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Abstract: In this article, we present the concept of orthogonal α-almost Istrătescu contraction of types
D and D∗ and prove some fixed point theorems on orthogonal b-metric spaces. We also provide
an illustrative example to support our theorems. As an application, we establish the existence and
uniqueness of the solution of the fractional differential equation and the solution of the integral
equation using Elzaki transform.

Keywords: fixed point; orthogonal b-metric space; orthogonal α-almost Istrătescu contractions; Elzaki
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1. Introduction

Around a century ago, the first fixed-point result was introduced. Banach [1] initially
abstracted the successive approximation method for resolving differential equations, and
he later defined it as a concept of contraction mapping. This Banach principle was not only
succinctly stated, but it was also demonstrated by showing how to obtain the desired fixed
point. The fixed point theory is extremely applicable to many qualitative sciences and is
also particularly fascinating to researchers because of the simplicity with which equations
in many research areas can be converted into fixed point problems. Banach’s fixed point
result has been improved, expanded, and generalized by numerous authors in numerous
ways [2–6]. Istrătescu [7,8] provided one of the most significant ideas of convex contraction
and proved some fixed point results. Another interesting extension of the fixed point theory
called “almost contraction map” was introduced by Berinde [9]. In contrast, the concept
of metric was developed in a number of ways, and these contraction principles have been
extended to these new contexts. The idea of the b-metric was initiated by Bakhtin [10]
in 1989. Czerwik [11] gave an axiom that was weaker than the triangular inequality and
formally defined a b-metric space with a view of generalizing “the Banach contraction
mapping theorem”. Furthermore, Hussain et al. [12] improved the b-metric due to the
modified triangle condition without a continuous function. Latif et al. [13] established
some new results on the existence of fixed points for generalized multi-valued contractive
mappings with respect to the wb-distance in metric space. In 2022, Haghi and Bakhshi [14]
proved some coupled fixed point results by using a without mixed monotone property.
Yao et al. [15] presented a Tseng-type self-adaptive algorithm for solving a variational
inequality and a fixed point problem involving pseudo-monotone and pseudo-contractive
operators in Hilbert spaces.
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Recently, the idea of orthogonality was introduced by Gordji et al. [16] and proved
fixed point theorems in the setting of orthogonal complete metric spaces. In 2022, Aiman
et al. [17] introduced the concept of an orthogonal L contraction map and proved some fixed
point theorems. Furthermore, many researchers improved and generalized the concept
of orthogonal metric spaces (see [18–24]). By motivating all the above the literature work,
here we present the new notion of orthogonal α-almost Istrătescu contraction of type D and
D∗ and prove some fixed point theorems in the setting of orthogonal complete b-metric
spaces. As an application, we apply our main result to the Reiman–Liouville fractional
differential equation and the solution of the second kind Volterra integral equation using
Elzaki transform to strengthen and validate our main results.

2. Preliminaries

The concept of an “almost contraction map” was introduced by Berinde [9], as follows:

Definition 1. [9] Let (W ,X ) be a metric space. A mapping χ : W → W is called an almost
contraction if there exist a constant σ ∈ (0, 1) and some P ≥ 0 s.t

X (χ$, χι) ≤ σX ($, ι) +P X (ι, χ$), ∀ $, ι ∈ W .

Bakhtin [10] introduced the notion of b-metric space as below:

Definition 2. [10] LetW be a nonempty set and g ≥ 1. Suppose that the map X : W ×W →
[0, ∞) satisfies the following axioms:

(i) X ($, ι) = 0 iff $ = ι, ∀ $, ι ∈ W ;
(ii) X ($, ι) = X (ι, $), ∀ $, ι ∈ W ;
(iii) X ($, ι) ≤ g[X ($, c) +X (c, ι)], ∀ $, ι, c ∈ W .

Then, X is called b-metric and (W ,X ) is said to be a b-metric space.

In 2017, Miculescu et al. [25] explained the Cauchy criterion in the context of b-metric
spaces.

Lemma 1. [25] Every sequence {$} of elements from a b-metric space (W ,X ) of constant g
having property that there ∃ p ∈ [0, 1) s.t

X ($, $+1) ≤ pX ($, $−1), (1)

for every  ∈ N is Cauchy.

Popescu [26] demonstrated the concept of an α-orbital admissible as below:

Definition 3. [26] Let χ : W →W be a map and α : W ×W → [0, ∞) be a function. Then, χ is
said to be α-orbital admissible if

α($, χ$) ≥ 1 =⇒ α(χ$, χ2$) ≥ 1, ∀ $ ∈ W .

Now, we recall some concepts of orthogonality, which will be needed in the sequel.

Definition 4. [16] LetW be a non-void set and ⊥⊆ W ×W be a binary relation. If ⊥ fulfilled
the following axiom:

∃$0 : ∀ ι, ι ⊥ $0 (or) ∀ ι, $0 ⊥ ι,

then (W ,⊥) is called an orthogonal set.

Gordji et al. [16] presented the definition of an orthogonal sequence in 2017 as follows:
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Definition 5. [16] Let (W ,⊥) be a orthogonal set. A sequence {$}∈N is called an orthogonal
sequence if

(∀, $ ⊥ $+1) or (∀, $+1 ⊥ $).

