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Abstract: This paper proposes a quantum computing approach for insurance capital modelling. Using
an open-source software development kit, Qiskit, an algorithm for working on a superconducting
type IBM quantum computer is developed and implemented to predict the capital of insurance
companies in the classical surplus process. With the fundamental properties of quantum mechanics,
Dirac notation and Feynman’s path calculation are shown. Furthermore, custom quantum insurance
premium and claim gates are investigated in order to build a quantum circuit with respect to initial
reserve, premium and claim amounts. Some numerical results are presented and discussed at the end
of the paper.
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1. Introduction

Despite continuing development in the field of classical computers, we are approach-
ing a technological barrier. According to Moore’s Law, the number of transistors, bits
(0,1) doubles approximately every two years in an integrated circuit [1]. In 2005, Gordon
Moore, co-founder of Intel, said “In terms of size (of transistors), you can see that we’re
approaching the size of atoms which is a fundamental barrier” [2]. Certain computational
problems cannot be handled in a reasonable time in classical computers, including super-
computers. Solving such problems on quantum computers is called quantum advantage [3].
The technological barrier and difficulties in handling complex problems in conventional
computers encourages us to focus on quantum computing and emerging technologies.

Another reason for quantum computing is cybersecurity, which is becoming more
popular with the expansion of new technologies for secure communication. The cyber in-
surance industry is predicted to exceed USD 20 billion in gross written premium by 2025 [4].
In cybersecurity, application, network, and information securities are the main components.
To reduce vulnerabilities in these areas, specifically, in eavesdropping, quantum cryptogra-
phy plays a significant role, so to evaluate the exposure of cyber risk, quantum technologies
should be observed. Although the main target of this paper is not cyber insurance or quan-
tum cryptography, fundamental quantum properties, such as superposition, measurement,
and entanglement used in quantum cryptography are explored.

A quantum computer leverages certain features of quantum mechanics to solve com-
plex problems with high-speed. Thus, we should encompass quantum mechanics, quantum
information theory and computer science in order to understand quantum computers [5].
The technology of today’s quantum computers is produced via different approaches accord-
ing to qubit types. Therefore, we have superconducting, photonics, topological, trapped-ion,
and spin-qubits-based quantum computers today. To use quantum computers, several
frameworks are available such as Qiskit, Cirq, and QDK, produced by IBM, Google, and
Microsoft, respectively. In this research, Qiskit as an open-source software development
kit [6] is used to predict the capital of an insurance company.

While the properties and representations of quantum mechanics are prominent in
many disciplines, they are quite new in actuarial mathematics. Quantum mechanics,
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specifically Dirac Notation and Feyman’s Path calculation, were used in the computation of
ruin probability for insurance companies in 2018 [7], reinsurance optimisation in 2019 [8],
analysis of insurance quantum data in 2018 [9] and CAT modelling in 2020 [10]. However,
in these studies, quantum computers were not used. In this paper, the main aim is to
show how to develop quantum algorithms, and use quantum computers in actuarial
computations, which is also our primary novel contribution to the field.

2. Fundamentals and Notations of Quantum Mechanics

In quantum computing, unlike the classical bits (0, 1), qubits are used as the fundamen-
tal computational unit. Qubits are represented using Dirac notation (or Bra-Ket notation)

as |0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
. A ket vector |x〉 describes a quantum state. Its Hermitian

conjugate is represented by bra vector 〈x|. Matrix and geometrical representation of qubits
on a Bloch sphere [6] are displayed in Table 1. The definitions and notations needed in this
paper are given in Table 2.

Table 1. Visualization of qubits on Qiskit.

|0〉 |1〉 |+〉 |−〉

Bloch Sphere
Visualization

Matrix
Representation

(
1
0

) (
0
1

)
1√
2
(|0〉+ |1〉) 1√

2
(|0〉 − |1〉)

Table 2. Fundamental notations.

