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Abstract: Geometric iterative methods, including progressive iterative approximation and geometric
interpolation methods, are efficient for fitting a given data set. With the development of big data
technology, the number of fitting data points has become massive, and the progressive iterative
approximation for least-squares fitting (LSPIA) is generally applied to fit mass data. Combining
the Schulz iterative method for calculating the Moore–Penrose generalized inverse matrix with the
traditional LSPIA method, this paper presents an accelerated LSPIA method for tensor product
surfaces and shows that the corresponding iterative surface sequence converged to the least-squares
fitting surface of the given data set. The iterative format is that of a non-stationary iterative method,
and the convergence rate increased rapidly as the iteration number increased. Some numerical
examples are provided to illustrate that the proposed method has a faster convergence rate.

Keywords: progressive iterative approximation; least-squares fitting; tensor product surface; Schulz
iteration; convergence rate
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1. Introduction

The need to apply a parametric curve or surface to fit a given set of data is an important
problem encountered frequently in engineering applications, such as product styling in
aerospace, computer vision, NURBS solid construction, and reverse engineering [1–4].

Progressive iterative approximation (PIA) is a simple iterative method for data fitting
with intuitive geometric significance. Qi et al. presented the “profit and loss” algorithm
for uniform cubic B-spline curves [5], and at the same time, de Boor proved its conver-
gence independently [6]. Lin et al. proved that non-uniform B-spline curves and surfaces
also hold this property [7]. Furthermore, Lin et al. extended this property to blending
curves and surfaces with normalized totally positive (NTP) bases and named it progressive
iterative approximation [8]. Over the next 15 years, this has become an attractive and
promising research field, as evident from the number of publications on the PIA subject.
Lin et al. provided an overview of PIA and geometric approximation methods [9]. A
local progressive iterative approximation method was proposed to make data fitting more
flexible by adjusting only a part of the control points [10,11]. Some improved methods
have been proposed to speed up the convergence rate, such as a weighted PIA method [12],
the Chebyshev accelerating PIA method [13], a preconditioned PIA method [14], and the
composite Schulz–PIA method [15]. Delgado and Peña compared the convergence rates of
different NTP bases and proved that the normalized B-basis had the fastest convergence
rate [16]. Hamza et al. designed an implicit PIA method for implicit curve and surface re-
construction to reduce computational cost effectively [17]. In the classical PIA methods, the
number of the control points needs to be equal to that of the data set, which is not suitable
for fitting mass data. As we all known, the number of data set is often exceptionally large
nowadays, and the LSPIA methods can handle s large set of points [18–21]. However, as the
data set increases, the coefficient matrix of the least-squares fitting system may be singular.
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Lin et al. proved that the LSPIA method is still convergent for singular least-squares fitting
systems [22].

Tensor product surfaces are suitable for surfaces with a rectangular topology, which
widely exist in engineering practice [23–25]. They can be regarded as the trajectory of the
curves with variable control points in three-dimensional space. Therefore, the theoretical
study on the LSPIA method for tensor product surfaces may be generalized by the curve
case. An alternative explanation of the LSPIA method is to find the least-squares solution
of linear systems, that is, to calculate the generalized inverse of the coefficient matrix.
Its convergence rate depends on the size of the spectral radius of the iterative matrix.
However, the convergence rate would greatly slow down with large-scale problems in
practice. The tensor product surface cannot be treated as a curve with variable control
points, although the proof of its convergence is easily generalized from the curve case. The
reason is that the collocation matrix of bivariate NTP bases is a Kronecker product of two
collocation matrices of NTP bases, that is, a large-scale matrix. The collocation matrix is
exponentially ill-conditioned as the dimension of the collocation matrix increases [26]. To
speed up the convergence rate, we combined the Schulz iterative method [27] for Moore–
Penrose generalized inverse of the coefficient matrix with the traditional LSPIA method and
develop an improved LSPIA format with fast convergence rate. Applying the properties of
the Kronecker product and the Moore–Penrose generalized inverse, we proved that the
proposed method was convergent and the limit surface was just the least-squares fitting
result of the given data points.

This paper is organized as follows. Section 2 introduces the improved least-squares
progressive iterative format for tensor product surfaces. The convergence of the proposed
method is proved theoretically in Section 3. Then, Section 4 provides the preparatory work
before the experimental examples and the improved LSPIA algorithm for fitting data points.
Subsequently, some numerical experiments are presented in Section 5 to demonstrate the
efficiency of the proposed algorithm by comparing the error plots and error data with
those obtained with the traditional LSPIA method. Finally, the conclusions are presented in
Section 6.