Now, we initiated the new concepts of orthogonal b-metric space, convergent and
Cauchy sequence as follows:

Definition 6. A triplet (W ,⊥,X ) is called an orthogonal b-metric space if (W ,⊥) is an orthogo-
nal set and (W ,X ) is a b-metric space and g ≥ 1.

Definition 7. Let (W ,⊥,X ) be an orthogonal b-metric space and a map χ :W →W
1. {ι} is an orthogonal sequence inW that converges at a point ι if

lim
→∞

(χ(ι, ι)) = 0.

2. {ι}, {ιm} are two orthogonal sequences in W that are said to be an orthogonal Cauchy
sequence if

lim
,m→∞

(χ(ι, ιm)) < ∞.

Gordji et al. [27] introduced the concept of orthogonal continuous as below:

Definition 8. [27] Let (W ,⊥,X ) be a orthogonal b-metric space. Then, χ : W →W is said to be
orthogonal continuous at ι ∈ W if, for each orthogonal sequence {ι}∈N inW with ι → ι. We
have χ(ι) → χ(ι). Additionally, χ is said to be orthogonal continuous onW if χ is orthogonal
continuous in each ι ∈ W .

Definition 9. Let (W ,⊥,X ) be an orthogonal b-metric space. Then, χ2 : W →W is said to be
orthogonal continuous at ι ∈ W if, for each orthogonal sequence {ι}∈N inW with ι → ι. We
have χ2(ι)→ χ2(ι). Additionally, χ2 is said to be orthogonal continuous onW if χ2 is orthogonal
continuous in each ι ∈ W .

The concept of orthogonal complete in metric spaces is defined by Gordji et al. [16]
as follows.

Definition 10. [16] Let (W ,⊥,X ) be an orthogonal metric space. Then, W is said to be
orthogonal-complete if every orthogonal Cauchy sequence is convergent.

Definition 11. [16] Let (W ,⊥) be an orthogonal set. A function χ :W →W is called orthogonal-
preserving if χ$ ⊥ χι whenever $ ⊥ ι.

Ramezani [28] introduced the notion of orthogonal α-admissible as follows:

Definition 12. [28] Let χ :W →W be a map and α :W ×W → [0, ∞) be a function. Then, χ
is said to be orthogonal-α-admissible if ∀ $, ι ∈ W with $ ⊥ ι

α($, ι) ≥ 1 =⇒ α(χ$, χι) ≥ 1.

Inspired by the α-almost Istrătescu contraction of types defined by Karapinar et al. [29],
we implement a new orthogonally α-almost Istrătescu contraction type mapping and
present some fixed point results in an orthogonal CbMS (complete b-metric space) for this
contraction map.
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3. Main Results

First, we introduce the concept of an orthogonally α-almost Istrătescu contraction of
type D.

Definition 13. Let (W ,⊥,X ) be an orthogonal CbMS and α :W ×W → [0, ∞) be a function.
A map χ : W → W is called an orthogonally α-almost Istrătescu contraction of type D if there
exist r ∈ [0, 1), β ≥ 0 s.t for any $, ι ∈ W with $ ⊥ ι

α($, ι)X (χ2$, χ2ι) ≤ rD($, ι) + βN($, ι), (2)

where

D($, ι) = X (χ$, χι) + |X (χ$, χ2$)−X (χι, χ2ι)|, (3)

and

N($, ι) = min{X ($, χ$),X (ι, χι),X ($, χι),X (ι, χ$)X (χ$, χ2ι),X (χι, χ2$)}. (4)

Definition 14. Let (W ,⊥,X ) be an orthogonal CbMS. A map χ : W → W is called an
orthogonally α-almost Istrătescu contraction of type D if there exist r ∈ [0, 1), β ≥ 0 s.t for any
$, ι ∈ W with $ ⊥ ι

X (χ2$, χ2ι) ≤ rD($, ι) + β.N($, ι), (5)

where D($, ι) and N($, ι) are defined by inequality (3) and (4), respectively.

Definition 15. Let (W ,⊥,X ) be an orthogonal CbMS and α :W ×W → [0, ∞) be a function.
A map χ : W → W is called an orthogonally α-almost Istrătescu contraction of type D∗ if there
exist r ∈ [0, 1), β ≥ 0 s.t for any $, ι ∈ W with $ ⊥ ι

α($, ι)X (χ2$, χ2ι) ≤ rD∗($, ι) + β.N($, ι), (6)

where

D∗($, ι) = |X ($, χ$)−X (χι, χ2ι)|+X ($, ι) + |X (ι, χι)−X (χ$, χ2$)|, (7)

and

N($, ι) = min{X ($, χ$),X (ι, χι),X ($, χι),X (ι, χ$)X (χ$, χ2ι),X (χι, χ2$)}. (8)

Theorem 1. Let (W ,⊥,X ) be an orthogonal CbMS, χ : W → W be an orthogonally α-almost
Istrătescu contraction of type D and α : W ×W → [0, ∞), s.t the following conditions hold:

(i) χ is orthogonal preserving;
(ii) for any π ∈ W , α(κ, π) ≥ 1 with κ ⊥ π, where κ ∈ Fixχ(W);
(iii) χ is orthogonal continuous;
(iv) χ2 is orthogonal continuous with χκ ⊥ κ and α(χκ, κ) ≥ 1, for any κ ∈ W .

