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Abstract: Due to the inherent inter-class similarity and class imbalance of remote sensing images, it
is difficult to obtain effective results in single-source semantic segmentation. We consider applying
multi-modal data to the task of the semantic segmentation of HSR (high spatial resolution) remote
sensing images, and obtain richer semantic information by data fusion to improve the accuracy and
efficiency of segmentation. However, it is still a great challenge to discover how to achieve efficient
and useful information complementarity based on multi-modal remote sensing image semantic
segmentation, so we have to seriously examine the numerous models. Transformer has made remark-
able progress in decreasing model complexity and improving scalability and training efficiency in
computer vision tasks. Therefore, we introduce Transformer into multi-modal semantic segmentation.
In order to cope with the issue that the Transformer model requires a large amount of computing
resources, we propose a model, MFTransNet, which combines a CNN (convolutional neural network)
and Transformer to realize a lightweight multi-modal semantic segmentation structure. To do this, a
small convolutional network is first used for performing preliminary feature extraction. Subsequently,
these features are sent to the multi-head feature fusion module to achieve adaptive feature fusion.
Finally, the features of different scales are integrated together through a multi-scale decoder. The
experimental results demonstrate that MFTransNet achieves the best balance among segmentation
accuracy, memory-usage efficiency and inference speed.

Keywords: semantic segmentation; high spatial resolution remote sensing images; transformer;
multi-modal

MSC: 68T45

1. Introduction

HSR remote sensing images’ semantic segmentation involves the application of image
semantic segmentation in the field of remote sensing, which aims at extracting different
types of ground objects from remote sensing images. Remote sensing image semantic
segmentation technology is widely used in unmanned driving, geological detection, urban
planning [1–5] and other fields [6–11], and its great significance in modern production and
life is self-evident. HSR remote sensing images have rich semantic information, but the
task of semantic segmentation is challenging, due to the large intra-class variance and class
imbalance. For example, the difference among ground objects in remote sensing images
is too small, and the sense of a boundary between different surface features is not strong.
The shadow caused by illumination influence can be occluded; there is also a tremendous
difference in the number of different ground objects. In Figure 1, the representation of the
low vegetation (shown as cyan in the labeled image) and the tree (shown as green in the
labeled image) in the first row of RGB images is so similar that it is difficult to identify
the difference between the two. However it is clear in the DSM (digital surface model)
image that the area where the tree is located is brighter (higher in height).In the second row,
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the illumination led the house (shown as dark blue in the labeled image) to have different
colors in the direction of sunrise and non-sunrise, with the non-sunrise roofs being darker.
However, in the DSM image the two reversals show the same features due to being the
same height. From the labeled image, we can determine that there is also a category of
grass. The shading makes its representation extremely similar to that of the roofs in the
non-sunrise direction, and the boundary between the two categories of surface features is
very blurred.
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Figure 1. RGB image on the left, DSM image in the middle, the label image on the right.

Since semantic segmentation is usually carried out in the feature space, the represen-
tation and learning of features is the key to realizing semantic segmentation. According
to the way of expressing and learning features, the methods of semantic segmentation of
remote sensing images have undergone several stages of development and fusion. The
classification method based on manual feature description provides a solution for the
semantic segmentation of remote sensing images in the early stage, and subsequently ma-
chine learning based on probability statistics further improves the segmentation accuracy.
The emergence of CNN removes the necessity to rely on feature design completely, and
makes a qualitative leap in segmentation accuracy. However, the difficulty of model visual-
ization and the lack of datasets restricts the further improvement of segmentation accuracy.
Thus, the complexity of the network has a significant impact on the segmentation effect.
The deeper, wider and richer structure of the network can obtain more abstract feature
representations in the data and improve the accuracy of segmentation. Nevertheless, an
overly complex network model will both increase the training cost and reduce the training
efficiency, and may also reduce the generalization ability of the network. How to effectively
diminish the complexity of the network while ensuring the segmentation effect is one of
the directions in which we are working.

In addition to the selection of methods as well as network models, we find that
unimodal remote sensing image data can merely provide information attributes from a
single perspective by analyzing the effects of HSR remote sensing image data forms and
data structure on semantic segmentation, and it is difficult to obtain better feature extraction
results. It is feasible to introduce a multi-modal remote sensing image to find semantic
segmentation methods with high efficiency, accuracy and higher robustness. The fusion
of multi-modal data expands the data source in regard to information dimensions and
the number of samples to supplement the data requirements of the algorithm for network
model change detection, and it can provide us with target image features and information
from various aspects. The fusion of different features and information retains the effective
discriminative information of the multiple features involved in the fusion, while avoiding
the uncertainty of single data to a certain extent. It also makes the results of the semantic
segmentation of remote sensing images more comprehensive and accurate.
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With the development of satellite remote sensing technology and the application
of artificial intelligence technology, the scale of remote sensing image datasets is now
becoming larger and larger, and multi-modal remote sensing data are becoming more
and more abundant. For remote sensing images, common multi-modal data include
DSM images [12], NIR (near infrared ray) images [13] and SR (synthetic aperture radar)
images [14]. Images of different modalities possess different characteristics and can provide
richer semantic information. The DSM image realistically represents the high and low
surface levels, and the areas that are closer to white represent higher heights. For the
two misclassification cases generated in Figure 1, the trees and buildings show clear
boundaries in the DSM images, since they are both tall objects. Using multi-modality
information can ease the misclassification problem due to similar appearances and improve
the segmentation efficiency of the model.

