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Abstract: In this paper, we consider the high-dimensional consistencies of KOO methods for selecting
response variables in multivariate linear regression with covariance structures. Here, the covariance
structures are considered as (1) independent covariance structure with the same variance, (2) indepen-
dent covariance structure with different variances, and (3) uniform covariance structure. A sufficient
condition for model selection consistency is obtained using a KOO method under a high-dimensional
asymptotic framework, such that sample size n, the number p of response variables, and the number
k of explanatory variables are large, as in p/n→ c1 ∈ (0, 1) and k/n→ c2 ∈ [0, 1), where c1 + c2 < 1.
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1. Introduction

We focus on a multivariate linear regression model of p response variables y1, . . . , yp
on a subset of k explanatory variables x1, . . . , xk. Suppose that there are n observations on a
p-dimensional response vector y = (y1, . . . , yp)′ and a k-dimensional explanatory vector
x = (x1, . . . , xk)

′, and let Y : n× p and X : n× k be the observation matrices of y and x
with sample size n, respectively. The multivariate linear regression model including all the
explanatory variables under normality is written as follows:

Y ∼ Nn×p(XΘ, Σ⊗ In), (1)

where Θ is a k× p unknown matrix of regression coefficients, and Σ is a p× p unknown
covariance matrix that is positive definite. Nn×p(·, ·) is the normal matrix distribution,
such that the mean of Y is XΘ, and the covariance matrix of vec (Y) is Σ⊗ In; equivalently,
the rows of Y are independently normal with the same covariance matrix Σ. Here, vec(Y)
is the np× 1 column vector that is obtained by stacking the columns of Y on top of one
another. We assumed that rank(X) = k.

In multivariate linear regression, the selection of variables for the model is an impor-
tant concern. One of the approaches is to first consider variable selection models and then
apply model selection criteria such as AIC and BIC. Such a criterion for Full Model (1) is
expressed as follows:

GIC = −2 log L(Ξ̂) + dg, (2)

where L(Ξ̂) is the maximal likelihood, Ξ = {Θ, Σ}, d > 0 is the penalty term, and g is
the number of unknown parameters given by {kp + 1

2 p(p + 1)}. For AIC and BIC, d is
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defined as 2 and log n, respectively. In the selection of k variables x1, . . . , xk, we identified
{x1, . . . , xk} with the index set {1, . . . , k} ≡ ω, and denote GIC for subset j ⊂ ω by GICj.
Then, the model selection based on GIC chooses the following model:

j̃ = arg min
j

GICj. (3)

Here the minimum is usually taken for all combinations of response variables. There are
computational problems for the methods based on GIC, including AIC and BIC methods,
since we need to compute 2k − 1 statistics for the selection of k explanatory variables. To
avoid this computational problem, [1] proposed a method that was essentially thanks
to [2]. The method, which was named the knock-one-out (KOO) method by [3], determines
“selection” or “no selection” for each variable by comparing the model removing that
variable and the full model. More precisely, the KOO method chooses the model or the set
of variables given by

ĵ = {j ∈ ω | GICω\j > GICω}, (4)

where ω\j is a short expression for ω\{j}, which is the set obtained by removing element j
from the set ω. In general, the KOO method can be applied to a method or criterion, not
only AIC, a general variable selection criterion or method.

In the literature on multivariate linear regression, numerous papers have dealt with
the variable selection problem, as it relates to selecting explanatory variables. When Σ
is unknown positive definite, [4–6], for example, indicated that, in a high-dimensional
case, AIC and Cp have consistency properties, but BIC is not necessarily consistent. KOO
methods in the multivariate regression model were studied by [3] and [7,8]. The KOO
method in discriminant analysis; see [9], and [10]. For a review, see [11].

In this paper, we assume that the covariance structure was one of three covariance
structures: (1) an independent covariance structure with the same variance, (2) an indepen-
dent covariance structure with different variances, and (3) a uniform covariance structure.
The numbers of unknown parameters in covariance structures (1)–(3) were 1, p, and 2,
respectively. Sufficient conditions for the KOO method given by (4) to be consistent were
derived under a high-dimensional asymptotic framework, such that sample size n, the
number p of response variables, and the number k of explanatory variables were large,
as in p/n → c1 ∈ (0, 1) and k/n → c2 ∈ [0, 1), where c1 + c2 < 1. Ref. [12] considered
similar problems under covariance structures (1), (3), and (4), an autoregressive covariance
structure, but did not consider them under (2). Moreover, in the study of asymptotic
consistencies, they assumed that k was fixed, but in this paper, k may tend to infinity,
such that k/n → c2 ∈ [0, 1). From the numerical experiments in [12], we know that the
probability of choosing the true model in Cases (1) and (3) results from the following table
(Table 1). In variable selection for multivariate linear regression using the KOO method, the
probability of selecting the true model is shown in the following table. Here, we examine
Cases (1), an independent covariance structure with the same variance, and (3), a uniform
covariance structure.

