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Abstract: Unsupervised learning is one type of machine learning with an exceptionally high number
of applications in various fields. The most popular and best-known group of unsupervised machine
learning methods is clustering methods. The main goal of clustering is to find hidden relationships
between individual observations. There is great interest in different density estimation methods,
especially when there are outliers in the data. Density estimation also can be applied to data clustering
methods. This paper presents the extension to the clustering method based on the modified inversion
formula density estimation to solve previous method limitations. This new method’s extension works
within higher dimensions (d > 15) cases, which was the limitation of the previous method. More
than 20 data sets are used in comparative data analysis to prove the effectiveness of the developed
method improvement. The results showed that the new method extension positively affects the data
clustering results. The new reduced clustering method, based on the modified inversion formula
density estimation, outperforms popular data clustering methods on test data sets. In cases when the
accuracy is not the best, the data clustering accuracy is close to the best models’ obtained accuracies.
Lower dimensionality data were used to compare the standard clustering based on the inversion
formula density estimation method with the extended method. The new modification method has
better results than the standard method in all cases, which confirmed the hypothesis about the new
method’s positive impact on clustering results.

Keywords: nonparametric density estimation; unsupervised machine learning; clustering; inversion
formula; dimensions reduction

MSC: 62G05; 62G07; 62G30

1. Introduction

Scientists first mentioned artificial intelligence long ago, but in the last decade, it
has gained immense popularity, and it can now be used in all areas of life. Machine
learning is the most widely used group of mathematical methods, often called artificial
intelligence methods, to gain more popularity. Researchers classify machine learning into
various types, such as supervised, semi-supervised, reinforcement, and unsupervised
learning. This paper focuses explicitly on unsupervised learning methods. Unsupervised
machine learning is one type of machine learning with an exceptionally high application
in various fields. The most popular and best-known group of unsupervised machine
learning methods is clustering methods used in cluster analysis. In 1932, Driver and
Kroeber first mentioned cluster analysis, which noticeably was mentioned earlier than
artificial intelligence. The main goal of cluster analysis is to find hidden relationships
between individual observations. These observations can be the company’s customers,
products, and goods, as well as doctors’ patients and other data. The main aim is to divide
observations into groups that the researcher does not immediately know. Data clustering
has applications in different fields: healthcare for detection of breast cancer [1], Alzheimer’s
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disease [2,3], and others. Clustering can also be applied in pattern recognition [4,5] and
big data text clustering [6,7]. Clustering methods often use different distance measures
to determine how close individual observations are to each other and determine the best
clustering. In current studies, the k-means clustering method is the most used, but there
are also many different clustering methods. Various clustering methods are used to solve
various practical problems. However, although the choice of these methods is wide, this
problem remains challenging and new methods that can solve clustering problems are
constantly being sought. It can also be noted that much attention is paid to developing
various density estimation methods that can be used to solve the problem of data clustering.
There is also an ongoing search for ways to estimate density if there are outliers in the
data. Various methods based on neural targets have been proposed to solve this problem:
soft-constrained neural networks [8] and Parzen neural networks [8]. This work is also
based on data clustering based on density estimation. This research paper is a follow-
up work of a more extensive study on developing a new data clustering method [9]. A
previous research paper observed that the newly developed clustering method based on
the modified inversion formula density estimation (CBMIDE) performs poorly when the
data dimensions are higher (d > 10). In this paper, as a novelty, we suggest modification
of the CBMIDE clustering method for higher-dimension data to allow the method to
work in higher dimensions; moreover, to increase the previous method’s accuracy in the
lower-dimensionality case. For this reason, this research paper examines the impact of
data dimensionality reduction modification on the method. Data dimensions are essential
for the accuracy of clustering methods, calculation time, and using different computing
resources. In a typical case, it is observed that with increasing dimension, the time of
data clustering also increases significantly and can even increase exponentially. In such
a case, one solution is to reduce the dimensionality of the data. It can be done using
different dimensionality reduction methods. Combining data dimensionality reduction
with clustering is quite common because it saves many resources. Data dimensionality
reduction and the application of reduced dimensions in clustering are also discussed in
the scientific literature, where the simplest k-means and principal component analysis
(PCA) methods were first combined [10]. These studies are popular even now. The main
reason for this is the increasing amount of data every year. A relatively popular field of
combining these methods is gene analysis. Data dimensionalities reduction methods such
as principal component analysis (PCA) [11], non-negative matrix factorization (NMF) [12],
independent component analysis (ICA) [13] and clustering methods such as k-means,
density-based spatial clustering of applications with noise (DBSCAN), and others used to
study gene sequences [14]. Furthermore, more complex methods are noticed to reduce the
dimensions of the data, such as t-distributed stochastic neighbour embedding (t-SNE) [15],
uniform manifold approximation and projection (UMAP) [16], and different combinations
of methods [17–22].