Notations Definitions Notations Definitions

|ψ〉 Ket, represents a quantum state H Hilbert Space
〈ψ| Bra, transpose of Ket ⊗ Tensor Product
|+〉 , |−〉 Superposition State 〈x, y〉 Inner Product
H Hadamard Gate t Time
X X Gate I Identity Operator
Y Y Gate P Probability
Z Z Gate i Complex unit
PG Premium Gate M Measure Operator
CG Claim Gate C Complex Number

Three properties of quantum mechanics play a significant role in quantum comput-
ing. They are superposition, entanglement, and interference. In Hilbert space, linear
combination of state vectors creates another state vector.

|ψ〉 = α1 |ψ1〉+ α2 |ψ2〉+ . . . (1)

This linear combination is called superposition. Superposition tells us all states in the
system are possible at the same time. For example, superposition of two states |0〉 , |1〉 is

α |0〉+ β |1〉 ,
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where coefficients of the qubits (α and β) are called probability amplitudes of the system,
and modules squared of these amplitudes give probability of the state, so the sum of all
probabilities should equal to 1. This is called the Born rule. For two states, the Born rule is

|α|2 + |β|2 = 1. (2)

Another principle of quantum mechanics is entanglement. According to the principle,
quantum states in entangled situations cannot be described independently. In other words,
states of an objects (electron or photon) are correlated as either |00〉 or |11〉. In 2022,
the Nobel prize was given to researchers for their work on entangled photons [11]. To
demonstrate the entanglement situation [12], superposition can be created by applying
Hadamard gate onto the first qubit, and CX gate (also known as CNOT gate) onto both
qubits as seen in Table 3. In Tables 4 and 5, quantum gates for single and two qubits
are displayed.

Table 3. A quantum circuit producing an entangled state.

Quantum Circuit Result

Mathematical formulation of quantum entanglement in Table 3 is carried out as

CX(|0〉 ⊗ (H |0〉)) =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


[(

1
0

)
⊗
[

1√
2

(
1 1
1 −1

)(
1
0

)]]

=
1√
2


1
0
0
0

+
1√
2


0
0
0
1

 =
1√
2
|00〉+ 1√

2
|11〉 , (3)

where CX gate is chosen according to the qubit order (|q1q0〉), and the tensor product of
two vectors in C2 ⊗C2 form the following matrix in C4 as

(
v1
v2

)
⊗
(

w1
w2

)
=


v1 × w1
v1 × w2
v2 × w1
v2 × w2

. (4)

As seen from Table 3 and Equation (3), we obtain a combined state that is a superpo-
sition of |00〉 state with 50% probability and |11〉 state with 50% probability. This is also
known as a Bell state. Measuring one of the qubits tells us the state of the other qubit. This
is also verified by the simulation on the Qiskit environment.

Superposition, entanglement, and quantum measurement are essential in encrypting
and decrypting keys in cybersecurity to create the Quantum Key Distribution (QKD)
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protocol among applications for secure communication. In quantum computing, when
the system is measured, the superposition is collapsed and the entanglement is broken,
which allows us to detect the presence of unwanted third parties (eavesdroppers) on
the channel. This is one of the main advantages of quantum computing compared with
classical computing. Even though many quantum algorithms cannot be used in a classical
environment, QDK is compatible to classical computing and so can be used immediately.
There are several different protocols based on measurement and entanglement types, such
as B92, E91, and BB84 in quantum communication. However, this is beyond the scope of
this paper.

In the interference principle, quantum states of a system can be cancelled or added
to each other, which can be categorised as constructive interference and destructive in-
terference [12]. The interference property in insurance modelling can be observed by the
premium and claim gates, which change the quantum state representing the capital of the
insurance company, in either up or down directions as long as premium and claim amounts
are not the same.

Table 4. Quantum gates for a single qubit.

X Gate Y Gate Z Gate H Gate S Gate I Gate(
0 1
1 0

) (
0 −i
i 0

) (
1 0
0 −1

)
1√
2

(
1 1
1 −1

) (
1 0
0 i

) (
1 0
0 1

)

Table 5. Quantum gates for two qubits.