2. Improved Least-Squares Progressive Iterative Format for Tensor Product Surfaces

Let us consider a set of data points
{

Qi,j

}m1,m2

i=0,j=0
with the parameters

{
ui, vj

}m1,m2
i=0,j=0

satisfying
u0 < u1 < · · · < um1 , v0 < v1 < · · · < vm2 .

We arbitrarily select some data points
{

Ph,l
}n1,n2

h=0,l=0(n1 < m1, n2 < m2) from{
Qi,j

}m1,m2

i=0,j=0
as the control points and construct an initial iterative surface P0(u, v), i.e.,

P0(u, v) =
n1

∑
h=0

n2

∑
l=0

Bh(u)Bl(v)P0
h,l , (u, v) ∈ [u0, um1 ]× [v0, vm2 ],

where P0
h,l = Ph,l are the control points, and {Bh(u), h = 0, 1, ..., n1}, {Bl(v), l = 0, 1, ..., n2}

are the NTP bases function [8], satisfying

Bh(u), Bl(v) ≥ 0,
n1

∑
h=0

Bh(u) =
n2

∑
l=0

Bl(v) = 1.
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The collocation matrix of {Bh(u), h = 0, 1, ..., n1} at an increasing sequence
u0 < u1 < · · · < um1 is

B1 =


B0(u0) B1(u0) · · · Bn1(u0)
B0(u1) B1(u1) · · · Bn1(u1)

...
...

...
B0(um1) B1(um1) · · · Bn1(um1)

, (1)

and the collocation matrix of {Bl(v), l = 0, 1, ..., n2} at v0 < v1 < · · · < vm2 is

B2 =


B0(v0) B1(v0) · · · Bn2(v0)
B0(v1) B1(v1) · · · Bn2(v1)

...
...

...
B0(vm2) B1(vm2) · · · Bn2(vm2)

. (2)

Here, B1 and B2 are totally positive matrices, that is, all of their minors are nonnegative [28].
Suppose

Z0
1 = ω1BT

1 , Z0
2 = ω2BT

2 (3)

where B1, B2 are defined as in (1) and (2), respectively, and ω1, ω2 satisfy the condition

0 < ω1 < 2λ−1
0 , 0 < ω2 < 2µ−1

0 , (4)

where λi(i = 0, 1, ..., n1) and µj(j = 0, 1, ..., n2) are the eigenvalues of BT
1 B1 and BT

2 B2 sorted
in non-increasing order, respectively.

Defining
δ0

i,j = Qi,j − P0(ui, vj), i = 0, 1, ..., m1, j = 0, 1, ..., m2,

and rewriting it into the matrix form, it yields

δ0 = Q− B1P0BT
2 .

Here, Q and P0 are control points sorted in a matrix form.
For the (h, l)-th control point P0

h,l , we take the adjusting vector as

∆0
hl =

m1

∑
i=0

m2

∑
j=0

(Z1
1)h,iδ

0
i,j(Z

1
2)l,j, h = 0, 1, ..., n1, l = 0, 1, ..., n2, (5)

where (Z1
1)h,i is the (h, i)-th element of Z1

1, and (Z1
2)l,j is the (l, j)-th element of Z1

2. Here,

Z1
1 and Z1

2 are defined by

Z1
1 = (2I1 − Z0

1B1)Z0
1, Z1

2 = (2I2 − Z0
2B2)Z0

2 (6)

where I1 and I2 are the identity matrices of order (n1 + 1) and (n2 + 1), respectively, Z0
1

and Z0
2 are defined as in (3).

Rewriting the adjusting vectors (5) into the matrix form, it yields

∆0 = Z1
1 · δ0(Z1

2)
T

.

For each control point P0
h,l , moving it along the adjusting vector ∆0

h,l , we have

P1 = P0 + ∆0.
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Then, we can obtain the first iterative surface as

P1(u, v) =
n1

∑
h=0

n2

∑
l=0

Bh(u)Bl(v)P1
h,l .

