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Abstract: In this work, we concentrate on the existence of the solutions set of the following problem
cDα

q σ(t) ∈ F(t, σ(t),c Dα
q σ(t)), t ∈ I = [0, T] σ(0) = σ0 ∈ E, as well as its topological structure in

Banach space E. By transforming the problem posed into a fixed point problem, we provide the
necessary conditions for the existence and compactness of solutions set. Finally, we present an
example as an illustration of main results.
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1. Introduction

One of the most important branches of modern mathematics is the study of the frac-
tional differential equations and inclusion, which are considered as powerful and effective
tools for studying many problems in science and engineering, thermodynamics, finance,
astrophysics, bioengineering, hydrology, mathematical physics, biophysics, statistical me-
chanics, control theory, and cosmology, see [1–5] and its references mentioned.

Recently, many authors have been attracted by the study of fractional q-difference
boundary value problems in Banach Spaces, for recent contributions are included in [6–13].

During the year 2020, the authors in [8], through the use of multi-valued analysis,
Kuratowski measure of non-compactness and fixed-point theory on Banach space, they
discussed the existence of solutions for the fractional q-differential inclusion of the form

cDα
q σ(t) ∈ F(t, σ(t)), t ∈ I = [0, T]

with
σ(0) = σ0 ∈ E,

where α, q are constants with α ∈ (0, 1], q ∈ (0, 1), T > 0, F : I × E → P(E) is a is
a multi-valued map, and cDα

q is the Caputo fractional q-difference derivative of order α.
By employing some fixed point theorems in Banach spaces, the authors proved the existence
of solution set defined on I.

During the following year, in [14], the author was given some conditions for the
existence solution set and Filippov-type results for the fractional q-differential equation

cDα
q σ(t) ∈ F(t, σ(t),c Dα

q σ(t)), t ∈ [0, T]

with
σ(0) = σ0,
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where q ∈ (0, 1) and α ∈ (0, 1], T > 0, F : [0, T] × R → P(R) is a multi-valued map,
and P(R) is the family of all subsets of R, and cDα

q is the Caputo fractional q-difference
derivative of order α.

The purpose of this article is to study the q-fractional differential inclusion of the form:

cDα
q σ(t) ∈ F(t, σ(t),c Dα

q σ(t)), t ∈ I = [0, T] (1)

σ(0) = σ0 ∈ E, (2)

where (E, ‖.‖) is a real or complex Banach space, α ∈ (0, 1], q ∈ (0, 1), T > 0, F : I×E×E→
P(E) is a multi-valued map, and cDα

q is the Caputo fractional q-difference derivative of
order α. By using the set-valued analysis, Kuratowski measure of non-compactness and
Darbo fixed point theorem, we concentrate on the existence and the topological structure of
the solutions set for the problem (1) and (2).

This work is structured as follows: in Section 2, we mention some theorems and
lemmas which play an important role in our proofs. In Section 3, we present two results,
the first obtained by combining the selection theory with Kuratowski measure of non-
compactness, and the Darbo fixed-point theorem. For the second result, we study the
compactness of the solution set for the problem (1) and (2). The last section is for an
example as an illustration of our results.

2. Preliminaries

Firstly, we introduce some useful spaces. The classical Banach spaces C(I, E) =
{σ : I → E, σ is continuous functions}, with the norm ‖σ‖∞ = supt∈I{‖σ(t)‖, t ∈ I},
where (E, ‖.‖) is a separable Banach spaces. The space L1(I, E) of measurable functions
ϕ : I → E which are Bochner integrable, normed by ‖ϕ‖L1 =

∫
I‖ϕ(t)‖dt. We also use the

Banach space Cα
q (I, E) defined by

Cα
q (I, E) =

{
σ : σ ∈ C(I, E),c Dα

q σ ∈ C(I, E)
}

,

equipped with the norm ‖σ‖q = max
{
‖σ‖∞,

∥∥∥cDα
q σ
∥∥∥

∞

}
.

Now we mention some basic definitions, lemmas, and theorems related to multi-
valued analysis that we need. Let (E, e) be a metric space generated by the normed space
(E, ‖.‖). We denote by P0(E) = {S ∈ P(E), S 6= ∅}, Pcl(E) = {S ∈ P0(E) : S is closed},
Pb(E) = {S ∈ P0(E) : S i s bounded}, Pc(E) = {S ∈ P0(E) : S i s compact}, Pv(E) =
{S ∈ P0(E) : S is convex}, Pcl,b(E) = Pcl(E) ∩ Pb(E).

