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Abstract: While surveying some internal categorical structures and their applications, it is shown that
triangulations and internal groupoids can be unified as two different instances of the same common
structure, namely a multi-link. A brief survey includes the categories of directed graphs, reflexive
graphs, links, multi-links, triangulations, trigraphs, multiplicative graphs, groupoids, pregroupoids,
internal categories, kites, directed kites and multiplicative kites. Most concepts are well-known, and
all of them have appeared in print at least once. For example, a multiplicative directed kite has been
used as a common generalization for an internal category and a pregroupoid. The scope of the notion
of centralization for equivalence relations is widened into the context of digraphs while providing a
new characterization of internal groupoids.
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1. Introduction

Every surface can be triangulated, thus giving rise to a triangulated surface consisting
of a collection of vertices, i.e., points lying on the surface, together with a collection of
triangles indexed over the selected vertices. Moreover, a start-neighbourhood is formed
(see display (2) below) every time we fix a vertex and consider the collection of triangles
incident to it. If we denote by V the set of vertices and by T the set of triangles, then a
triangulation consists of three maps from T to V, say a, b, c : T → V satisfying the star-
neighbourhood property. If the surface is embeddable in some n-dimensional space E, then
we have a further mapping g : V → E, providing a geometrical realisation for the otherwise
abstract vertices in V. Furthermore, when the surface is orientable, we have the maps a, b, c
given in a specific order, say (a, b, c), and hence each element t ∈ T can be interpreted as an
oriented triangle with vertices (a(t), b(t), c(t)), as illustrated.

c(t)

��

t b(t)

aa

a(t)

66

(1)

This means that the structure of a triangulation is a trigraph, displayed as

T
a //
b //
c
// V ,
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such that for every element v ∈ V, the collection of all elements t ∈ T that are incident to v
is finite, can be ordered as t0, . . . , tn, and forms a star-neighbourhood as illustrated in the
following display.

·

����

·

��

oo

· //

��

v //

??__

oo

�� ��

t0=tn
t1

t2 ··· tn−2

tn−1

·oo

^^

·

??

// ·

__ @@

(2)

On the other hand, an internal groupoid is an internal category in which every arrow
is invertible. An internal category is a particular instance of a multiplicative graph whose
structure can be presented as a diagram of the form

C2

π2 //

π1
//

m // C1e1oo
e2oo d //

c
// C0eoo (3)

in which (C1, C0, d, e, c) is a reflexive graph (see Section 2.2), some squares derived from
diagram (3) are commutative squares, whereas some other squares are required to be
pullback squares (see Sections 2.7 and 4.5). In spite of the dissimilarity between an internal
groupoid and a triangulation, there is one further type of categorical structure that can
have both cases as particular instances.

Multi-links have been introduced in the context of additive manufacturing and 3D-
printing and are mathematical objects consisting of a set A, called the set of indexes, a
collection of endomaps αi : A→ A, called the transition maps, a geometric realization map
g from the set of indexes A into some appropriate space E. The endomaps may be subject to
some conditions, which further specialize the structure into particular cases. The structure
of a multi-link may thus be pictured as

Aαi 88
g // E

with the collection of endomaps αi ranging over some indexing set (see Section 3.4).
At first glance, there is no obvious interactions between the three categorical structures

just presented. Yet, a triangulation as well as an internal groupoid are two particular
instances of a multi-link. This is somehow surprising; indeed, one of the most common
presentations of an internal groupoid is as a reflexive graph (C1, C0, d, e, c) together with a
composition law m : C2 → C1, while being assumed that the object C2 is obtained by taking
the pullback of the domain morphism d along the codomain morphism c, hence being
canonically equipped with the two canonical projections π1, π2 : C2 → C1.

It turns out that a triangulation can be transformed into a multi-link

Aθ,ϕ 88
g // E (4)

such that

θ3 = 1A

θ2 = ϕθϕ

gϕ = g

and moreover, in order to have the star-neighbourhood property displayed in (2), one should
add the requirement that ϕ is an isomorphism (further details in Section 3.5.3, see also [1]).
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Similarly, an internal groupoid with inversion morphism i : C1 → C1 (Definition 3)
together with

C2

π2 //
m //
π1
// C1

extracted from diagram (3) can be transformed into a multi-link as

Aθ,ϕ 88
g // E (5)

such that

θ2 = 1A = ϕ2 (6)

θϕθ = ϕθϕ. (7)

In this case, the object A is precisely C2, and E is the same as C1. The morphism g is just
m, and the two morphisms θ and ϕ are uniquely determined by the following conditions:

π2θ = m, mθ = π2, π1θ = iπ1

π2 ϕ = m, mϕ = π1, π1 ϕ = iπ1.

The structure of a groupoid is recovered from the multi-link structure (A, B, g, θ, ϕ) by
considering the trigraph

A
gθ //
g //

gϕ
// E

in which the two pairs of morphisms (g, gθ) and (g, gϕ) are contractible in the sense of
Beck (see [2] p. 150). This topic will be further developed in a future work.

One point to be made in this paper is the importance of considering categorical
structures that can be defined in any category, even without assuming the existence of any
limits or colimits (this level of generality has also been considered in [3,4]).

We will be interested in a concrete particular example of a category to replace the
category of sets and maps, which does not admit all products nor pullbacks and yet should
be considered as an essential category from the point of view of the theory of computation
(see, e.g., [5]). It presents a model for finite mathematical high level computational systems
such as Octave or Matlab. This category can thus be used in the development of new
computational methods and algorithms at the level of abstract categorical structures. We
will use the number 256 and denote by Sub256 the category whose objects are all sets,
whereas the morphisms are those maps f : A→ B that are bijections as soon as the cardi-
nality of A is greater than 2256. Of course, any other power of 2 or even any other finite
number other than 2256 would serve as well. The reason why we have chosen 2256 is to
have quaternions as 4-tuples of 64-bit floating point numbers [6]. Clearly, this category
does not have all pullbacks for in general a pullback diagram would require the existence
of a set with cardinality greater than 2256 together with the canonical projections which
would not be necessarily bijections.

This paper is divided into three parts (table of contents at the end). In the first part,
we briefly survey the well-know categories of morphisms, spans, reflexive graphs, internal
categories and internal groupoids. We also consider the not so well-known categories of
multiplicative graphs in the sense of G. Janelidze [7], of pregroupoids in the sense of A.
Kock [8] and multiplicative kites in the sense of T. Van der Linden and the author [9]. A new
concept of split extension that can be defined in any category is suggested in Section 2.1.
The second part of the paper (Section 3) surveys the notion of multi-link as well as its
applications to 3D-printing. At the end (Section 4), we extend the notion of centralizing
relations from the context of equivalence relations to the more general context of digraphs
and apply it in a new characterization of internal groupoids (see also [10,11]).
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2. Elementary Internal Categorical Structures

It is usual while working with internal categorical structures to consider a category
C with pullbacks and equalizers and say that all the structures and diagrams are internal
to C. In this paper, we consider a category C with no further assumptions. In particular,
pullbacks may not exist for all pairs of morphisms. Instead, it is a property of a cospan, i.e.,
two morphisms sharing the same codomain, whether the pullback exists.

Most categorical structures are nothing but functor categories. However, we observe
that most papers have the necessity to explicitly formulate the structures that they need.
One purpose of this paper is to serve as a reference for terminology. For that reason, I have
tried to make every choice as natural as possible.

2.1. Morphisms, Pullbacks and Split-Extensions

One of the most used yet most trivial categorical structures is the category Mor(C)
whose objects are morphisms in the category C and whose morphisms are the commutative
squares. An object in Mor(C) is simply denoted by the name of the arrow, say u ∈ Mor(C),
and if we need to specify its domain or codomain, we use the notation dom(u) or cod(u),
respectively. If u and v are two objects in Mor(C), then an arrow from u to v is represented
as an ordered pair ( f1, f2), which may be displayed as

dom(u) u //

f1
��

cod(u)

f2
��

dom(v) v // cod(v)

. (8)

If needed, the in-line notation can be used as ( f1, f2) : u→ v and it will always mean
that the square (8) is commutative, that is, f2u = v f1. Examples will be provided along the
rest of the paper.