Similarly, we can obtain the iterative surface Pk(u, v) after the k-th iteration. According
to the iterative format 

δk = Q− B1PkBT
2

Zk+1
1 = (2I1 − Zk

1B1)Zk
1

Zk+1
2 = (2I2 − Zk

2B2)Zk
2

∆k = Zk+1
1 δk(Zk+1

2 )
T

Pk+1 = Pk + ∆k

, (7)

the (k + 1)-st iterative tensor product surface

Pk+1(u, v) =
n1

∑
h=0

n2

∑
l=0

Bh(u)Bl(v)Pk+1
h,l , (8)

is generated.
The iterative process is repeated, and we obtain an iterative surface sequence{

Pk(u, v), k = 0, 1, ...
}

.

3. Convergence Analysis for the Improved LSPIA

In this section, if the collocation matrices B1 and B2 are of full column rank, we present
Theorem 1 to prove that the surface sequence

{
Pk(u, v), k = 0, 1, ...

}
generated by the

iterative format (7) is convergent, and the limit surface is just the least-squares fitting of

the given data points
{

Qi,j

}m1,m2

i=0,j=0
. The initial tensor product surface has the least-squares

progressive-iterative approximation property.
An alternative explanation of LSPIA is to find the least-squares solution of the

matrix equation
B1XBT

2 = Q. (9)

If the collocation matrices B1 and B2 are of full column rank, the above equation is
equivalent to

BT
1 B1XBT

2 B2 = BT
1 QB2.

Minimizing the L2-norm of the residual matrix, the solution for the matrix Equation
(8) is the control points of the least-squares fitting surface to the given data points Q.

A sufficient condition for the matrix Equation (9) with one solution is [29]

BT
1 B1(BT

1 B1)
+

BT
1 QB2(BT

2 B2)
+
(BT

2 B2) = BT
1 QB2,

where (BT
1 B1)

+ is the Moore–Penrose generalized inverse of BT
1 B1, and (BT

1 B1)
+ is equal

to (BT
1 B1)

−1, when BT
1 B1 is non-singular, and (BT

2 B2)
+ is treated analogously. The least-

squares solution for the matrix Equation (9) is

X = (BT
1 B1)

−1
BT

1 QB2(BT
2 B2)

−1
(10)

Lemma 1. When the collocation matrices B1 and B2 are of full column rank, BT
1 B1 and BT

2 B2 are
positive definite matrices. Furthermore, they are non-singular and have positive eigenvalues.
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Proof. Consider that rank(B1) = n1 + 1. Therefore, the homogeneous linear equation
B1x = 0 has only zero solution. For any non-zero column vector x in (n1 + 1) -dimension,
there is B1x 6= 0, and

xTBT
1 B1x = ‖B1x‖2

2 > 0.

Therefore, BT
1 B1 is a positive definite matrix. It is non-singular and has positive

eigenvalues. B2 is handled in a similar fashion. Thus, the Lemma is proved. �

Lemma 2. For all the matrices Zk
1, Zk

2 defined as in (7), if B1 and B2 are of full column rank, then
we have

Zk
1Q(Zk

2)
T
= (Zk

1B1)(BT
1 B1)

−1
BT

1 Q[(Zk
2B2)(BT

2 B2)
−1

BT
2 ]

T
k = 0, 1, 2, ..., (11)

where Z0
1, Z0

2 are defined by (3).

Proof. Mathematical induction is used. According to Lemma 1, when B1 and B2 are of full
column rank, BT

1 B1 and BT
2 B2 are both non-singular. Then, applying (3) and (10), it yields

Z0
1B1(BT

1 B1)
−1BT

1 Q[(Zk
2B2)(BT

2 B2)
−1BT

2 ]
T

= ω1ω2BT
1 B1(BT

1 B1)
−1BT

1 QB2(BT
2 B2)

−1
(BT

2 B2) = ω1ω2BT
1 QB2 = Z0

1Q(Z0
2)

T.

Then (11) is true when k = 0. Assume that Lemma 2 is true for the case of k, i.e.,

Zk
1Q(Zk

2)
T
= (Zk

1B1)(BT
1 B1)

−1
BT

1 Q[(Zk
2B2)(BT

2 B2)
−1

BT
2 ]

T
.

Applying to the iterative formulae for Zk+1
1 and Zk+1

2 in (6), we have

(Zk+1
1 B1)(BT

1 B1)
−1BT

1 Q[(Zk+1
2 B2)(BT

2 B2)
−1BT

2 ]
T

.

