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Definition 1. [Strong pseudo-convexity] A function f : χ → R is said to be strongly
pseudo-convex (SPC) on χ1 ⊂ χ with respect to x ∈ χ , if

f (x)− f (x) ≤ K〈 f ′(x), x− x〉 (1)

holds for all x ∈ χ1, with f ′(x) a Clarke subgradient of f at x, K > 0 is a contant. If the
Inequality ( 1) holds with respect to any x ∈ χ1, f is called SPC on χ1 ⊂ χ. The collection
of SPC functions on χ1 with K > 0 are denoted asWK(χ1).

Proposition 1. Let f : R → R be a univariate continuous function. Assume that on
each interval of (−∞, a], (a, b), [b, ∞), f (x) is convex, and f ′−(a) < 0, f ′+(b) > 0, f ′+(a) 6=
0, f ′−(b) 6= 0 .Then we have that the Inequality ( 1) holds for any fixed x ∈ R and x ∈ R
with

K = max
{

1,
f ′−(a)
f ′+(a)

,
f ′+(a)
f ′−(a)

,
f ′−(b)
f ′+(b)

,
f ′+(b)
f ′−(b)

,
f ′−(a)
f ′+(b)

,
f ′+(b)
f ′−(a)

}
(2)

Proposition 2. Let f : R → R be a univariate continuous function. Let a0 < a1 <
· · · < am be the real numbers, a0 = −∞ and am = +∞. On each interval of [ai, ai+1], f (x) is
convex, and i = 0, 1, .., m− 1. Let S be the set of the minimum points of f on R. Suppose
that the optimal solution set S ∈ [aq, aq+1]. With q ∈ [0, · · · , m− 1]. Moreover, suppose
that f (x) is strictly decreasing when X ≤ In f S and strictly increasing when X ≥ SupS.
Then, for any fixed x ∈ [a0, am] and x ∈ [a0, am]. Inequality (1) holds with

K =max

{
1,

f ′+
(
aµ

)
f ′−(av+1)

,
f ′−(ai)

f ′+
(
aj
) | q ∈ [0, · · · , m− 1], µ ∈ [v + 1, · · · , q]

v ∈ [0, · · · , q− 1], i ∈ [q + 1, · · · , j], j ∈ [q + 1, · · · , m− 1]}
(3)

Lemma 1. Denote Ω0 = [t0 − δ/τ − C, t0 − δ/τ] ∪ [t0 + δ, t0 + δ + C], suppose that
0 /∈ Ω0, f (t) = 1

2 t2 +C · LTIP((t− t0)) is SPC on R\Ω0 with K = max
{

2, 1 + C·τ2

δ , 1 + C·τ
δ·τ−ε

}
.

Proof:
Suppose that t0 ≤ 0

C · L′TIP(t− t0) =


−C · τ, −δ/τ + t0 ≤ t < −ε/τ + t0
0, otherwise
C, ε + t0 ≤ t < δ + t0

(4)

(
1
2

t2
)′

= t (5)

Let a = t0 − δ/τ, b = t0 + δ, Ω1 = (−∞, a), Ω2 = [a, b], Ω3 = (b, ∞), Ω0 = [a− C, a] ∪
[b, b + C].

Case 1: t0 ∈ [−ε/τ, 0]
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We can see that f (t) is continuous on R and convex on every internal of Ωi, i = 1,2,3.
The directional derivatives of f at point a are calculated as follows:

f ′−(a) = a; f ′+(a) = a− C · τ (6)

As a < 0, the above two directional derivatives are negative. The directional deriva-
tives of f at point b are calculated as follows:

f ′−(b) = b + C; f ′+(b) = b (7)

For δ > ε
τ , b > 0, both of the above two directional derivatives are positive. By

Proposition 1, we have f (t) is strongly pseudoconvex in R for any fixed t ∈ R, where

K = max{1,
a− C · τ

a
,

b + C
b
} ≤ max{1 + C · τ2

δ
, 1 +

C · τ
τ · δ− ε

}. (8)