CX, CNOT Gate CY Gate CZ Gate H Gate I Gate
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 1 0 0
0 0 0 −i
0 0 i 0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Measurement operators are not unitary operators in quantum computing. When a

Hermitian operator is measured in the state |ψ〉 = ∑N
i=1 αi |ψi〉, the output spectrum is set

of the eigenvalues pi of the Hermitian operator with probability |αi|2. For a single qubit,
the measurement operators are M0 = |0〉 〈0| and M1 = |1〉 〈1| . The measurement operators
satisfy the completeness equation [13] by

M†
0 M0 + M†

1 M1 = I, (5)

where I is the identity operator, and M†
0 and M†

1 are the adjoint operators associated with
M0 and M1. When the system is measured by M0 and M1 projections, the result is either
|0〉 with probability |α1|2 or |1〉 with probability |α2|2 correspondingly [14].

〈ψ|M0 |ψ〉 =
(
α1 α2

)(1 0
0 0

)(
α1
α2

)
=
(
α1 α2

)(α1
0

)
= |α1|2, (6)

〈ψ|M1 |ψ〉 =
(
α1 α2

)(0 0
0 1

)(
α1
α2

)
=
(
α1 α2

)( 0
α2

)
= |α2|2. (7)

Alternatively, for the Hermitian operators, measuring |ψ〉 with the help of density
matrix and trace function is given by

〈ψ|M0 |ψ〉 = tr(ρM0) and 〈ψ|M1 |ψ〉 = tr(ρM1),
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where the trace function tr(ρM) is the sum of diagonal elements of ρM, and the correspond-
ing density matrix is defined by

ρ = |ψ〉 〈ψ| = (α1 |0〉+ α2 |1〉)(α1 〈0|+ α2 〈1|)

=

(
α2

1 α1α2
α1α2 α2

2

)
. (8)

Then, tr(ρM0) = tr(
(

α2
1 α1α2

α1α2 α2
2

)(
1 0
0 0

)
) = |α1|2. Similarly, tr(ρM1) = |α2|2.

Physically, gates are transistors in a circuit, which are used to convert the inputs
into outputs in the the form of electrical pulses. Mathematically, quantum logic gates are
represented by unitary matrices in quantum computing, so they are reversible, unlike most
of the classical logic gates. Quantum gates are used to manipulate qubits. For example, for
a single-qubit system,

X |0〉 =
(

0 1
1 0

)(
1
0

)
=

(
0
1

)
= |1〉 , X |1〉 =

(
0 1
1 0

)(
0
1

)
=

(
1
0

)
= |0〉 ,

Z |0〉 =
(

1 0
0 −1

)(
1
0

)
=

(
1
0

)
= |0〉 , Z |1〉 =

(
1 0
0 −1

)(
0
1

)
=

(
0
−1

)
= − |1〉 .

In order to bring a qubit into a superposition state, Hadamard gate needs to be applied.

H |0〉 = 1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2
(|0〉+ |1〉), H |1〉 = 1√

2

(
1 1
1 −1

)(
0
1

)
=

1√
2
(|0〉 − |1〉).

In the two-level quantum system, gates in Table 5 can be applied to the following
computational basis states: |00〉 , |01〉 , |10〉 , and |11〉, as shown in the following example.

CX |10〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0
0
1
0

 = |11〉 , CX |11〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0
0
0
1

 = |10〉 ,

where |10〉 = |1〉 ⊗ |0〉 and |11〉 = |1〉 ⊗ |1〉.

3. Classical Surplus Process with Quantum Mechanics

The classical surplus process of an insurance company [15,16] with the initial reserve
(R(0) = u), insurance premium amount (c) per unit time, and total claim amount (S(t)) at
time t is given by

R(t) = R(0) + ct− S(t), (9)

where S(t) = ∑
N(t)
i=1 Xi, t ≥ 0 is a compound Poisson process with sequence of posi-

tive integer-valued independent and identically distributed claim amounts {Xi} and the
number of insurance claims N(t) until time t, which is a Poisson process with constant
frequency rate λ. In this simple insurance random walk, the change in the capital of the
insurance company during the unit time ∆t is written by

R(t + ∆t)− R(t) = u + c(t + ∆t)− S(t + ∆t)− (u + ct− S(t)) = c∆t− S(∆t). (10)

Suppose that the insurance company evaluates its reserve at fixed periodic time (∆t),
and the insurance premium is collected in advance. Even though claims arise at any time
in (t, t + ∆t) but can only be registered at the end of the time period (t + ∆t).
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The probability of the change with Poisson arriving process can be computed by