= (2I1 − Zk
1B1)Zk

1B1(BT
1 B1)

−1BT
1 Q[(2I2 − Zk

2B2)Zk
2B2(BT

2 B2)
−1BT

2 ]
T

= (2I1 − Zk
1B1)Zk

1B1(BT
1 B1)

−1BT
1 Q[Zk

2B2(BT
2 B2)

−1BT
2 ]

T
(2I2 − Zk

2B2)
T

= Zk+1
1 Q(Zk+1

2 )
T

.

For the case of k + 1, (11) is true. Then, this completes the proof. �

Theorem 1. If the weights ω1 and ω2 satisfy the condition (4) and the collocation matrices B1
and B2 are of full column rank, then the iterative tensor product surface sequence generated by the
iterative format (7) is convergent to the least-squares fitting result of the initial data points Q.

Proof. Applying Lemma 1, BT
1 B1 and BT

2 B2 are both non-singular. According to the iterative
format (7), we have

Pk+1 − (BT
1 B1)

−1BT
1 Q[(BT

2 B2)
−1BT

2 ]
T

= Pk + Zk+1
1 (Q− B1PkBT

2 )(Z
k+1
2 )

T − (BT
1 B1)

−1BT
1 Q[(BT

2 B2)
−1BT

2 ]
T

.
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Using Lemma 2, substituting (11) into the abovementioned equation, it yields

Pk+1 − (BT
1 B1)

−1BT
1 Q[(BT

2 B2)
−1BT

2 ]
T

= Pk − Zk+1
1 B1PkBT

2 (Z
k+1
2 )

T − (BT
1 B1)

−1BT
1 Q[(BT

2 B2)
−1BT

2 ]
T

+Zk+1
1 B1(BT

1 B1)
−1BT

1 Q[(BT
2 B2)

−1BT
2 ]

T
(Zk+1

2 B2)
T

= [Pk − (BT
1 B1)

−1BT
1 Q((BT

2 B2)
−1BT

2 )
T
]

−Zk+1
1 B1

{
Pk − (BT

1 B1)
−1BT

1 Q[(BT
2 B2)

−1BT
2 ]

T
}
(Zk+1

2 B2)
T

(12)

The above equation is expressed in matrix form. For the convenience of analysis,
we need to rearrange it in column-vector form. For example, the initial data point Q is
expressed as

→
Q = [Q00, Q01, · · · , Q0m2

, Q10, · · · , Q1m2
, · · · , Qm1m2

]T.

P is treated analogously. We define

P∞ = (BT
1 B1)

−1
BT

1 Q[(BT
2 B2)

−1
BT

2 ]
T

. (13)

Applying the properties of the Kronecker product [30], (12) is equivalent to

−−−−−−−→
Pk+1 − P∞ =

−−−−−−→
Pk − P∞ − (Zk+1

1 B1)⊗ (Zk+1
2 B2)

−−−−−−→
Pk − P∞

= [I− (Zk+1
1 B1)⊗ (Zk+1

2 B2)]
−−−−−−→
Pk − P∞ .

The above iterative process is repeated, and we obtain

−−−−−−−→
Pk+1 − P∞ = [I− (Zk+1

1 B1)⊗ (Zk+1
2 B2)][I− (Zk

1B1)⊗ (Zk
2B2)
−−−−−−−→
Pk+1 − P∞

= · · ·

=
k+1
∏

s=1
[I− (Zs

1B1)⊗ (Zs
2B2)]

−−−−−−→
P0 − P∞ .

(14)

where (Zs
1B1)⊗ (Zs

2B2) is the Kronecker product of Zs
1B1 and Zs

2B2, and I is the identity
matrix of order (n1 + 1)(n2 + 1).

According to the iterative process of Zs
1 and Zs

2 shown in (7), we have

ρ(Z1
1) = (2−ω1λi)ω1λi, ρ(Z1

2) = (2−ω2µj)ω2µj.

When the weights ω1 and ω2 satisfy the condition (4), i.e.,

0 < ω1 < 2λ−1
0 , ω1 6= λ−1

i , 0 < ω2 < 2µ−1
0 , ω2 6= µ−1

j ,

there is
− 1 < −(1−ω1λi)

2,−(1−ω2µj)
2 ≤ 0,

It means
0 < ρ(Z1

1), ρ(Z1
2) ≤ 1.

Therefore, ρ(I− (Z1
1B1)⊗ (Z1

2B2)) = 1− ρ(Z1
1B1) · ρ(Z1

2B2) according to [31], and the
value of ρ(I− (Z1

1B1)⊗ (Z1
2B2)) belongs to [0, 1).