Case 2: t0 ∈ [−δ,−ε/τ]
When f ′−(a) = a < 0, f ′+(b) = b > 0, t∗ ∈ argmin f ∈ Ω2 and f (t) is continuous on

R and convex on every internal of Ωi, i = 1, 2, 3. The directional derivative of f at a and
b are calculated in the same way with case 1. By Proposition 1, we have f (t) is strongly
pseudoconvex in R for any fixed t ∈ R, where

K = max{1,
a− C · τ

a
,

b + C
b
} ≤ max{1 + C · τ2

ε + δ
, 1 +

C
b
}. (9)

The last equation is 0 < b < δ− ε/τ. Specially, let’s consider the strong pseudocon-
vexity of f (t) on R\Ω0. Define function f (t) : R→ R as follows:

f̃ =

{
f (t), t ∈ R\(b, b + C)
f (b) + f (b+C)− f (b)

C · t, t ∈ [b, b + C]
(10)

Then f̃ (t) is a continuous function of one variable and convex on every internal of Ω1,
Ω2, [b, b + C] and [b + C, ∞]. Its directional derivatives at a are the same as the directional
derivatives of f calculated in Equation ( 6). Its directional derivatives at b and b + C are
calculated as

f̃ ′−(b) = b + C; f̃ ′+(b + C) = b + C (11)

f̃ ′−(b + C) = b +
1
2

C; f̃ ′+(b) = b +
1
2

C (12)

According to Proposition 1, we have f̃ (t) ∈ χK(R), where

K = max{1,
f ′+(v)
f ′−(v)

,
f ′−(v)
f ′+(v)

,
f ′−(b)

f ′+(b + C)
| v ∈ {a, b, b + C}}

= max{1,
a− C · τ

a
,

b + C
b + 1

2 C
,

b + C
b + C

}

≤ max{2, 1 +
C · τ2

δ + ε
}

(13)

The last two inequalities are true because a < −δ− ε/τ < 0, b > 0. Since f̃ (t) and f (t)
have the same definition on R\Ω0, we have f (t) ∈ χK(R\Ω0), K is defined by the above
equation.

Case 3: t0 ∈ (−∞,−δ)
Consider that t ∈ [t0 + ε, t0 + δ]. In this interval, f (t) = C · [(t− t0)− ε] + 1

2 t2. Then
f ′(t) = C + t is increasing with t. The assumption of the lemma implies that t0 + δ < −C,
then ∀t ∈ [t0 + ε, t0 + δ], f ′(t) < 0 for t ∈ Ω1 ∪Ω2. In this case, f (t) is convex on each
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interval of Ωi, i = 1, 2, 3, and there exists a unique minimizer t∗ ∈ Ω of f (t). Moreover,
f ′(t) < 0 for t < t∗ and f ′(t) > 0 for t > t∗. By Proposition 1, we have that f (t) is strongly
pseudo-convex on R with

K = max
{

1,
f ′+(v)
f ′−(v)

,
f ′−(v)
f ′+(v)

,
f ′−(a)
f ′+(b)

,
f ′+(b)
f ′−(a)

| v ∈ {a, b}
}

= max
{

1,
a− C · τ

a
,

b
b + C

,
a
b

,
b
a

}
≤ max

{
1 +

C · τ2

δ · τ + δ
, 1− C

b + C
, 1 +

δ · τ + δ

C · τ

} (14)

Particularly, let’s consider the strong pseudo-convexity of f (t) on R Ω0.Consider the
function f̃ (t) : R→ R. It is observed that f̃ is a continuous and piecewise-convex function.
Its directional derivations at b, and b + C are calculated as described above. By Proposition
2, we have that f (t) ∈ χK(R) with

K = max
{

1,
f ′+(v)
f ′−(v)

,
f ′−(v)
f ′+(v)

,
f ′−(b)

f ′+(b + C)
| v ∈ {a, b, b + C}

}
= max

{
1,

a− C · τ
a

,
b + C

b + 1
2 C

,
b + C
b + C

}

≤ max
{

2, 1 +
C · τ2

δ · τ + δ
, 1
}

≤ max
{

2, 1 +
C · τ2

δ · τ + δ

}
(15)

Likewise, we can acquire the proof regarding t0 ≥ 0.
In summary, K = max

{
2, 1 + C·τ2

δ , 1 + C·τ
δ·τ−ε

}
.