After further discussion, we determine that our goal of semantic segmentation based
on multi-modal remote sensing images is to utilize complementary features from different
modalities to maximize classification accuracy, while reducing the influence of the inher-
ent noise in unimodal data and improving the generalization performance in complex
application scenarios. The problem, which is the effect of noise and redundant features
from different modalities, is emphasized. The direct fusion of images is likely to cause
noise pollution, which will instead reduce the segmentation efficiency of the model. To
cope with this problem, we creatively propose a multi-modal data fusion Transformer
method drawing on the application of Vision Transformer in computer vision. The features
is divided into four scales by referring to the backbone structure of Segformer [15] and
modifying the encoder-decoder to apply it to the data fusion of RGB and DSM instead
of pure feature extraction. Therefore, we establish the multi-modal fusion Transformer
Network (MFTransNet). To evaluate the effectiveness of our model, we conducted several
experiments, whose experimental results demonstrate that our model outperforms the
state-of-the-art methods on the publicly available HSR image dataset Potsdam.

The research contributions of this article are as follows.

• A multi-modal semantic segmentation model MFTransNet, which combines CNN and
Transformer, is proposed, and achieves a balance of accuracy and speed.

• A feature fusion module containing a multi-head attention mechanism, a feature
adaptive calibration module (FACM) for adaptively calibrating features, and a com-
plementary fusion module (CFM) for fusing multi-modal features, are proposed to
achieve the efficient adaptive fusion of features.

• A multi-scale decoder is used for the multi-scale problem in remote sensing images,
and DUpsampling [16] is used instead of the traditional bilinear upsampling to re-
duce the details lost in the upsampling process and to achieve feature aggregation at
different scales.

• While ensuring task completion, a model with a lower number of parameters and more
streamlined structure is obtained through channel compression and an optimized
structure. Meanwhile, we skillfully use channel shuffle and PixelShuffle on feature
extraction and decoder. The optimized model requires fewer computational resources
and can meet a wider range of application requirements than the original model. The
proposed model achieves a SOTA effect on the Potsdam dataset.

The article is organized as follows, with related work discussed and analyzed in
Section 2. Section 3 describes our proposed model and discusses it. Section 4 conducts
experiments on the publicly available Potsdam dataset and analyzes the results and possible
improvements. Section 5 concludes and gives an outlook on our work.

2. Related Work
2.1. Semantic Segmentation of Remote Sensing Images

Image semantic segmentation is a type of image classification which goes with the
intensive classification task targeting the pixel level. An approach based on full convo-
lutional networks (FCN) [17] proposes an end-to-end processing method while using a
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skip layer to combine the location information of the shallow layer with the deep semantic
information to fill in the missing data detail. The DeepLab [18–21] series employs dilated
convolution and pyramidal pooling, etc., to obtain multi-scale information while increasing
the perceptual field and obtaining more robust segmentation. U-Net [22], SegNet [23], and
DeconvNet [24] employ the structure of decoder-encoder, which effectively improves the
boundary segmentation. Researchers have considered the inherent characteristics of HSR
remote sensing images—for example, the multi-scale problem making it very difficult to
locate and identify ground objects, misclassification caused by large intra-class variance,
and the imbalance of foreground and background caused by too small foreground pro-
portion. FarSeg [25] proposes a foreground-aware relational network that balances the
hard samples in the foreground and background during the optimization training process.
MCFNet [26] proposes a multiple context fusion network which combines both global and
local information to achieve high-resolution semantic segmentation of remote sensing im-
ages. HMANet [27] proposes a category-based attention module to enhance the distinction
between categories, and the non-local module is improved with sparse representation to
efficiently capture regional dependencies. FactSeg [28] proposes a two-branch decoder in
which the FA branch is designed to activate features of a small object and suppress large-
scale context, and the semantic refinement (SR) branch aims at further differentiating small
objects and enhancing the accuracy of small object semantic segmentation. DC-Swin [29]
introduces the Swin Transformer as a backbone for extracting contextual information, and
designed a novel densely connected feature aggregation module (DCFAM) decoder to
restore resolution and generate segmentation maps.

2.2. Transformer

Transformer is first applied in natural semantic processing [30], which completely
discards network structures such as RNN and CNN, and achieves effective results only
using the attention mechanism for machine translation tasks. ViT [31] tries to apply Trans-
former to the field of computer vision. When a large amount of data is pre-trained and
migrated to multiple small- and medium-sized image recognition benchmarks, the results
show that ViT can achieve better results compared with SOTA’s CNN and requires fewer
training resources. Since then, Transformer has been widely used in computer vision.
Setr [32] and Segformer further improve the structure of ViT to make it more usable for
semantic segmentation tasks. From a theoretical point of view, Transformer can achieve
better model performance compared to CNN, but the global attention mechanism imposes
a tremendous computational cost, especially in shallow networks. Therefore, some of
the approaches currently proposed combine Transformer with CNN to complement each
other’s competitiveness and achieve a model that balances accuracy and speed. BotNet [33]
forms a new network structure using multi-head self-attention (MHSA) instead of the 3 × 3
convolution in the ResNet bottleneck, which improves the accuracy of various classification
tasks. CMT [34] designs a stage-wise transformer based on a hierarchical structure, intro-
ducing convolutional operations for fine-grained feature extraction, as well as a unique
modular hierarchy for extracting local and global features. Conformer [35] proposes a dual
network model structure, which consists of a CNN branch and a Transformer branch, and
combines CNN-based local features with Transformer-based global representation, in order
to enhance representation learning. The network structure of TransUnet [36] is modeled
after Unet, with a U-shaped structure consisting of encoder and decoder. A Transformer
mechanism is added to the encoder part, which gives it the advantages of both CNN
and Transformer. These hybrid models improve segmentation accuracy of the model by
combining various efficient structures in CNN and Transformer. Remote sensing images
are generally small- or medium-sized datasets, and it is difficult to achieve good training
results using Transformer as the model. There is evidence that the vision transformer needs
a very large dataset to surpass CNN. Therefore, it will have a better training effect in the
field of remote sensing using the CNN-Transformer hybrid structure.
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2.3. Multi-Modal Data Fusion