Suppose there is 0 < ρ(Zs
1), ρ(Zs

2) ≤ 1, s ≥ 1, then using the iterative process of Zs
1

and Zs
2 shown in (7), we obtain

0 < ρ(Zs+1
1 B1) = 1− [ρ(Zs

1B1)− 1]2 ≤ 1,
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and
0 < ρ(Zs+1

2 B2) = 1− [ρ(Zs
2B2)− 1]2 ≤ 1.

The assumption is true for the case of s + 1. Using mathematical induction, we have

0 < ρ(Zs
1), ρ(Zs

2) ≤ 1, s ≥ 1

Further, we have

ρ[I− (Zs
1B1)⊗ (Zs

2B2)] = 1− ρ(Zs
1B1) · ρ(Zs

2B2) ∈ [0, 1),

and the spectral radius of the iterative matrix
k+1

∏
s=1

[I− (Zs
1B1)⊗ (Zs

2B2)] has the value range

[0, 1). Therefore,

lim
k→∞

k+1

∏
s=1

[I− (Zs
1B1)⊗ (Zs

2B2)] = 0(n1+1)(n2+1),

where 0(n1+1)(n2+1) is a zero matrix of order (n1 + 1)(n2 + 1).
Using (14), when k→ ∞ , it follows

→
Pk+1 − P∞ = 0(n1+1)(n2+1)×2.

We rewrite the above equation in matrix form and replace P∞ by (13). It is equiva-

lent to Pk → (BT
1 B1)

−1BT
1 Q[(BT

2 B2)
−1BT

2 ]
T

as k→ ∞ , which means the surface sequence{
Pk(u, v), k = 0, 1, ...

}
(8) obtained by the iterative format (7) is convergent, and the limit

surface is the least-squares approximation surface of the initial data points
{

Qi,j

}m1,m2

i=0,j=0
.

This completes the proof. �

4. Implementation

This section introduces the preparation for the fitting algorithm.

4.1. Parameterization of the Initial Data Points

Given a data point set
{

Qi,j

}m1,m2

i=0,j=0
, each point Qi,j is assigned to a pair of parameter

values (ui, vj), where ui is defined as the row parameter of Qi,j in the u -direction, and vj is
defined as the column parameter of Qi,j in the v-direction (See Figure 1a). The procedure
for calculating (ui, vj) is illustrated in Figure 1.

First, we calculate the parameter ti,j for Qi,j using the normalized accumulated chord
parameterization method [32], i.e.,

t0,j = 0, ti,j = ti−1,j +
‖Qi,j −Qi−1,j‖

∑m1
i=1 ‖Qi,j −Qi−1,j‖

, i = 1, 2, · · · , m1, j = 0, 1, · · · , m2.

Then, the row parameter ui of point Qi,j in the i-th row is defined by the average value
of the parameters ti,j of the data points in the i-th row (See Figure 1b), i.e.,

ui =
1

m2 + 1

m2

∑
j=0

ti,j, i = 0, 1, · · · , m1.

The column parameter vj of Qi,j can be calculated in the same way. Therefore, the
parameter pair (ui, vj) of each point Qi,j can be derived.
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4.2. Selection of the Initial Control Points

According to Theorem 1, the iterative surface sequence converges to the least-squares
fitting result of the data points, no matter how we choose the initial control points. As a
practical matter, the control points cannot be selected completely at random. Considering
that the shape of the data set is mainly characterized by points with a large curvature, we
choose the points with a larger curvature as the initial control points to make the proposed
method converge quickly.

Similar to the parameterization procedure in Section 4.1, given a data point set{
Qi,j

}m1,m2

i=0,j=0
, each point Qi,j is assigned to a curvature pair (ku

i , kv
j ). First, the total curva-

ture ki,j is calculated for each point Qi,j as follows.
According to the formula of discrete curvature [33], the discrete curvature ku

i,j in the
u-direction is expressed as

ku
i,j =

‖∆Qi,j × ∆2Qi,j‖
‖∆Qi,j‖

3 , i = 0, 1, · · · , m1,

where ∆Qi,j and ∆2Qi,j are the first-order and second-order differences of Qi,j in the u-
direction, i.e.,