If χ is orthogonal α−OA and there exists $0 ∈ W s.t $0 ⊥ χ$0 and α($0, χ$0) ≥ 1, then χ has a
unique fixed point.

Proof. By the definition of orthogonality, we find that $0 ⊥ χ$0 or χ$0 ⊥ $0. Let

$ = $−1 = ... = χ$0,

for all  ∈ N. If $ = $+1 for some ∗ ∈ N ∪ {0}, then ∗ is a fixed point of χ and so the
proof is completed. Thus, we assume that $ 6= $+1 for all  ∈ N∪ {0}.
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So, we have X (χ$, χ$+1) > 0. Since χ is orthogonal-preserving, we obtain

$ ⊥ $+1 or $+1 ⊥ $, ∀  ∈ N,

which implies that {$} is an orthogonal sequence. Since χ is an orthogonally α-almost
Istrătescu contraction of type D, we have α(χ$0, χ2$0) ≥ 1, and continuing this process,
we obtain

α(χ$0, χ+1$0) ≥ 1, for  ∈ N. (9)

Replacing $ by $0 and ι by χ$0 in (2), we have

X (χ2$0, χ3$0) ≤ α($0, χ$0)X (χ2$0, χ2(χ$0))

≤ rD($0, χ$0) + βN($0, χ$0)

= r(X (χ$0, χ(χ$0)) + |X (χ$0, χ2$0)−X (χ(χ$0), χ2(χ$0))|)
+ β min{X ($0, χ$0),X (χ$0, χ(χ$0)),X ($0, χ(χ$0)),X (χ$0, χ$0)

X (χ$0, χ2(χ$0)),X (χ(χ$0), χ2$0)}
≤ r(X (χ$0, χ2($0)) + |X (χ$0, χ2$0)−X (χ2$0, χ3$0)|) (10)

+ β min{X ($0, χ$0),X (χ$0, χ2$0),X ($0, χ2$0),X (χ$0, χ$0)

X (χ$0, χ3$0),X (χ2$0, χ2$0)}
= r(X (χ$0, χ2($0)) + |X (χ$0, χ2$0)−X (χ2$0, χ3$0)|).

If X (χ$0, χ2$0) ≤ X (χ2$0, χ3$0), then we have

X (χ2$0, χ3$0) ≤ r(X (χ$0, χ2($0)) +X (χ2$0, χ3$0)−X (χ$0, χ2$0))

= rX (χ$0, χ2($0)) < X (χ2$0, χ3$0),

this is a contradiction. Thus,X (χ$0, χ2$0) > X (χ2$0, χ3$0) and the inequality (10) becomes

X (χ2$0, χ3$0) ≤ r(X (χ$0, χ2($0)) +X (χ2$0, χ2$0)−X (χ2$0, χ3$0))

= r(2X (χ$0, χ2($0))−X (χ2$0, χ3$0)) ⇐⇒

X (χ2$0, χ3$0) ≤
2r

1 + r
X (χ$0, χ2($0)). (11)

For $ = $0, ι = χ$0, taking Equation (9) into account,

X (χ3$0, χ4$0) ≤ α(χ$0, χ2$0)X (χ2(χ$0), χ2(χ2$0)) ≤ rD(χ$0, χ2$0) + βN(χ$0, χ2$0)

= r(X (χ(χ$0), χ(χ2$0)) + |X (χ(χ$0), χ2(χ$0))−X (χ(χ2$0), χ2(χ2$0))|)
+P min{X (χ$0, χ(χ$0)),X (χ2$0, χ3$0),X (χ$0, χ3$0),X (χ$0, χ$0)

X (χ2$0, χ4$0),X (χ3$0, χ3$0)}
= r(X (χ2$0, χ3$0) + |X (χ2$0, χ3$0)−X (χ3$0, χ4$0)|)
+ β min{X ($0, χ2$0),X (χ2$0, χ3$0),X (χ$0, χ3$0),X (χ$0, χ$0)

X (χ2$0, χ4$0),X (χ3$0, χ3$0)}
= r(X (χ2$0, χ3($0)) + |X (χ2$0, χ3$0)−X (χ3$0, χ4$0)|).

Since for the case X (χ2$0, χ3$0) ≤ X (χ3$0, χ4$0), we get

X (χ3$0, χ4$0) ≤ r(X (χ2$0, χ3($0)) +X (χ3$0, χ4$0)−X (χ2$0, χ3$0))

≤ rX (χ3$0, χ4($0)),
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which is a contradiction. Thus, X (χ2$0, χ3$0) > X (χ3$0, χ4$0) and

X (χ3$0, χ4$0) ≤ r(X (χ2$0, χ3($0)) +X (χ2$0, χ3$0)−X (χ3$0, χ4$0))

= r(2X (χ2$0, χ3($0))−X (χ3$0, χ4$0)), ⇐⇒

X (χ3$0, χ4$0) ≤
2r

1 + r
X (χ2$0, χ3($0)). (12)

By proceeding in this way,

X (χ$0, χ+1$0) ≤
( 2r

1 + r

)
X (χ−1$0, χ($0))

≤
( 2r

1 + r

)−1
X (χ$0, χ2($0))→ 0, (13)

as → ∞, because  = 2r
1+r < 1.