P(R(t)→ R(t + ∆t)) = P(R(t + ∆t)− R(t) = c∆t− s)

=
e−λ∆tλ∆t

1!
P(X1 = s) +

e−λ∆t(λ∆t)2

2!
P(X1 + X2 = s) + . . . for s > 0, (11)

where s = S(∆t) is the total claim amount at the interval (t, t + ∆t).
Let xi be level of a system at time ti, i = 0, 1, 2, . . . Then, the transition probability of

P(xi → xi+1) can be computed with a Markovian operator P as 〈xi| P |xi+1〉 [17,18].
〈xi| P |xi+1〉 is called a propagator that is used in calculating probability amplitude for

the particle to travel in a given space time from point (xi, ti) to point (xi+1, ti+1) in physics.
In finance, the propagator helps us to calculate the probability of change in capital over a
specific period of time.

When a path is taken into account [19], the probability is;

P(x0 → x1 → x2 → . . .→ xn) = 〈x0| P(t1) |x1〉 〈x1| P(t2 − t1) |x2〉 . . . 〈xn−1| P(t− tn−1) |xn〉 . (12)

With Feynman path calculation and Dirac notations [20–22], probability of the reserve
of insurance company at time t can be modelled for all possible paths in the continuous
space by

P(R(t) = xn|R(0) = u) = (1 + o)
∞∫

0

∞∫
0

· · ·
∞∫

0

dx1dx2 . . . dxn−1 〈x0| P(t1) |x1〉 〈x1| P(t2 − t1) |x2〉

. . . 〈xn−1| P(t− tn−1) |xn〉 , (13)

where xi is the reserve of the insurance company at time ti; i = 0, 1, 2 . . . |xi〉 is a column
vector that represents reserve states in quantum modelling; and o is the error margin,
which depends on the numerical approximation of the integrals. The numerical error is
independent from the errors caused by environmental disruptors in quantum computers,
which is one of the main challenges to manufacture more useful quantum computers, and
this is beyond the scope of this research.

The continuity of space in quantum computing should be disregarded [23]. Since
quantum objects are discrete, the probability for discrete reserves of the insurance company
is carried out by

P(R(t) = xn|R(0) = u) = (1 + o)∑
x1

〈u| P(t1) |x1〉∑
x2

〈x1| P(t2 − t1) |x2〉∑
x3

〈x2| P(t3 − t2) |x3〉

· · · ∑
xn−1

〈xn−2| P(tn−1 − tn−2) |xn−1〉 〈xn−1| P(t− tn−1) |xn〉 , (14)

where P is an operator with Hamiltonian operator H providing P(tn− tn−1) = e−(tn−tn−1)H .
In general, the Hamiltonian operator is equal to the minus generator operator in the
Markovian process H = −Q stated in [7,10]. The generator operator

P(0) = lim
t→0

P(t) = I and Q = lim
∆t→0

P(∆t)− I
∆t

.

Throughout this paper, all quantum works is handled in Hilbert Space as a complete
vector space, which is separable if its basis is countable regardless of its dimension [24].

With eigenvalue Kp and eigenvector |p〉 of the Hamiltonian operator, a propagator
with completeness equation is written by

〈xi| e−∆tH |xi+1〉 =
∫ 2π

0

dp
2π
〈xi| e−∆tH |p〉 〈p|xi+1〉 =

1
2π

∫ 2π

0
(eixi pe−ixi+1 p)e−∆tKp dp, (15)



Mathematics 2023, 11, 658 7 of 13

where i is a complex unit. The completeness equation is
∫ 2π

0
dp
2π |p〉 〈p| = I with momentum

basis |p〉. The inner products can be defined by

〈x|p〉 = eipx and 〈p|x〉 = e−ipx.

The relationship between the Hamiltonian operator, the eigenvector, and the eigen-
value can be pointed out as

H |p〉 = Kp |p〉 . (16)

How to compute propagators according to different Hamiltonian operators and dif-
ferent claim distributions was investigated by Tamturk and Utev in [7,8]. Furthermore,
the expected reserve of the insurance company and ruin probability were computed. To
use quantum computers, initial quantum state should be defined, and quantum premium
and claim gates as reversible unitary matrices need to be set out, which are handled in the
next section.