In addition to model improvements, it is considered that multi-modal semantic seg-
mentation methods can achieve more accurate segmentation by extracting information
from source images of different modalities, resulting in a richer feature representation than
from a single original image. SA-Gate [37] proposes a unified and efficient cross-modal
bootstrap encoder that not only efficiently recalibrates RGB feature responses, but also
allows for multiple stages to extract accurate depth information and alternatively aggregate
the two recalibrated representations. AMFuse [38] proposes an additive-multiplicative
fusion network with additive operations focusing on extracting cross-modal complemen-
tary features and multiplicative operations focusing on extracting cross-modal common
features. MSDFM [39] proposes a multi-sensor data fusion model. For the first time, the
single-channel DSM data is converted into a three-channel color DSM, and the color DSM
is used as a supplementary input for further detailed feature extraction. At the decoder
stage, data-dependent upsampling (double upsampling) method is employed instead of the
common upsampling method to improve the classification accuracy of small object’s pixels.
TransFuser [40] proposes a novel multi-modal fusion Transformer that uses attention to
integrate RGB images and LiDAR representations. C3Net [41] proposes a multi-modal
semantic segmentation network that uses a cross-modal feature recalibration module to
learn multi-modal features while reducing the effect of noise inherent in different modal-
ities. A model distillation strategy is used for obtaining an accurate and compact dense
prediction network. MCENet [42] proposes an end-to-end multi-source remote sensing
image semantic segmentation network, and designed a co-enhanced fusion module to mine
the complementary features of multi-source remote sensing images and address the intra-
class variance issue. CMX [43] further improves on SA-Gate’s network using Segformer as
the backbone to extract features, and designed a cross modal feature correction module to
perform modal calibration in both spatial and channel dimensions. HyperTransformer [44]
introduces the Transformer structure into panchromatic sharpening, which is the fusion
of aligned high-resolution panchromatic images (PAN) with low-resolution hyperspectral
images (LR-his) to produce multi-band images with higher spatial resolution. These studies
provide a novel idea for multi-modal fusion: the use of the Transformer for feature fusion
modules rather than feature extraction.

We give a brief summary of the above mentioned references in Table 1. Although
greater progress has been made in improving multi-modal feature fusion accuracy, the
introduction of multi-modal data greatly increases the runtime for dense prediction at the
pixel level. Two parallel networks are required in the backbone to perform feature extraction
on images of different modalities, so using Transformer will drive the computational effort
up further, which is an important factor for why we consider using Transformer for feature
fusion rather than feature extraction. Therefore, achieving a balance between segmentation
accuracy and segmentation speed is another focus of current research. Taking into account
the situation mentioned above, we propose a multi-modal data semantic segmentation
model based on the combination of CNN and Transformer: MFTransNet. The characteristics
of both structures are fully utilized to achieve a balance of accuracy and speed.

Table 1. Summary of papers mentioned in related work.

Method Years Approach Advantages Disadvantages

FCN 2014 Use convolutional layers instead
of fully connected layers

An input image of any size can
be accepted

A lot of storage overhead;
Coarse segmentation effect

Deeplab V3+ 2018 Dilated convolution and bilinear
upsampling are used

Multi-scale feature extraction
is achieved

The segmentation effect of
high-resolution image is poor

U-Net 2015 The encoder-decoder structure
and skip connection are used

Support for a small number of
trained models

Redundancy leads to slow
training
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Table 1. Cont.

Method Years Approach Advantages Disadvantages

SegNet 2017 Confirm the position after
upsampling using pooling indices Low memory requirements The accuracy improvement is not

high

DeconvNet 2015 Add the deconvolution layer on top
of vgg

It is stronger than FCN in
segmentation details

Boundary segmentation is not
accurate

FarSeg 2020 Explicit foreground modeling
approach

Mitigating foreground and
background imbalances -

MCFNet 2022 Confidence-based local selection
criterion

Optimal balance between
segmentation accuracy, storage
efficiency and inference speed

-

HMANet 2020 A collection of three category-based
attention modules

Improve discrimination between
classes -

FactSeg 2022 It consists of a two-branch decoder
and a joint probabilistic loss

Small object features are activated
and large-scale background noise

is suppressed
-

DC-Swin 2022 Designed a densely connected
feature aggregation module decoder

Enhanced semantic space and
channel relations features -

ViT 2021
The image patches are directly input

into the Transformer for feature
extraction

The effect is better than SOTA’s
CNN when trained with a large

amount of data

A large amount of data is required
for training

Setr 2021
Introducing Transformer from the

perspective of semantic
segmentation

The receptive field of the model is
improved

Large number of parameters and
computations

BotNet 2021
Replace the bottleneck in the fourth
block in ResNet with the Multi-Head