In this paper, we modify the CBMIDE method and test our hypothesis about the
impact of dimensionality reduction on clustering results. The paper hypothesizes that
the accuracy of data clustering can be maintained by reducing data dimensions using
data dimensionality reduction methods and that the new RCBMIDE method has the
advantage compared with an earlier method and other popular methods. This paper uses
a much larger number of data dimensionality reduction methods and clustering methods
to compare results.

This paper is organized as follows. In the second section of this paper, we present
clustering based on the modified inversion formula density estimation and a reduced
version of this method. The third section of the paper contains information about the
methodology, methods used in the comparative analysis, data sets, and others. The fourth
section of the paper reviews the results obtained from the research study. Finally, the last
section of this paper presents a discussion of research and research results, conclusions,
and future work.
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2. Clustering Based on the Density of the Modified Inversion Formula

Data clustering is possible based on density estimation functions. In statistical mod-
elling, estimating probability density functions (pdf) is one of the most critical parts.
Probability density functions make it possible to describe random variables as hidden
functions of other variables and simultaneously identify hidden relationships, which can be
used to create data groups. For example, if we claim that the random vector X ∈ Rd satisfies the
distribution mixture model if the distribution density f (x) satisfies Equation (1).

f (x) =
q

∑
k=1

pk fk(x) = f (x, θ). (1)

In the given formula (1), fk(x)—distribution density, θ—multivariate model parameter,
and pk—the probability of the k-th element. It is worth noting that when evaluating a
mixture of distributions, the number of clusters q and a priori probability pk is used, and
the following conditions must be met:

pk > 0,
q

∑
k=1

pk = 1. (2)

Suppose X is a d-dimensional random vector with a distribution density f(x), and there
is a sample of independent copies of X, where X = (X(1), . . . , X(n)). We will say that the
sample satisfies the mixture model if X(t) satisfies (1). We will call size n the sample size
(volume). When examining the approximations of parametric methods, it should be empha-
sized that as the data dimension increases, the number of model parameters grows rapidly,
which makes it more difficult to find accurate parameter estimates. One-dimensional
data projections Xτ = τ′X density fτ is much easier to find than multidimensional data
density f because a mutually unambiguous correspondence exists, f ↔

{
fτ , τ ∈ Rd

}
. The

projection density fτ of one-dimensional data is much easier to find than the density f of
multidimensional data. If the distributions used are Gaussian, then the one-dimensional
Gaussian mixture model can be described by the following formula.

fτ(x) =
q

∑
k=1

pk,τ ϕk,τ(x) = fτ(x, θτ), (3)

here ϕk,τ(x) = ϕ
(

x; mk,τ , σ2
k,τ

)
—Gaussian density and multidimensional parameter de-

pends on the given parameters θτ =
(

pk,τ , mk,τ , σ2
k,τ

)
, k = 1, . . . , q. The following equa-

tions relate these parameters pj,τ = pj, mj,τ = τ′Mj, and σ2
j, τ = τ′Rjτ. Then we can use the

inversion formula (4) given below.

f (x) =
1

(2π)d

∫
Rd

e−it′xψ(t)dt, (4)

where ψ(t) = Eeit′x denotes the characteristic function of the random variable X. To use the
inversion formula, first of all, we select the number of design directions, which must be evenly
distributed on the unit sphere, the set T, and by changing the characteristic function by its
estimate, we therefore obtain the estimating formula for the density calculation [23,24]:

f̂ (x) =
A(d)
#T ∑

τ∈T

∞∫
0

e−iuτ′xψ̂τ(u)ud−1e−hu2
du, (5)
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where # denotes the number of elements in the array. It is possible to calculate the constant
A(d), which depends on the dimension of the data, using the formula for the volume of a
d-dimensional sphere.

A(d) =
(Vd(1))

′

R

(2π)d =
d2−dπ−

d
2

Γ
(

d
2 + 1

) . (6)

Formula (5) can be used for various estimates of the characteristic function of the
projected data. One of the disadvantages of the method using the inversion formula
defined in (5) is that the mixture model of Gaussian distributions described by this estimate
(when fk = ϕk) only estimates the density well of observations of the distribution close to it.
The density estimation using a mixture of Gaussian distributions can become complicated
when approximating the density under study due to many components with low a priori
probabilities. To overcome this, we can introduce a noise cluster and use a modified
algorithm based on a multidimensional Gaussian distribution mixture model. One such
algorithm is the inversion formula (4). Using this formula, we can calculate the parametric
estimate of the characteristic function of uniform distribution density.