Table 1. KOO Based on AIC.

k = 3 KOO Based on AIC KOO Based on AIC
(n, p) (20, 10) (200, 100) (20, 10) (200, 100)

(1) 0.74 1.00 0.77 1.00
(3) 0.47 1.00 0.22 1.00

In this table (Table 1), k is the number of nonzero true explanatory variables, and the
true parameter values were omitted. In [12], k was treated as finite. In this paper, k may
tend to infinity, such that k/n→ c2 ∈ [0, 1).

The present paper is organized as follows. In Section 2, we present notations and
preliminaries. In Section 3, we state KOO methods with Covariance Structures (1)–(3) in
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terms of key statistics. Further, an approach for their consistencies is stated in Section 3.
In Sections 4–6, we discuss consistency properties of KOO methods under Covariance
Structures (1)–(3). In Section 7, our conclusions are discussed.

2. Notations and Preliminaries

Suppose that j denotes a subset of ω = {1, . . . , k} containing kj elements, and Xj
denotes the n× kj matrix comprising the columns of X indexed by the elements of j. Then,
Xω = X. Further, we assumed that covariance matrix Σ had a covariance structure Σc.
Then, we have a generic candidate model:

Mc,j : Y ∼ Nn×p(XjΘj, Σc,j ⊗ In), (5)

where Θj is a kj × p unknown matrix of regression coefficients. We assumed that rank(X) = k.
When Σc,j is a p × p unknown covariance matrix, we could write the GIC in (2)

as follows:

GICc,j = n log |Σ̂j|+ np(log 2π + 1) + d
{

kj p +
1
2

p(p + 1)
}

, (6)

where nΣ̂j = Y′(In − Pj)Y and Pj = Xj(X′jXj)
−1X′j. When j = ω, model Mc,ω is called the

full model. Σ̂c,ω and Pω are defined from Σ̂c,j and Pj as j = ω, kω = k and Xω = X.
In this paper, we considered the cases in which the covariance matrix Σc belonged to

each of the following three structures:

(1) Independent covariance structure with the same variance (ICSS).

Σv = σ2
v Ip,

(2) Independent covariance structure with different variances (ICSD).

Σb = diag(σ2
1 , . . . , σ2

p),

(3) Uniform covariance structure (UCS).

Σu = σ2
u(ρ

1−δij
u )1≤i,j≤p.

The models considered in this paper can be expressed as in (5) with Σv,j, Σb,j, and Σu,j
for Σc,j. Let f (Y; Θj, Σc,j) be the density of Y in (5) with Σ = Σc,j. In the derivation of the
GIC, under the covariance structure Σ = Σc,j, we use the following equality:

−2 log max
Θj ,Σc,j

f (Y; Θj, Σc,j) = np log(2π)

+ min
Σc,j

{
np log |Σc,j|+ trΣ−1

c,j Y
′(In − Pj)Y

}
. (7)

Let Σ̂c,j be the quantity minimizing the right-hand side of (7). Then, in our model, it satisfies
trΣ̂−1

c,j Y
′(In − Pj)Y = np, and we obtain

GICc,j = −2 log f (Y; Θ̂j, Σ̂c) + dmc,j

= np log |Σ̂c,j|+ np(log 2π + 1) + dmc,j, (8)

where mc,j is the number of independent unknown parameters under Mc,j, and d is a
positive constant that may depend on n. For AIC and BIC, d is defined by 2 ([13]) and
log n ([14]), respectively.
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3. Approach to Consistencies of KOO Methods

Our KOO method is based on

Tc,j;d = GICc,ω\j −GICc,ω. (9)

In fact, the KOO method chooses the following model:

ĵc;d =
{

j | Tc,j;d > 0
}

. (10)

Its consistency can be proven by showing the following two properties:

Q1 : [F1] ≡ ∑
j∈j∗

Pr(Tc,j;d ≤ 0)→ 0, (11)