When a commutative square is a pullback square, we will say that the square is
Cartesian. Since we are not assuming the category C to have all pullbacks, it will be a
property of a cospan

X k // A Bsoo

the existence of a span

X T
tXoo tB // B

such that the square

X

k
��

T
tXoo

tB
��

A Bsoo

(9)

is commutative and Cartesian.
We may thus consider the class of Cartesian cospans. The category of cospans is ob-

tained in a dual way as the category Span(C) and similarly we may consider a subcategory
of it by specifying any class of cospans (see Section 2.2).

In the category of abelian groups, there is an equivalence of categories between the
category of internal groupoids and the category of morphisms. In general, for any pointed
category with binary coproducts, its morphisms can be interpreted as internal categories of
a special type as it is illustrated, for example, in [12].

Before continuing, we would like to suggest a generalization of split extension, which
can be defined in any category (see also [13]). It is based on the new notions of joint and
patch, which were used in [14,15] with slightly different meanings.
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A joint is a cospan that is Cartesian (let us say with Cartesian square as the one
displayed below)

X

k
��

T
tXoo

tB
��

A Bsoo

(10)

and has the property that for every morphism p : A→ B with ps = 1B there exists at
most one morphism p̄ : X → T such that p̄tX = 1T and tB p̄ = pk. In a joint (k, s) with a
morphism p as above, we will always denote by p̄ when such p̄ exists.

A patch is a joint (k, s) together with a morphism p such that p̄ exists.
A fine patch is a patch (k, s, p) in which the commutative square

X

k
��

p̄ // T

tB
��

A
p // B

(11)

is Cartesian. It is clear that a fine patch is a generalization for the notion of split extension
in an arbitrary category C.

Most material in the following sections is from [16].

2.2. Reflexive Graphs and Spans

A reflexive graph is a diagram of the shape

C1

d //

c
// C0eoo (12)

in which the condition de = 1C0 = ce holds true. It can be represented as a five-tuple
(C1, C0, d, e, c). A morphism between reflexive graphs, say form (C1, C0, d, e, c) to
(C′1, C′0, d′, e′, c′), is a pair of morphisms f = ( f1, f0), displayed as

C1

d //

c
//

f1
��

C0eoo

f0
��

C′1
d′ //

c′
// C′0e′oo

(13)

and such that d′ f1 = f0d, c′ f1 = f0c and f1e = e′ f0. The category of reflexive graphs is
denoted RG(C).

A span is a diagram of the shape

D
d

~~

c

  
D0 D1

(14)

with no further conditions. It is represented as (D, D0, D1, d, c), or as (D, d, c) when D0
and D1 are understood from the context, or even simply as a pair (d, c). Even though the
objects D0 and D1 may be omitted for simplicity, it is clear that a morphism of spans is a
triple of morphisms, making the resulting squares commutative. The category of spans
is denoted Span(C). There is an obvious functor RG(C)→ Span(C) assigning the span
(C1, C0, C0, d, c) to every reflexive graph (C1, C0, d, e, c). Any class M of spans in C can
be seen as a full subcategoryM → Span(C). For the sake of consistency, we will write
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Span(C,M) to denote the full subcategory of Span(C) determined by the spans in the
classM. Similarly, we obtain RG(C,M) as the full subcategory of RG(C) whose span
part is in M; in other words, it can be seen as a pullback in the category of categories
and functors.

RG(C,M) //

��

RG(C)

��
Span(C,M) // Span(C)

There are several reasons why one may be interested in taking a class of spansM
instead of the category Span(C) itself and then take only those reflexive graphs whose
span (d, c) is inM. Indeed, one is often forced to restrict the attention to a suitable class of
well-behaved spans (or co-spans). Concrete applications can be found, for example, in [16].

2.3. Multiplicative Graphs and Reflexive Graphs

The category of multiplicative graphs internal to C was introduced by G. Janelidze
in [7] and will be denoted as MG(C). A multiplicative graph can be seen as a category in
which multiplication (or composition) may not be associative and it has applications in
categorical Galois theory [17]. Its objects are the diagrams in C of the form

C2

π2 //

π1
//

m // C1e1oo
e2oo d //

c
// C0eoo (15)

in which (C1, C0, d, e, c) is a reflexive graph,

me1 = 1C1 = me2 (16)

dm = dπ2 (17)

cm = cπ1, (18)

the square

C2
π2 //

π1

��

C1

c
��

C1
d // C0

(19)

is a pullback square and the maps e1, e2 are uniquely determined as e1 = 〈1C1 , ed〉 and
e2 = 〈ec, 1C1〉.

A multiplicative graph, displayed as in diagram (15), will be referred to as a six-tuple
(C1, C0, d, e, c, m). Although the canonical morphisms from the pullback π1, π2 as well as
the induced morphisms e1, e2 into the pullback are implicit, they are part of the structure
since we are not assuming the category C to have pullbacks. On the other hand, they are
unique (up to an isomorphism) as soon as they exist.

Morphisms are triples f = ( f2, f1, f0) in which ( f1, f0) is a morphism of reflexive
graphs and f2 = f1 × f0 f1 is such that f1m = m′ f2, f2e2 = e′2 f1 and f2e1 = e′1 f1. When
convenient, we refer to a morphism of multiplicative graphs as f : C → C′ and it should be
clear that f = ( f2, f1, f0), C = (C1, C0, d, e, c, m) and C′ = (C′1, C′0, d′, e′, c′, m).

There is an obvious forgetful functor from the category of multiplicative graphs,
MG(C), to the category of reflexive graphs, RG(C). This functor will be denoted by R.
Any classM of spans gives rise not only to a category RG(C,M) but also to a category
MG(C,M). This construction can be obtained as a pullback diagram in Cat
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MG(C,M)
RM //

��

RG(C,M)

��
MG(C) R // RG(C)

so that the functor RM is nothing but the restriction of R to the class M. The functor
R is to be interpreted as extracting from a multiplicative graph C = (C1, C0, d, e, c, m) its
underlying reflexive graph R(C1, C0, d, e, c, m) = (C1, C0, d, e, c).

2.4. The Kernel Pair Construction

The following categorical transformation is useful in many situations and it is known
as the kernel pair construction, providing a way of transforming a span into a reflexive graph.

Let (D, d, c) be a span. The kernel pair construction is obtained by combining the
kernel pairs of the morphisms d and c with the pullback of its projections and induced
injections as illustrated.

D(d, c)
p2 //

p1

��

D(c)
e2
oo

c1

��

c2 // D

c
��

D(d)
d2 //

e1

OO

d1
��

D
∆
oo

∆

OO

c //

d
��

D1

D d // D0

When C is the category of sets and maps, we may think of an element in D as an arrow
whose domain and codomain are drawn from different sets. In other words an element
x ∈ D is displayed as

D0 3 d(x) x // c(x) ∈ D1.

In view of this interpretation, the elements in D(d) are the pairs (x, y), x, y ∈ D, such
that d(x) = d(y) and they may be pictured as

c(x) d(x) = d(y)xoo y // c(y)

or in a simpler form as

· ·xoo y // ·

Similarly, a pair (y, z) ∈ D(c) is pictured as

·
y // · ·zoo

and it follows that the elements in D(d, c) are the triples (x, y, z) such that d(x) = d(y) and
c(y) = c(z), which may be pictured as

· ·xoo y // · ·zoo
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In other words, when C is the category of sets and maps we have:

d1(x, y) = x

d2(x, y) = y

c1(y, z) = y

c2(y, z) = z

∆(y) = (y, y)

p1(x, y, z) = (x, y)

p2(x, y, z) = (y, z)

e1(x, y) = (x, y, y)

e2(y, z) = (y, y, z).

The kernel pair construction gives rise to a functor

K : Span(C)→ RG(C),

with K(D, d, c) = (D(d, c), D, d1 p1, 〈∆, ∆〉, c2 p2). See [9] for further information on the
kernel pair construction.

2.5. Stability under Pullbacks

Under the assumption that the class M is stable under pullbacks, the functor K
restricts to

KM : Span(C,M)→ RG(C,M).