ψ̂(u) =
2

(b− a)u
sin

(b− a)u
2

·e
iu(a+b)

2 . (7)

The uniform distribution density function (7) defines b as the maximum value and
a as the minimum value. In the density estimate calculation formula (5), we construct
the estimation of the characteristic function by combining the characteristic functions of
a mixture of Gaussian distributions and a uniform distribution, using the corresponding
a priori probabilities. Then the calculated continuous characteristic function presented
earlier and the characteristic function of Gaussian distributions are used to form the density
estimate. A priori probabilities are used to calculate the density estimate, which allows
for controlling the influence of outliers on the density estimate. In formula (7), the second
component of the density estimate is evaluated as a noise cluster whose probability/weight
is p̂0.

ψ̂τ(u) =
q̂τ

∑
k=1

p̂k,τeium̂k,τ−u2σ̂2
k,τ/2 + p̂0,τ

2
(b− a)u

sin
(b− a)u

2
·e

iu(a+b)
2 , (8)

The EM algorithm is used to apply this density estimate to data clustering. The
expectation-maximization (EM) algorithm can be used to estimate the parameters of a
mixture model, which is a probabilistic model for representing a dataset as a mixture of
multiple distributions. A mixture model is defined by a set of parameters, including the
individual components’ means, variances, and mixing proportions. E-step (expectation
step): For each data point, the algorithm calculates the probability that the point belongs to
each component in the mixture based on the current estimates of the model parameters.
Model parameters estimation is done by computing the likelihood of the data point given
each component and multiplying it by the mixing proportion of that component. M-
step (maximization step): In this step, the algorithm updates the model parameters to
maximize the expected likelihood of the data based on the probabilities computed in the E-
step. Specifically, the components’ means, variances, and mixing proportions are updated
to maximize the likelihood of the data under the current assignment of data points to
components. The algorithm alternates between the E-step and the M-step until convergence
is reached, at which point the estimated parameters are considered the maximum likelihood
estimates. In the first step of the clustering algorithm, initial parameters selection using the
initialization of k-means is performed. In the scientific literature, the random selection of
parameters is used quite often [25,26]. However, this parameter selection showed that, in
this case, the clustering method has worse stability. Furthermore, another way to choose
the initial parameters is to use hierarchical clustering to combine the data [27]. However,
this parameter initialization also failed in the case of the method being created.
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For this reason, it was decided to use a more stable initialization of k-means param-
eters, which is used for other density-based clustering methods, such as the Gaussian
mixture model and the Bayesian Gaussian mixture model (in package scikit-learn). The EM
algorithm is famous in scientific works [28–30]. Based on the EM algorithm, the parameters
of the data clustering method calculated after the number of r cycles are π̂k = π̂

(r)
k . Then

the new estimate of the multivariate parameter is θ̂ = θ̂(r+1), whose individual components
(probability, mean matrix, and covariance matrix, respectively) are calculated according to
the formulas below.

p̂k =
1
n

n

∑
t=1

π̂k(X(t)) (9)

M̂(k) =
1

np̂k

n

∑
t=1

π̂k(X(t)) · X(t) (10)

R̂(k) =
1

np̂k

n

∑
t=1

π̂k(X(t))
[
X(t)− M̂(k)

]
·
[
X(t)− M̂(k)

]′
(11)

where k = 1, . . . , q. Using the estimate of θ, the estimates of the probabilities πk are obtained
by replacing the unknown parameters with their statistical estimates from the formula

πk(x) =
pk fk(x)
f (x, θ)

and k = 1, q (12)

Suppose that the distribution of X depends on a random variable v that takes on values
1, . . . , q with corresponding probabilities p1, . . . , pq. In classification theory, v is interpreted
as the number of the class to which the observed object belongs. Thus, observations X(t)
would correspond to v(t), t = 1, . . . , n. The functions fk are treated as the conditional
distribution density of X under the condition v = k. According to this approach, loose
clustering of the sample is understood as posterior probabilities

πk(x) = P{v = k|X = x} (13)

evaluation when all x∈{X(1), . . . , X(n)}. Strict sample clustering would be the evaluation of
random variables v(1), . . . , v(n), i.e., the sample is divided into subsets based on equality

v̂(t) = arg max
k=1,...,q

π̂k(X(t)) (14)

The estimates π̂k are obtained by approximating the unknown components of the
distribution density with density estimates from the inversion formula and using the EM
(expectation maximization) algorithm.

The following Algorithm 1 can describe the generalized clustering of data based on
modified inversion formula density estimation (CBMIDE).

Algorithm 1: CBMIDE clustering algorithm

Input: Data set X= [X1, X2, . . . , Xn], cluster number K
Output: C1, C2, _ _, Ct
Initiation of the mean vector using the k-means method
Generate a T matrix. The set T calculation where design directions are evenly spaced on the

sphere.
1 For i = 1: t do
2 Density estimation for each point and cluster with the formula (8)
Update M̂, p̂k, R̂
3 End
4 Return C1, C2, _, Ct and M̂, p̂k, R̂
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The biggest drawback of the earlier proposed method is its use for large-dimensional
data. To use the inversion formula, first of all, we select the number of the design direction,
which must be evenly distributed on the unit sphere, the set T. As the dimensions increase,
finding design directions on a unit sphere becomes difficult. Therefore, it is not easy to
generate the required matrix T. For this reason, an extension of the CBMIDE method is
needed, allowing the use of this method for large-dimensional data. The data dimensional-
ity reduction applied in the first clustering step is an extension of the method proposed in
this paper.