Q2 : [F2] ≡ ∑
j/∈j∗

Pr(Tc,j;d ≥ 0)→ 0, (12)

as in [11]. The result can be shown by using the following inequality:

Pr( ĵc;d = j∗) = Pr

⋂
j∈j∗

“Tc,j;d > 0”
⋂

j/∈j∗

“Tc,j;d < 0”


= 1− Pr

⋃
j∈j∗

“Tc,j;d ≤ 0”
⋃

j/∈j∗

“Tc,j;d ≥ 0”


≥ 1− ∑

j∈j∗

Pr(Tc,j;d ≤ 0)− ∑
j/∈j∗

Pr(Tc,j;d ≥ 0).

Here, [F1] denotes the probability that true variables are not selected, and [F2] denotes the
probability that nontrue variables are selected. Such notations are used for other variable
selection methods. xj is included in the true set of variables if θj 6= 0.

Here, we list some of our main assumptions:
A1: The set j∗ of the true explanatory variables is included in the full subset, i.e.,

j∗ ⊂ ω. and the set j∗ is finite.
A2: The high-dimensional asymptotic framework:

p→ ∞, n→ ∞, k→ ∞, p/n→ c1 ∈ (0, 1), k/n→ c2 ∈ [0, 1),
where 0 < c1 + c2 < 1.

A general model selection criterion ĵc;d is high-dimensionally consistent if

lim Pr( ĵc;d = j∗) = 1,

under a high-dimensional asymptotic framework. Here, “lim” means the limit under A2.

4. Asymptotic Consistency under an Independent Covariance Structure

In this section, we show an asymptotic consistency of the KOO method on the basis
of a general information criterion under an independent covariance structure. A generic
candidate model when the set of explanatory variables is j can be expressed as follows:

Mv,j : Y ∼ Nn×p(XjΘj, Σv,j ⊗ In), (13)

where Σv,j = σ2
v,jIp and σ2

v,j > 0. Let us denote the density of Y under (13) with
f (Y; Θj, σv,j). Then, we have

−2 log f (Y; Θj, σ2
v,j) = np log(2π) + np log σ2

v,j

+
1

σ2
v,j

tr(Y− XjΘj)
′(Y− XjΘj).
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Therefore, the maximal estimators of Θj and σ2
v,j under Mv,j are given as follows:

Θ̂j = (X′jXj)
−1X′jY, σ̂2

v,j =
1

np
trY′(In − Pj)Y. (14)

General Information Criterion (8) is given by

GICv,j = np log σ̂2
v,j + np(log 2π + 1) + dmv,j, (15)

where d is a positive constant, and mv,j = k j p + 1.
Using (9) and (15), we have

Tv,j;d ≡ GICv,ω\j −GICv,ω

= np log
(

1 + U2jU−1
1

)
− dp, (16)

where

U1 = trY′(In − Pω)Y =
p

∑
`=1

y′`(In − Pω)y`,

U2j = trY′(Pω − Pω\j)Y =
p

∑
`=1

y′`(Pω − Pω\j)y`.

U1/σ2
v,j∗ and U2j/σ2

v,j∗ are independently distributed as a central and a noncentral chi-
squared distribution, respectively. More precisely, assume that

E(Y) = Xj∗Θj∗ , (17)

and let σ2
v,∗ = σ2

v,j∗ . Then, using basic distributional properties (see, [15]) on quadratic
forms of normal variates and Wishart matrices, we have the following results:

(1) U1/σ2
v,∗ ∼ χ2

(n−k)p,

(2) U2j/σ2
v,∗ ∼ χ2

p(δ
2
v,j), (18)

(3) U1 ⊥ U2j,

where noncentrality parameter τ2
v,j is defined by

δ2
v,j =

1
σ2

v,∗
tr(Xj∗Θj∗)

′(Pω − Pω\j)Xj∗Θj∗ .

If j /∈ j∗, δ2
v,j = 0, and if j ∈ j∗, in general, τ2

v,j 6= 0. For a sufficient condition for the
consistency of the KOO method based on GICv,j, we assumed

A3v : For any j ∈ j∗, δ2
v,j = O(np), and lim

p/n→c1

1
np

δ2
v,j = η2

v,j > 0. (19)

Now, we consider thew high-dimensional asymptotic consistency of the KOO method
based on GICv,j in (15), whose selection method is given by ĵv,j;d = {j | Tv,j;d > 0}. When
j 6∈ j∗, from (16), we can write

Tv,j;d = np log
{

1 + χ2
p/χ2

m

}
− dp, m = (n− k)p.