Self-Attention Module

Both efficiency and accuracy are
improved -

CMT 2021
The key and value computation is
replaced by the deep convolution
computation in the main module

The computational cost is reduced -

Conformer 2020 It consists of a CNN branch and a
Transformer branch

Enhanced global perception of
local features and local details of

global representations
High model complexity

TransUnet 2021 Resnet and ViT are combined using
the U-Net structure

Higher performance than various
methods in medical applications High model complexity

SA-Gate 2020 Propose a unified, efficient
cross-modal guidance coder

Information from different models
is effectively integrated -

MCENet 2022 Designed a co-enhanced fusion
module

It is more competitive in terms of
the number of parameters and

inference speed
-

AMFuse 2022 Efficiently combine multiplication
and addition operations

Effectiveness in fusing RGB and
thermal information -

MSDFM 2022 Color digital surface model data is
used as additional input

The segmentation accuracy of
small objects is improved

The segmentation accuracy is not
high for low vegetation and trees

TransFuser 2021 Using attention to integrate image
and LiDAR representation

Achieving state-of-the-art
performance in complex driving

scenarios
-

C3Net 2021 Using a cross-modal feature
recombination module

A balance between accuracy and
speed is achieved -

CMX 2022 Two backbones are used to extract
RGB and other modes, respectively

The generalization performance of
outdoor scenes is excellent Large number of parameters

3. Proposed Method

Based on the consideration of achieving a balance between the accuracy and speed
of the model, we designed MFTransNet, a multi-modal semantic segmentation model
combining CNN and Transformer. In Section 3.1, we first introduce the backbone network
of the model. From Section 3.2 to Section 3.4, we further introduce the components of the
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network, including the feature extraction module (FEM), the multi-head feature fusion
module (MHFFM) and the multi-scale decoder (MSD).

3.1. Backbone Network

There is not a large quantity of data for remote sensing images generally, only a few
hundred or a few thousand images, and this is not suitable for using a pure Transformer
structure. Thus, we designed a hybrid CNN-Transformer model. As shown in Figure 2,
the model is divided into four main parts, including feature extraction, feature fusion
and feature re-extraction in the encoder stage, and a multi-scale decoder in the decoder
stage. The CNN is used as the feature extraction network in the encoder. The multi-headed
attention mechanism in the Transformer is added to the feature fusion module to achieve
adaptive feature fusion, and the fused module continues to be fed into the CNN to achieve
feature re-extraction. After the encoder, the four scales of features are output, fused and
upsampled in a multi-scale decoder to recover the details.
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As there can be data inconsistencies and noise between images of different modalities,
the images are fed directly into the attention module for fusion, there may be situations
where the information between the different modalities is not matched correctly. Therefore
we first input an image into the feature extraction network to obtain the features from
shallow layer, afterward send it into the feature fusion module for adaptive fusion, and
finally send the fused features into the feature re-extraction module to deepen the layers
of the network in order to extract richer feature information. At this point, four different
scales of features are output from the encoder (as shown in Figure 3); this layering is
designed to extract shallow layer features of high resolution and fine features of low
resolution. In the multi-scale decoder we use DUpsampling for upsampling to obtain a
finer segmentation effect.

Specifically, for the input image xεRH×W×C, we first feed x into the feature extraction
module to extract the four scales of features F1εR H

4 ×
W
4 ×C1 , F2εR H

8 ×
W
8 ×C2 , F3εR H

16×
W
16×C3 ,

F4εR H
32×

W
32×C4 , They are then fed separately into the multi-head feature fusion module for

feature fusion, the fused features go into the residual module for further feature extraction,
and finally all the features are incorporated into the coder for multi-scale feature fusion
and upsampling for detail recovery.

F = Conv3×3

(
Concat

(
DUp

(
Fi
)))

, ∀i (1)

where DUp is data-dependent upsampling, Conv3×3 is the 3×3 convolution, and Fi is the
feature at layer i.
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3.2. Feature Extraction Module

As shown in Figure 4, we use a combination of lightweight modules in the feature
extraction module. This mainly includes the depth-separable convolution module and
the C4 module used in mobilenet v2 [45]. As DSM images contain only height features,
whereas RGB images contain a variety of features such as color and texture, different feature
extraction modules need to be designed for these two types of images. For convolutional
neural networks, the more layers there are, the richer the features acquired. Therefore,
we choose a deeper network when designing the RGB feature extraction module. At the
same time, remote sensing images have the problem of being multi-scale, with tremendous
variations in the orientation, shape, and scale of instances in the images [39]. The C4
module decreases the impact of the multi-scale problem by combining convolutions with
different expansion rates, similar to a lightweight ASPP.
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The feature extraction network we design consists of three basic modules, where
mobile_block1 upscales the number of channels, while mobile_block2 keeps the channels
unchanged and adds the residual structure C4_block to it for the extraction of multi-scale
features. Specifically, the number of feature input channels is first reduced to one-quarter
of the original number, then it is fed into a convolution with different expansion rates, and
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finally they are combined. A channel shuffle is added after the contacting to mix pixels
between channels to enhance the correlation between channels. Compared to DSM feature
extraction, the RGB feature extraction network adds the mobile_block2 module to deepen
the network and learn more features. The feature extraction module designs four scales of
output F1 ∈ RC1× H

4 ×
W
4 , F2 ∈ RC2× H

8 ×
W
8 , F3 ∈ RC3× H

16×
W
16 , F4 ∈ RC4× H

32×
W
32 .