Z = f (X, d) (15)

where Z—reduced dimensions data in latent space, X—initial data in the original space,
and d—number of dimensions. Further clustering of the data is then performed using the
reduced dimensionality data. Dimensional data reduction allows for the separation of
redundant characteristics of the observations, reducing the problem of multicollinearity in
the data. Likewise, data dimensionality reduction allows easier data visualization when
dimensions are reduced to two or three dimensions that can be represented visually. Data
dimensionality reduction can be performed using feature selection or methods that form
new dimensions that best represent the original data. Multiple data reduction techniques
were implemented into the new algorithm to extend the original clustering method based
on the inversion formula algorithm. To analyse and compare the results of these methods:
principal component analysis (PCA), independent component analysis (ICA), factor analy-
sis (FA), T-distributed stochastic neighbour embedding (t-SNE), TriMap, uniform manifold
approximation and projection (UMAP), ISOMAP, multidimensional scaling (MDS), and
locally linear embedding (LLE) were used. Different variants are used to determine which
of the modifications has the best clustering results by modifying the general data clustering
method based on the modified density estimation of the inversion formula. In the first
modification of the algorithm, we use principal component analysis to reduce data dimen-
sions into desired latent space. One of the most widely used data dimensionality reduction
methods is principal component analysis (PCA) [31].

Let us say we have a multidimensional data matrix X, then we aim to calculate the
correlation matrix R, and then the covariance matrix C is also created. If the individual
variables are not covariate, then their covariance coefficient equals 0. To find the main
components, the covariance matrix’s real vectors Ek and real values λk are found, which
are in the following equation

CEk = λkEk (16)

solutions. In the above equation, Ek is the column, C is the previously defined covariance
matrix, and the real vector λk is found in the characteristic equation |C− λk I| = 0, where I
is the identity matrix.

After sorting the eigenvectors Ek according to the values of the corresponding true values
in descending order, a matrix of principal components is formed as A = (E1, E2, . . . , En). Then
the transformation of the data into the latent space is performed according to the formula:

Zi =
(
Xi − X

)
Ad (17)

where Zi—column of latent space, Xi—column of the original space, d—selected number
of dimensions, and i—column number.

The second modification to improve the algorithm is the application of independent
components for dimensionality reduction. The main difference between principal com-
ponent analysis (PCA) and independent component analysis (ICA) is that PCA relies on
uncorrelated factors while ICA relies on independent [32].
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The third modification used in this paper is factor analysis. Factor analysis is a method
that considers the correlations of variables, and the aim is to find latent variables that
describe the original variables [33]. Suppose that there are k variables X1... Xk, and we seek
to determine the factors that describe these variables, the number of which is m, then, the
mathematical model of factor analysis can be summarized as

Xk = λk1F1 + λk2F2 + . . . + λkmFm + εk (18)

Multipliers λi are called factor weights. The factor analysis problem is the inverse of
the linear regression problem, i.e., we know Xk values, and we want to find out what can
be said about the common factors Fm.

The fourth modification of the CBMIDE method is to reduce the dimensionality of the
t-SNE data by constructing latent dimensions. T-distributed stochastic neighbour embed-
ding (t-SNE) is a method that is often intended for the visualization of multidimensional
data after reducing this data to a more convenient two-dimensional or three-dimensional
space [34]. This method is performed using two main steps. In the first step, a probabilistic
calculation is performed. If we have X as our dataset, we try to compute probabilities pij
based on the formula

pi|j =
exp(−||xi − xj||2/2σ2

i )

∑k 6=i exp(−||xi − xk||2/2σ2
i )

(19)

One of the most important things is that pi|i = 0 and ∑
i,j

pi,j = 1. Then, in the second

step, Kullback–Leibler error (KL) optimization is performed, thus aiming to determine the
exact locations of the observations in a smaller space. T-SNE aims to create d-dimensional
data, so the similarity between two points located in the reduced dimension zi and zj, is
calculated, which can be written in the given formula

qi,j =

(
1 + ||zi − zj ||2

)−1

∑k ∑l 6=k(1 + ||zk − zl ||2)
−1 (20)

Here, the Cauchy distribution is used to determine the similarity between observations.
Then, to find the most suitable reduced data matrix, the previously mentioned Kullback–
Leibler error (KL) is used, which can be defined as:

KL(P||Q) = ∑
i 6=j

pi,jlog
pi,j

qi,j
(21)

The gradient descent is used to do this. The Euclidean distance is mainly used in this
method; therefore, this distance is also used in this paper. The T-SNE data reduction method
is used quite often, so the inclusion of this method in the study is strongly justified [35–37].
The perplexity parameter of the t-SNE method used in the study is 30, the distance is
Euclidean, and the method used is Barnes–Hut.