Instead, considering the orthogonal sequence {$}∈N defined as

$1 = χ$0, $2 = χ2$0, . . . $ = χ$0,

where $0 ∈ W , from Equation (13), we have

X ($, $+1) ≤ .X ($−1, $),

for  ∈ N. Therefore, from Lemma 1, we obtain {$}∈N from an orthogonal Cauchy
sequence on orthogonal CbMS. Therefore, the orthogonal sequence is convergent. Then,
∃ κ ∈ W s.t

lim
→∞
X ($, κ) = 0. (14)

When the map χ is orthogonal continuous, it follows that

lim
→∞
X ($, χκ) = lim

→∞
X ($−1, χκ) = 0,

and thus, we decide χκ = κ, that is κ forms a fixed point of χ.
Keeping the continuity of χ2, we obtain

lim
→∞
X ($, χ2κ) = lim

→∞
X (χ2$−2, χ2κ) = 0.

Since each orthogonal sequence in (W ,⊥,X ) has a unique limit, we obtain χ2κ = κ, that is,
κ forms a fixed point of χ2. In order to illustrate that κ also forms a fixed point of χ, we
apply the method of reductio ad absurdum. We diminish the consequence and presume
that χκ 6= κ. Therefore, from Equation (2), we obtain

0 < X (χκ, κ) = X (χ2(χκ), χ2κ) ≤ α(qκ, κ),X (χ2(qκ), χ2κ) ≤ rD(χκ, κ) + βN(χκ, κ)

= r(X (χκ, χ2κ) + |X (χκ, χ2κ)−X (χ2κ, χ3κ)|)
+ β min{X (κ, χκ),X (χκ, χ2κ),X (κ, χ2κ),X (χκ, χκ),X (χκ, χ3κ),X (χ2κ, χ2κ)}

= r(X (χκ, κ) + |X (χκ, κ)−X (κ, χκ)|)
= r(X (χκ, κ)) < X (χκ, κ).

Hence, χκ = κ.
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To prove the uniqueness of the fixed point, let π ∈ W be another fixed point of χ.
Then, we have χπ = π, ∀  ∈ N. Given our choice of κ in the first part of the proof,
we obtain

κ ⊥ π or π ⊥ κ.

Since χ is orthogonal-preserving, we obtain

χκ ⊥ χπ

or

χπ ⊥ χκ, ∀  ∈ N.

On the other hand, χ is an orthogonal α-almost Istrătescu contraction. Then, we obtain

X (κ, π) = X (χ2κ, χ2π) ≤ α(κ, ι),X (χ2κ, χ2π) ≤ r.D(κ, π) + β.N(κ, π)

≤ r(X (χκ, χπ) + |X (χκ, χ2κ)−X (χπ, χ2π)|)
+ β min{X (κ, χκ),X (π, χπ),X (κ, χπ),X (π, χκ),X (χκ, χ2π),X (χπ, χ2κ)}

= r(X (κ, π) + |X (κ, κ)−X (π, π)|) + β min{X (κ, κ),X (π, π),X (κ, π),X (π, κ)}
= r(X (κ, π)) < X (κ, π),

which is a contradiction. Therefore, χ has a unique fixed point.

Example 1. LetW = [0, ∞) and the function X : W ×W → [0, ∞) with X ($, ι) = ($− ι)2,
for all $, ι ∈ W . W be the Euclidean metric. Define $ ⊥ ι if $ι ≤ ($ ∨ ι) where $ ∨ ι = $ or
$ ∨ ι = ι. Define a map χ :W →W by

χ$ =


$2, if $ ∈ [0, 1)
1, if $ ∈ [1, 2)
6$2 + 3$ + 1
4$2 + 4$ + 6

, if $ ∈ [2, ∞).

We can see that χ is discontinuous at $ = 2, but χ2 is orthogonal continuous and χ2 is orthogonal
preserving onW , since

χ2$ =

{
$4, if $ ∈ [0, 1)
1, if $ ∈ [1, ∞).

Let the map α :W ×W → [0, ∞) with $ ⊥ ι be given by

α($, ι) =

{
3, if $, ι ∈ [1, ∞)

0, if otherwise.

It is clear that χ is an orthogonally α-almost Istrătescu contraction of type D. In fact, based on the
definition of the function α, the only case we find interesting is $, ι ∈ [1, ∞); we obtain for r ∈ [0, 1)

0 = 3X (1, 1) = α($, ι)X (χ2$, χ2ι) ≤ rD($, ι) + βN($, ι).

We can conclude that for any $, ι ∈ W , all the conditions of Theorem 1 are satisfied, and
FixχW = {0, 1}.

Corollary 1. Suppose that a self-map χ, on orthogonal CbMS (W ,⊥,X ) fulfills

X (χ2$, χ2ι) ≤ rD($, ι), (15)
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for all $, ι ∈ W . If either χ or χ2 is orthogonal continuous. Then, χ has a unique fixed point.