4. Quantum Algorithm to Predict Insurance Capital

In computations on quantum computers, insurance premium and claim gates should
be defined. All operators in quantum computing are reversible except the measurement
operator [12]. In quantum computing, the insurance premium and claim gates are both
reversible and unitary matrices. Matrix U is unitary if UU† = U†U = I.

Determination of how many qubits the system needs is the first step in the quantum
computing. In 2022, IBM released a new 433 qubit quantum processor, Osprey [25]. How
many qubits we need in the quantum circuit depends on all possible states that the insur-
ance company’s capital can reach. If we ignore the negative scenarios, the qubits should be
chosen based on the maximum capital value during the time and quantum state grid size ε.
According to the classical surplus process mentioned in Section 3, the maximum capital
at time t is max{R(t)} = u + ct with a no-claim case S(t) = 0, then we need n qubits that
satisfy the following condition

n > min{n̄|u + ct
ε

+ 1 6 2n̄}, (17)

where ε = 1 is taken since we work with integer reserve, u+ct
ε represents the number of

positive states, and 1 is added due to the zero-state. n qubits, two-level system can handle
2n states representing {0, 1, 2, . . . , 2n − 1} capital levels. In Hilbert space, states of the qubits
are represented as vectors. By default, qubits are initialised in zero state |0〉 in Qiskit.
Therefore, the n qubits should be modified according to the initial capital of the insurance
company by using X gate. As mentioned Section 2,

X |0〉 = |1〉 and X |1〉 = |0〉 .

The initial capital should be converted into binary form to create a ket vector as

u→ |qnqn−1 · · · q0〉 , where u = qn2n + qn−12n−1 + . . . + q020 and qi ∈ {0, 1}. (18)

To illustrate, the number of the qubits (n) is 3 for u = 3, c = 1, and t = 2. Then,
the initial reserve (u) should be taken as |011〉. In Table 6, some initial capitals and their
corresponding ket vectors for 8 qubits are listed.



Mathematics 2023, 11, 658 8 of 13

Table 6. Initial capitals and corresponding basis vectors for 8 qubits.

Initial Capital Corresponding Basis Vector

0 |00000000〉
1 |00000001〉

25 |00011001〉
65 |01000001〉
125 |01111101〉

After the creation of qubits to represent the initial reserve, the next step is to apply
premium and claim gates for all qubits t

∆t times in order. Let PG and CG be the insurance
premium and claim gates correspondingly. Then,

CG(PG(. . . (CG(PG(qn ⊗ (. . . (q2 ⊗ ((Xq1)⊗ (Xq0))))))))), (19)

where PG is fixed, not probabilistic. However, CG is randomly generated each time. If the
insurance claim is zero at the time interval, then the claim gate will be an identity matrix
(CG = I). For 3 qubits, 23 × 23 dimensional quantum premium and claim gates can be
defined as in Tables 7 and 8.

Table 7. Quantum premium gates.

u = 2, t = 1, c = 1 u = 2, t = 1, c = 2 u = 2, t = 1, c = 3

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0





0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0





0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0


Table 8. Quantum claim gates.

X = 1 X = 2 X = 3

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0





0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0





0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0



The premium and claim gates are created as a unitary matrix with PGPG† = PG†PG = I
and CGCG† = CG†CG = I.
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As seen in Tables 7 and 8, the premium and claim gates for n qubits can be gener-
alised as

Premium Gate =



2n 2n − 1 · · · c + 1 c c− 1 c− 2 · · · 1
1 0 0 · · · 0 1 0 0 · · · 0
2 0 0 · · · 0 0 1 0 · · · 0
3 0 0 · · · 0 0 0 1 · · · 0
... 0 0 · · · 0 0 0 0

. . . 0
c 0 0 · · · 0 0 0 0 · · · 1
c + 1 1 0 · · · 0 0 0 0 · · · 0
c + 2 0 1 · · · 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

... · · ·
...