An alternative way of obtaining the kernel pair construction, if in the presence of
binary products, is to take the following pullback

D(d, c) //

��

D

〈d,c〉
��

D× D d×c // D0 × D1

. (20)

The requirement asking thatM is pullback stable means precisely that for every span
(D, d, c) inM and for every two morphisms u : U → D0 and v : V → D1, the span (B, d′, c′)
obtained by taking pullbacks as shown in the following picture,

B

~~d′

��

  c′

��

A

~~   

C

~~   
U

u   

D

d~~ c   

V

v~~
D0 D1

is still inM.
The kernel pair construction for relations plays an important role in the theory of

Mal’tsev categories, see for instance [18], where it first appears in the form of the pull-
back (20).
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2.6. Pregroupoids

A pregroupid internal to a category C was introduced by A. Kock (see [8] for its original
definition and motivation where, in addition to the conditions stated below, associativity is
also required) and consists of a span

D
d

~~

c

  
D0 D1

together with a pregroupoid structure. A pregroupoid structure is a morphism p : D(d, c)→ D,
such that

pe1 = d1 and pe2 = c2, (21)

dp = dc2 p2 and cp = cd1 p1. (22)

The object D(d, c) is obtained together with the maps

d1, d2, c1, c2, p1, p2, e1, e2

by means of the kernel pair construction, as explained in the previous subsection. In
set-theoretical terms, the object D(d, c) consists on those triples (x, y, z) of arrows in D for
which d(x) = d(y) and c(y) = c(z), so that the two conditions (21) are

p(x, y, y) = x, p(y, y, z) = z

while the two conditions (22) become

dp(x, y, z) = d(z), cp(x, y, z) = c(x).

In this way, we form the category of pregroupoids with its span part drawn from the
classM. It is denoted as PreGrpd(C,M).

2.7. Internal Categories and Internal Groupoids

An internal category is a multiplicative graph in which the multiplication is associative
(see Section 4.5). The category of internal categories to C is denoted Cat(C). A groupoid is
an internal category in which every morphism is invertible. Internally, it can be seen as an
associative multiplicative graph in which the square

C2
π2 //

π1

��

C1

d
��

C1
d // C0

(23)

is a pullback (see [19], see also Section 4.5). The category of internal groupoids internal to
C is denoted Grpd(C). In a similar manner as before, we define the categories Cat(C,M)
and Grpd(C,M) of internal categories and internal groupoids in C with respect to a class
M of spans.

2.8. Multiplicative Kites

The notion of a kite was first considered in [20] as an admissibility diagram. It was
then considered in [9] as a kite. Its main purpose is to generalize the structure of a groupoid
and a pregroupoid so that it can be used as a setting where it is possible to transform a
groupoid into a pregroupoid and vice versa.
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A kite, internal to C, is a diagram of the form

A
f //

α
��

B
r

oo
s
//

β

��

C
goo

γ
��

D

(24)

with f r = 1B = gs, αr = β = γs.
A directed kite is a kite together with a span (D, D0, D1, d, c) such that dα = dβ f ,

cβg = cγ.
Once again, if the span part of a kite is required to be inM then it is an object in the

category DiKite(C,M), where the morphisms are the natural transformations between
such diagrams.

When pullbacks of split epimorphisms are available, each diagram such as (24) induces
a diagram

C

e2�� g ��

γ

&&
A×B C

π2
??

π1 ��

B

r��

s
__

β // D

A

f ??
e1

__

α

88 (25)

in which the double diamond is a double split epimorphism (or a split square). The
morphisms e1, e2 are determined as e1 = 〈1A, s f 〉 and e2 = 〈rg, 1C〉.

A multiplication on a kite is a morphism m : A×B C → D such that dm = dγπ2,
cm = cαπ1, me1 = α and me2 = γ.

The forgetful functor from the category of multiplicative kites into the category of
directed kites, with direction (i.e., the span part) drawn from the classMwill be considered.
This functor helps in understanding a directed kite as a structure with the property of
having at least one multiplication, making it a multiplicative directed kite. This functor
simply forgets the multiplicative structure.

MKite(C,M)

��
DiKite(C,M)

2.9. Relevant Examples of Directed Kites

List of examples of directed kites as particular cases obtained from the structures that
have been surveyed so far with remarks on the condition for it to be a multiplicative kite:

1. If (C1, C0, d, e, c) is a reflexive graph, then the following diagram is a directed kite:

C1
d // C0
e

oo
e
//

e
��

C1
coo

C1

d

~~

c

  
C0 C0

(26)

This directed kite is multiplicative if and only if the reflexive graph is a
multiplicative graph.
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2. If (C1, C0, d, e, c, m) is a multiplicative graph, then the following diagram is a di-
rected kite:

C2
π2 //

m   

C1e2
oo

e1
// C1

π1oo

m~~
C1

d

~~

c

  
C0 C0

(27)

This directed kite has a unique multiplicative structure if and only if the multiplicative
graph is associative (i.e., an internal category).

3. If (C1, C0, d, e, c, m) is an associative multiplicative graph (an internal category), then
the following diagram is a directed kite:

C2
m //

π2   

C1e2
oo

e1
// C1

moo

π1~~
C1

d

~~

c

  
C0 C0

(28)

This directed kite is multiplicative if and only if the internal category is an internal
groupoid (see [20]).

4. If ( f1, f0) : (C1, C0, d, e, c)→ (C′1, C′0, d′, e′, c′) is a morphism of reflexive graphs, then
the following diagram is a directed kite:

C1
d //

f1 ��

C0
e

oo
e
//

e′ f0
��

C1
coo

f1��
C′1

d′

��

c′

��
C′0 C′0

(29)

If the morphism of reflexive graphs can be extended to a morphism of multiplicative
reflexive graphs, then the induced directed kite represented in the diagram above
is multiplicative.

5. If (D, D0, D1, d, c) is a span, then the kernel pair construction gives a directed kite
as follows:

D(d)
d2 //

d1 !!

D
∆
oo

∆
// D(c)

c1oo

c2}}
D

d

||

c

!!
D0 D1

(30)

This yields a reflection between the category of directed kites and the category
of spans.

DiKite // Spanoo
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A directed kite goes to its direction span, a span goes to the directed kite displayed
above. Moreover, the span (D, d, c) is a pregroupoid if and only if its associated
directed kite is multiplicative.

6. A split square is a diagram of the shape

E
p2 //

p1

��

C
e2

oo

g

��
A

f //

e1

OO

B
r

oo

s

OO

(31)

such that f r = 1B = gs, p2e2 = 1C, p1e1 = 1A, p2e1 = s f , p1e2 = rg and gp2 = f p1.
Any split square as (31) gives rise to a directed kite as illustrated.

A
f //

e1
��

B
r

oo
s
//

e1r=e2s

��

C
goo

e2
��

E
p2

��

p1

��
C A

(32)

In [16], it is shown that the existence of a multiplicative structure on the directed kites
such as (32) has an important classifying property for Mal’tsev-like categories which
generalizes the concept of orthogonality between a span and a co-span as considered
in [21].

We will now see a different kind of mathematical structure which has been obtained
as a result of investigations on 3D-printing and additive manufacturing.

3. The Categorical Structure of a Link and a Multi-Link

The notion of a multi-link was introduced in [22] as a tool for the encoding and
systematization of new and more efficient algorithms in the aim of 3D-printing.

3.1. Motivation from Computer Science and 3D-Printing

From the point of view of storage in a computer’s memory, the notion of a two-
dimensional matrix, with lines and columns, does not make much sense. At least, it does
not make much more sense than an arbitrary n-dimensional matrix. In practice, what is
really stored in the computer’s memory disk is an array, and the most efficient arrays are the
linear ones. In spite of everything that has been said during the last two or three decades
about formal file systems, the non-structured ones are still the ones that are preferred. This
explains, for example, why the STL file format is still so common nowadays.

The structure of a multi-link has been proposed as a structure, which on the one hand
can be stored as a linear array of information, while, on the other hand, it can be used to
encode highly non-trivial structures such as surfaces and their properties. These properties
may be decomposed into logical, functional and geometrical information and they cover
most of the whole spectrum of processes that are involved in 3D-printing (see [22]).

Indeed, the mathematical structure of multi-link was motivated by a long series of
experiments with mathematical structures and their properties, namely the ones that are
related with efficiency and encoding of information. See for example [23–26] and the
references therein. Here, we have also seen a new application for multi-links, namely the
possibility of encoding not only a triangulation (or any surface discretized in non-triangular
nor regular faces), but also the surprising capability of describing internal groupoids
(see introduction).