Proof. It is sufficient to set α($, ι) = 1 and put β = 0 in Theorem 1.

Theorem 2. Let (W ,⊥,X ) be an orthogonal CbMS and χ : W → W be an orthogonally α-
almost Istrătescu contraction of type D∗ with β ≥ 0, α : W ×W → [0, ∞) s.t the following
conditions hold:

(i) χ is orthogonal preserving;
(ii) for any π ∈ W , α(κ, π) ≥ 1 with κ ⊥ π, where κ ∈ Fixχ(W);
(iii) χ is orthogonal continuous;
(iv) χ2 is orthogonal continuous with qκ ⊥ κ and α(qκ, κ) ≥ 1 for any κ ∈ Fixχ2(W).

If χ is orthogonal α−OA and ∃ $0 ∈ W s.t $0 ⊥ χ$0 and α($0, χ$0) ≥ 1, then it has a unique
fixed point in χ.

Proof. Let $0 ∈ W and we assume the orthogonal sequence {$} follows from Theorem 1.
Then, for each  ∈ N, we obtain

D∗($−1, $) = |X ($−1, χ$−1)−X (χ$, χ2$)|+X ($−1, $) + |X ($, χ$)

−X (χ$−1, χ2$−1)|
= |X ($−1, $)−X ($+1, $+2)|+X ($−1, $) + |X ($, $+1)−X ($, $+1)|
= |X ($−1, $)−X ($+1, $+2)|+X ($−1, $),

and

N($−1, $) = min{X ($−1, χ$−1),X ($, χ$),X ($−1, χ$),X ($, χ$−1)

X (χ$−1, χ2$),X (χ$, χ2$−1)}
= min{X ($−1, $),X ($, $+1),X ($−1, $+1),X ($, $)

X ($, $+2),X ($+1, $+1)} = 0.

Taking Equation (9), by Equation (6), we obtain

X ($+1, $+2) = X (χ2$−1, χ2$) ≤ α($−1, $)X (χ2$−1, χ2$)

≤ rD∗($−1, $) + β.N($−1, $)

= r.(X ($−1, $) + |X ($−1, $)−X ($+1, $+2)|). (16)

If we suppose that X ($−1, $) ≤ X ($+1, $+2), by Equation (16), we obtain

X ($+1, $+2) ≤ r(X ($+1, $+2)) < X ($+1, $+2),

this is a contradiction. If X ($−1, $) > X ($+1, $+2), then

X ($+1, $+2) ≤ r(2X ($−1, $))−X ($+1, $+2),

which turns into

X ($+1, $+2) ≤
2r

r+ 1
(2X ($−1, $)), for  ∈ N. (17)
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Denoting by p =
2r

r+ 1
< 1, ξ = max{X ($0, $1),X ($1, $2)}, respectively, and continuing

in the process, we have

X ($+1, $+2) ≤ pX ($−1, $)

≤ pX ($−3, $−2)

.

.

≤ p[

2 ] max{X ($0, $1),X ($1, $2)}

= p[

2 ]ξ.

Therefore,

X ($+1, $+2) ≤ p[

2 ]ξ for  ∈ N (18)

and

lim
→∞
X ($, $+1) = 0. (19)

From Lemma 1, the orthogonal sequence {$} is an orthogonal Cauchy sequence in orthog-
onal CbMS, so there exists κ s.t

lim
→∞
X ($, κ) = 0.

If we consider that (i) holds, we obtain χκ = κ.
Instead, if we use hypotheses (ii), we have χ2κ = κ and α(χκ, κ) ≥ 1. We apply the method
of reductio ad absurdum and suppose that χκ 6= κ, so by Equation (6), we have

X (χκ, κ) = X (χ2(χκ), χ2κ) ≤ α(χκ, κ)X (χ2(χκ), χ2κ) ≤ rD∗(χκ, κ) + βN(χκ, κ)

= r(X (χκ, κ) + |X (χκ, χ2κ)−X (χκ, χ2κ)|+ |X (κ, χκ)−X (χ2κ, χ3κ)|)
= rX (χκ, κ) < X (χκ, κ),

which is a contradiction. Therefore, χκ = κ.

Now, we prove the unique fixed point, let π ∈ W be another fixed point of χ. Then,
we have χπ = π, ∀  ∈ N. Given our choice of κ in the proof of the first part, we obtain

κ ⊥ π or π ⊥ κ.

Since χ is orthogonal-preserving, we obtain

χκ ⊥ χπ

or

χπ ⊥ χκ, ∀  ∈ N.

On the other hand, χ is an orthogonal α-almost Istrătescu contraction. Then, we obtain

X (κ, π) = X (χ2κ, χ2π)

≤ α(κ, π)X (χ2κ, χ2π)

≤ rD∗(κ, π) + βN(κ, π)

= rX (κ, π) < X (κ, π).

This is a contradiction, so that X (κ, π) = 0 then χ has a unique fixed point.
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Example 2. Let (W ,⊥,X ) be an orthogonal CbMS, where W = [0, ∞) and the mapping
X :W ×W → [0, ∞) is defined as X ($, ι) = ($− ι)2, for every $, ι ∈ W .
Consider the binary relation ⊥ onW by $ ⊥ ι if $ι ≤ ($ ∨ ι) where $ ∨ ι = $ or $ ∨ ι = ι.

