotic stability of κr > 0 and
√

κ2
r + κ2

i < 2α.

4.2. Synchronization of Julia Sets

Assume the driving system has the following configuration:

C∆α
a z1(t) = cos[z1(t + α− 1)p + q1], (13)

and take into account the following response system

C∆α
a z2(t) = cos[z2(t + α− 1)p + q2] + ρ(z1, z2, t + α− 1), (14)

where ρ(z1, z2, t + α− 1) is an appropriate controller to be designed.
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Now, two different scenarios will be investigated in the following two theorems. The
first one involves the case where the values of the constants q1 and q2 are known a priori.

Theorem 6. Suppose that the values of constants q1 and q2 in the two fractional maps (13) and (14),
respectively, are known. Then, the following controller

ρ(z1, z2, t + α− 1) = cos[z1(t + α− 1)p + q1]− cos[z2(t + α− 1)p + q2]− γ(z2(t + α− 1)− z1(t + α− 1)), (15)

with gain γ = γr + iγi satisfying |γ| < 2α and γr > 0, can realize Julia set synchronization
between the driving system (13) and the response system (14) for any initial condition.

Proof. One can obtain the fractional error map by subtracting (13) from (14) which can be
written as

C∆α
a e(t) = cos[z2(t + α− 1)p + q2]− cos[z1(t + α− 1)p + q1] + ρ(z1, z2, t + α− 1),

e(t) = z2(t)− z1(t).

By substituting from (15) into the above error map, we get

C∆α
a e(t) = −γe(t + α− 1),

or
C∆α

a (er(t) + ei(t)) = (−γr − iγi)(er(t + α− 1) + iei(t + α− 1)),

which can be changed into the 2D system

C∆α
a er(t) = −γrer(t + α− 1) + γiei(t + α− 1),

C∆α
a ei(t) = −γier(t + α− 1)− γrei(t + α− 1).

The eigenvalues of the above system are found as −γr ± iγi which imply that the
asymptotic stability conditions are achieved if |γ| < 2α and γr > 0.

The second scenario involves the case where the value of constant q1 is unknown and,
therefore, an adaptive controller is to be designed along with complex-valued update laws
to realize the synchronization.

Theorem 7. Suppose that the value of constants q1 in the fractional map (13) is unknown. Then,
the following controller

ρ(z1, z2, t + α− 1) = β̂1(t + α− 1) cos(z1(t + α− 1)p) + β̂2(t + α− 1) sin(z1(t + α− 1)p)

− cos[z2(t + α− 1)p + q2]− γe(t + α− 1), (16)

along with the following update laws

∆β̂1(n) = −
η1(e(n + 1) cos(z1(n)p)− e(n) cos(z1(n + 1)p))

cos(z1(n + 1)p) cos(z1(n)p)
, (17)

∆β̂2(n) = −
η2(e(n + 1) sin(z1(n)p)− e(n) sin(z1(n + 1)p))

sin(z1(n + 1)p) sin(z1(n)p)
(18)

where β̂1, β̂2 are the estimates of cos(q1) and − sin(q1), respectively, and the complex-valued gains
γ, η1 and η2 satisfying |γ + η1 + η2| < 2α and γr + η1r + η2r > 0 can achieve Julia set synchro-
nization between the driving system (13) and the response system (14) for any initial condition.
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Proof. The proof is arranged in the following steps. First, the drive map is simplified to
the following form:

C∆α
a z1(t) = cos(q1) cos(z1(t + α− 1)p)− sin(q1) sin(z1(t + α− 1)p)

= β1 cos(z1(t + α− 1)p) + β2 sin(z1(t + α− 1)p),

β1 = cos(q1), β2 = − sin(q1).

The fractional error map is then expressed as
C∆α

a e(t) = cos[z2(t + α− 1)p + q2]− β1 cos(z1(t + α− 1)p)− β2 sin(z1(t + α− 1)p) + ρ(z1, z2, t + α− 1).

Second, by substituting (16) into the fractional error map, we obtain

C∆α
a e(t) = (β̂1(t + α− 1)− β1) cos(z1(t + α− 1)p) + (β̂2(t + α− 1)− β2) sin(z1(t + α− 1)p)− γe(t + α− 1),

= β̃1(t + α− 1) cos(z1(t + α− 1)p) + β̃2(t + α− 1) sin(z1(t + α− 1)p)− γe(t + α− 1).