First, we motivate the very special case of a link, which can be seen as an abstraction for
the notion of a curve (appropriate for computational purposes) and then, by generalizing
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it in several different ways, we obtain the notion of multi-link. This basic notion was the
result of a long period of maturation, and its main characteristic is the fact that it is suitable
for the encoding of n-dimensional matrices as simple linear arrays. The key ingredient is
the observation that the transition maps from (i, j) to (i + 1, j) and (i, j + 1) can be seen as
two permutable maps from the set of linearized indexes into itself. We give some details on
this passage which are essentially repeated from [22].

From Section 3.4 onwards, we concentrate our attention on the abstract notion of a
multi-link by observing that it has several useful and important particular cases. Indeed, as
we will see, each one has its purpose and can be applied into a very specific situation for
3D-printing.

At the end of the section, we give a detailed description on the iso-slice algorithm, as
well as an application to the generation of cooling and refrigerating channels in a mould.
This will came later on; for the moment, let us concentrate our attention on links, first, and
then on multi-links, as a mathematical abstract structure.

3.2. A Link as an Abstraction of a Planar Curve

A classical planar curve is usually defined as a continuous map from the unit interval
[0, 1] into the field of complex numbers. From the point of view of analysis, this is a
perfectly reasonable concept and it naturally extends to curves in the 3D-space. One simply
substitutes the field of complex numbers by the euclidean three space, and it is then just
one more step to move to the n-dimensional vector field Rn. However, from the point of
view of computation, this is not really a good definition and many attempts have been
made to find a better alternative. Several variations can be considered and each one of
them has its own advantages and disadvantages. Here, we consider one which seems to be
good for the purposes of encoding contour level curves, the ones that are obtained from
the slicing of triangulated surfaces, and their applications into the area of 3D-printing and
direct digital manufacturing. The notion that we propose as an abstraction for a curve is
called a link. It has arisen by observing that a curve, if approximated by a piecewise-linear
sequence of directed edges, is a particular case of a directed graph. A directed graph is a
mathematical object consisting of a set of vertices, a set of edges and two parallel maps that
assign a vertex to an edge, namely its source and target. It turns out that some directed
graphs, namely the ones that are obtained by taking an approximation to a curve, share the
characteristic property of having a linking map. This linking map associates to each edge a
successor edge along the direction of the curve. In this way, we have arrived at the abstract
notion of a link. This notion is intended to be a computational model for a classical curve.

A link is a mathematical object which consists of a set, together with an endomap and
a map into a geometrical algebra (the notion of a geometrical algebra has a precise meaning
in mathematics; however, the reader not familiar with it may safely assume that it is simply
a vector space, and for the purpose of this paper, Rn will be enough), as illustrated

Aϕ 88
g // Rn .

This notion is thus interpreted as a generalized curve in Rn as follows. The curve is
a piecewise linear sequence of segments; each segment in the curve is determined by an
indexing element in the set of indexes A, and it is geometrically realised as the vector in Rn

whose endpoints are
g(a) // gϕ(a).

This means that each segment in the curve is indexed by an element in A, in fact we
will sometimes picture the segment as a labelled edge in a directed graph

g(a) a // gϕ(a).
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The set A is called the set of indexes, the map ϕ is called the successor, or transition
map (it tells to each index, which is considered as the origin of the edge, what is its
successor—the successor is at the same time the endpoint of its predecessor and the starting
point of the edge of which it is the index of), this idea can be illustrated as follows:

g(a) a // gϕ(a)
ϕ(a) // gϕ2(a) // · · ·

For further examples, the reader is referred to [27].

3.3. Moving from an Array to a Matrix While Keeping It Linear

If we would try to generalize the notion of a link as an abstraction for a curve as a new
abstract entity which would serve as a good model for a surface, we would easily be led to
a structure of the form

X×Y
ϕ // X×Y

g // Rn .

However, as soon as we try to interpret it as a surface, we soon realize that ϕ(x, y) =
(ϕ1(x, y), ϕ2(x, y)) should be of the form

(ϕ1(x), y) // (ϕ1(x), ϕ2(y))

(x, y)

OO

// (x, ϕ2(y)).

OO

In other words, it should consist of two independent maps ϕ1 : X → X and ϕ2 : Y → Y,
together with the realization (or geometrical) map

X×Y
g // Rn .

The role of ϕ1 and ϕ2 is to determine the behaviour of the transitions along the x-
direction and the y-direction. Note that these directions are only abstract and they should
not be confused with the directions of Rn.

Let us see a concrete example. Suppose we are interested in modelling the cylinder

C = {(x, y, z) ∈ R3 | x2 + y2 = 1, 0 ≤ z ≤ 1},

so that we could make an approximation, say, X = {1, 2, 3, . . . , 360}, Y = {0, 1} and define
ϕ1 : X → X, ϕ2 : Y → Y and g : X×Y → R3 as follows: ϕ1(x) = x + 1 if x < 360 and
ϕ1(360) = 1; ϕ2(0) = ϕ2(1) = 1; and

g(u, v) =
(

cos
(

2πu
360

)
, sin

(
2πu
360

)
, v
)

.

As remarked before, the crucial point here is to observe that we may exchange the set
X×Y with another set, which is bijective to it, say A, and the endomap ϕ : X×Y → X×Y
with two endomaps α, β : A→ A that are permutable, i.e., αβ = βα. In this way, we form
squares indexed by the elements of A as illustrated

β(a) // αβ(a)

a

OO

// α(a).

OO

If the set X has nX elements, and the set Y has nY elements, then we can take the set
A to be the set {1, 2, 3, . . . , nXnY} and the well known bijection which transforms pairs of
indexes (i, j) into linear indexes a = i · nX + j.
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3.4. The Structure of a Multi-Link

The notion of a multi-link is a natural generalization of the notion of link and it is
motivated by the concrete examples of a square-link (such as the one above), a double-link
(which is a structure that models arbitrary surfaces) and several others that where designed
for more specific purposes, such as contour filling algorithms or generating voxelized
porous in 3-dimensional physical objects. A multi-link thus arises as the need to encode
and organize a large amount of information in the form of data and algorithms that are
relevant to the process of 3D-printing.

A multi-link is a mathematical object displayed as

A

pj

��

αi 88
g // E

Bj

in which A is an arbitrary object, E is some structured object such as a geometrical algebra
and i ∈ I and j ∈ J are arbitrary indexing sets. The maps pj are required to be surjections.
Furthermore, some conditions may be required on the structure such as commutativity
between the arrows involved. For example, if I = J then it is reasonable to assume pj = pjαj
and think of the projections pj as being the connected components for the orbits of the
respective αj.

The family of maps (αi) is considered to be the topological part of the multi-link, the
map g is the geometrical part, while the family of projections (pj) is considered to be the
logical or functional part of the structure. This is because in most of the examples the
projection maps are simply assigning some functional behaviour to the edges, like colour
properties or materials or other kinds of physical interpretation.

In the following subsections, we present some details on useful structures that can be
seen as particular cases of multi-links.

3.5. Particular Cases as Examples of Multi-Links
3.5.1. Coloured Link

A coloured link is a link with a surjective map into some set C, of colours, in other
words, it is of the form

A

c
��

α 88
g // Rn

C

such that cα = c.
It is interpreted as a link in which every edge has a certain colour associated to it, and

moreover, the edges in the same component (in the sense of orbits of α) have the same
colour, but different components may have different colours.

3.5.2. A Square-Link

A square link was considered above, and it can be seen as a special case of a multi-link
with two endomaps but without projection maps. The two endomaps, say α and β, are
permutable, that is, αβ = βα. If we take the example of the cylinder from above and use
the bijection

φ : X×Y → A

from the Cartesian product of X = {1, . . . , 360} and Y = {0, 1} into A = {1, . . . , 720},
which is defined by φ(i, j) = i + j360, then, in order to give the structure of a square-link it
remains to specify the maps α, β : A→ A and g : A→ R3. In this case, we put α(360) = 1,
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α(720) = 361 and α(x) = x + 1 in the other cases. For the map β we have β(x) = 360 + x if
x ≤ 360 and β(x) = x for all the other values of x ∈ A. The map g is now defined as

g(x) =
(

cos
(

2πx
360

)
, sin

(
2πx
360

)
, 0
)

when x is less or equal to 360 and

g(x) =
(

cos
(

2π(x− 360)
360

)
, sin

(
2π(x− 360)

360

)
, 1
)

for the cases when x is greater than 360.