Fi
RGB = C4(mo_2(mo_1(Fi−1

RGB)) + mo_1(Fi−1
RGB)) (2)

Fi
DSM = C4(mo_1(Fi−1

DSM)) (3)

where Fi
RGB and Fi

DSM denote the features of the RGB image and DSM image output at
each layer, respectively; mo_1 denotes mobile_block1, mo_2 denotes mobile_block2, and C4
denotes C4_block.

The feature re-extraction module consists of four mobile_block2 residual structures.
Using the residual module avoids the problem of gradient disappearance and increases the
depth of the network.

3.3. Multi-Head Feature Fusion Module

As shown in Figure 5, the multi-head feature fusion module is divided into two
parts: the feature adaptive calibration module and the complementary fusion module. For
complementary and redundant information in different modalities, our aim is to remove
redundant information while retaining complementary information, and to enhance the
representation of complementary information and attenuate redundant information by
adaptively calibrating both features through a multi-headed attention mechanism. After
feature calibration, we use a complementary fusion module to calculate the fusion weights
of the two modality (the sum of the two weights is 1) for complementary feature fusion.
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First, for the features’ (Fi
RGB and Fi

DSM ) output from the feature network, they are fed
into the multi-headed attention mechanism as V, K, and Q for feature calibration. Singly
the calibration process of Fi

RGB
′ is introduced here, and the calibration process of Fi

DSM
′

is the same as that of Fi
RGB

′ . Specifically, Fi
RGB

′ as key and value keys and Fi
DSM

′ as query
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keys are mapped onto n subspaces by nonlinear transformation, and then richer feature
information is captured on these n subspaces as follows:

v(j, i, :) = k(j, i, :) = f i
linear

(
Fi

RGB
′ (j, :)

)
(4)

q(j, i, :) = f i
linear

(
Fi

DSM
′ (j, :)

)
(5)

where f i
linear represents the parameter representation of the ith linear layer, Fi

RGB
′ (j, :),

Fi
DSM

′ (j, :) represents the one-dimensional representation of the jth feature map, and v(j,i,:),
k(j,i,:), q(j,i,:) represents the i-th global descriptor of the jth feature map of v, k, q. In the
following, to simplify notation, we will use v, k, and q to describe the operation of each layer
of feature mapping. A similarity weight matrix is first obtained by multiplying, scaling,
and normalizing k, q, and then multiplying it with v to obtain the calibrated features.

W = so f temax(
kT × q√

dk
) (6)

f rec = W × v (7)

where f rec ∈ RN×C×HW is the calibrated feature and
√

dk is the scaling factor.
Next, the dimensions of Frec are rearranged to become RC×N×HW and a linear layer is

used to reshape to obtain the final calibration feature Frec ∈ RC×H×W :

Frec = Linear(Reshape( f rec)) (8)

After the feature calibration to obtain Frec
DSM and Frec

RGB, we calculate their fusion weights
by an attention module that includes attention in both channel and spatial directions, and
finally use an activation function that keeps the output weight values in the range [0, 1] to
fuse the features of the two modalities according to different weights.

FM = Frec
DSM + Frec

RGB (9)

FA = CA(FM) + SA(FM) (10)

Fmerge
RGB = σ(FA)Frec

RGB (11)

Fmerge
DSM = (1− σ(FA))Frec

RGB (12)

Fmerge = Fmerge
RGB + Fmerge

DSM (13)

where σ is the sigmoid function, CA is channel attention, and SA is spatial attention.

3.4. Multi-Scale Decoder

The multi-scale issue in remote sensing images makes it difficult to locate and identify
objects; at the same time, it is difficult to recover the detailed effect accurately using
the common decoder. Accordingly, we chose to construct a multi-scale decoder. The
feature semantic information in the lower layer of the image is relatively small, but the
shallower layer features are more detailed and the resolution of feature maps is higher. The
location information is sufficient and the target location is accurate. The feature semantic
information in the higher layers is richer, but the target location is coarse. The features of
different layers are connected by skip-connection, and the location information of the lower
layers and the semantic information of the higher layers are fused to achieve the accurate
recovery of object location and details.

For Fi
merge and Fi

RGB generated from MFF and generated by upsampling Fi
up, we have:

F1
up = F4

RGB (14)
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Fi
up = PS(σ(Concat( Fi−1

up , Fi−1
merge)) + Fi−1

up ) (15)

where Fi
up is Fi mentioned in Section 3.1, and PS refers to the PixelShuffle operation by

which the scale of the feature is transformed to match the scale of the next layer. PixelShuffle
can be seen as a special reshape operation, which moves pixels from the channel dimension
to width and length dimension to achieve upsampling. In this process, the values in the
tensor are not changed, and the correlation among the pixels is ensured using the pixels of
other channels for filling. σ is a 1 × 1 convolution with dimensionality reduction on the
number of channels.

Accurately recovering the resolution of the feature maps during upsampling is key to
achieve the recognition of a small object. Traditional upsampling is often achieved using
a combination of bilinear interpolation and convolution. However, bilinear upsampling
does not take into account the correlation among the predictions of each pixel and can lose
some details of a small object. We therefore use a data-dependent upsampling method here,
especially for low-resolution feature mapping, to achieve better segmentation accuracy.
For features with different scales, DUpsampling is used to recover the features with small
resolution to the maximum resolution uniformly, and finally the final classification result is
obtained through concatenation and convolution operations. Figure 6 shows the details in
the decoder.
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4. Experiment
4.1. Dataset

The dataset we used is from the Potsdam urban classification dataset provided by
ISPRS. Each dataset has six categories, namely impervious surface, building, low vegetation,
tree, car, and cluster. This dataset has nDSM images (normalized digital surface model) in
addition to RGB images and labeled maps.