Let χ :W →W be an orthogonal continuous map, defined by

χ$ =

−
$

2
, if $ ∈ [−1, 0)

2$, if $ ≥ 0.

Then,

χ2$ =

{
−$, if $ ∈ [−1, 0)
4$, if $ ≥ 0.

In addition, let the map α :W ×W → [0, ∞),

α($, ι) =

{
1, if $, ι ∈ [−1, 0)
0, otherwise.

Of course, χ is orthogonal α−OA and α(0, χ0) = α(χ0, 0) = α(0, 0) = 1.
If $, ι ∈ [−1, 0], then we obtain X (χ2$, χ2ι) = ($− ι)2 and

D∗($, ι) = X ($, ι) + |X ($, χ$)−X (χι, χ2ι)|+ |X (ι, χι−X (χ$, χ2$))|

= ($− ι)2 + |($ +
$

2
)2 − (ι− ι

2
)2|+ |(ι + ι

2
)2 − ($− $

2
)2|

= ($− ι)2 + |(3$

2
)2 − (

ι

2
)2|+ |(3ι

2
)2 − (

$

2
)2|

= ($− ι)2 +
∣∣∣9$2 − ι2

4

∣∣∣+ ∣∣∣9ι2 − $2

4

∣∣∣.
Thus, we can find r ∈ [0, 1) s.t

α($, ι)X (χ2$, χ2ι) = ($− ι)2

≤ r

(
($− ι)2 +

∣∣∣9$2 − ι2

4

∣∣∣+ ∣∣∣9ι2 − $2

4

∣∣∣)
= rD∗($, ι).

Otherwise, we obtain α($, ι) = 0.
Clearly, χ is orthogonal continuous. Consequently, from Theorem 2, the map χ has a

fixed point.

4. Applications
4.1. Fractional Differential Equations

For a function s ∈ C[0, 1], the Riemann–Liouville fractional derivative of order δ >
0, − 1 ≤ δ ≤  ∈ N is given by

1
Γ(− δ)

d

dξ 

∫ ξ

0

s(π)dπ

(ξ − π)δ−+1 = Dδs(ξ),
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Γ is the Euler gamma function, given that the right-hand side is defined point-wise on [0, 1],
where [δ] is the integer component of δ, Γ. Consider the fractional differential equation
as follows:

πDσs(ξ) +X (ξ, s(ξ)) = 0, 0 ≤ ξ ≤ 1, 0 ≤ σ ≤ 1;

s(0) = s(1) = 0, (20)

where X : [0, 1]×R→ R is a continuous function and πDσ represents the Caputo fractional
derivative of order σ and is defined by

πDσ =
1

Γ(− σ)

∫ ζ

0

s(π)dπ

(ξ − π)σ−+1 ,

where − 1 ≤ σ ≤  ∈ N, σ ∈ R. Let P ,S = (C[0, 1], [0, ∞)) be the set of all the continuous
functions defined on [0, 1] with [0, ∞). Consider ϕ : P × S → R+ to be defined by

ϕ(s, s′) = sup
ξ∈[0,1]

|s(ξ)− s′(ξ)|2

and Ω(s, s′) = 3 for all (s, s′) ∈ P × S . Then, (P ,S , ϕ) is a complete bipolar controlled
metric space.

Theorem 3. Assume the nonlinear fractional differential equation (20). Suppose that the following
conditions are satisfied:

1. ∃ ξ ∈ [0, 1],χ ∈ (0, 1) and (s, s′) ∈ P × S s.t

|X (ξ, s)−X (ξ, s′)| ≤ √χ|s(ξ)− s′(ξ)|;

2.

sup
ξ∈[0,1]

∫ 1

0
|G(ξ, π)|2dπ ≤ 1.

Then, the Equation (20) has a unique solution in P ∪ S .

Proof. The given fractional differential equation (20) is equivalent to the succeeding inte-
gral equation with the orthogonal set (W ,⊥),

s(ξ) =
∫ 1

0
G(ξ, π)X (q, s(π))dπ, ∀ ξ, π ∈ W .

Take the orthogonal function G(ξ, π) with ξ ⊥ π,

G(ξ, π) =


[ξ(1−π)]σ−1−(ξ−π)σ−1

Γ(σ) , 0 ≤ π ≤ ξ ≤ 1,
[ξ(1−π)]σ−1

Γ(σ) , 0 ≤ ξ ≤ π ≤ 1.

Define the covariant mapping T : P ∪ S → P ∪ S and T is orthogonal preserving. For
each ξ, π ∈ W with ξ ⊥ π as defined by

T s(ξ) =
∫ 1

0
G(ξ, π)X (q, s(π))dπ.
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It is easy to note that if s∗ ∈ T is a fixed point then s∗ is a solution of the problem (20).
Let s, s′ ∈ P × S with s ⊥ s′. Now,

|T s(ξ)−T s′(ξ)|2 =

∣∣∣∣ ∫ 1

0
G(ξ, π)X (q, s(π))dπ −

∫ 1

o
G(ξ, π)X (q, s′(π))dπ

∣∣∣∣2
≤
∫ 1

0
|G(ξ, π)|2dπ ·

∫ 1

0

∣∣∣∣X (q, s(π))−X (q, s′(π))

∣∣∣∣2dπ

≤ χ
∣∣s(ξ)− s′(ξ)

∣∣2.