Let the distance He : P(E)×P(E)→ R∪ {∞} given by

He(C, D) = max

{
sup
c∈C

e(c, D), sup
d∈D

e(d, C)

}
,

where e(c, D) = inf
d∈D

e(c, d) and e(d, C) = inf
c∈C

e(d, c), then (Pb,cl(E), He) is a metric space

see [15].
Let E be a separable Banach space, C ∈ Pcl(E) and F : C → Pcl(E) a multi-valued

operator. F has convex (closed) values if F(x) is convex (closed) for all x ∈ E. F is
said to be upper semi-continuous (u.s.c) at a point c0 ∈ C if for every open O ⊆ C,
such that F(c0) ⊂ O there exists a neighborhood N of c0, such that F(N) ⊂ O. F has a
closed graph, that is, xn → x, yn → y, yn ∈ F(xn) imply that y ∈ F(x). We say that F
is bounded on bounded sets if F(Ω) is bounded in E for each bounded set Ω of E (i.e.,
supx∈Ω{sup{‖x‖ : x ∈ F(x)}} < +∞). F is completely continuous if F(Ω) is relatively
compact for every Ω ∈ Pb(X). Suppose that F : C → Pc(E) is completely continuous, then
F is upper semi-continuous (u,s,c), is equivalent to F has a closed graph. If x ∈ F(x), we say
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that F has a fixed point in E. F is said to be measurable if the function f : I → R defined by
f (t) = e(x, F(t)) = inf{‖x− y‖ : y ∈ F(t)} is measurable.

Lemma 1 ([16], Thm19, 7). Let E be a separable metric space and F a multi-valued map with
non-empty closed values. Then F has a measurable selection.

Definition 1. F : I × E× E→ P(E) is Caratheodory multi-valued map, if:
(1) t→ F(t, x1, x2) is measurable for each x1, x2 ∈ E,
(2) (x1, x2)→ F(t, x1, x2) is upper semi-continuous for almost all t ∈ I,
F is called L1−Caratheodory if F is Caratheodory and,
(3) for each r > 0, there exists ϕr ∈ L1(I,R+), such that

‖F(t, x1, x2)‖ = sup{‖x‖∞ : x ∈ F(t, x1, x2)} ≤ ϕr(t).

For more details of the multi-valued analysis, we refer the reader to the following
books [15,17–20].

Definition 2. A function κ : Pb(E) → R+ is called a measure of non-compactness on E, if for
each subsets C, C1, C2 ∈ Pb(E), the following conditions are hold :

(1) κ(C) = 0 if and only if C is precompact,
(2) κ(C) = κ(C),
(3) κ(C1 ∪ C2) = max{κ(C1), κ(C2)}.

Let BE the family of bounded subsets of a Banach space E.

Definition 3 ([21,22]). The Kuratowski measure of non-compactness is defined as κ : BE → R+,
such that, κ(C) = inf

{
ε > 0|C ⊂ ∪n

i=1Ci, diam(Ci) ≤ ε
}

, C ∈ BE.

Definition 4. A multi-valued mapping Φ : E→ Pcl,b(E) is said to be γ-Lipschitz, if there exists
a constant γ > 0, such that κ(Φ(Ω)) ≤ γκ(Ω) for all closed bounded set Ω in E with Φ(Ω) is a
closed bounded set in E.
If γ < 1, then Φ is called a γ-contraction on E.

Let us recall some definitions and properties of fractional q-calculus [23–27]. For x ∈ R,
let q ∈ (0, 1)

[x]q =
qx − 1
q− 1

= 1 + q + q2 + ... + qx−1, x ∈ R.

The q-analogue of the power function (x− y)n, n ∈ N is

(x− y)0 = 1, (x− y)n =
n−1

∏
k=0

(
x− yqk

)
, x, y ∈ R, n ∈ N.

If α ∈ R, then

(x− y)(α) = xα
+∞

∏
k=0

x− yqi

x− yqα+i .

When y = 0, then
x(α) = xα.