3.5.3. A Triangulation

The structure of a triangulation has been studied in [1] and it is an important example
of a multi-link.

The structure of a triangulation generalizes the one of a directed graph. It consists of
two sets (vertices and triangles) and three parallel maps between them, as displayed

T
a //
b //
c
// V. (33)

An element t ∈ T is interpreted as a triangle as illustrated in (1).
In [1], the observation that those triangulations which are obtained as the boundary

of a physical object in 3D space are the ones with the property that every vertex has a
start-neighbourhood (as illustrated in (2)) has been used to transform a triangulation into a
multi-link which at the time was merely a convenient way of encoding information.

The procedure works as follows. For practical reasons we substitute R3 with the
Cayley algebra of quaternions H, see [28]. In [1], it is shown that the triangulations

T
a //
b //
c
// H, (34)

in which every vertex has a star-neighbourhood, are equivalent (i.e., encode the same
information) to a multi-link of the form

Aθ,ϕ 88
g // H (35)

such that

θ3 = 1A (36)

θ2 = ϕθϕ (37)

gϕ = g. (38)

Moreover, in order to have the star-neighbourhood property displayed in (2), ϕ has to
be an isomorphism.

Having a structure such as (34) with the star-neighbourhood property for each of its
vertices, in order to obtain a structure such as (35), we define:

A = T × {0, 1, 2}
θ(t, i) = (t, i + 1 mod 3)

g(t, i) =


a(t) if i = 0
b(t) if i = 1
c(t) if i = 2
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and
ϕ(t, i) = (ti, j(t, i))

with ti, i = 0, 1, 2 as illustrated

·
t0

��
a

t1

//

����

c

t2

__

��

oo

· // b //

@@^^
t

·

^^

and j(t, i) given as

j(t, 0) =


0 if a(t0) = a(t)
1 if b(t0) = a(t)
2 if c(t0) = a(t)

j(t, 1) =


0 if a(t1) = b(t)
1 if b(t1) = b(t)
2 if c(t1) = b(t)

j(t, 2) =


0 if a(t2) = c(t)
1 if b(t2) = c(t)
2 if c(t2) = c(t)

Conversely, if having a structure such as (35) with its three conditions, then we define
a triangulation as follows. The triangles T are obtained by identifying the orbits of θ, via the
coequalizer of the pair of morphisms (1A, θ). Observe that this particular coequalizer exists
in the category Sub256, even though its kernel relation may fail to exist. The vertices are
obtained by identifying the orbits of ϕ, via the coequalizer of the pair (1A, ϕ). Let us denote
the two coequalizers, respectively, as p : A → T and q : A→ V. The complete structure,
with a = qs, b = qθs and c = qθ2s (where s is any section for p) is displayed as

T
a //
b //

c
// V

ḡ // H

with ḡ the unique map such that g = ḡq.

3.5.4. A Double-Link

The notion of a double-link serves to encode, in its most general form, the concept of a
surface. Here, we will only give the definition and the simple example of the tetrahedron.
Further examples and the study of its main properties are the matter of future work. All
platonic solids can be found in [29] as double-links.

A double-link is an instance of a multi-link which can be displayed as

A
v

  

f

��

α,β 88
g // R4

F V
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such that

αβαβ = 1A

βαβα = 1A

f α = f

vβ = v.

The example of a tetrahedron, due to its simplicity, can be used as an illustration. The
following picture, which shows the planar graph representation of a tetrahedron (with the
usual directed edges replaced by oriented squares that are build up from the labels α and
β), is used to deduce a concrete example of a double-link, as follows.

a1

β��

α

��

a2
β
//

α

��

a3
β

]]

α

��
a4 β

��

α

OO

a5
βoo

α ''
a6β

��

α

77

a7
β

AA

α

xx

a8β

��

α

ZZ

a9
β
//

α

55

a10

β__

α
// a11

β
//

α
ff

a12

β__

α

gg

Take A to be the set {a1, . . . , a12} and let the endomaps α and β be defined by the
labels indicated in the planar graph representation, that is α(a1) = a12, β(a1) = a2, etc. The
projection map f is the quotient over the orbits of α, thus giving the faces of the tetrahedron.
The projection map v is the quotient over the orbits of β, thus giving the set of vertices. The
map g is any realization map from A to any space.

Note that a triangulation is a particular instance of a double-link. Indeed, we observe
θϕθϕ = θθ2 = θ3 = 1A and ϕθϕθ = θ2θ = θ3 = 1A.

3.5.5. A Cubic-Link

A cubic link is a straightforward generalization of a square-link and it is useful in
modelling volumes with porous structures as illustrated in [30].

A cubic link is a structure

A
g //

α,β,γ 88 H ' R4

such that αβ = βα, αγ = γα and γβ = βγ. It is interpreted as a collection of voxels of
a cubic shape. In the same way as a square-link models a surface which is generated
by a square patch along two abstract directions, a cubic link can be used to generate a
3D-manifold, which is generated by a collection of cubes attached along three different
abstract directions, say α, β, γ, as illustrated.
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γ(x)
β //

OO

γ

α

{{

βγ(x)
OO

γ

α

zz
αγ(x)

β //
OO

γ

αβγ(x)
OO

γ

x
β //

α

{{

β(x)

αzz
α(x)

β // αβ(x)

(39)

3.5.6. A N-Cube-Link

Once again, a straightforward generalization of a cubic-link is obtained if instead of
three abstract directions we consider any finite number n, thus obtaining

A
g //αi 88 G , i = 1, 2, . . . , n

where G is any geometrical algebra (or more simply a vector space), and the αi are per-
mutable in the sense that αiαj = αjαi for any i, j in {1, 2, . . . , n}. These structures arise,
for example, in the construction of n-dimensional volumes with porous structures in its
interior and it has several applications in 3D-printing.

3.5.7. A Contour Filling Curve

The paper [31] describes a procedure on how to generate sweep trajectories for planar
regions that are encoded by its boundary and obtained by slicing a three-dimensional body.

The details that motivate this structure are referred to [31]. Here, we simply recall the
structure, which is an instance of a multi-link. It consists on a diagram of sets and maps,
as illustrated,

E
p

��
q��

r,s,g 99

C L

such that

r2 = s2 = g2 = 1E

qr = qs = q

pg = p.

It is illustrated with appropriate pictures in [22,31] in which the role of the maps r, s, g
is clear.

3.5.8. A Square Patch

A square patch is an intermediate level between a square-link and a double-link. It is
the analogue to a triangulation except that it is made out of squares rather than triangles.
The generalization from a triangulation is not difficult to obtain and we omit the details.
As an instance of a multi-link, it is described as follows.

Aθ,ϕ 88
g // H (40)
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such that

θ4 = 1A (41)

θ3 = ϕθϕ (42)

gϕ = g. (43)

The orbits of θ are interpreted as (square) faces while the orbits of ϕ are interpreted
as vertices.

3.6. The Iso-Slice Algorithm

In this subsection, we give the necessary details for an implementation of an algorithm
that efficiently computes level iso-contours. The contours are the ones obtained by slicing a
triangulated surface in the euclidean 3D-space with respect to an iso-surface of a given level.

The algorithm may be decomposed in the following steps:
1. Consider a triangulation as input

T
a //
b //
c
// V

x //
y //
z
// R

2. Transform the triangulation into a double-link as explained before (see also [1]). This
gives a structure of the form

A
v

  

f

��

α,β 88
g // R3

F V

with the meaning that the orbits of α are the faces (elements in F) and the orbits of β
are the vertices (elements in V).

3. Suppose there is given a family of iso-surfaces in 3D-space, let us say defined by
a map

F : R3 → R

which intuitively may be thought of as assigning to every point in space a certain
height; the main example is F(x, y, z) = z, giving planar slices along the z-direction,
but F(x, y, z) = x2 + y2 or F(x, y, z) = x2 + y2 + z2 are also possible and give, re-
spectively, cylinders and spheres; in general, we have arbitrary maps perhaps with a
specific meaning. Nevertheless, the algorithm works the same way for every map.