2n 0 0 · · · 1 0 0 0 · · · 0


and

Claim Gate =



1 2 · · · X X + 1 X + 2 X + 3 · · · 2n

2n 0 0 · · · 0 1 0 0 · · · 0
2n − 1 0 0 · · · 0 0 1 0 · · · 0
2n − 2 0 0 · · · 0 0 0 1 · · · 0
... 0 0 · · · 0 0 0 0

. . . 0
X + 1 0 0 · · · 0 0 0 0 · · · 1
X 1 0 · · · 0 0 0 0 · · · 0
X− 1 0 1 · · · 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

... · · ·
...

1 0 0 · · · 1 0 0 0 · · · 0


.

After applying all the gates, the system can be measured at time t. The measurement
operator is not a reversible operator. After measuring of the system, all superpositions and
entanglement situations are collapsed into one of the basis states 0 or 1. For the example:
u = 3, c = 1, and t = 2, mathematical representation of the quantum circuit is given by

CG(PG(CG(PG(q2 ⊗ ((Xq1)⊗ (Xq0)))))). (20)

After the measurement, the capital of the insurance company at time t will be dis-
tributed in the following spectrum:

|000〉 , |001〉 , |010〉 , |011〉 , |100〉 , |101〉 , |110〉 , |111〉

which corresponds to R(t) ∈ {0, 1, 2, 3, 4, 5, 6, 7}.
As a final step, a simulation of the quantum circuit is run to get random results. If

the quantum circuit does not include any superposition, then the simulation produces the
same results. Steps mentioned so far are displayed in Table 9.

To take changes in insurance risk behaviours, as a result of climate change, war, pandemics,
and so on, into account, random noise approach using Hadamard gates can be considered. For
instance, let’s assume that the initial capital of the insurance company is 200, the premium is 20,
and the claim mean is 15 with variance 4. We then compute the capital of the insurance company
at time t = 8 by applying Hadamard gates into the first two qubits. In this circumstance, the
quantum circuit diagram is produced as shown in Figure 1. Furthermore, potential quantum
states of R(t) with their rate of occurrence, and their corresponding capital values with their
probabilities are displayed in Figures 2 and 3, respectively.
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Table 9. Quantum circuit in Qiskit.

Initial Qubits
at |0〉 State

Apply X Gate
to Obtain u

Apply PG and CG
t/∆t Times Measure All Qubits at Time t

Figure 1. Quantum circuit diagram for u = 200, c = 20, m = 15, σ2 = 4, t = 8.

Figure 2. Output states of R(t) for u = 200, c = 20, m = 15, σ2 = 4, t = 8.

Figure 3. Probability of potential capital R(t) for u = 200, c = 20, m = 15, σ2 = 4, t = 8.

This proposed algorithm works well in situations where the probability of the insur-
ance company going bankrupt is low because quantum states for negative capitals have not
been identified so far in this research. Therefore, with ruin time T = min{t : t > 0 and
u + ct− S(t) < 0} and ruin probability of the insurance company P(T 6 t) = 1−P(T > t),
this algorithm can be used for the very small value of P(T 6 t).

If the ruin probability is not too small, then new quantum states for the negative
capitals should be considered according to the minimum capital value. Let us denote the
deficit amount at the time of ruin as D(T) = −R(T). Then, we need n qubits that comply
with the following condition
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n > min{n̄|maximum capital+ maximum Deficit + 1
ε

=
u + ct + max{D(t)}+ 1

ε
6 2n̄}. (21)

Since it is hard to estimate the possible deficit amount at the beginning, a sufficiently
small value of R(t) that maximises D(t) should be chosen in order to take all possible negative
states into account. Assume that u = 100, c = 10, t = 20, m = 40, λ = 0.2, max{D(t)} = 300
and maximum capital amount u + ct = 300, then the qubit number should be chosen as
n = 10 due to 300 + 300 + 1 6 210. In this circumstance, the some capitals and their modified
corresponding basis vectors are listed in Table 10 by the following rule:

u→ |qnqn−1 · · · q0〉 , (22)

where u = qn2n + qn−12n−1 + . . . + q020 −max{D(t)} and qi ∈ {0, 1}.

Table 10. Capitals and corresponding basis vectors for 10 qubits.

