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Definition 1. [Strong pseudo-convexity] A function f : x — R is said to be strongly
pseudo-convex (SPC) on ) C x with respecttox € y , if

f(x) = f(x) < K(f'(x),x = %) 1)

holds for all x € x7, with f’(x) a Clarke subgradient of f at x, K > 0 is a contant. If the
Inequality ( 1) holds with respect to any x € xj, f is called SPC on x; C x. The collection
of SPC functions on 71 with K > 0 are denoted as Wk (x1).

Proposition 1. Let f : R — R be a univariate continuous function. Assume that on
each interval of (—oc0,a], (a,b), [b,),f(x) is convex, and f’ (a) < 0, fi (b) > 0, f (a) #
0, f" (b) # 0 .Then we have that the Inequality (1) holds for any fixed ¥ € R and x € R
with

K::nmx{1f1“” fila) fL(b) fL(b) f.(a) f;w)} o

(@) fL(a)” fi(b)" FL(D)" f1(b) fL(a)

Proposition 2. Let f : R — R be a univariate continuous function. Let a9 < a7 <

-+ < ay, be the real numbers, a9 = —o0 and a,, = +0c0. On each interval of [a;,a;11],f(x) is

convex, and i = 0,1,..,m — 1. Let S be the set of the minimum points of f on R. Suppose

that the optimal solution set S € [ag,a,.1]. With g € [0,---,m — 1]. Moreover, suppose

that f(x) is strictly decreasing when X < InfS and strictly increasing when X > SupS.
Then, for any fixed X € [ag, 4] and x € [ag, a,,]. Inequality (1) holds with

o L) (@) N e
k= {l,f,(av+l)’f/+(ﬂ]‘) |l7 < [0/ g ”’y 6[ +1, /q] (3)

vel0---g-1iclg+L - jljelg+1- -, m-1]}

Lemma 1. Denote Qg = [tg — /7 — C,tg — /7] U [tg + J,to + 6 + C], suppose that
0%(]mfﬁ)::%Z+C-an«t—t@)BSPConR\QowﬁhK::nmx{21%—%§,1+~CT

0-T—¢

—

Proof:
Suppose that ty) <0

—C-1, —6/t+ty<t<—¢e/T+t
C-Lrp(t—t)) =4 0, otherwise @)
G, e+tg <t<d+ty

1.\
(3¢) - o

Leta=ty—d6/1,b=1ty+03,0 = (—00,{1),02 = [a,b],03 = (b,OO),QO = [{1 —C,{Z] U
b,b+ CJ.
Case 1: tg € [—¢/1,0]
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We can see that f(f) is continuous on R and convex on every internal of (3;,i=1,2,3.
The directional derivatives of f at point a are calculated as follows:

fl(a)=a;fl(a)=a—-C-t (6)

As a < 0, the above two directional derivatives are negative. The directional deriva-
tives of f at point b are calculated as follows:

fL) =b+Cfi(b) =D @)

For 6 > £,b > 0, both of the above two directional derivatives are positive. By
Proposition 1, we have f(t) is strongly pseudoconvex in R for any fixed t € R, where

C-t b+C C-12 C-T

K= 177 < 1 1 .
max{ - b < max{l+ 5 +T‘5_€} 8)

Case 2: ty € [0, —¢/T]

When f' (a) =a <0, f,.(b) =b > 0, t* € argminf € O and f(t) is continuous on
R and convex on every internal of ();,i = 1,2,3. The directional derivative of f at 2 and
b are calculated in the same way with case 1. By Proposition 1, we have f(t) is strongly
pseudoconvex in R for any fixed t € R, where

—C-t b+C

K = max{1, T 7} <max{1—i—C 14— } ©)

e+6’
The last equation is 0 < b < J — ¢/7. Specially, let’s consider the strong pseudocon-
vexity of f(t) on R\ Q). Define function f(t) : R — R as follows:

- { f(b), t € R\(b,b+ C) 10)

f= Fo) + LOHCB e [b,b 4 C)