∆Q0,j =
Q1,j−Q0,j
‖Q1,j−Q0,j‖,

∆Qi,j =
Qi+1,j−Qi−1,j

‖Qi+1,j−Qi,j‖+‖Qi,j−Qi−1,j‖
, i = 1, 2, · · · , m1 − 1,

∆Qm1,j =
Qm1,j−Qm1−1,j
‖Qm1,j−Qm1−1,j‖

,

∆2Q0,j =
∆Q1,j−∆Q0,j
‖Q1,j−Q0,j‖,

∆2Qi,j =
∆Qi+1,j−∆Qi−1,j

‖Qi+1,j−Qi,j‖+‖Qi,j−Qi−1,j‖
, i = 1, 2, · · · , m1 − 1,

∆2Qm1,j =
∆Qm1,j−∆Qm1−1,j
‖Qm1,j−Qm1−1,j‖

.

The discrete curvature kv
i,j of Qi,j in the v-direction is treated analogously. Therefore,

the total curvature ki,j of Qi,j is calculated by

ki,j =
(

ku
i,j

)2
+
(

kv
i,j

)2
, i = 0, 1, · · · , m1, j = 0, 1, · · · , m2.
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Next, the row curvature ku
i of Qi,j is obtained by averaging the total curvatures in the

v-direction

ku
i =

1
m2 + 1

m2

∑
j=0

ki,j, i = 0, 1, · · · , m1.

The column curvature kv
j of Qi,j is calculated in a similar way. Therefore, the curvature

pair (ku
i , kv

j ) of each data point Qi,j is derived.

To choose the control points
{

Ph,l
}n1,n2

h=0,l=0(n1 < m1, n2 < m2) of the initial iterative

surface from the original data points
{

Qi,j

}m1,m2

i=0,j=0
, we just select their subscripts (row

subscript and column subscript) based on their curvature pairs. Since the boundary points
are also the feature points, four corners are selected as the initial control points, namely,
the row subscripts 0, m1 and the column subscripts 0, m2. For the row curvature ku

i , choose
the row subscripts

{
i1, ..., in1−1

}
from {1, ..., m1 − 1}, whose row curvatures are top n1 − 1,

where n1 < m1. For the column curvature kv
j , choose the column subscripts

{
j1, ..., jn2−1

}
from {1, ..., m2 − 1}, whose column curvatures are top n2 − 1, where n2 < m2. Therefore,
the subscripts of the initial control points belong to the following subscript sequence

{i0 = 0, i1, · · · , in1 = m1} × {j0 = 0, j1, · · · , jn2 = m2},

and the initial position of the control points can be determined while the parameter pair
(ui, vj) of each control point satisfies

(ui, vj) ∈
{

ui0 , ui1 , · · · , uin1

}
×
{

vj0 , vj1 , · · · , vjn2

}
.

4.3. Knot Vectors and Fitting Error

The knot vectors for a bi-cubic tensor product B-spline surface are defined by the
following technique of averaging [32]

u0 = u1 = u2 = u3 = u0, un1 = un1+1 = un1+2 = un1+3 = un1 ,

uku+3 = 1
3

p+2
∑

k=p
uik , p = 1, 2, · · · , n1 − 3,

v0 = v1 = v2 = v3 = v0, vn2 = vn2+1 = vn2+2 = vn2+3 = vn2 ,

vkv+3 = 1
3

q+2
∑

k=q
vjk , q = 1, 2, · · · , n2 − 3.

The fitting error Ek of the k-th iteration is defined by

Ek =
m1

∑
i=0

m2

∑
j=0

∥∥∥∥Qi,j −
n1

∑
h=0

n2

∑
l=0

Bh(ui)Bl(vj)Pk
h,l

∥∥∥∥2

(15)
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4.4. Algorithm Implementation

The process of fitting a data set with the proposed method is described in Algorithm 1.

Algorithm 1. Surface fitting of the data points by the accelerated LSPIA method

Input: The data point set
{

Qi,j

}m1,m2

i=0,j=0
and a given iterative tolerance ε.

Output: The fitting surface Pk(u, v).
Step 1: Calculate the parameter pair (ui, vj

)
for each point Qi,j according to Section 4.1.