The fifth, sixth, and seventh modifications of the method are similar to the previously
discussed modification of the t-SNE method since methods of the same family perform
data dimensionality reduction. UMAP (uniform manifold approximation and projection) is
a data dimensionality reduction technique such as t-SNE. Embedding is found by finding
a low-dimensional data projection with the closest possible equivalent fuzzy topological
structure. TriMap is a dimensionality reduction method that uses a triple constraint to
form an embedding of a low-dimensional set of points. TriMap provides a significantly
better global representation of data than other dimensionality reduction methods such
as t-SNE, LargeVis, and UMAP [38]. The ISOMAP method calculates a quasi-isometric,
low-dimensional embedding that best represents the original data set.
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The eighth and ninth modifications of the method are performed using the MDS
and LLE methods. The MDS method uses similarity or dissimilarity matrices to identify
the nearest neighbours. Given a proximity matrix with proximities between each pair of
objects in a set and a selected number of dimensions N, the MDS algorithm places each
object in N-dimensional space (lower-dimensional representation) so that the distances
between objects are preserved as best as possible. Locally linear embedding (LLE) tries
to reduce these dimensions by trying to preserve the geometric features of the original
non-linear structure [39]. The LLE first finds the k-nearest neighbours of points. Then it
approximates each data vector as a weighted linear combination of k nearest neighbours.
Finally, it calculates the weights that best restore the vectors from the neighbours and
then produces the low-dimensional vectors best restored by these weights. One of the
advantages of the LLE algorithm is that only one parameter needs to be tuned, which is the
value of k or the number of nearest neighbours considered part of a cluster. Furthermore,
the following methods are used as further relevant modifications: Spectral embedding
and kernel PCA. Spectral embedding is a technique used in machine learning and data
analysis to represent data points in a high-dimensional space in a lower-dimensional space,
typically for visualization or dimensionality reduction. Representation is achieved by
constructing a graph representation of the data points and using the eigenvectors of the
graph’s Laplacian matrix to define the embedding. The resulting embedding preserves
the pairwise distances between data points up to a scaling factor and can be used for
various tasks such as clustering, classification, and visualization. Spectral embedding
has been widely applied in various fields, including computer vision, natural language
processing, and social network analysis, due to its ability to reveal the underlying structure
of the data and facilitate downstream tasks. Kernel principal component analysis (kernel
PCA) is a non-linear dimensionality reduction technique that extends the traditional PCA
by projecting the data points onto a higher-dimensional feature space, where the data is
linearly separable. Linear separation is achieved using a kernel function to compute the
dot product of the data points in the feature space. The resulting embedding preserves
the pairwise distances between data points up to a scaling factor and can be used for
various tasks such as clustering, classification, and visualization. Kernel PCA has been
widely applied in various fields, including computer vision, natural language processing,
and genomics, due to its ability to capture non-linear patterns in the data and facilitate
downstream tasks. However, kernel PCA suffers from high computational complexity, as
it requires the computation of the kernel matrix, which has a quadratic time complexity
concerning the number of data points. Complexity makes kernel PCA impractical for
large datasets.

One possible metric for successful data dimensionality reduction is trustworthiness.
The trustworthiness metric is used to evaluate the success of the data dimensionality reduc-
tion methods used in the study [40]. This metric is calculated using the following formula.

T(k) = 1− 2
nk(2n− 3k− 1)

n

∑
i=1

∑
jεNk

i

max(0, (r(i, j)− k)) (22)

where for each observation i, Nk
i are its k nearest neighbours (the output space obtained

after applying the methods), and for each observation j, r(i, j) is its original data space. If
an unintended observation is observed in the output space, it is penalized. The number of
neighbours used in the study is 5. The generalized algorithm of the extended CBMIDE is
shown in the Algorithm 2.
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Algorithm 2: RCBMIDE clustering algorithm

Input: Data set X= [X1, X2, . . . , Xn], cluster number K, the smoothness parameter h, and the
percentage ratio of outliers p0, number of iterations t, number of dimensions d, data reduction
method.
Output: C1, C2, _ _, C
Input data reduction:
For j= 2: d < 15 do
Reduce dimension with the dimensionality reduction method
Calculate the trustworthiness of the reduced dimensions with (13)
Choose the best-reduced dimensions data based on trustworthiness.
Initiation of the mean vector using the k-means and k-means++ method
Generate a T matrix. The set T calculation where directions are evenly spaced on the sphere.
1 For i = 1: t do
2 Density estimation for each point and cluster
Update M̂, p̂k, R̂ values
3 End
4 Return C1, C2, _, Ct and M̂, p̂k, R̂

3. Materials and Methods

This section provides information on materials and methods. The first part of the
section discusses the clustering evaluation metrics used in the research. Then, research
data sets and data preparation for the research. Finally, the experimental setup was used in
the study.