Then f(t) is a continuous function of one variable and convex on every internal of ()4,
0y, [b,b+ C] and [b + C, c0]. Its directional derivatives at a are the same as the directional
derivatives of f calculated in Equation ( 6). Its directional derivatives at b and b 4 C are
calculated as

L) =b+Cf.(b+C)=b+C 11)
f’,(b+C):b+%C;f’+(b):b+%C (12)

According to Proposition 1, we have f(t) € xx(R), where

fLlo) fL(b)

' bb+C

oA LAY

T b+C b+C

’b+%db+c} (13)

2
}

K = max{1, ;é_’ EZ;
a—C-
a

= max{1,

C-T
S+e

< max{2,1+

The last two inequalities are true because a < —8 —¢/7 < 0,b > 0. Since f(t) and f(t)
have the same definition on R\ )y, we have f(t) € xx(R\Q)), K is defined by the above
equation.

Case 3: tg € (—o0,—0)

Consider that t € [to + ¢, to + 6] In this interval, f(t) = C- [(t — ty) — €] + 32. Then
f'(t) = C + t is increasing with t. The assumption of the lemma implies that o + 6 < —C,
then Vt € [to+¢to+ 5], f'(t) < 0fort € O Uy. In this case, f(t) is convex on each
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interval of ();,i = 1,2,3, and there exists a unique minimizer t* € Q) of f(t). Moreover,
f'(t) <O0fort < t*and f'(t) > 0fort > t*. By Proposition 1, we have that f(t) is strongly
pseudo-convex on R with

a—C- ab
2z 14
—max{l, p b'a} (14)

Particularly, let’s consider the strong pseudo-convexity of f(t) on R ()g.Consider the
function f(t) : R — R. Itis observed that fis a continuous and piecewise-convex function.
Its directional derivations at b, and b + C are calculated as described above. By Proposition
2, we have that f(t) € xx(R) with

NN AONN A
K=max{ L2 G e o€ bl

{ a—C-7 b+C b—i—C}
= maxy 1,

a 'b—f—%C'b—i—C

C-?
< R
max{2,1—|—5_1_+5,1}

C-12
< 2,1
_max{ , +5'T+5}

(15)

Likewise, we can acquire the proof regarding ¢y > 0.
In summary, K = max{Z, 1+ C'TTZ, 1+ 5_(;; }
Assumption 1: We assume that X > 0 exists such that K(X;, X;) < X2 for all t. The

following proportion could be obtained according to the assumption:
(1) Foreach f € H, |f(X¢)| = [{f, K(Xe, =))| < X [|fll3-

(2) For given that L., < 1, we have HafLT]p(f( £) — yt)H < ¥and
|orRans [ Xt il < €X+ [ fllye < 2X forany £ :|[llye < X.

(3) For fixed C > 0and t = 1,2, -+, f generated by TIPOSVR satisfied f : ||f||y < X.
Proof:

£l < 1A =0 f" = ComiLipp(FXe) =y ) KX, )3, < (1= 70)[|f I3,
+ X
Given f9 = 0,we have ||f||x < X.
Lemma 2: Let the sequence instance (X, y;) satisfy k(X;, X¢) < X?. Fora fixed g € H

ut = (f'=g)/Ilf
Oy = [—(m — (' (Xp))?, —(s/r} U [5,5 + (uf(xt))z}
Assuming ty ¢ O, & = f1(X¢) — yt & Qp, we have
Rinst [f' X, ¥t] — Rinst (8, X, y¢] < K- <afRinst L1, Xt vt ‘f:ft,ft - g>H with

— 8|l to = yr — g(Xe) +u' (Xs) - (i, g),

(16)

C-12X2 C-1X>2
5 7 S-T1—¢ef”

K:max{Z,l—i- 1+

Proof:
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Let f = g+ au!, ||uf| = 1.