Step 2: Choose the initial control points P0 according to Section 4.2.
Step 3: Calculate the knot vectors according to Section 4.3.
Step 4: Compute Z0

1 and Z0
2 according to (3).

k = 0;
do
• Calculate the difference vectors δk = Q− B1PkBT

2 ;
• Calculate Zk+1

1 = (2I1 − Zk
1B1)Zk

1 and Zk+1
2 = (2I2 − Zk

2B2)Zk
2;

• Calculate the adjustment vectors ∆k = Zk+1
1 δk(Zk+1

2 )
T

;
• Construct the control points Pk+1 = Pk + ∆k for the (k + 1)-st iteration;
• Calculate the fitting error Ek by (15);
• k = k + 1;

While (|Ek+1 − Ek| < ε).

5. Numerical Examples

In this section, we present five examples and compare the results with those of the
traditional LSPIA method [18] to show the efficiency of the proposed LSPIA algorithm for
the surface fitting of data set. The fitting surface had bi-cubic B-spline basis functions, since
the bi-cubic tensor product B-spline surface is simple and widely used in CAD/CAM. It is
hard to accurately calculate the optimal weights; so, we defined ω1, ω2 in the same way as
the weight in [18] for practical applications, i.e.,

ω1 = 2‖BT
1 B1‖

−1
∞ , ω2 = 2‖BT

2 B2‖
−1
∞ .

The point sets in the five examples were as follows.

Example 1: 121× 161 grid data points sampled from a human face collection.
Example 2: 21× 21 grid data points sampled from an ear shape flake collection.
Example 3: 41× 61 grid data points sampled from a mold collection.
Example 4: 81× 61 grid data points sampled from a tooth shape flake collection.
Example 5: 501× 501 grid data points sampled from a peaks (501) function collection.

The fitting surfaces and the fitting errors are plotted in Figures 2–6, where the point
grids and the initial iterative surface are shown in (a), the iterative surfaces after five itera-
tions are provided in (b), the limit fitting surfaces are shown in (c), and the comparison chart
of the fitting error vs. the number of iterations for the proposed method and the traditional
LSPIA method are presented in (d). In (d), it is easy to observe that the fitting error of our
proposed method decreased sharply and satisfied the termination criterion quickly.
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Table 1 contains the fitting errors Ek (k = 0, 1,..., 6), Estop, and E∞ for examples 1–5
when using our method and the traditional LSPIA method. The termination criterion is
|Ek+1 − Ek| < 10−3. Estop is the fitting error when the algorithm is stopped, E∞ represents
the error between Q and P∞. If Ek is null in Table 1, it means that the termination criterion
is satisfied in the previous iteration. In Table 1, we can see that the error of the proposed
method was less than that of the LSPIA method after the same iterations, and the proposed
algorithm was terminated after about five or six iterations in examples 1–4.

Table 1. (k = 0, 1,..., 6), Estop and E∞ for examples 1–5.

Examples Methods E0 E1 E2 E3 E4 E5 E6 Estop E∞

Ex. 1
LSPIA 21.96525 9.58174 6.13142 4.42516 3.39926 2.71392 2.22640 0.04658

0.00292Ours 21.96525 10.07568 2.70966 0.30180 0.01780 0.00355 0.00293 0.00293

Ex. 2
LSPIA 4.80661 1.10115 0.40587 0.20703 0.13203 0.09708 0.07782 0.02730

0.01619Ours 4.80661 1.92369 0.27769 0.02663 0.01687 0.01620

Ex. 3
LSPIA 17.46394 5.96253 2.76524 1.53887 0.99237 0.71154 0.54684 0.02828

0.00766Ours 17.46394 9.37228 2.61701 0.17271 0.01061 0.00773 0.00766

Ex. 4
LSPIA 15.25581 5.74124 3.07872 1.97844 1.42757 1.10820 0.90186 0.07447

0.03950Ours 15.25581 7.64569 1.98735 0.18241 0.04691 0.03974 0.03950

Ex. 5
LSPIA 173,996.46 144,906.89 132,412.83 122,822.74 114,511.11 107,057.94 100,288.95 15.51962

14.63951Ours 173,996.46 140,489.44 95,713.553 43,647.269 8899.5952 434.91927 16.787049 14.63951

The error between the control point Pk after k iterations and the limit control point P∞

is defined by

ek =
n1

∑
h=0

n2

∑
l=0
‖Pk

h,l − P∞
h,l‖

2
.

Table 2 shows that the error ek of the proposed method was less than that of the
LSPIA method after k iterations, and the control point Pk was much closer to the limit
control point.
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Table 2. (k = 0, 1,..., 7) for examples 1–5.