3.1. Clustering Evaluation Metrics

Clustering results can be evaluated differently depending on whether the true values
are known. In the real-world case, the true values are unknown, so evaluation metrics such
as Calinski–Harabasz [41], Davies–Bouldin [42], or the silhouette coefficient must be used.
Meanwhile, in this study, the true values of the clusters are known, whereas synthetic
data sets are used. For this reason, other performance evaluation metrics can be used:
J score [43], normalized mutual information (NMI) [44], adjusted rand index (ARI) [45],
accuracy (ACC) [46], and Fowlkes–Mallows index (FMI) [47]. In this study, the primary
metric for evaluating data clustering is ACC. Furthermore, if the accuracy is close to or
equal, the clustering results are evaluated by NMI, ARI, and other metrics mentioned
previously. With the metric values remaining the same, the created database also stores
more metrics to evaluate the clustering results, such as completeness and homogeneity
scores. Additionally, visual representation of two-dimensional and three-dimensional data
to visually evaluate the clustering results.

Data clustering accuracy is evaluated based on the sum of the diagonal elements of
the confusion matrix, divided by the number of samples to obtain a value between 0 and 1.
This work considers this accuracy the only primary metric by which it is evaluated for final
clustering success.

ACC =
1
N

k

∑
i=1

ni (23)

The N is the total number of observations, ni is the number of data points correctly
divided into the corresponding cluster i, and k is the cluster number.

3.2. Research Datasets

This subsection provides basic information about the data used in the study. This study
uses more than 20 popular data sets from other scientific studies to evaluate clustering.
Table 1 provides basic information about the data. The following methods are used for data
preparation/normalization: Raw, MinMax, Standard, Robust, Max-Abs, QuantileNormal,
QuantileUniform, PowerTransformer, and Normalizer. It is worth noting that raw data
carries a high risk of possible differences between variables. However, the inclusion of
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these data allows evaluation of the influence of different data preparation methods on the
results of data clustering. For example, the MinMax scaler’s data is compressed to a (0,1)
scale based on the maximum and minimum values.

Xstd =
(X− Xmin)

(Xmax − Xmin)
(24)

In the case of the standard scaler, the data is standardized by removing the mean and
scaling to unit variance.

Xstd =
X− X

s
(25)

The robust scaler removes the mean and scales the data by the quantile range (default
IQR: interquartile range). The IQR is the interval between the first quartile (25th quantile)
and the third (75th) quartile).

Xstd =
X−Q1(X)

Q3(X)−Q1(X)
(26)

Table 1. A description of the data set used.

ID Data Sets Sample Size (N) Dimensions (D) Classes

1 Balance-scale 625 4 3
2 Arrhythmia 452 262 13
3 atom 800 3 2
4 Breast 570 30 2
5 Coil20 1440 1024 20
6 CPU 209 6 4
7 Dermatology 366 17 6
8 Diabetes 442 10 4
9 Ecoli 336 7 8
10 German 1000 60 2
11 Glass 214 9 6
12 Haberman 306 3 2
13 Heart-statlog 270 13 2
14 Iono 351 34 2
15 Iris 150 4 3
16 pmf 649 3 5
17 segment 2310 19 7
18 spambase 4601 57 2
19 Thyroid 215 5 3
20 wdbc 569 30 2
21 Wine 178 13 3

3.3. Experimental Setup

This subsection reviews the experimental setup of this research. Considering that
the research uses many different data dimension reduction methods, scaler methods, and
clustering methods, an appropriate experimental setup is required. First, data preparation
and dimension reduction are performed on a Linux server (30 CPUs, A30 24 GB GPU). Then,
with the help of DVC, the data is versioned and transferred to other machines used in the
study. All research results are stored in a PostgreSQL database, which allows nonrepetitive
calculations to be performed on multiple machines simultaneously. In addition, Grafana
is available for data visualization and Prometheus for error logging. Calculations are
performed using five separate machines: three servers and two computers. The parameters
of these machines: 1S—30 CPUs, 64 GB RAM; 2S—8 CPUs 128 GB RAM, 3S—16 CPUs,
64 GB RAM; 1C—Intel Core i7-8750H (6 cores, 12 logical processors), 32 GB RAM, 2060
6 GB GPU; and 2C—Intel Core i7-12700 K (12 cores, 20 threads), 32 GB RAM, NVIDIA 3080
Ti 12 GB GPU. The calculations of combinations of methods can be performed in parallel,



Mathematics 2023, 11, 661 11 of 15

and then the results are stored in a database table. Different clustering methods are used to
provide different parameters, so the parameters of each method are selected separately. A
predefined rule is used for parameter selection: Each parameter has at least 20 steps. More
than 65 million models have been created and saved in the current database.