The q-gamma function is given by:

Γq(α) =
(1− q)(α−1)

(1− q)α−1 , α ∈ R\{...,−2,−1, 0, 1, 2, ...}, 0 < q < 1
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and verifies that
Γq(α + 1) = [α]qΓq(α).

The q-derivative of a function h(x) is defined by

Dqh(x) =
dqh(x)

dqx
=

h(qx)− h(x)
(q− 1)x

, x 6= 0.

The higher order q-derivative of h(x) is given as the following formula

Dn
q h(x) =

{
h(x), if n = 0,

DqDn−1
q h(x), if n ∈ N.

Let h a function defined on [0, b],the q-integral of is given by∫ t

0
h(x)dqx = t(1− q) ∑

n≥0
h(tqn)qn, 0 ≤ |q| < 1, t ∈ [0, b].

If a ∈ [0, b], then ∫ b

a
h(x)dqx =

∫ b

0
h(x)dqx−

∫ a

0
h(x)dqx.

Similarly as performed for derivatives, it can be defined an operator In
q , namely,(

I0
q h
)
(x) = h(x) and

(
In
q h
)
(x) = Iq

(
In−1
q h

)
(x), n ∈ N.

The fundamental theorem of calculus applies to these operators Iq and Dq, i.e

Dq
(

Iqh
)
(x) = h(x),

if h is continuous at x = 0, then

Iq
(

Dqh
)
(x) = h(x)− h(0).

For more information and basic properties of these operators, we recommend [28] to the reader.

Definition 5. Let α ≥ 0 and h be a function defined on I. The fractional q-integral of the Riemann–
Liouville type is

(
Iα
q h
)
(x) =

{
h(x), if α = 0

1
Γq(α)

∫ x
0 (x− qs)(α−1)h(s)dqs, if α > 0 , x ∈ I.

Definition 6. The fractional q-derivative of the Riemann–Liouville with order α ≥ 0 is defined by

(
Dα

q h
)
(x) =

{
h(x), if α = 0(

D[α]
q

(
I[α]−α
q h

))
(x), if α > 0

, x ∈ I,

where [.] is the smallest integer greater than or equal to α.

Definition 7. The fractional q-derivative of Caputo with order α ≥ 0 is defined by

(
cDα

q h
)
(x) =

{
h(x), if α = 0(

I[α]−α
q

(
D[α]

q h
))

(x), if α > 0
, x ∈ I.
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Lemma 2. Let α ≥ 0. Then we have

Iα
q

(
cDα

q h
)
(x) = h(x)−

[α]−α

∑
n=0

h(tqn)
tn

Γq(n + 1)

(
Dα

q h
)
(0),

and if α ∈ (0, 1), then
Iα
q

(
cDα

q h
)
(x) = h(x)− h(0).

Now we give the Darbo fixed point theorems, which our results will be based on:

Theorem 1 ([29]). Let E be a Banach space, a set C ∈ P cl,b(E)∩Pv(E) and let ψ : C → Pcl,b(C)
be a closed and γ-contraction. Then ψ has a fixed point.

3. Existence Results

In this section, by applying Darbo fixed point theorem [29] for multi-valued map, we
prove the existence of solutions for the problem (1) and (2).

First, we introduce the definition of the solution of the problem (1) and (2).

Definition 8. A function σ ∈ Cα
q (I, E) is called a solution of problem (1) and (2) if there exists

a function h ∈ L1(I,R) with h ∈ F(t, σ(t),c Dα
q σ(t)), a.e.t ∈ I, such that cDα

q σ(t) = h(t),
a.e.t ∈ I and condition (2) is satisfied.

Now, we assume the following assumptions:
(H1) F : I × E× E→ Pc(E) be a L1−Caratheodory multi-valued mapping.
(H2) There exists a function φ ∈ L1(I,R+), such that, for each set, B1, B2 ∈ Pcl,b(C(I, E))

and t ∈ I, we have

κ(F(t, B1(t), B2(t))) ≤ φ(t)max(κ(B1(t)), κ(B2(t))).

Theorem 2. Assume that (H1), (H2), max
{
‖σ0‖∞ + ϕ∗r

T(α)

Γq(α+1) , ϕ∗r

}
≤ r, and φ(t) ≤ 1,

for each t ∈ I, hold, then the problem (1) and (2) has at least one solution in Cα
q (I, E), for all t ∈ I.