The Potsdam dataset includes 38 images of 6000 × 6000 pixels, which are divided
into smaller images of 512 × 512 pixels. The training set consists of {2_10, 2_11, 2_12, 2_13,
3_10, 3_11, 3_12, 3_13, 4_10, 4_11, 4_12, 4_13, 5_10, 5_11, 5_12, 5_13, 6_7, 6_8, 6_9, 6_10,
6_11, 7_7, 7_8, 7_9, 7_10, 7_11}, and the remainder is the test set. After cropping, there are
3744 images in the training set and 1728 images in the test set.

In Table 2, we counted the distribution of the dataset. The training dataset and test
dataset have similar data distributions in general. It is worth noting that there is an
unbalanced proportion of categories in the dataset. The tree, car, and cluster categories
have a small proportion in the dataset, especially the car category, which only be accounted
for 1.55% in the training dataset. In the subsequent experiments, we took some measures
to suppress this imbalance.
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Table 2. The detailed information of Potsdam for experiments.

Attributes Categories

Name Impervious
Surface Building Low

Vegetation Tree Car Clutter

Color
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Train set 29.95% 24.56% 23.43% 15.53% 1.55% 4.98%
Test set 34.29% 25.39% 18.84% 14.99% 2.04% 4.45%

4.2. Implementation Details

The model is implemented on the pytorch deep learning platform. We use the SGB op-
timizer with an initial learning rate of 0.0005. The beam and weight attenuation coefficients
are set to 0.9 and 0.001, respectively. We train for 200 epochs on the Potsdam dataset with
the learning rate decreasing by cos. The size of each batch is set to eight. We employed an
NVIDIA 3080 GPU to train our network.

Loss function: In the loss function we chose dice loss instead of the commonly used
cross entropy function. Remote sensing images have the characteristic of category imbal-
ance, and the dice loss has a better effect on the category imbalance problem. Therefore we
use the loss function as follows:

L = LCE + LDice (16)

The Dice coefficient is an ensemble similarity measure usually used for calculating the
similarity of two sample points:

S =
2|X ∩ Y|
|X|+ |Y| (17)

where X ∩ Y is the intersection between X and Y, and |X|, |Y| denote the number of
elements of X and Y.

DicsLoss = 1− S (18)

As can be seen from the definition of the dice loss, dice loss is a region-dependent loss,
meaning that the loss and gradient value of a pixel point is not only related to the label and
predicted value of that point, but also to the label and predicted value of other points.

4.3. Evaluation

We evaluated the segmentation accuracy of each category using IoU (intersection
over union) and PA (pixel accuracy), which is the ratio of the intersection of the model’s
predicted and true values for a given category to the union:

IoU =
TP

TP + FP + FN
(19)

PA is the number of pixels with the correct category predicted as a proportion of the
total number of pixels:

PA =
TP + TN

TP + TN + FP + FN
(20)

The overall model accuracy was also assessed using mIoU, mPA, Acc, and F1-score,
where mIoU and mPA are the cumulative average of IoU and PA for each category, respec-
tively. Acc represents the number of correctly classified samples as a proportion of the
total sample:

Acc =
TP

TP + TN + FP + FN
(21)

F1-score is the summed average of precision and recall, where precision represents the
proportion of positive samples classified into the positive sample that is correctly classified



Mathematics 2023, 11, 722 13 of 21

and recall represents the proportion of positive samples classified into the positive sample
that are true of all positive samples:

F1 = 2× Precision× Recall
Precision + Recall

(22)

Precision =
TP

TP + FP
(23)

Recall =
TP

TP + FN
(24)

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives and FN is the number of false negatives.

4.4. Experiment

In order to verify the effectiveness of our model, a feature visualization operation,
contrast experiment and ablation experiment were carried out on the Potsdam dataset. The
feature visualization is mainly to verify the effectiveness of the feature fusion module and
the help of multi-modal fusion for semantic segmentation. In the comparison experiments,
we compared MFTransNet with several SOTA methods in regard to model accuracy and
number of parameters, and verified that our model achieves a good balance between
accuracy and speed. The ablation experiments were conducted for different components in
the feature fusion module to verify the effectiveness of each component.

Figure 7 shows a graph of the change in loss function and accuracy during the training
process. It can be seen that after 150 epochs, the training loss is still gradually decreasing,
while the test loss has a slight increase. Thus, we chose to stop training after 50 epochs.
Between 175–200 epochs, the training loss has converged and the test loss fluctuation
value has become smaller. Finally, we chose the model with the smallest test loss between
175–200 epochs as the final evaluated model parameter. The same situation can be observed
in the line graph of accuracy.
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4.5. Feature Visualization

The results of feature visualization are included in Figure 8. For images with different
modalities, it is clear from the results of feature visualization that they have different
valid information, with RGB images being more sensitive to color and texture information
and DSM images being more sensitive to height information. Effectively combining the
information from different modalities will be of great help in improving the semantic
segmentation accuracy.
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In group (a), we performed feature-map visualization containing low vegetation and
trees. It can be found that there is almost no difference between the two categories in the
feature maps of RGB images, but the tree information is more obvious in DSM images.
After feature fusion, the height information is added on the basis of the original details,
which makes the difference between low vegetation and trees in the feature map more
obvious. In group (b), we visualized the feature map including buildings, and observed
that the RGB image feature map paid more attention to the texture information, and the
height information in the fused feature map enhanced the buildings, which retained the
texture information and enhanced the height information at the same time. Therefore,
we can conclude that the feature fusion module can fuse the complementary information
between images of different modalities well.