Therefore, we have
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[F2] = ∑
j 6∈j∗

Pr(np log
{

1 + χ2
p/χ2

m

}
≥ dp)

=
(
k− kj∗

)
Pr(U ≥ h) (20)

≤
(
k− kj∗

)
Pr(U ≥ h0),

where

U =
χ2

p

χ2
m
− p

m− 2
,

h = ed/n − 1− p
m− 2

, h0 =
d
n
− p

m− 2
. (21)

Note that h0 < h. Then, under the assumption h0 > 0, we have

[F2] ≤
(
k− kj∗

)
h−2`E[U2`] ≤

(
k− kj∗

)
h−2`

0 E[U2`]. (22)

Related to the assumption h0 > 0, we assumed

A4v : d >
np

m− 2
→ 1

1− c2
, and d = O(na), 0 < a < 1. (23)

The first part in A4v implies h0 > 0. It is easy to see that

E[U2] =
2p(m + p− 2)
(m− 2)2(m− 4)

= O((n2 p)−1).

Here, for the first equality, assumption m > 4 is required. Further, h−2
0 = O(n2(1−a)).

Therefore, from (22), we have that [F2]→ 0.
When j ∈ j∗, we can write Tv,j;d = np log

{
1 + χ2

p(δ
2
v,j)/χ2

m

}
− dp. Therefore, we can

express [F1] as

[F1] = ∑
j∈j∗

Pr(T̃v,j;d ≤ 0),

where

T̃v,j;d =
p
n

log

{
1 +

χ2
p(δ

2
v,j)

χ2
m

}
− d

n
.

Assumptions A3v and A4v easily show that

T̃v,j;d → c1 log(1 + η2
v,j) > 0.

This implies that Pr(T̃v,j;d ≤ 0)→ 0.
These imply the following theorem.

Theorem 1. Suppose that Assumptions A1, A2 A3v, and A4v are satisfied. Then, the KOO
method based on general information criteria GICv,j defined by (15) is asymptotically consistent.

An alternative approach for “[F1]→ 0”. When j ∈ j∗, we can write

Tv,j;d = np log
{

1 + χ2
p(δ

2
v,j)/χ2

m

}
− dp.

Therefore, we have
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[F1] = ∑
j∈j∗

Pr(np log
{

1 + χ2
p(δ

2
v,j)/χ2

m

}
≤ dp)

= ∑
j∈j∗

Pr(Ũj ≤ h̃j),

where, for j ∈ j∗,

Ũj =
χ2

p(δ
2
v,j)

χ2
m
−

p + δ2
v,j

m− 2
, h̃j = ed/n − 1−

p + δ2
v,j

m− 2
= h−

δ2
v,j

m− 2
.

Then, under d = O(na)(0 < a < 1), A3v in (19) and the assumption h̃j < 0 (or
equivalently h < δ2

j /(m− 2)), we have

[F1] ≤ kj∗ max
j
|h̃j|−2`E[Ũ2`].

It is easily seen that

E[Ũ2
j ] =

2(p + 2δ2
v,j)(m + p− 2 + δ2

v,j)

(m− 2)2(m− 4)
= O((n2 p)−1),

where m > 4 and under d = na(0 < a < 1) and A3v,

|h̃j|2 →
η2

v,j

c1(1− c2)
.

These imply that [F1] → 0. In this approach, it was assumed that h̃j < 0 (or equiva-
lently h < δ2

j /(m− 2)).

5. Asymptotic Consistency under an Independent Covariance Structure with
Different Variances

In this section, we assumed that covariance matrix Σ had an independent covariance
matrix with different variances, i.e., Σ = Σb = diag(σ2

b1, . . . , σbp). First, let us consider
deriving a key statistic Tb,j;d = GICb,ω\j − GICb,ω. Consider a candidate model with
E(Y) = XΘ,

Mb,ω : Y ∼ Nn×p(XΘ, Σb ⊗ In). (24)

Let the density in the full model be expressed as f (Y; Θ, Σb). Then, we have

−2 log f (Y; Θ, Σb) = np log(2π)

+
p

∑
`=1

{
n log σ2

b` +
1

σ2
b`
(y` − Xθ`)

′(y` − Xθ`)

}
.