According to the definition of R :

Rinst[f, Xe, yt] = C - Lrip [§(Xe) + aul (X)) — yi] + 3 [|g + ocutHZ—i— constant,
Let ¢ = g(X¢) +aul (X¢) —yr € R, tg =y — g(Xe) + ul (X¢) (', g),

E+to = au' (Xp) +u' (Xe) (u', g) = u' (Xp) [a+ (', 8)]
With the definition of HutH = 1, Riust[f, Xt, y:] satisfies the strong pseudoconvex
inequality, i.e.,

Rinst [f1, X, yt] — Rinst |8, Xe, yt) < K- <afRinst £, Xe, ] 'f:ft,ft —g>H

holds as the univariate function on the right-hand side of as « is strongly pseudoconvex.
We have

Z[ut(lxt)]z & + to]* + constant

Therefore, according to the above lemma, ¢(¢ + ty) satisfies strong pseudoconvexity when
¢ € R\ with

¢(¢) = Rinst[f, Xt,yt] = C - L11p[C] +

L2 [yt 2 . t 2
K= max{2’1+ C-7 [1/[ (Xt” ,1+ C T[u (Xt)] }
) S-T—¢

(17)

2232 X2
< max 2,1+C TX L1+ C- X .
) 0-T—¢

Theorem 1: Set example sequence S = {(Xt,yt)}tho be k(Xt, X¢) < X? holds for all
t. (f° -+, fT) represents a hypothetical sequence produced by TIPOSVR, R;us[g, S] =
1yl Rinstlg, X, 4], and ¢ = arg mingey Riystlg, S]. Fixed C,e > 0,0 < 1 < C and set the
learning rate 77; = 7 - t~1/2. We assume that each hypothesis f! generated by TIPOSVR
satisfies the hypothesis stated in Lemma 2, for t = 0,1,2---T. And then we have the
following expression

1 T
= ¥ Rina [ Xe, 1] < Rint[§, S+ 2T~ V/2 4+0(T71/2) (18)
t—1

Among them, & = # + 4KX217, K= max{Z,l + C'T;XZ, 1+ %gif }
Proof:
From the strong pseudo-convexity of R;,s; in lemma 2 and the Lipschitz property of

Rinst in the first argument, the following expressions are derived:

I = ally -+ - o],
2
= ,Hft—&-l 7ftH7.1, _ <ft+1 gt gt 7gA>H
= = ool %) [+ 20 DR 7 )| f - 8)
21

> — 47 X2 = 27 (Rinst [, X, ye] = Rinse [f, X1, y1])

Here, K = max{Z, 1+ C'T(?XZ,l + %zz },

Then there are
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1 .
*Hf*fg i*

1 1 A2
Hft-‘r 7g

<Hf_ HH_HftH A > < 77t+1> Hl_g“rl

” 1 1
> — 4 X2 — il
4 X X ( mst[g/ Xt, yt Rinst [ X, ]/t}) <77t Me+1 >4X

Considering || f1 — g”% <2X, 5741 = (T +1)"V2, by summing Y7, 7; < 25TV/?,
we get the following expression

2

2

1 .
-l

HfT—H 45

"o NT+1 H

T 5 T 1 1
> 2 — 4 X2 - X Z(Rinst[gz Xt, yt] — Rinst [ft/Xt/]/t]) + ( - )4X2
=1

t=1 no NT+1

2 L .
- K 2 (Rinst [g, Xt, yt] — Ripst [ftr Xt, yt] )

t=1
2 2 1/2
S ]'Hfl_ A _ HfT+1_g\_ _ 1_ (T+1) 4x2+8’7XzT1/2
Ul H o T+ H 1 1
2 2 2
<X, [T+l Lax? 4 gyxer/2
Ui Nr+1
X2 Tl/Z

<+ T4}(2 + 8y X2T1/2
And we can get,
1 & ;
-7 Y (Rinst[8 Xt yt] — Rinst [f1, Xe, yt])
t_

2
ZK T 12 2KX T-1/2

ZKXT LT
U

a = —2K,7X +4KX217.