4.6. Comparative Experiments

We compared MFTransNet with several SOTA methods.
U-Net, DeepLab V3+ and TransFuse_S [46] are unimodal semantic segmentation

models. We only used RGB images as input, and comparing with these models can
show the advantages of multi-modal models very well. In addition, SA-Gate, ACNet [47],
RedNet [48] are RGBD models, so we use DSM information instead of depth information,
and since both DSM and HHA represent height information data, we assert there will be
generality among these models.

From Table 3, we can see that the multi-modal models all outperform the unimodal
models in terms of accuracy and have better results in three categories: building, low
vegetation, and trees, which are able to rely on height data to get better discrimination. This
indicates that the use of multi-modal inputs plays an important role in improving segmen-
tation accuracy. Our model largely outperforms most methods compared to other models,
surpassing RedNet in mPA compared to it, but slightly lower in mIoU. We have bolded the
two highest metrics in Table 1 for observation and, in terms of segmentation results for each
category, our model is effective in improving the segmentation of low vegetation and trees,
with the increased height information effectively distinguishing between these two similar-
looking features. The model also performs better in the segmentation of buildings, where
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the height information effectively removes the blurring between buildings and shaded
boundaries. The experiments show that our model can effectively eliminate redundant
information and enhance complementary information to achieve efficient multi-modal
data fusion.

Table 3. Experiment results on Potsdam dataset.

Method

Impervious
Surface Building Low

Vegetation Tree Car Clutter
mIoU mPA

IoU PA IoU PA IoU PA IoU PA IoU PA IoU PA

U-Net 81.78 88.32 89.47 95.14 69.28 86.4 72.89 83.6 82.34 87.89 32.85 44.8 71.44 81.03
DeepLab v3+ 78.43 91.72 87.33 91.24 65.99 80.51 71.2 77.66 81.73 89.15 40.06 55.02 70.79 80.89
TransFuse_S 80.86 91.09 88.4 93.42 68.74 85.71 70.58 78.93 81.47 89.58 32.01 39.69 70.34 79.74

ACNet 83.44 91.15 92.73 97.26 69.05 83.57 71.57 85.13 81.84 87.6 30.08 35.6 71.45 80.05
RedNet 82.83 92.45 92.4 96.09 69.64 83.68 71.5 81.47 83.06 89.89 35.96 44.52 72.57 81.35
SA-Gate 82.74 91.82 91.33 96.42 70.52 86.87 69.88 77.9 79.56 85.31 36.88 44.08 71.82 80.4

MFTransNet 83.26 91.09 91.92 95.54 70.28 86.44 72.26 82.37 82.08 90.83 33.87 43.96 72.34 81.7

The two largest terms of the value are bolded.

Figure 9 shows a comparison of the segmentation plots for the various models. In the
first and second rows, the segmentation results for trees are highlighted in the dashed box.
The results show that the multi-modal model is very effective at distinguishing between
trees and low vegetation, whereas the unimodal model struggles to achieve accurate
segmentation results when distinguishing between these two types of objects with similar
appearances. Our model and RedNet segmentation results are the closest to the labelled
map. We also observe that in the middle left part of the first row, the DSM image appears
as a clear bright area and most models identify trees. However, the labeled map does
not show that this is a tree, possibly due to incorrect manual labelling. In rows 3–5, the
segmentation effect of the buildings is highlighted. The unimodal models show a large
number of misclassifications at the boundaries, incorrectly identifying impervious surfaces
as clutter. The multi-modal model works better, with our model and ACNet boundary
segmentation being the best. Since clutter is the most difficult of these categories to identify,
these models all show relatively poor segmentation results. Our model is still very similar
to the labeled graph in general shape. From these visualizations, it can be concluded
that the multi-modal model is better at addressing interclass similarity (segmentation of
trees and low vegetation) and intraclass variability (segmentation of impervious surfaces
at building boundaries). Our model is also in the better segmentation category of the
multimodal model.

As can be seen from Table 4 and Figure 10, the multi-modal model outperforms
the unimodal model in terms of accuracy metrics. However, with the same backbone,
the parameters of the multi-modal model are more than twice as large as those of the
unimodal model. The multi-modal model enriches the information sources due to its
multiple source inputs, but likewise introduces a huge number of parameters and large
amount of computational effort, and it requires two backbone networks to handle the
different modal inputs. As can be seen in Table 4, our model has half the number of
parameters and 1/10 the computational effort of U-Net, and our model achieves the effect
of the multi-modal model in all accuracy metrics while reducing the model size as much as
possible. In addition, we do not use training weights in our experiments, but the accuracy
still reaches that of other models using pre-trained weights. This evidence illustrates that
MFTransNet achieves a good balance between model size and performance.
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Table 4. Comparison of model size and accuracy.