Proof. For each x ∈ C(I, E), define the set of selections of F by

SF,σ =
{

ς ∈ L1(I, E) : ς(t) ∈ F(t, σ(t),c Dα
q σ(t)), for all t ∈ I

}
.

Let for r ∈ R+, the set Cr ∈ Pcl,b(Cα
q (I, E)) ∩ Pv(Cα

q (I, E)), defined by

Cr =
{

σ ∈ Cα
q (I, E), ‖σ‖q ≤ r

}
.

Now, we consider the multi-valued operator ψ : Cα
q (I, E)→ Pcl,b

(
Cα

q (I, E)
)

defined by

ψ(σ) =
{

ρ ∈ Cα
q (I, E) : ρ(t) = σ0 +

(
Iα
q ς
)
(t), for ς ∈ SF,σ

}
.

Observe that, for each σ ∈ Cα
q (I, E) then the set SF,σ 6= ∅, by the hypothesis H1, the multi-

valued function F has a measurable selection. We shall prove that the operator ψ fulfills the
conditions of Darbo fixed point theorem.
Step 1. We prove that ψ(σ) ∈ Pb(Cr).

Let σ ∈ Cr and ρ ∈ ψ(σ), then there exists ς ∈ SF,σ, such that for each t ∈ I, we have

ρ(t) = σ0 +
(

Iα
q ς
)
(t).



Mathematics 2023, 11, 683 6 of 9

then

‖ρ(t)‖ ≤ ‖σ‖+
∫ t

0

(t− qs)(α−1)

Γq(α)
‖ς(s)‖dqs

≤ ‖σ0‖+
∫ t

0

(t− qs)(α−1)

Γq(α)
ϕr(s)dqs

≤ ‖σ0‖+
∫ T

0

(T − qs)(α−1)

Γq(α)
ϕr(s)dqs.

Let ess sup ϕr = ϕ∗r , then

‖ρ‖∞ ≤ ‖σ0‖∞ + ϕ∗r
T(α)

Γq(α + 1)
,

and ∥∥∥cDα
q ρ(t)

∥∥∥ = ‖ς(t)‖,

≤ ϕr(t),

≤ ϕ∗r .

Then ∥∥∥cDα
q ρ
∥∥∥

∞
≤ ϕ∗r ,

So,

‖ρ‖q ≤ max

{
‖σ0‖∞ + ϕ∗r

T(α)

Γq(α + 1)
, ϕ∗r

}
≤ r.

Step 2. We show that ψ(σ) ∈ Pcl(Cr).
Let {ρn}n∈N a sequence in ψ(σ), such that ρn → ρ (n→ ∞) in Cα

q (I, E). Then for each
t ∈ I there exists ςn ∈ SF,σ such that

ρn(t) = σ0 + Iα
q ςn(t),

As F has compact values, we pass on to a subsequence to get that ςn converge to ς in
L1(I × E). Thus ς ∈ SF,σ and for each t ∈ I,

ρn(t)→ ρ(t)

with ρ(t) = σ0 + Iα
q ς(s). Hence ρ ∈ ψ(σ), then ψ(σ) is closed in Cr for each σ ∈ Cr.

Step 3. We prove that ψ a is γ-contraction.
Let B ∈ Pcl,b(Cr), then for each t ∈ I, we have

κ(ψ(B)) = κ{ψ(σ) : σ ∈ B}.

Let ρ ∈ ψ(σ) Then there exists ς ∈ SF,σ such that, for each t ∈ I,

ρ(t) = σ0 + Iα
q ς(t).

For each x and cDα
q x ∈ B, we have

κ(ψ(B)(t)) = κ
(

ρ ∈ Cα
q (I, E) : ρ(t) ∈ F(t, σ(t),c Dα

q σ(t))
)

≤ κ
(

F(t, σ(t),c Dα
q σ(t))

)
≤ φ(t)κ(B),
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so the operator ψ is a γ-contraction. By the Theorem 1, we deduce that ψ has a fixed point
that is a solution of the problem (1) and (2).

Now, we give some conditions that guarantee the compactness of solutions set for
our problem.

Theorem 3. Let (H1) holds. Then the set S ={σ ∈ Cα
q (I, E) : σ is solution of the problem (1)

and (2)} is an element of Pc(Cα
q (I, E)).