Assumption 1: We assume that X > 0 exists such that K(Xt, Xt) ≤ X2 for all t. The
following proportion could be obtained according to the assumption:

(1) For each f ∈ H, | f (Xt)| = |〈 f , K(Xt,−)〉| ≤ X · ‖ f ‖H.
(2) For given that L′TPIL < 1, we have

∥∥∥∂ f LTIP( f (Xt)− yt)
∥∥∥
H
≤ X

C and∥∥∥∂ f Rinst[ f , Xt, yt]
∥∥∥
H
≤ CX + ‖ f ‖H ≤ 2X for any f : || f ||H ≤ X.

(3) For fixed C > 0 and t = 1, 2, ··, f t generated by TIPOSVR satisfied f : || f ||H ≤ X.
Proof:∥∥ f t+1

∥∥
H ≤

∥∥(1− γt) f t − C · ηtL′TIP( f (Xt)− yt)K(Xt, ·)
∥∥
H ≤ (1− γt)

∥∥ f t
∥∥
H

+ γtX
Given f 0 = 0,we have || f ||H ≤ X.
Lemma 2: Let the sequence instance (Xt, yt) satisfy k(Xt, Xt) ≤ X2 . For a fixed g ∈ H

ut =
(

f t − g
)
/
∥∥ f t − g

∥∥, t0 = yt − g(Xt) + ut(Xt) ·
〈
ut, g

〉
,

Ω0 =
[
−δ/τ −

(
ut(Xt)

)2,−δ/τ
]
∪
[
δ, δ +

(
ut(Xt)

)2
]

Assuming t0 /∈ Ω0, ξt = f t(Xt)− yt /∈ Ω0, we have

Rinst
[

f t, Xt, yt
]
− Rinst[g, Xt, yt] ≤ K ·

〈
∂ f Rinst

[
f t, Xt, yt

]∣∣∣
f= f t

, f t − g
〉
H

with

K = max
{

2, 1 +
C · τ2X2

δ
, 1 +

C · τX2

δ · τ − ε

}
. (16)

Proof:
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Let f = g + αut,
∥∥ut
∥∥ = 1.

According to the definition of Rinst :
Rinst[ f , Xt, yt] = C · LTIP

[
g(Xt) + αut(Xt)− yk

]
+ 1

2

∥∥g + αut
∥∥2
+ constant,

Let ξ = g(Xt) + αut(Xt)− yt ∈ R, t0 = yt − g(Xt) + ut(Xt)
(
ut, g

)
,

ξ + t0 = αut(Xt) + ut(Xt)
(
ut, g

)
= ut(Xt)

[
α +

(
ut, g

)]
With the definition of

∥∥ut
∥∥ = 1, Rinst[ f , Xt, yt] satisfies the strong pseudoconvex

inequality, i.e.,

Rinst
[

f t, Xt, yt
]
− Rinst[g, Xt, yt] ≤ K ·

〈
∂ f Rinst

[
f t, Xt, yt

]∣∣∣
f= f t

, f t − g
〉
H

holds as the univariate function on the right-hand side of as α is strongly pseudoconvex.
We have

φ(ξ) = Rinst[ f , Xt, yt] = C · LTIP[ξ] +
1

2[ut(Xt)]
2 [ξ + t0]

2 + constant

Therefore, according to the above lemma, φ(ξ + t0) satisfies strong pseudoconvexity when
ξ ∈ R\Ω0 with

K = max

{
2, 1 +

C · τ2[ut(Xt)
]2

δ
, 1 +

C · τ
[
ut(Xt)

]2
δ · τ − ε

}

≤ max
{

2, 1 +
C · τ2X2

δ
, 1 +

C · τX2

δ · τ − ε

}
.