It holds that

−2 log max
Θ,Σb

f (Y; Θ, Σb) = np(log 2π + 1)

+
p

∑
`=1

n log
1
n

y′`(In − Pω)y`. (25)
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Next, consider the model removing the jth explanatory variable from the full model
Mb,ω, which is denoted by Mb,ω\j or M; b, ω\j. Similarly,

−2 log max
M;b,ω\j

f (Y; Θ, Σb) = np(log 2π + 1)

+
p

∑
`=1

n log
1
n

y′`(In − Pω\j)y`. (26)

Using (25) and (26), we can obtain a general information criterion (8) for two models,
Mb,ω and Mb,ω\j, and we have

Tb,j;d ≡ GICb,ω\j −GICb,ω

=
p

∑
`=1

n log
(

1 + U2`U−1
1`

)
− dp, (27)

where

U1` = y′`(In − Pω)y`, ` = 1, . . . , p,

U2` = y′`(Pω − Pω\j)y`, ` = 1, . . . , p.

Let us assume that
E(Y) = Xj∗Θj∗ and σ2

b,∗ = σ2
b,j∗ (28)

Then, as in (18), we have the following results:

(1) U1`/σ2
b,∗ ∼ χ2

n−k, ` = 1, . . . , p,

(2) U2`/σ2
b,∗ ∼ χ2

1(δ
2
b,j;`), ` = 1, . . . , p, (29)

(3) U1`, U2`, (` = 1, . . . , p) are independent,

where noncentral parameters δ2
b,j;` are defined by

δ2
b,j;` =

1
σ2

b,∗
(Xj∗θ

(`)
∗ )′(Pω − Pω\j)(Xj∗θ

(`)
∗ ),

with Θ∗ = (θ
(1)
∗ , . . . , θ

(p)
∗ ). If j /∈ j∗, δ2

b,j;` = 0, and if j ∈ j∗, δ2
b,j;` 6= 0. For a sufficient

condition for consistency of the KOO method based on GICb,j, we assumed

A3b : For any j ∈ j∗, lim(n− k)−1δ2
b,j;` = η2

b,j;` > 0, and

lim
1
p

p

∑
`=1

log
{

1 +
1

n− k
δ2

b,j;`

}
→ η2

b,j > 0. (30)

Now, we consider the high-dimensional asymptotic consistency of the KOO method
based on Tb,j;d in (9), whose selection method is given by ĵv,j;d = {j | Tb,j;d > 0}. When
j 6∈ j∗, we have

[F2] = ∑
j 6∈j∗

Pr(
p

∑
`=1

n log
{

1 + U2`U−1
1`

}
≥ d)

≤ ∑
j 6∈j∗

p

∑
`=1

Pr(n log
{

1 + U2`U−1
1`

}
≥ d).
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This implies that

[F2] ≤ p(k− kj∗)Pr(n log
{

1 + χ2
1/χ2

n−k

}
≥ d)

= p(k− kj∗)Pr(V ≥ r), (31)

where

V =
χ2

1
χ2

n−k
− 1

n− k− 2
,

r = ed/n − 1− 1
n− k− 2

, r0 =
d
n
− 1

n− k− 2
. (32)

Note that r0 < r. Then, under the assumption r0 > 0, we have

[F2] ≤ p
(
k− kj∗

)
r−2`E[V2`] ≤ p

(
k− kj∗

)
r−2`

0 E[V2`]. (33)

Related to the assumption r0 > 0, we assumed

A4b : d >
n

n− k− 2
→ 1

1− c2
, and d = O(na), 0 < a < 1. (34)

The first part in A4b implies r0 > 0. It is easy to see that

E[V2] =
2(n− k− 1)

(n− k− 2)2(n− k− 4)
= O((n2)−1).

Further, r−2
0 = O(n2(1−a)). Therefore, from (33), we have that [F2]→ 0.

When j ∈ j∗, we can write Tb,j;d = n ∑
p
`=1 log{1 + U2`U−1

1` } − dp. Therefore, we can
express [F1] as follows:

[F1] = ∑
j∈j∗

Pr(T̃b,j;d ≤ 0),

where

T̃b,j;d =
1
p

p

∑
`=1

log

{
1 +

χ2
1;`(δ

2
b,j;`)

χ2
n−k;`

}
− d

n
.

Assumptions A3b and A4b easily show that

T̃b,j;d → η2
b,j > 0.