Method Backbone FLOPs (G) Params (M) F1-Score (%) Acc (%)

U-Net Resnet50 92.12 43.93 81.87 87.55
DeepLab v3+ Xception 83.44 54.71 81.94 85.69
TransFuse_S Resnet34 58.36 37.61 81.42 86.53

RedNet Resnet50 85.26 81.95 82.94 87.89
SA-Gate Resnet101 165.1 110.85 82.75 87.71
ACNet Resnet50 106.25 116.60 82.16 87.83

MFTransNet - 9.91 23.20 82.57 87.93
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4.7. Ablation Experiments

In order to verify the effectiveness of each component in the feature fusion module,
we conducted an ablation experiment on it to compare the effect of adding different
components to the model. AMfuse+ is used to replace the original feature fusion module
as baseline. The evaluation results are listed in Tables 5 and 6, where

√
indicates that

the corresponding module is retained. The results show that these two components have
a certain optimization effect on the accuracy of the model, and the combination effect
is better.

Table 5. The effects of different components of our method on the results.

Method FACM CFM mIoU mPA F1-Score (%) Acc (%)

Baseline 70.91 81.07 81.99 86.99
Ours

√
71.57 80.77 81.84 87.64

Ours
√

71.59 80.5 82.9 87.68
Ours

√ √
72.34 81.7 82.57 87.93

Table 6. Evaluation results for each category.

Method

Impervious
Surface Building Low

Vegetation Tree Car Clutter

IoU PA IoU PA IoU PA IoU PA IoU PA IoU PA

Baseline 81.34 88.09 91.38 97.2 68.13 85.91 70.13 81.09 79.57 91.47 34.94 42.64
With FACM 82.34 91.41 91.7 95.27 70.64 83.89 72.64 84.62 81.24 88.86 30.88 40.57
With CFM 82.52 91.26 91.56 95.83 69.98 86.0 71.65 81.83 80.12 87.73 33.74 40.33

MFTransNet 83.26 91.09 91.92 95.54 70.28 86.44 72.26 82.37 82.08 90.83 33.87 43.96

Figure 11 shows the visualization results of the ablation experiment. In the first row
it is observed that the segmentation of the object by baseline is poor, after the addition
of FACM the segmentation of the interior of the object becomes better, and after the
addition of CFM the segmentation boundary of the object is even better. In the third
row, there is a large number of misclassifications in the lower left corner of the dashed
box of baseline, which improves with the addition of FACM. However, there are still a
small number of misclassifications, which improve with the addition of CFM. The best
segmentation results are obtained when both modules are added. With the addition of
FACM, the information of the two modalities was calibrated. The redundant information
between the modalities is not eliminated due to the fusion module not distributing the
weights well, and the boundary processing is rather rough. With the addition of CFM, the
segmentation is significantly improved and the weights between the different modalities
are well distributed. Nevertheless the complementary information is not enhanced due
to the lack of calibration of the modalities and the segmentation is still less than perfect.
The best result is achieved using both modules together, with the features being calibrated
and then fused to extract the complementary information between the modalities, while
suppressing redundant information and achieving a more accurate segmentation.

Overall, our model meets the design requirements, but there are still some problems.
Firstly, the remote sensing dataset suffers from an insufficient volume of data and an
insufficient dataset. The insufficient dataset caused the model to fall into overfitting easily
during training, a problem that arose for all models during the experiments; the larger
the model size, the earlier it would start to overfit. The insufficient dataset prevents us
from verifying the performance of the model on other datasets. Multi-modal remote
sensing semantic segmentation datasets are currently scarce, and we will contribute to the
development of the field by autonomously annotating datasets in subsequent research.
Furthermore, the accuracy of our model is still relatively low for the category clutter, as
can be seen in Table 3. This category is different from the others in that it is very diverse in
terms of size, height, color, and various attributes, and is one of the most difficult types to
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recognize. It requires richer contextual information to improve the accuracy of this category.
Our model is designed to fuse information from different modalities and scales, and may
lack some consideration of context in order to reduce the number of parameters. Future
research will investigate the integration of contextual information in more depth without
considering the number of parameters.
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5. Conclusions

In this article, we propose the MFTransNet framework for the semantic segmentation
of multi-modal remote sensing images as a way of balancing accuracy and efficiency
in high spatial resolution image segmentation. Our network mainly consists of CNN-
Transformer modules. Specifically, the feature fusion module MFF with a multi-head
attention mechanism is designed, in which ACM can adaptively calibrate features, and
CFF is used to fuse multi-modal features to achieve efficient feature adaptive fusion. In
view of the multi-scale problem existing in remote sensing images, a multi-scale decoder
structure and DUpsampling is used instead of traditional bilinear upsampling to reduce
the details lost during upsampling and achieve feature aggregation at different scales.

MFTransNet not only overcomes the problem of sample imbalance and improves the
confidence level of intra-class objects, but also improves the segmentation of feature edges.
The model effectively mitigates the intra-class similarity and inter-class dissimilarity of
remote sensing images and improves segmentation accuracy. In addition, thanks to the
application of Transformer with multi-modal data fusion, the model does not require much
memory. We have demonstrated the benefits of MFTransNet on challenging high-resolution
remotely sensed images. However, as multi-modal data operations need to consider fusing
data from different sources and dealing with different levels of noise and missing data, the
model still suffers from poor complementarity between modality, alignment difficulties,
and redundancy between modalities. The ability to design similarity measures between
modalities to represent HSR remote sensing image data in a meaningful and valuable way
is critical to our model. Considering that the joint representation approach can handle
more than two modalities, while coordinated representation can currently only handle two
modalities, in future work, we will continue to improve the Transformer model structure
and strive to achieve joint multi-modal fusion in order to further improve the accuracy of
HSR remote sensing image segmentation while controlling the model size.
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