(17)

Theorem 1: Set example sequence S = {(Xt, yt)}T
t=0 be k(Xt, Xt) ≤ X2 holds for all

t.
(

f 0, · · · , f T) represents a hypothetical sequence produced by TIPOSVR, Rinst[g, S] =
1
T ∑T

t=1 Rinst[g, Xt, yt], and ĝ = arg ming∈H Rinst[g, S]. Fixed C, ε > 0, 0 < η < C and set the
learning rate ηt = η · t−1/2. We assume that each hypothesis f t generated by TIPOSVR
satisfies the hypothesis stated in Lemma 2, for t = 0, 1, 2 · · · T. And then we have the
following expression

1
T

T

∑
t−1

Rinst
[

f t, Xt, yt
]
≤ Rinst[ĝ, S] + αT−1/2 + o

(
T−1/2

)
(18)

Among them, α = 2KX2

η + 4KX2η, K = max
{

2, 1 + C·τ2X2

δ , 1 + C·τX2

δ·τ−ε

}
Proof:
From the strong pseudo-convexity of Rinst in lemma 2 and the Lipschitz property of

Rinst in the first argument, the following expressions are derived:

∥∥ f t − ĝ
∥∥2
H −

∥∥∥ f t+1 − ĝ
∥∥∥2

H

= −
∥∥∥ f t+1 − f t

∥∥∥2

H
−
〈

f t+1 − f t, f t+1 − ĝ
〉
H

= −η2
t

∥∥∥∂ f Rinst
[

f t, Xt, yt
]∥∥∥2

H
+ 2ηt

〈
∂ f Rinst

[
f t, Xt, yt

]∣∣∣
f= f t

, f t − ĝ
〉
H

≥ −4η2
t X2 − 2ηt

K
(

Rinst[ĝ, Xt, yt]− Rinst
[

f t, Xt, yt
])

Here, K = max
{

2, 1 + C·τ2X2

δ , 1 + C·τX2

δ·τ−ε

}
,

Then there are
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1
ηt

∥∥ f t − ĝ
∥∥2
H −

1
ηt+1

∥∥∥ f t+1 − ĝ
∥∥∥2

H

=
1
ηt

(∥∥ f t − ĝ
∥∥2
H −

∥∥∥ f t+1 − ĝ
∥∥∥2

H

)
+

(
1
ηt
− 1

ηt+1

)∥∥∥ f t+1 − ĝ
∥∥∥2

H

≥ −4ηtX2 − 2
K

(
Rinst[ĝ, Xt, yt]− Rinst

[
f t+1, Xt, yt

])
+

(
1
ηt
− 1

ηt+1

)
4X2

Considering
∥∥ f t+1 − ĝ

∥∥
H ≤ 2X, ηT+1 = η(T + 1)−1/2, by summing ∑T

t=1 ηt ≤ 2ηT1/2,
we get the following expression

1
η

∥∥∥ f 1 − ĝ
∥∥∥2

H
− 1

ηT+1

∥∥∥ f T+1 − ĝ
∥∥∥2

H

≥
T

∑
t=1
−4ηtX2 − 2

K

T

∑
t=1

(
Rinst[ĝ, Xt, yt]− Rinst

[
f t, Xt, yt

])
+

(
1
η
− 1

ηT+1

)
4X2

So,

− 2
K

T

∑
t=1

(
Rinst[ĝ, Xt, yt]− Rinst

[
f t, Xt, yt

])
≤ 1

η

∥∥∥ f 1 − ĝ
∥∥∥2

H
− 1

ηT+1

∥∥∥ f T+1 − ĝ
∥∥∥2

H
−
(

1
η
− (T + 1)1/2

η

)
4X2 + 8ηX2T1/2

≤ 4X2

η
− (2X)2

ητ+1
+

(T + 1)2 − 1
η

4X2 + 8ηX2T1/2

≤ X2

η
+

T1/2

η
4X2 + 8ηX2T1/2

And we can get,

− 1
T

T

∑
t=1

(
Rinst[ĝ, Xt, yt]− Rinst

[
f t, Xt, yt

])
≤ 2KX2

η
T−1 + 4KX2ηT−1/2 +

2KX2

η
T−1/2

=
2KX2

η
T−1 + αT−1/2

α = 2KX2

η + 4KX2η.