4. Results

This section presents the main results of the research and compares reduced clustering
based on the modified inversion formula density estimation (RCBMIDE) with other cluster-
ing methods. The notation used in the following results is as follows: Agg—agglomerative
clustering, GMM—Gaussian mixture model, and BGMM—Bayesian Gaussian mixture; the
full names of other methods are given. A rich set of different parameters is used for data
clustering. Using the Agg method, the affinity values used were Euclidean, Manhattan, and
cosine, and the linkage values used were ward, complete, average, and single. In the case
of the BIRCH method, two main parameters are changed: Threshold and branching factor.
The threshold was changed from 0.05 to 1 and branching factor from 2 to 10. The k-means
method initializes the GMM, BGMM, CBMIDE, and RCBMIDE centres. The CBMIDE and
RCBMIDE methods also changed the smoothness parameter h from 0 to 0.5 and the size of
the generated matrix T from 10 to 1000 observations. The DBSCAN and HDBSCAN meth-
ods used Euclidean, Manhattan, and Chebyshev distances and changed the values of eps
and min samples. The minimum and maximum limits of the eps values were determined
by calculating the closest and farthest distance between points in the data set: the Min
sample value changes from 1 to N/2, where N is the number of data samples. The database
currently contains more than 60 million models (including models using dimensionality
reduction), and the current best-performing models are shown in the subsections of this
section. In the case of each model, different scalers are also used, which allows one to find
the most optimal model. The best clustering methods differ for different datasets, and there
is no single best method. It is also worth noting that the CBMIDE method cannot work for
some datasets due to many dimensions.

4.1. Performances of Reduced Clustering Based on the Modified Inversion Density Estimation for
Lower Dimensions Datasets

This subsection reviews the results obtained with lower-dimensional data sets. This
section is designed to compare the original CBMIDE method and the modified RCBMIDE
method. Given that the original CBMIDE method suffers in high dimensions, for this
reason, the comparison can only be made for lower dimensional datasets. Based on the
results obtained (see Table 2), it can be observed that the accuracy of the data clustering
using the newly modified reduced CBMIDE method (RCBMIDE) provides better clustering
results than the original CBMIDE method. These results prove our hypothesis about
reduced method application for data clustering and result improvement compared with
the original method. It can also be noticed that for five data sets, the best results are
obtained using the RCBMIDE method compared with other popular methods. In other
cases, the accuracy results are close to the best clustering method for the corresponding
data set, which proves the idea of reduced/modified method application in data clustering.
Talking about modifications, best results were achieved mainly with the sixth modification
(TriMap) and fifth modification (UMAP). For complete best modifications in each dataset,
see Table A2.
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Table 2. Different clustering methods results for lower dimensions datasets.

Dataset Agg BIRCH GMM BGMM DBSCAN K-Means HDBSCAN CBMIDE RCBMIDE

1balance-scale 0.624 0.658 0.568 0.586 0.464 0.603 0.597 0.576 0.693
atom 1.000 0.868 0.883 0.960 1.000 0.719 1.000 0.891 1.000
cpu 0.823 0.828 0.746 0.641 0.833 0.761 0.813 0.815 0.858

diabetes 0.507 0.514 0.459 0.455 0.482 0.428 0.477 0.502 0.512
ecoli 0.804 0.845 0.762 0.747 0.682 0.688 0.646 0.754 0.817
glass 0.514 0.565 0.509 0.528 0.514 0.547 0.528 0.527 0.607

Haberman 0.748 0.761 0.667 0.716 0.758 0.748 0.739 0.735 0.742
iris 0.967 0.973 0.967 0.893 0.94 0.967 0.700 0.975 0.983
pmf 0.977 0.977 0.92 0.977 0.983 0.844 0.978 0.934 0.981

thyroid 0.93 0.949 0.963 0.949 0.874 0.944 0.823 0.778 0.834
Wine 0.978 0.994 0.972 0.983 0.949 0.978 0.876 0.953 0.963

Values in bold and underlined indicate the best results for each dataset.

4.2. Performances of Reduced Clustering Based on the Modified Inversion Density Estimation for
Higher-Dimensional Datasets

This subsection reviews the results obtained using datasets with more dimensions.
It is important to note that CBMIDE does not work for large data dimensions, so it is
impossible to include it in this comparison. Based on these results (see Table 3), it can be
said that the proposed extension of the method is valid since, in this case, it is possible
to apply the clustering method based on the density estimation of the inversion formula.
The results showed that the extended RCBMIDE method for specific data sets has the
highest clustering accuracy compared to other existing clustering methods. For example,
the best results were achieved on german and segment datasets. For five more datasets,
the achieved results are second best in the comparison. For the german dataset, the best
method modification is the eighth modification (multidimensional scale (MDS)), and for
the segment dataset, the best results were achieved using the sixth modification (TriMap).
For complete best modifications in each dataset, see Table A1.