Taking the supremum on both sides, we obtain

ϕ(T s,T s′) ≤ χϕ(s, s′).

Hence, all the hypotheses of Theorem 1 are verified, and consequently, the fractional
differential Equation (20) has a unique solution.

Example 3. The linear fractional differential equation is as follows:

πDσs(ξ) + s(ξ) =
2

Γ(3− σ)
ξ2−σ + ξ3, (21)

where πDσ represents the Caputo fractional derivative of order σ with the initial condition:
s(0) = 0, s′(0) = 0.

The exact solution of Equation (21) with σ = 1.9:

s(ξ) = ξ2.

Clearly, s(ξ) is an orthogonal continuous function on [0, 1]. In virtue of Equation (20), we can
write Equation (21) in the homotopy form;

Dσs(ξ) + ps(ξ)− 2
Γ(3− σ)

ξ2−σ − ξ3 = 0, (22)

the solution of Equation (21) is:

s(ξ) = s0(ξ) + ps1(ξ) + p2s2(ξ) + · · · . (23)

Substituting Equation (23) into (22) and collecting terms with the power of p, we obtain

p0 : Dσs0(ξ) = 0
p1 : Dσs1(ξ) = −s0(ξ) +X(ξ)

p2 : Dσs2(ξ) = −s1(ξ)

p3 : Dσs3(ξ) = −s2(ξ)
... .

(24)

Applying Ωσ and the inverse operation of Dσ, on both sides of Equation (24) and fractional integral
operation (Ωσ) of order σ > 0, we have
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s0(ξ) =
1

∑
i=0

si(0)
ξi

i!

= s(0)
ξ0

0!
+ s′(0)

ξ1

1!

s1(ξ) = −Ωσ
[
s0(ξ) + Ωσ[X(ξ)]

]
= ξ2 +

Γ(4)
Γ(4 + σ)

ξ3+σ,

s2(ξ) = −Ωσ
[
s1(ξ)

]
=

2
Γ(3 + σ)

ξ2+σ − 6
Γ(3 + 2σ)

ξ3+2σ,

s3(ξ) = −Ωσ
[
s2(ξ)

]
=

2
Γ(3 + 2σ)

ξ2+2σ − 6
Γ(3 + 3σ)

ξ3+3σ .

Hence, the solution of Equation (21) is

s(ξ) = s0(ξ) + s1(ξ) + s2(ξ) + · · · (25)

s(ξ) = ξ2 +
Γ(4)

Γ(4 + σ)
ξ(3+σ) − 2

Γ(3 + σ)
ξ(2+σ) − 6

Γ(4 + 2σ)
ξ(3+2σ) + · · · , (26)

when σ = 1.9

s(ξ) = ξ2 +
6

Γ(5.9)
ξ(4.9) − 2

Γ(4.9)
ξ(3.9) − 6

Γ(7.8)
ξ(6.8) + · · ·

= ξ2 − small terms

≈ ξ2.

Table 1 displays the numerical and exact results using the matrix approach method with σ = 1.9
and N = 51.

Table 1. The numerical and exact solution using the matrix approach method.

ξ s(ξ) s(ξ) |s(ξ)− s(ξ)|
0.00000 0.00000 0.00000 0.00000
0.10000 0.01000 0.00862 0.00138
0.20000 0.04000 0.03769 0.00231
0.30000 0.09000 0.08654 0.00346
0.40000 0.16000 0.15474 0.00526
0.50000 0.25000 0.24193 0.00807
0.60000 0.36000 0.34786 0.01214
0.70000 0.49000 0.47244 0.01756
0.80000 0.64000 0.61581 0.02419
0.90000 0.81000 0.77841 0.03159
1.00000 1.00000 0.96098 0.03902

Figure 1 compares both the numerical and exact solutions for the fractional differential
Equation (21). Moreover, Figure 2 shows the absolute error between the numerical and
exact solutions.
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Figure 1. The convergence between an approximate and exact solution with an interval difference of
0.1 for Example 3.

Figure 2. The absolute error with an interval difference of 0.1 for Example 3.

The exact and absolute solution is an equal value of 0 in this case. Therefore, the unique
solution to this problem is 0. Hence the unique fixed point at 0.

4.2. Application of Elzaki transformation

We prove the convolution of the Elzaki transform by a different method with Elzaki.