This implies that Pr(T̃b,j;d ≤ 0)→ 0.
These imply the following theorem.

Theorem 2. Suppose that Assumptions A1, A2, A3b and A4b are satisfied. Then, the KOO
method based on Tb,j:d in (27) is asymptotically consistent.
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Let us consider an alternative approach for "[F1]→ 0" as in the case of independent
covariance structure. When j ∈ j∗, we can write

[F1] = ∑
j∈j∗

Pr

(
p

∑
`=1

{
n log

(
1 +

χ2
1;`(δ

2
b,j;`)

χ2
n−k;`

)
− d

}
≤ 0

)

≤ ∑
j∈j∗

p

∑
`=1

Pr

(
n log

(
1 +

χ2
1;`(δ

2
b,j;`)

χ2
n−k;`

)
− d ≤ 0

)

= ∑
j∈j∗

p

∑
`=1

Pr
(

Ṽj,` ≤ r̃j,`

)
.

Here, for j ∈ j∗,

Ṽj,` =
χ2

1;`(δ
2
b,j;`)

χ2
n−k;`

−
1 + δ2

b,j;`

n− k− 2
, ` = 1, . . . , p,

r̃j,` = ed/n − 1−
1 + δ2

b,j;`

n− k− 2
= r−

δ2
b,j

n− k− 2
, ` = 1, . . . , p,

where r is the same one as in (32). Note that χ2
1;`(δ

2
b,j;`), ` = 1, . . . , p are distributed as a

noncentral distribution χ2
1(δ

2
b,j;`), and they are independent. Then, under the assumption

r̃j < 0 (or equivalently r < δ2
bj;`/(n− k− 2)), we have

[F1] ≤ kj∗

p

∑
`=1
|r̃j,`|−2sE[Ṽ2s

j,` ], s = 1, 2, . . . . (35)

In the above upper bound, it holds that

|r̃j,`| ∼ δ2
b,j;`/(n− k)→ η2

b,j;`. (36)

Useful bounds are obtained by giving the first few moments of Ṽj;`. For example,

E[Ṽ2
j,`] =

2(1 + 2δ2
v,j;`)(n− k− 1 + δ2

v,j;`)

(n− k− 2)2(n− k− 4)
= O(n−1),

E[Ṽ4
j,`] = O(n−2).

Then, Bound (35) with s = 2 can be asymptotically expressed as follows:

kj∗

p

∑
`=1

η−4
b,j;`E[Ṽ

4
j,`] = kj∗ p

(
1
p

p

∑
`=1

η−4
b,j;`

)
×O(n−2).

The above expression is O(n−1) under the assumption that 1
p ∑

p
`=1 η−4

b,j;` tends to
a quantity.

6. Asymptotic Consistency under a Uniform Covariance Structure

In this section, we show an asymptotic consistency of KOO method based on a general
information criterion under a uniform covariance structure. First, following [12], we derive
a GICu,j as in (6), and a key statistic Tu,j;d as in (9). A uniform covariance structure is
given by

Σu = σ2
u(ρ

1−δij
u ) = σ2

u{(1− ρu)Ip + ρu1p1′p}, (37)
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with Kronecker delta δij. The covariance structure is expressed as follows:

Σu = α

(
Ip −

1
p

Gp

)
+ β

1
p

Gp,

where
α = σ2

u(1− ρu), β = σ2
u{1 + (p− 1)ρu}, Gp = 1p1′p,

and 1p = (1, . . . , 1)′. Matrices Ip − 1
p Gp and 1

p Gp are orthogonal idempotent matrices, so
we have

|Σu| = βαp−1, Σ−1
u =

1
α

(
Ip −

1
p

Gp

)
+

1
β
· 1

p
Gp.

Now, we consider the multivariate regression model Mu,j given by

Mu,j : Y ∼ Nn×p(XjΘj, Σu,j ⊗ In), (38)

where Σu,j = αj
(
Ip − p−1Gp

)
+ βj p−1Gp. Let H = (h1, H2) be an orthogonal matrix where

h1 = p−1/21p, and let

Wj = Y′(In − Pj)Y and Uj = H′WjH.