Capital Modified Corresponding Basis Vector

−300 |0000000000〉
−299 |0000000001〉
−288 |0000000010〉

0 |0100101100〉
55 |0101100011〉

300 |1001011000〉

The expected reserve of the insurance company at time t in Figure 2 is computed by

E[R(t)] =
∞

∑
xn=0

P(R(t) = xn|R(0) = u)xn

=
∞

∑
xn=0

Count of the quantum state corresponding to xn

The number of the total iteration in the simulation
xn. (23)

For the example in Figures 2 and 3, the expected capital of the insurance company at
time 8 is computed as E[R(t)] = 240.04 in the quantum computing, which is very close to
the result of classical computation due to

E[R(t)] = u + ct− E[S(t)] = 200 + 20 · 8− 15 · 8 = 240. (24)

If there is a ruin risk, negative quantum states should be considered in the Formula (23)
by starting xn from a sufficiently small value.

The surplus model and the quantum computing approach presented here have a
number of limitations. For example, reinsurance cost, operational cost, capital injections,
stock dividend, and inflation’s effect are not taken into account in this research. For all
capital increase and decrease activities, new reversible quantum gates should be created
and added into the quantum circuit. Another significant issue is the order of the quantum
gates. As mentioned in Section 3, while premiums are paid in advance, insurance claims
are registered at the end of the time period, so CG is applied after PG. In the quantum
circuits, if the gates are applied in the following order: CG, PG, CG, PG, . . . instead of
PG, CG, PG, CG, . . ., the substitution of the quantum gates can increase the ruin probability
despite of the same expected capitals in the two cases. For example, one of the following
processes for u = 2, c = 5, X = 3 leads to the ruin.

First walk: 2→ 7→ 4→ 9→ 6 for PG, CG, PG, CG,

Second walk: 2→ -1→ 4→ 1→ 6 for CG, PG, CG, PG.
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As seen above, even though we obtain same capital at the end of the process, the
ruin happens after applying first claim gate in the second walk since the negative reserve
(R(1) = −1). Therefore, in this example, the commutative law holds for multiplication of
the insurance premium and claim gates in terms of quantum computing due to

PG · CG = CG · PG and (PG · CG)k = (PG)k · (CG)k = (CG)k · (PG)k, k ∈ Z+.

However, the quantum gates are non-commutative from the perspective of actuarial
science because of the stop-loss type approaches. Secondly, in case of implementation of
controlled-X gate (CNOT gate), the commutativity does not hold as seen in the following
example in a two-level quantum system.

PG · CNOT · CG 6= PG · CG · CNOT 6= CG · CNOT · PG

for

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

, PG =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 and CG =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

.

In some non-proportional reinsurance contracts [26], when the cedent’s capital is
below a specific retention level, a capital injection should be done by the reinsurance
company to restore the loss of the primary insurance company. This case is studied in [8]
by investigating commutative and non-commutative operators. As a result, even if the
commutative property works for some quantum gates, it does not mean that it is applicable
from the point of view of the insurance risk process. Therefore, for actuarial risk and capital
modelling, both the creation of quantum gates and their application times are significant in
the quantum circuit.

5. Conclusions

Even though it is not easy to answer the question of what the future holds for quantum
computing, advances in this field continue to increase with government and private sector
investments. A lack of experts in quantum mechanics and quantum computing in actuarial
mathematics is one of the barriers to manufacturing more academic and industrial works.
Using the principles of quantum mechanics in insurance researches is quite new. With
this paper, actuarial researchers will become familiar with quantum computing. Quantum
machine learning should be adapted to insurance risk and capital computations in further
research, and quantum cryptography-based products should be considered in the exposure
of cyber insurance risk and pricing.

Simulation of systemic risks is complex due to number of the parameters in the
dependent risk models, so, in some cases, it is difficult to handle this in any feasible
amount of time by classical computers. Implications of some systemic risks on insurance
pricing encourage us to focus on new forecasting approaches and innovative technologies.
Simulation of the systemic risks like the climate change, pandemics, and global financial
crises for insurance industry via quantum computers is a potential future subject of study.

The code is available at the following Github repository: https://github.com/muhsi
ntamturk/QuantumComputingCodes (accessed on 27 December 2022).
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