Table 3. Different clustering methods results for higher dimensions datasets.

Dataset Agg BIRCH GMM BGMM DBSCAN K-Means HDBSCAN RCBMIDE

arrhythmia 0.600 0.571 0.485 0.431 0.573 0.438 0.582 0.597
Breast 0.942 0.954 0.951 0.953 0.903 0.928 0.743 0.909
Coil20 0.738 0.738 0.638 0.675 0.867 0.733 0.884 0.882

dermatology 0.956 0.978 0.91 0.855 0.694 0.962 0.809 0.867
german 0.705 0.713 0.696 0.638 0.712 0.673 0.704 0.716
heart-

statlog 0.807 0.811 0.819 0.826 0.815 0.848 0.626 0.831

iono 0.729 0.795 0.849 0.809 0.929 0.712 0.906 0.899
segment 0.708 0.732 0.631 0.612 0.529 0.665 0.530 0.789

spambase 0.878 0.918 0.856 0.857 0.693 0.854 0.690 0.905
wdbc 0.942 0.954 0.951 0.958 0.903 0.928 0.743 0.951

Values in bold and underlined indicate the best results for each dataset.

5. Discussion

This paper reviews a data clustering method based on modified inversion formula
density estimation (CBMIDE) and its extension. It uses data dimensionality reduction—
reduced clustering based on the modified inversion formula density estimation (RCBMIDE).
This extension of the data clustering method is carried out because it was observed that the
CBMIDE method does not work for higher dimensions cases. For this reason, this paper
proposes an extension of the method by including data dimensionality reduction in the data
clustering algorithm. The application of data dimensionality reduction makes it possible to
apply the improved method to higher dimensions (d > 15). For the extension, data reduction
methods, such as principal component analysis, independent component analysis, factor
analysis, and ISOMAP, were used to reduce data dimensions. In addition, various methods
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of reducing data dimensions and dimensions were used. It allowed us to evaluate the
possible data impact of compression on the clustering accuracy. The results showed that
the new method extension positively affects the data clustering results. Compared to other
popular data clustering methods, the newly constructed RCBMIDE method works well
and achieves the best accuracy in many cases. When the accuracy is not the best, the
data clustering results are close to those obtained by the best models. Furthermore, an
experimental evaluation was made of the data of lower dimensions. This comparison aims
to compare this with the CBMIDE method without the extension. The results showed
that the new modification method has better results than the usual CBMIDE method in all
cases. Therefore, we can say that the hypothesis about method modification’s impact on
better clustering results was proved. It is also worth noting that the results showed that the
data dimensionality reduction methods used in all cases are different, so it is not easy to
decide which method works best. The trustworthiness metric allowed us to compare how
well the dimensionality reduction was performed and the effectiveness of the clustering
after that. The results showed that the UMAP and TriMap methods, which are methods of
the same family, usually have the best results for lower dimensional data. It can be said
that this paper proved the hypothesis about the extension of the developed method to
large-dimensional data applications in data clustering. Further research will be conducted
based on this work. The future direction of these studies and additional studies will be
carried out using a more significant number of data clustering methods, more data sets,
and dimensionality reduction methods. Further studies also aim to evaluate the influence
of individual method parameters on the results of data clustering, not only by isolating
the best models but by evaluating these models in more detail. Furthermore, this study
is the beginning of further studies in which the main focus will be deep clustering. The
development of the deep clustering method will be based on the density estimation of the
modified inversion formula.
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Appendix A

Table A1. RCBMIDE method extension (dimensionality reduction) for each higher-dimensions dataset.

Dataset RCBMIDE

arrhythmia TriMap (5)
breast UMAP (3)
Coil20 LLE (3)

dermatology NMF (2)
german MDS (3)

heart-statlog CosinePCA (4)
iono LLE (2)

segment TriMap6th (5)
spambase PCA (10)

wdbc MDS (5)
The value in the brackets represents the number of dimensions.
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Table A2. RCBMIDE method extension (dimensionality reduction) for each lower-dimensions dataset.

Dataset RCBMIDE

1balance-scale UMAP (2)
atom UMAP (2)
cpu TriMap (5)

diabetes TriMap (5)
ecoli UMAP (4)
glass LLE (5)

Haberman TSVD (2)
iris UMAP (6)
pmf LLE (2)

thyroid TSVD (4)
Wine PCA (4)

The value in the brackets represents the number of dimensions.
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