In addition, note that

∆β̂1(n) = ∆β̃1(n), ∆β̂2(n) = ∆β̃2(n),

and hence the update laws (17)–(18) can be solve to give

β̃1(n) = −
η1e(n)

cos(z1(n)p)
, β̃2(n) = −

η2e(n)
sin(z1(n)p)

.

Third, the error map is, therefore, reduced to

C∆α
a e(t) = −(γ + η1 + η2)e(t + α− 1),

which implies that the corresponding 2D fractional error map in R2 has the eigenvalues
−(γr + η1r + η2r) ± i(γi + η1i + η2i) at the zero fixed point. Therefore, the following
conditions are sufficient to confirm the fixed point stability

|γ + η1 + η2| < 2α, γr + η1r + η2r > 0.

To validate the theoretical results obtained in this section, numerical simulations
are now used. For p = 2, q = 1.2 − 0.2i and α = 0.8, it can be found that the fixed
point −0.62932− 0.1589012i is an unstable fixed point for the fractional cosine map (6).
Applying the controller (11) with z̄ = −0.62932− 0.1589i and κ = 1, the fixed point is
stabilized, as shown in Figure 10a,b. In a second example, consider a master system with
p = 2, q1 = 1.2− 0.2i and α = 0.9 while the slave system is supposed to have p = 2,
q2 = 0.433 − 0.55i and α = 0.9. Using the adaptive controller (15) with γ = 1 + 0.3i,
the synchronization conditions are satisfied and the synchronization between the two
systems are achieved. The evolution of the synchronization error with time is illustrated in
Figure 10c,d for its real and imaginary parts. The third example involves the more realistic
case where the value of q1 is unknown in the master system. The value of q2 in the slave
system is set to 0.433− 0.55i and the other shared values of parameters are p = 2 and
α = 0.85. The adaptive controller (16) along with update laws (17)–(18) are employed to
achieve the synchronization between the two systems and estimate the unknown values of
cos(q1) and − sin(q1). In the simulations shown in Figure 11, the assigned values to cos(q1)
and sin(q1) are 0.369629 + 0.18765i and 0.950742− 0.072956i, respectively. Figure 11a–f
shows the real and imaginary parts of the synchronization error, β̂1 and β̂2. The Julia set
generated by the controlled map is affected by the stabilization of specific fixed points in
the fractional cosine map or the induced synchronization between master/slave systems.
For example, Figure 12 depicts the Julia sets generated by the slave fractional cosine map
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before and after attaining the synchronization state where it is clear that significant changes
in its structure are introduced.

Figure 10. (a,b) Stabilization of fixed point z̄ = −0.62932− 0.1589i of the generalized fractional cosine
map under the influence of the proposed controller (11) with κ = 1. (c,d) The real and imaginary parts
of the synchronization error between a master system with p = 2, q1 = 1.2− 0.2i, α = 0.9 and a slave
system with p = 2, q2 = 0.433− 0.55i and α = 0.9 when the adaptive controller (15) is employed and
γ = 1+ 0.3i.

Figure 11. Cont.
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Figure 11. The real and imaginary parts of the synchronization error, β̂1 and β̂2 where the value of
q1 is unknown in the master system, the value of q2 in the slave system is set to 0.433− 0.55i and
the other values of parameters are p = 2, α = 0.85, γ = 0.3 + 0.3i, η1 = 0.2 and η2 = 0.2 (a,b). The
assigned values to cos(q1) and sin(q1) are 0.369629 + 0.18765i (c,d) and 0.950742− 0.072956i (e,f).

Figure 12. The effects of synchronization on the Julia sets generated by the slave fractional cosine
map described in Figure 11 (a) before and (b) after attaining synchronization state.

5. Conclusions

This research introduces a framework for investigating the fractal and dynamic prop-
erties of an extended discrete fractional cosine map with complex values. The Mandelbrot
and Julia sets of the proposed map are investigated for a variety of parameters. Julia sets in
complex domains: control and synchronization issues discussed. In particular, an efficient
adaptive controller is constructed to achieve synchronization when there is an unknown
value of the parameter in driving (master system). The proposed map has promising
applications in the field of image encryption which can be conducted in future work.
Our findings can be used to create a reliable and efficient chaotic color/grayscale image
encrypting system. The next step in our future work is to apply the present discrete frac-
tional complex cosine map and examine/compare the performance of the corresponding
encryption schemes.
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