Proof. From Theorem 2, the set S is not empty. Now, we prove that S ∈ P c(Cα
q (I, E)). Let

(σn)n∈N ∈ S , then there exist ςn ∈ SF,σn such that

σn(t) = σ0 + Iα
q ςn(t).

Step 1. We show that the set {σn, n ∈ N} is equicontinuous in Cα
q (I, E).

Let t1, t2 ∈ I, with t1 < t2, we obtain

‖σn(t2)− σn(t1)‖ =
∥∥∥Iα

q ςn(t2)− Iα
q ςn(t1)

∥∥∥
≤ 1

Γq(α)

(∫ t1

0

∣∣∣(t2 − qs)(α−1) − (t2 − qs)(α−1)
∣∣∣‖ςn(s)‖dqs +∫ t2

t1

∣∣∣(t2 − qs)(α−1)
∣∣∣‖ςn(s)‖dqs

)
≤ 1

Γq(α)

(∫ t1

0

∣∣∣(t2 − qs)(α−1) − (t2 − qs)(α−1)
∣∣∣ϕr(s)dqs +∫ t2

t1

∣∣∣(t2 − qs)(α−1)
∣∣∣ϕr(s)dqs

)
and ∥∥∥cDα

q σn(t2)−c Dα
q σn(t1)

∥∥∥ = ‖ςn(t2)− ςn(t1)‖.

Then, when t2 → t1, we get
‖σn(t2)− σn(t1)‖q → 0.

With the theorem of Arzela–Ascoli, we conclude that, there exists a subsequence
{

σnk

}
,

such that σnk converges to some σ in Cα
q (I, E). Now we prove that there exists ς(.) ∈

F(., σ(.),c Dα
q σ(.)), such that

σ(t) = σ0 + Iα
q ς(t).

Since F(t, ., .) is upper semi-continuous, then for every ε > 0, there exists n0(ε), such that
for every n ≥ n0, we have

ςn(t) ∈ F(t, σn(t),c Dα
q σn(t)) ⊂ F(t, σ(t),c Dα

q σ(t)) + B(0, ε), a.e.t ∈ I.

As F(., ., .) ∈ Pc(Cα
q (I, E)) then there exists a subsequence ςnm , such that

ςnm(.)→ ς(.) as m→ +∞

and
ς(t) ∈ F(t, σ(t),c Dα

q σ(t)), a.e.t ∈ I for all m ∈ N.

Since, ςnm(t) ≤ ϕr(t), a.e.t ∈ I, Lebesgue’s Dominated Convergence Theorem give us that
ς(t) ∈ L1(I × E) implies ς ∈ SF,σ. Therefore, σ(t) = σ0 + Iα

q ς(t). So S ∈ P c

(
Cα

q (I, E)
)

.

4. An Example

Now, we give an example as an illustration of the results obtained in Theorem 2 and
Theorem 3.
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Example 1. Let E = C([0, 1]) be the Banach space of all real continuous function on [0, 1] equipped
with the norm

‖ f ‖ = sup
t∈[0,1]

{| f (t)|}.

Now we consider the q-fractional differential inclusion, given by:

cD0.2
0.5σ(t) ∈ F(t, σ(t),c D0.2

0.5σ(t)), t ∈ I = [0, 1] (3)

σ(0) = t cosh(t). (4)

where α = 0.2, q = 0.5, T = 1, and

F(t, σ(t),c D0.2
0.5σ(t)) =

1
‖σ‖q

(
1

1 + t + et

)
.
{

f ∈ C([0, 1]) : ‖ f ‖ ≤ ‖σ‖q

}
.

Let
C3 =

{
σ ∈ C0.2

0.5(I, E) : ‖σ‖q ≤ 3
}

.

For each σ ∈ E and t ∈ I, we have

‖F(t, σ, σ1)‖ ≤
1

1 + t + et = ϕ3(t) implies ϕ∗3 = 0.5

and for each B ∈ Pcl,b(C3), we get

κ(ψ(B)(t)) ≤ et−2κ(B) = φ(t)κ(B),

max

{
‖σ0‖∞ + ϕ∗3

T(0.2)

Γ0.5(0.2 + 1)
, ϕ∗3

}
≈ 2.07 < 3,

and
φ(t) ≤ 1, for all t ∈ I.

Then Theorem 2 and Theorem 3 guarantee that the set of solutions of the problem (3) and (4) is not
empty and also is compact.
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