E(X ? g) =
1
a

E(X)E(g)

for E(X) is the Elzaki transform of X. In general, we can find the solution by using the
Elzaki transform as follows:

Theorem 4. Let us consider the Volterra integral equation of the second kind as follows:

ι(`) = $(`) +
∫ `

a
K(`− t)ι(t)dt. (27)

It can be expressed as

ι(`) = E−1(T (a)) = E−1( aX
a− K

)
,

where K is the kernel and E[ι(`)] = T (a).
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Proof. Let E[ι(`)] = T (a), E(r) = L and E(q) = T . If X(ι(`)) = r(`) is given, define the
orthogonal relation ⊥ onW by

r ⊥ q or q ⊥ r.

let us take both sides on the Elzaki transform; we have

T (a) =
1
a

E(r)E(q) =
1
a
LT ,

for T is the transfer function. If we take the inverse Elzaki transform, we obtain

ι = T −1(a) = r ? q = T −1(1
a
LT
)
, ∀ r ⊥ q,

for ? is the standard notation of convolution.
Let us take the Elzaki transform on Equation (27). Then we obtain

T (a) = X = E(ι ? r) = X +
1
a
T (a)K, ∀ ι ⊥ r,

forX = E($) and for K = E(r) is orthogonal continuous. Organizing the equality, we obtain

T (a) =
aX
a− K

,

for the kernel. Therefore, we obtain

ι(`) = E−1(T (a)) = E−1( aX
a− K

)
.

Example 4. Let us consider the Volterra integral equation

ι(`)−
∫ `

0
tι(`− t)dt = 1. (28)

Solution. Writing

ι− ` ? ι = 1,

for ι ⊥ `, we obtain

T (a)− 1
a

E(`)T (a) = E(1),

for E[ι(`)] = T (a). From the table of the Elzaki transform Table A1 in Appendix A, we obtain

T (a)− 1
a
a3T (a) = a2.

Arranging the inequality, we obtain

T (a) =
a2

1− a2 .

Taking the inverse Elzaki transform, we obtain

ι(`) = cos(h`),

for h is a hyperbolic function.



Mathematics 2023, 11, 677 16 of 18

It is a well-known fact that the first order ODE

dι

d$
= X($, ι), ∀ $ ⊥ ι,

with the condition ι(a) = ι0 is rewritten to

φ($) = ι0 +
∫ $

a
X(`, φ(`))d`,

where X is orthogonal continuous and contains the point (a, ι0). Similarly, an initial value problem

ι′′ + A(`)ι′ + B(`)ι = 0

with the condition ι(a) = ι0, ι′(a) = ι1 is rewritten to the Volterra integral equation of the
second kind

ι(`) = X(`) +
∫ `

a
K(`, t)ι(t)dt, (29)

where K(`, t) = −A(t) + (t − `)(B(t) − A′(t)). Additionally, the above X(`) is orthogonal
continuous on [a, b] and the kernel K is orthogonal continuous on the triangular region R in the
`t-plane given by a ≤ t ≤ `, a ≤ ` ≤ b. Then we know that (29) has a unique solution ι on [a, b].

Example 5. Solve the Volterra integral equation

ι(`) =
∫ `

0
ι(t) sin(`− t)dt = `.

Solution. The given equation can be written by

ι− ι ? sin ` = `,

for ` ⊥ t, ` ∈ [0, 1]. Let us write E[ι(`)] = T (a) and apply the convolution theorem. Then,
we obtain

T (a)− 1
a
T (a)

a3

1 + a2 = a3.

We obtain

T (a) = a3(1 + a2)

= a3 + a5

As we scan a table of Elzaki transformations Table A1, we obtain

ι(`) = `+
`3

6
.

It is clear that ι(`) is orthogonal continuous on [0, 1]. Its shown in Figure 3 as follow:
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Figure 3. Graph of ι(`) with an interval difference of 0.1 for Example 5.

5. Conclusions

In this paper, we proved some fixed point theorems for an orthogonal Istrătescu
type contraction of maps in an orthogonal CbMS. Furthermore, we presented examples
that elaborated on the usability of our results. Meanwhile, we provided applications to
the existence of a solution for a fractional differential equation and second kind Volterra
integral equation through an Elzaki transform by using our main results.
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Appendix A

Table A1. Elzaki transform of some functions.

t χ(a)

1 a2

t a3

t3

6
a5

t !a+2

ebt a2

1− ba
sin(bt) ba3

1 + b2a2
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29. Karapinar, E.; Fulga, A.; Petrusel, A. On Istrătescu Type contraction in b-Metric Space. Mathematics 2020, 8, 388. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.4064/fm-3-1-133-181
http://dx.doi.org/10.1016/j.aml.2011.10.037
http://dx.doi.org/10.1186/1687-1812-2012-106
http://dx.doi.org/10.22436/jnsa.009.05.128
http://dx.doi.org/10.1186/1687-1812-2011-68
http://dx.doi.org/10.1016/j.chaos.2012.01.015
http://dx.doi.org/10.1186/1687-1812-2012-126
http://dx.doi.org/10.37193/CJM.2021.03.15
http://dx.doi.org/10.3934/math.2022070
http://dx.doi.org/10.5391/IJFIS.2021.21.3.243
http://dx.doi.org/10.5391/IJFIS.2022.22.3.287
http://dx.doi.org/10.3390/sym14091859
http://dx.doi.org/10.3390/sym14112420
http://dx.doi.org/10.1007/s11784-016-0400-2
http://dx.doi.org/10.1186/1687-1812-2014-190
http://dx.doi.org/10.24193/fpt-ro.2017.2.45
http://dx.doi.org/10.3390/math8030388

	Introduction
	Preliminaries
	Main Results
	Applications
	Fractional Differential Equations
	Application of Elzaki transformation

	Conclusions
	Appendix A
	References