4. Transform the structure of double link of item 2 in the structure of a coloured link by
considering ϕ = βα, h = Fg and forgetting the projection map v. This produces

A

f
��

ϕ=βα 88
h=Fg // R

F

and the map h is intuitively the height of each point in A relative to the iso-level-
surface F of item 3;

5. For each contour level r ∈ R do:

(a) Obtain the subset of A in the coloured link of item 4 defined as:

Ar = {a ∈ A | h(a) ≤ r < hϕ(a)}
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(b) Consider the directed graph whose edges are the elements in Ar as well as the
vertices; the domain map is the identity map and the codomain map is ϕ = βα,
this will produce a picture which may be interpreted as

· · · αoo β //

α

��

· · ·αoo αoo

· · ·

f (a)

α // a

α

OO

βoo α // · · · α // a′
α

OO

f (a′)

in which we suppose a and a′ to be in Ar. This means that r ∈ R is a height
laying between h(a) and hβα(a) as well as between h(a′) and hβα(a′). The
idea is to connect a and a′ and in order to do so it suffices to identify the orbits
of α via f . This procedure creates a directed graph.

(c) Construct the directed graph

Ar
c
//

d // F

from the subset L : Ar ↪→ A (item 5(a)) to the set of faces F (item 4), with d = f L
and c = f ϕL = f βαL. This graph is obtained by applying the quotient map f
to the graph considered in item 5(b).

(d) Link the digraph of item 5(c), that is, find ϕr : Ar → Ar such that dϕr = c.
This is a general process, and it can be performed in a unique way, provided

the faces are geometrically convex. Indeed, let E
d //
c
// V be an arbitrary

directed graph, it has a symmetry, that is, there exists a bijective map ϕ : E→ E
such that dϕ = c if and only if the incoming edges are in bijection with the
out-coming ones for every vertex in V. In our case, if the faces are convex
then they will either not be intersected by the iso-surface level r or they are
intersected exactly in two different edges (in the picture displayed at item 5(b),
this was assumed to happen at the edges starting at the indexes a and a′).

(e) Construct the link structure

Arϕr 66
gr // R3 ,

with gr(a) = g(a) + tr(gϕ(a)− g(a)) where

tr =
r− h(a)

hϕ(a)− h(a)
,

recall that ϕ = βα and h = Fg, come from item 4.

6. Collect all the link structures (Ar, ϕr, gr) for all the contours r ∈ R in which we may
be interested in and return this information as output.

3.7. A Concrete Example of Application

An example of application for the iso-slicing algorithm is the following. Suppose it is
given a solid body object of which we want to produce a mould with refrigeration channels
as this is a recurrent problem in the mould industry. This means that if S ⊆ R3 is the solid
of our interest, then we consider the region of space S̄ = R3 \ S. Moreover, suppose we
wish to make some channels along the surface area of the boundary of S̄, while keeping the
channels on the interior of the region. Furthermore, in order to simplify the process, let us
assume that these channels are generated by planar curves parallel to the xy-plane. To do
so, we need to determine how the ratio distance between two consecutive layers should
be defined so that the cooling temperature is isotropic along the surface metric. One way
to do that is to use the previous procedure: the iso-slice algorithm. Its key aspect being
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the possibility to define the height function F : R3 → R. In that case, the high function is
interpreted as the distance measured along the surface between the points in a lower level
and the corresponding ones in the upper level immediately above it. Below, we give some
details on how this procedure can be implemented.

Suppose (T, V, a, b, c, x, y, z) is a triangulation such as the one given on item 1 of
Section 5, which is considered to be an approximation to a surface defined by the boundary
of S = closure(interior(S)) ⊆ R3. We are interested in generating contour levels along the
iso-surfaces, which are geodesics along a direction perpendicular to the xy-plane. These
contour paths will give us the generators for the cooling channels. In order to do that, we
observe the following steps:

1. Obtain a square-link from the given triangulation:

(a) Find an appropriate set of contours equally spaced that can serve as a good
approximation to the given triangulation;

(b) For each one of the contour levels identified on the previous item, execute the
slicing algorithm with F(x, y, z) = z;

(c) Re-sample the number of points obtained in each set of indexes from the final
link (as in item 5(2) from the iso-slice algorithm) so that they all have the same
number of points;

(d) Construct a square-link by letting A be the union of all Ar, assuming that we
have chosen say, r ∈ {r0, r1, . . . , rn} ⊆ R and that each Ar has, say, m = 100
elements. This is done by letting the map α to be given by the collection of ϕr
and β to be the identify on each point in the level ri with the closest one on
the level ri+1. This does not necessarily give a structure for a surface which is
homeomorphic to the initially given one, but it is equivalent from the point of
view of the generation of the cooling channels.

2. Having a square link (A, α, β, g) as defined in Subsection 3.5.2, we now define the iso-
surface family F : A→ R iteratively as follows (consider the bijection φ : A→ X×Y
with the sets X = {0, 1, . . . , n} and Y = {1, . . . , m}). The base points, that is the ones
in the level r0, are all zero F(x, 0) = 0; all the points at the same level will have the
same value under F; suppose we have F(x, y) given, then we define F(x, y + 1) as
the formula

F(x, y) + ‖gφ−1(x, y)− gφ−1(x, y + 1)‖

3. Use the iso-slicing algorithm with the new height value F.
4. The end result of this procedure gives a family of contour levels parallel to the xy-

direction which are isotropic along the geodesic paths measured on the surface.

Having the contour trajectories enveloping the original surface in a way which is
isotropic concerning the refrigeration distribution of heat along the geodesic distances on
the surface, we can then choose a cross-section for the channels and generate the final
structure as a square-patch.

4. Internal Groupoids and a Centralization of Digraphs

In this section, the notion of centralization of equivalence relations is extended to
digraphs and it is seen how to apply it in characterizing internal categories and groupoids.
The concrete category Sub256 is analysed while illustrating the relevance for a centralization
of digraphs as a generalization to the case of equivalence relations. Some techniques used
here were inspired in the work on Mal’tsev categories [32–34].

4.1. Generalizing the Centralization of Equivalence Relations

We are now going to extend the notion of centralizing relation (usually stated between
two equivalence relations) to the more general case of two directed graphs (see also [11]).
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Let C be a category with no assumptions on the existence of any kind of limits
or colimits. A directed graph is simply a structure with two ordered parallel arrows,
displayed as

A
d //
c
// B. (44)

The first arrow is the domain and the second one the codomain (in a display such
as (44) the order is found from left to right following the direction of the arrows). This
means, for example, that if we picture the same graph as above in a vertical display, it must
necessarily be of the form

A

d
��

c
��
B.

(45)

Given two directed graphs over the same object, say

A
d //
c
// B and A′

d′ //

c′
// B ,

with the first one displayed horizontally and the second one displayed vertically,

A′

d′
��

c′
��

A
d //
c
// B

(46)

we consider the following conditions:

(G1) There exists a span A D
π1oo π2 // C such that

D
π2 //

π1
��

A′

c′
��

A d // B

(47)

is a pullback square;
(G2) Condition (G1) holds and there exists a morphism α : D → C such that

D α //

π1
��

A′

c′
��

A c // B

(48)

is a pullback square;
(G3) Condition (G1) holds and there exists a morphism β : D → A such that

D
π2 //

β
��

A′

d′
��

A d // B

(49)

is a pullback square;
(G4) Conditions (G1)–(G3) hold and moreover d′α = cβ.
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(G5) Conditions (G1)–(G3) hold and moreover

D α //

β
��

A′

d′
��

A c // B

(50)

is a pullback square.

Following the particular case when (d, c) and (d′, c′) are relations, we will say that
the two directed graphs (d, c) and (d′, c′) centralize each other when condition (G5) holds
(see [11] and its references).

Let us now investigate in more detail the example of the category Sub256. As remarked
before, this category does not have pullbacks for all morphisms; however, it has other
interesting categorical properties, such as coequalizers.

4.2. A Lemma on Pullbacks

Let A be a category with pullbacks and a terminal object (denoted by 1). Moreover,
suppose that every morphism f : A→ B, in A, induces a decomposition of its domain

A ∼=
⊔

b : 1→B

Π( f , b) (51)

as a coproduct of pullbacks of f along b, for every b : 1→ B, as displayed.