Here, h1 is a characteristic vector of Σu,j, and each column vector of H2 is a character-
istic vector of Σu,j. Let the density function of Y under Mu,j be denoted by f (Y; Θj, αj, βj).
Then, we have

g(αj, βj) = −2 log max
Θj

f (Y; Θj, αj, βj)

= np log(2π) + n(p− 1) log αj + n log βj + trΨ−1
j Uj,

where Ψj = diag(βj, αj, . . . , αj). Therefore, the maximum likelihood estimators of αj and
βj under Mu,j are given by

α̂j =
1

n(p− 1)
trH′2Y

′(In − Pj)YH2,

β̂j =
1
n

h′1Y
′(In − Pj)Yh1.

The number of independent parameters under Mu,j is mj = kj p + 2. Noting that Ψj
is diagonal, we can obtain the general information criterion (GIC) in (8) for Y in (38) as
follows:

GICu,j = n(p− 1) log α̂j + n log β̂j + np(log 2π + 1) + d(kj p + 2). (39)

Therefore, we have

Tu,j;d ≡ GICu,ω\j −GICu,ω

= n(p− 1) log
{

α̂ω\j(α̂ω)−1
}
+ n log

{
β̂ω\j

(
β̂ω
)−1

}
− dp (40)

= Z1j + Z2j.

Here, Z1j and Z2j are defined as follows:

Z1j = n(p− 1) log
{

1 + V(1)
2j

(
V(1)

1

)−1
}
− d(p− 1),

Z2j = n log
{

1 + V(2)
2j

(
V(2)

1

)−1
}
− d, (41)
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using the following V(i)
1 , V(i)

2j , i = 1, 2:

V(1)
1 = trH′2Y(In − Pω)YH2, V(1)

2j = trH′2Y
′(Pω − Pω\j)YH2,

V(2)
1 = h′1Y

′(In − Pω)Yh1, V(2)
2j = h′1Y

′(Pω − Pω\j)Yh1.

Related to the distributional reductions of Z1j, Z2j, j = 1, . . . , k, we use the following
Lemma frequently.

Lemma 1. Let W have a noncentral Whishart distribution Wp(m, Σ; Ω). Let the covariance
matrix Σ be decomposed into characteristic roots and vectors as follows:

Σ = HΛH′

= (H1, . . . , Hh)diag(λ1Iq1 , . . . , λhIqh)(H1, . . . , Hh)
′,

where λ1 > . . . > λh > 0 and H is an orthogonal matrix. Then, trH′jWjHj, i = 1, . . . , h are
independently distributed to noncentral chi-squared distributions with mk j degrees of freedom and
noncentrality parameters δ2

j = trH′jΩHj.

Proof. The result may be proven by considering the characteristic function of
(trH′1WH1, . . . , trH′qWHq) which is expressed as follows (see Theorem 2.1.2 in [15]):

E
[
eit1trH′1WH1+···+ithtrH′hWHh

]
= E[etr(K)]

= |Ip − 2ΣK|−m/2etr
{

ΩK(Ip − 2ΣK)−1)
}

,

where K = it1H1H′1 + · · ·+ it1HqH′q. The result can be easily obtained by checking that
the above last expression equals

q

∏
j=1

(1− 2itj)
−nkj/2 exp

{
itj

1− 2itj
trH′jΩHj

}
.

Assume that the true model is expressed as

Mu,j∗ : Y ∼ Nn×p(Xj∗Θj∗ , Σu,∗ ⊗ In), (42)

where Σu,∗ = α∗
(
Ip − p−1Gp

)
+ β∗p−1Gp. Using Lemma 1, we have the following lemma.

Lemma 2. Under True Model (42), it holds that

(1) V(1)
1 /α∗ and V(1)

2j /α∗ are independently distributed to a central chi-squared distribution
χ2
(p−1)(n−k) and a noncentral chi-squared distribution χ2

p−1(δ
2
1j), respectively.

(2) V(2)
1 /β∗ and V(2)

2j /β∗ are independently distributed to a central chi-squared distribution χ2
n−k

and a noncentral chi-squared distribution χ2
1(δ

2
2j), respectively.

(3) Noncentrality parameters δ2
1j and δ2

2j are defined as follows:

δ2
1j =

1
α∗

trH′2(Xj∗Θj∗)
′(Pω − Pω\j)(Xj∗Θj∗)H2

δ2
2j =

1
β∗

h′1(Xj∗Θj∗)
′(Pω − Pω\j)(Xj∗Θj∗)h1.
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Here, if j /∈ j∗, then δ2
1j = 0 and δ2

2j = 0.