Examples Methods e0 e1 e2 e3 e4 e5 e6 e7

Ex. 1
LSPIA 4.496 × 100 3.406 × 100 2.840 × 100 2.454 × 100 2.167 × 100 1.943 × 100 1.763 × 100 1.615 × 100

Ours 4.496 × 100 2.558 × 100 1.024 × 100 2.497 × 10−1 3.112 × 10−2 1.891 × 10−3 5.310 × 10−5 1.163 × 10−7

Ex. 2
LSPIA 2.107 × 100 9.672 × 10−1 6.391 × 10−1 4.975 × 10−1 4.204 × 10−1 3.710 × 10−1 3.354 × 10−1 3.079 × 10−1

Our 2.107 × 100 9.146 × 10−1 2.761 × 10−1 8.403 × 10−2 1.375 × 10−2 3.041 × 10−4 7.247 × 10−8 1.754 × 10−15

Ex. 3
LSPIA 2.419 × 100 1.406 × 100 1.013 × 100 7.989 × 10−1 6.639 × 10−1 5.694 × 10−1 4.986 × 10−1 4.430 × 10−1

Ours 2.419 × 100 1.165 × 100 3.351 × 10−1 6.330 × 10−2 8.403 × 10−3 3.900 × 10−4 3.268 × 10−6 4.527 × 10−10

Ex. 4
LSPIA 3.026 × 100 2.054 × 100 1.632 × 100 1.383 × 100 1.215 × 100 1.091 × 100 9.940 × 10−1 9.148 × 10−1

Ours 3.026 × 100 1.611 × 100 6.031 × 10−1 1.610 × 10−1 2.331 × 10−2 1.032 × 10−3 8.683 × 10−6 2.193 × 10−9

Ex. 5
LSPIA 1.159 × 104 1.113 × 104 1.072 × 104 1.035 × 104 1.000 × 104 9.676 × 103 9.372 × 103 9.088 × 103

Ours 1.159 × 104 1.043 × 104 7.890 × 103 4.187 × 103 1.225 × 103 1.295 × 102 3.505 × 100 9.999 × 10−2

Table 3 lists the running time and iteration number of the proposed method and
the LSPIA method. It can be observed that the iteration number of the LSPIA method
was much larger than that of the proposed method. When the termination condition was
|Ek+1 − Ek| < 10−7, the iteration number of the LSPIA method was 70–140 times that of
our method. The iteration number rapidly increased as the termination criterion decreased.
The reason is that our method is a non-stationary iterative method. As the iteration number
increased, the spectral radius of the iterative matrix decreased rapidly and tended to zero.
Although our iterative format is complex, the running time of the proposed method was
less than that of the LSPIA method. Especially, it is obvious that the proposed method is
more advantageous and efficient than the LSPIA method, when there is a large-scale fitting
problem, such as in Example 5.

Table 3. Comparison of the iteration number and running time of our method and the LSPIA method
under the different termination criteria.

Examples Criterion
LSPIA Ours

Time (s) Iterations Time (s) Iterations

Ex. 1
1 × 10−3 0.4640 80 0.3863 6
1 × 10−5 0.7520 350 0.3971 7
1 × 10−7 1.2650 771 0.4210 8

Ex. 2
1 × 10−3 0.0123 20 0.0102 5
1 × 10−5 0.0145 110 0.0118 6
1 × 10−7 0.0346 712 0.0128 7

Ex. 3
1 × 10−3 0.0544 40 0.0512 6
1 × 10−5 0.0720 190 0.0526 7
1 × 10−7 0.1250 571 0.0537 8

Ex. 4
1 × 10−3 0.1180 61 0.0951 6
1 × 10−5 0.1710 262 0.0962 7
1 × 10−7 0.2870 652 0.0971 8

Ex. 5
1 × 10−3 230.465 4076 7.079 9
1 × 10−5 533.765 9154 7.386 10
1 × 10−7 1151.947 18,837 8.104 11

6. Conclusions

In this paper, we propose an efficient least-squares progressive iterative method for
tensor product surfaces. Combined with the Schulz iterative method for computing the
Moore–Penrose inverse, we designed an accelerated LSPIA iterative format with fast
convergence rate. In addition, the iterative format was expressed in matrix form, which is
different from previous methods. The calculation amount was greatly reduced, since the
method avoided the Kronecker product. The presented method is perfectly suitable for
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big data fitting in engineering applications. Future research may focus on extending the
method to different kinds of PIA methods.
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