Π( f , b) //

π1( f ,b)
��

1

b
��

A
f
// B

We will be interested in subcategories B of A with the following two properties:

(B1) If f is an isomorphism in A, then it is a morphism in B;
(B2) If both f h and f are morphisms in B, then h is also a morphism in B.

The example that we have in mind is the following one, which is important in the
study of algorithms and other data structures in programming languages such as Matlab.

The category B = Sub256 is the subcategory of A = Set which has all sets as its objects
while a map

f : X → Y

is a morphism in Sub256 whenever the following property is satisfied:

If X has more than 2256 elements then f is a bijection. (52)

Proposition 1. Let A be a category with pullbacks, a terminal object and satisfying the property
displayed in (51), with B a subcategory of A satisfying the two properties (B1) and (B2) above.
Consider a diagram in B of the form

C

h
��

g
��

A
f // B.

If the morphism π2( f , g) : Π( f , g)→ C is in B, then the following conditions are equivalent:
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(a) There exists k : Π( f , g)→ A, in B, such that the square

Π( f , g)
π2( f ,g)//

k
��

C

h
��

A
f
// B

(53)

is a pullback square;
(b) For every y : 1→ C in A,

Π( f , gy) ∼= Π( f , hy). (54)

Proof. Let us prove (a) ⇒ (b). The existence of k, in B, induces a morphism
ϕ : Π( f , g)→ Π( f , h), in A, such that the square

Π( f , g)
π2( f ,g)//

ϕ

��

C

Π( f , h)
π2( f ,h)

// B

(55)

commutes and moreover ϕ is an isomorphism (simply because (53) is a pullback square).
Hence, the isomorphism ϕ restricts itself to an isomorphism ϕy, for every y : 1→ C in A,
as illustrated:

Π( f , gy) ∼= Π(π2( f , g), y)

ϕy

��

π1(π2( f ,g),y) // Π( f , g)
π2( f ,g)//

ϕ

��

C

Π( f , hy) ∼= Π(π2( f , h), y)
π1(π2( f ,h),y) // Π( f , h)

π2( f ,h)// C.

(56)

Conversely, having an isomorphism in A, ϕy : Π( f , gy)→ Π( f , hy), for every mor-
phism y : 1→ C, we observe that the diagram

Π( f , gy) ∼= Π(π2( f , g), y)

ϕy

��

π1(π2( f ,g),y) // Π( f , g)
π2( f ,g)// C

Π( f , hy) ∼= Π(π2( f , h), y)
π1(π2( f ,h),y) // Π( f , h)

π2( f ,h)// C.

(57)

commutes. Indeed, as illustrated in the diagram below, we observe that

( f , g)π1(π2( f , g), y) = yπ2(π2( f , g), y) = y! = yπ2(π2( f , h), y)

= π2( f , g)π1(π2( f , h), y).
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Π(π2( f , g), y)) //

ϕy

((
π1(π2( f ,g),y)

��

1

y

��

Π(π2( f , h), y) //

��

π1(π2( f ,h),y)

��

1

y

��

Π( f , g)
π2( f ,g) //

π1( f ,g)

��

((

C

g

��

Π( f , h)
π2( f ,h) //

π1( f ,h)

vv

C
h

��
A

f // B

The above diagram is of course a diagram in A, and now, by the property (51), we have

Π( f , g) ∼=
⊔
y

π1(π2( f , g), y)

Π( f , h) ∼=
⊔
y

π1(π2( f , h), y)

and hence, the family of isomorphisms
(

ϕy
)

y : 1→C induces an isomorphism
ϕ : Π( f , g)→ Π( f , h) such that the square (55) commutes. Finally, we obtain the de-
sired morphism k : Π( f , g)→ A by putting k = π1( f , h)ϕ, and this makes the square (53)
a commutative square. It is also a pullback square in A because ϕ is an isomorphism. It
remains to prove that it is a pullback square in B. First, we observe that, because of (B1),
π2 ϕ−1 is in B, hence π2( f , h) is in B, now (because of (B2)) we also have π1( f , h) in B. This
means that k = π1( f , h)ϕ is in B, which also implies that the square (53) is a pullback
in B.

4.3. Centralizing Relations in Sub256

In the concrete subcategory Sub256 of the category Set, conditions (G1)–(G5) above
can be expressed as a bijection between the sets of incoming and out-coming edges relative
to the digraphs involved. An explicit formulation is given in the following proposition, in
which we consider the more general case of a category A with a subcategory B as already
considered in Section 4.2.

Proposition 2. Let A be a category with pullbacks, a terminal object and satisfying the property
displayed in (51), with B a subcategory of A satisfying the two properties (B1) and (B2) above.
Given two directed graphs over the same object displayed as (46) in B, we have that (G1)–(G5) are
equivalent, respectively, to:

(G1′)The morphism π2(d, c′) : Π(d, c′)→ A is a morphism in B;
(G2′)For every x : 1→ A in A,

Π(dx, c′) ∼= Π(cx, c′). (58)

(G3′)For every y : 1→ C in A,
Π(d, c′y) ∼= Π(d, d′y). (59)
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(G4′)For every x : 1→ A and every y : 1→ C in A, there are isomorphisms αx and βy making the
following two diagrams commutative.

Π(dx, c′)
π2(dx,c′)//

αx

��

A′ d′ // B

Π(cx, c′)
π2(cx,c′)// A′ d′ // B

(60)

Π(d, c′y)
π1(d,c′y)//

βy

��

A c // B

Π(d, d′y)
π1(d,d′y)// A c // B

(61)

(G5′)For every x : 1→ A and every y : 1→ C in A,

Π(dx, c′) ∼= Π(cx, c′),

Π(d, c′y) ∼= Π(d, d′y),

Π(dx, d′) ∼= Π(cx, d′),

Π(c, c′y) ∼= Π(c, d′y).

Proof. Obviously, (G1) implies (G1′), while its converse follows from the fact that B has
the property (B2). The equivalence between (G3) and (G3′) is an immediate consequence
of Proposition 1, while the case (G2) ⇔ (G2′) is similarly obtained by swapping the
horizontal and vertical directions, mutatis mutantis.

The following picture is useful in interpreting the two diagrams displayed in (G4′).

· ·xoo

·

αx(y)

OO

·
βy(x)
oo

y

OO (62)

The conditions (G1)–(G5) are independent of each other, as we can see in the follow-
ing examples.

Consider two directed graphs in Sub256 as displayed in (46) and observe:

1. If A = A′ = {1, . . . , 2128 + 1} and B = {1}, then the property (G1) does not hold
since Π(d, c′) = A × A, which has a cardinality greater than 2256, and hence only
the bijections can have it as a domain (because of condition (52)); in particular, the
canonical projections π1, π2 : A× A→ A are not in Sub256.

2. For the remaining items, consider the set B = {1, 2, 3, 4, 5} and the arrows labelled as
i = (2, 1), j = (3, 1), k = (4, 2) and l = (4, 5), which are pictured as

1 2ioo

3

j
@@

4

k
^^

l

��
5

(63)

and where the maps d and d′ will always be the first projection while the maps c and
c′ will always be the second projection.

3. Take A = {i} and A′ = {k} to see that we have only (G1), but not (G2) neither (G3).
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4. Take A = {i} and A′ = {j, k} and observe that (G2) holds, but not (G3).
5. Take A = {i, l} and A′ = {k} and observe that (G3) holds, but not (G2).
6. Take A = {i, l} and A′ = {j, k} and observe that both (G2) and (G3) hold, but not G4.

4.4. Trigraphs and Pre-Multiplicative Graphs

As we have seen, a trigraph is a generalization of a directed graph in the sense that it
is a structure with three ordered parallel arrows, displayed as

A
t1 //
t2 //

t3

// B. (64)

Let us consider a pre-multiplicative graph as a diagram of the form

C2

π1 //
m //

π2
// C1

d //
c // C0. (65)

such that the square

C2
π2 //

π1

��

C1

c
��

C1
d // C0

(66)

is a pullback square. It is an underlying structure of a multiplicative graph (see Section 2.3).
We will say that the trigraph (π1, m, π2) is the multiplicative structure of the pre-multiplicative
graph (65). When the digraph (d, c) is reflexive, say with a reflexivity morphism e : C0 → C1
such that de = 1C0 = ce, represented as

C1

d //

c
// C0eoo , (67)

then we speak of a reflexive and pre-multiplicative graph whose multiplicative structure
has splitings e1, e2 : C1 → C2, displayed as

C2

π2 //
m //

π1
//
C1

e2oo

e1oo
(68)

such that π2e2 = 1C1 , π1e1 = 1C1 , π1e2 = ec and π2e1 = ed.
We will be interested in several specializations on the notion of a (reflexive and)

pre-multiplicative graph.