Now, we consider the high-dimensional asymptotic consistency of the KOO method
based on Tb,j;d in (27), whose selection method is given by ĵv,j;d = {j | Tb,j;d > 0}. For a
sufficient condition for the consistency of ĵv,j;d, we assumed

A3u: For any j ∈ j∗, δ2
1j = O(np), δ2

2j = O(n) and

lim
1

np
δ2

1j = η2
1j > 0, lim

1
n

δ2
2j = η2

2j > 0, (43)

When j 6∈ j∗, we have

[F2] = ∑
j 6∈j∗

{
Pr(Z1j + Z2j ≥ 0)

}
≤ ∑

j 6∈j∗

{
Pr(Z1j ≥ 0) + Pr(Z2j ≥ 0)

}
= (k− kj∗)

{
Pr(Z(1) ≥ s(1)0 ) + Pr(Z(2) ≥ s(2)0 )

}
.

Here,

Z(1) =
χ2

p−1

χ2
(p−1)(n−k)

− p− 1
(p− 1)(n− k)− 2

,

s(1) = ed/n − 1− p− 1
(p− 1)(n− k)− 2

, s(1)0 =
d
n
− p− 1

(p− 1)(n− k)− 2
,

Z(2) =
χ2

1
χ2

n−k
− 1

n− k− 2
,

s(2) = ed/n − 1− 1
n− k− 2

, s(2)0 =
d
n
− 1

n− k− 2
.

Note that s(1)0 < s(1) and s(2)0 < s(2). Then, under the assumption that s(1)0 > 0 and

s(2)0 > 0, we have

[F2] ≤ (k− kj∗)

[(
s(1)0

)−2`
E
[
(Z(1))2`

]
+
(

s(2)0

)−2`
E
[
(Z(2))2`

]]
. (44)

Related to assumptions s(1)0 > 0 and s(2)0 > 0, we assumed

A4u : d >
n(p− 1)

(p− 1)(n− k)− 2
→ 1

1− c2
, d >

n
n− k− 2

→ 1
1− c2

,

and d = O(na), 0 < a < 1. (45)

The first part in A4u implies s(1)0 > 0 and s(2)0 > 0. It is easy to see that

E[(Z(1))2] =
2(p− 1)2(n− k + 1)

{(p− 1)(n− k)− 2}2{(p− 1)(n− k)− 4} = O((n3)−1),

E[(Z(2))2] =
2(n− k− 1)

(n− k− 2)2(n− k− 4)
= O((n2)−1).

Further, (s(1)0 )−2 = O(n2(1−a)) and (s(2)0 )−2 = O(n2(1−a)). Therefore, from (44), we
have that [F2]→ 0.

When j ∈ j∗, we can write Tb,j;d = n ∑
p
`=1 log{1 + U2`U−1

1` } − dp. Therefore, we can
express [F1] as follows:

[F1] = ∑
j∈j∗

Pr(T̃b,j;d ≤ 0),



Mathematics 2023, 11, 671 14 of 15

where

T̃b,j;d =
1
p

p

∑
`=1

log

{
1 +

χ2
1;`(δ

2
b,j;`)

χ2
n−k;`

}
− d

n
.

Assumptions A3b and A4b easily show that

T̃v,j;d → log(1 + γ2
v,j) > 0.

This implies that Pr(T̃v,j;d ≤ 0)→ 0, and [F1]→ 0.
These imply the following theorem.

Theorem 3. Suppose that Assumptions A1, A2, A3u and A4u are satisfied. Then, the KOO
method based on Tu,j:d in (40) is asymptotically consistent.

7. Concluding Remarks

In this paper, we considered selecting regression variables in a p variate regression
model with one of three covariance structures: (1) ICSS (an independent covariance struc-
ture with the same variance), (2) ICSD (an independent covariance structure with different
variances), and (3) UCS (a uniform covariance structure). It was proposed to use a KOO
method on the basis of a general information criterion with a penalty term d. We indicated
high-dimensional consistencies of the KOO methods with d = O(na), 0 < a < 1. Ref. [12]
studied the asymptotic consistencies of KOO methods in (1) and (3). However, in their
approach, the number of explanatory variables was fixed; in this paper, the number of
explanatory variables may have tended to infinity. KOO methods may be feasible in com-
putation. The idea goes back to [1], and [2]. However, high-dimensional properties were
recently studied in [7–9,11].

A high-dimensional study of the KOO method under an autoregressive covariance
structure (AUTO), and extending our results to the case of non-normality remain as fu-
ture work.
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