Definition 1. A reflexive and pre-multiplicative graph, such as the one displayed above, is said to
be unital when me1 = 1C1 = me2.

Definition 2. A pre-multiplicative graph, such as (65), is said to be

1. Transitive when dm = dπ2 and cm = cπ1;
2. Pre-associative when the pair of digraphs (π2, m) and (m, π1) has the properties (G2)

and (G3);
3. Associative when the pair of digraphs (π2, m) and (m, π1) has the property (G4);
4. Symmetric when the pair of digraphs (π2, m) and (m, π1) has the property (G5).
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Observe that a reflexive, unital and transititve pre-multiplicative graph is the same as
a multiplicative graph (Section 2.3).

4.5. Internal Categories and Internal Groupoids Revisited

Let C be an arbitrary category and consider a diagram in C of the shape

C3

p2 //
m2 //
m1 //

p1
//
C2

π2 //
m //

π1
//
C1

d //

c
//

e2oo

e1oo
C0eoo (69)

satisfying the following conditions

de = 1C0 = ce (70)

dπ1 = cπ2 (71)

dπ2 = dm, cm = cπ1 (72)

me1 = 1C1 = me2 (73)

π2e2 = 1C1 = π1e1 (74)

π2e1 = ed, π1e2 = ec (75)

π2 p1 = π1 p2 (76)

π2m1 = mp2 (77)

π1m2 = mp1 (78)

π2m2 = π2 p2, π1m1 = π1 p1 (79)

mm1 = mm2. (80)

Definition 3. An internal category in C is a diagram such as (69), satisfying conditions (70) to (80),
such that the two commutative squares

C3
p2 //

p1

��

C2

π1

��
C2

π2 // C1

C2
π2 //

π1

��

C1

c
��

C1
d // C0

(81)

are pullback squares. Furthermore, it is an internal groupoid if there exists a morphism i : C1 → C1
such that di = c, ci = d, mi1 = ec and mi2 = ed. The morphisms i1 and i2 are uniquely determined
by the properties π1i1 = 1C1 = π2i2 and π1i2 = i = π2i1.

We can easily prove the following well-known assertions (see [19]).

Proposition 3. Let C be a category. Given an internal category in C, such as in Definition 3,
we have:

1. the two squares

C3
m2 //

p1

��

C2

π1

��
C2

m // C1

C3
p2 //

m1

��

C2

m
��

C2
π2 // C1

(82)

are pullback squares.
2. The following conditions are equivalent:

(a) The category is an internal groupoid.
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(b) The commutative square

C2
π2 //

m
��

C1

d
��

C1
d // C0

is a pullback square;
(c) The commutative square

C2
m //

π1

��

C1

c
��

C1
c // C0

is a pullback square;
(d) The commutative square

C3
p2 //

m2

��

C2

π2

��
C2

π2 // C1

is a pullback square;
(e) The commutative square

C3
m1 //

p1

��

C2

π1

��
C2

π1 // C1

(83)

is a pullback square.
(f) The commutative square

C3
m2 //

m1

��

C2

m
��

C2
m // C1

(84)

is a pullback square.

Remark that when the category C has pullbacks of split epimorphisms along split
epimorphisms, an internal category is completely determined by a diagram

C2
m // C1

d //

c
// C0eoo (85)

together with an isomorphism ϕ : C2 → Π(d, c), from C2 into the pullback of the split
epimorphism d along the split spimorphism c, which we will always denote by Π(d, c).

Indeed, having ϕ, in order to get a diagram such as (69) we define:

e1 = ϕ−1〈1, ed〉
e2 = ϕ−1〈ec, 1〉

m1 = 1×m

m2 = m× 1
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while the rest of the structure is obtained by considering the two pullback squares of (81),
and hence we have

π1 = π1(d, c)

π2 = π2(d, c)

C3 = Π(π2, π1)

p1 = π1(π2, π1)

p2 = π2(π2, π1). (86)

Note that we are consistently using the following notation for a pullback square
whenever it is assumed to be obtained in a canonical way, for an arbitrary category.

Π( f , g)
π2( f ,g) //

π1( f ,g)
��

C

g
��

A
f

// B

We can now relate the notions on internal category and internal groupoid with the
ones of pre-multiplicative graph and its variations.

Proposition 4. Every internal category is a reflexive and pre-multiplicative graph, which is unital,
transitive and associative. The converse is also true.

Proposition 5. Every internal groupoid is a reflexive and pre-multiplicative graph which is unital,
transitive and symmetric. The converse is also true.

We are now going to characterize a structure of a trigraph which can be obtained
as the multiplicative structure of an internal category or internal groupoid. For the sake
of completeness, we consider the intermediate notions of transitive, unital and reflexive
pre-multiplicative graphs too.

Recall once more that a trigraph is simply an ordered triple of parallel morphisms
( f , g, h), displayed as

A
f //
g //

h
// B. (87)

Our concern is to determine if the trigraph ( f , g, h) is the multiplicative structure of an
internal category or an internal groupoid. An obvious necessary condition is the existence
of two splitings r, s : B→ A such that f r = 1B = hs and hr f = f sh. We call such a structure
a reflexive trigraph and represent it by a five-tuple ( f , r, g, s, h), displayed as

A

f //
g //

h
//
C1.

roo

soo
(88)

Before stating the results characterizing those reflexive trigraphs that are multiplicative
structures, we need one more concept. A span

A Duoo v // C
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is said to be an exact span if there exists a commutative square

D v //

u
��

C

c
��

A d // B

(89)

which is at the same time a pushout square and a pullback square.

Theorem 1. Let C be a category and T = ( f , r, g, s, h) a reflexive trigraph on it. The following
conditions are equivalent:

1. T is the multiplicative structure of a reflexive and pre-multiplicative graph.
2. The span (h, f ) is an exact span.

Theorem 2. Let C be a category and T = ( f , r, g, s, h) a reflexive trigraph on it. The following
conditions are equivalent:

1. T is the multiplicative structure of a unital, reflexive and pre-multiplicative graph.
2. The span (h, f ) is an exact span and gr = 1B = gs.

Theorem 3. Let C be a category and T = ( f , r, g, s, h) a reflexive trigraph on it. The following
conditions are equivalent:

1. T is the multiplicative structure of a transitive, unital, reflexive and pre-multiplicative graph
(i.e., a multiplicative graph).

2. The span (h, f ) is an exact span, gr = 1B = gs, f s f = f sg and hrh = hrg.
3. The span (h, f ) is an exact span and gr = 1B = gs; moreover, the trigraph ( f , g, h) is

pre-associative and the two conditions f α = f π2 and hβ = hπ1 are satisfied with α, β,
π1 and π2 uniquely determined (up to a unique isomorphism) as in conditions (G1), (G2)
and (G3).

Theorem 4. Let C be a category and T = ( f , r, g, s, h) a reflexive trigraph on it. The following
conditions are equivalent:

1. T is the multiplicative structure of an internal category.
2. The span (h, f ) is an exact span, gr = 1B = gs, f s f = f sg, hrh = hrg and the triangulation

( f , g, h) has the property (G4).

In fact, we should better say that the pair of graphs ( f , g) and (g, h) has the property (G4).

Theorem 5. Let C be a category and T = ( f , r, g, s, h) a reflexive triangulation on it. The following
conditions are equivalent:

1. T is the multiplicative structure of an internal groupoid.
2. The span (h, f ) is an exact span, gr = 1B = gs, f s f = f sg, hrh = hrg and the triangulation

( f , g, h) has the property (G5).

5. Conclusions

Although there are some new results, namely the classification of internal groupoids
as centralizing digraphs (work presented in [35]), this is mainly a survey paper.

All the procedures and processes of Section 3 have been implemented in a computer
system and proved to be efficient and robust. Indeed, the fact that some concrete data is
modelled as a categorical structure has the advantage of completely characterizing the
input data, the output data, as well as the routines and procedures which are involved in
its transformations and manipulations.
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