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Abstract: We study the effects of trans-Planckian censorship conjecture (TCC) bounds on geodesic
completeness of spacetime and the associated existence for an infinite proper time. Using Gronwall’s
lemma, TCC bounds can be derived directly, leading to a result about the absence of blowup solutions.
We show that the TCC provides part of the required criteria for geodesic completeness, and we then
provide the remaining ones, the norm of the extrinsic curvature being bounded away from zero. We
also discuss the importance of these results for the classical evolution of Friedmann universes under
the assumptions of global and regular hyperbolicity.
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1. Introduction

It is well-known that the Hawking–Penrose theorems provide sufficient conditions
for the existence of singularities in spacetime [1], while completeness theorems associated
with the work of Y. Choquet-Bruhat give sufficient conditions for the possible geodesic
completeness of spacetimes [2]. In the first case we have geometric and causality conditions
leading to geodesic incompleteness, while in the second case completeness of geodesics is
established under various analytic criteria. In both cases, such conditions may be realized
in effective theories and, as it has been repeatedly emphasized, such theories may not be
consistent with modern unification ideas, cf., e.g., [3].

In fact, according to the trans-Planckian censorship conjecture, initial fluctuations can
never exit the Hubble radius, and in this sense such information can never classicalize and
become ‘visible’ to classical evolution [4,5]. This is like having a cosmological censor that,
in an analogous way to that in cosmic censorship, hides any trans-Planckian information
(see, e.g., [6] for more recent work on lower bounds on black hole masses, refs. [7,8] for
related work on inflation and dark energy, and [9] on the influence of negative potentials).
Since a central question in studies of the early structure and evolution of the universe is the
possible presence of singularities, it is important to understand how the trans-Planckian
censorship conjecture relates to the possible resolution of cosmological singularities.

The structure of this paper is as follows. In Section 2, we introduce three different
forms of trans-Planckian bounds, and then provide sufficient conditions in the form of
integrability assumptions of the Hubble parameter (i.e., extrinsic curvature) that lead to two
of them. In Section 3, we show how trans-Planckian bounds lead to the absence of a blowup
in the classical solutions, and discuss why such bounds alone cannot provide an overall
criterion for the possible geodesic completeness of spacetime. We then show how one
can obtain such criteria by introducing a further condition that we call the ‘anti-Gronwall
assumption’, that together with the trans-Planckian bounds may lead to a total bound on
the norm of the Hubble parameter. We further discuss these results in Section 5.
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2. Trans-Planckian Bounds

In this Section, we introduce a new method to derive trans-Planckian bounds based
on the Gronwall’s lemma.

We start with the ‘Gronwall hypothesis’, which is contained in the following differen-
tial inequality:

ȧ(t)
a(t)
≤ H0(t), (1)

for the two functions a, H0 defined for all t in the interval [ti, t f ] and assumed to be differ-
entiable and nonnegative (weaker assumptions are possible). Using Gronwall’s lemma
(see [10] for a discussion closer to its usage in the present work, and [11,12] for wider
applications and references on inequalities), we find:

a(t f )

a(ti)
≤ e

∫ t f
ti

H0(s)ds. (2)

Let us first consider the case that H0 = const. For each finite t f there is a nonzero
constant H f such that the right-hand side of (2) is pointwise bounded, namely,

H0(t f − ti) < ln
MP
H f

. (3)

Then it follows from the conclusion of the Gronwall’s lemma (2) that:

a(t f )

a(ti)
lP < H−1

f , (4)

with lP = M−1
P (in other notation, setting N = H0(t f − ti) for the number of ‘e-folds’,

if we assume eN < MP/H f as in (3), then (4) follows.) We note that the trans-Planckian
bound in the form stated in Ref. [4] does not hold in the interval [ti, ∞) for each finite ti,
because when the upper endpoint t f → ∞, the left-hand side of (3) is infinite.

We move on to the second case that is when H0 is not assumed constant. We suppose
that H0 is an integrable function on [ti, ∞), and replace the left-hand side of inequality (3)

with the expression
∫ t f

ti
H0(s)ds. We then end up with the pointwise assumption that for

each t f , we have: ∫ t f

ti

H0(s)ds < ln
MP
H f

. (5)

This implies that the statement of the trans-Planckian censorship conjecture as formulated
in [4] now becomes a trans-Planckian censorship theorem provided H0 is integrable: for any

integrable function H0(t) the integral
∫ t f

ti
H0(s)ds is bounded, and we have:

a(t)
a(ti)

lP < H∞, t ∈ [ti, ∞), (6)

where H∞ is a suitable constant that provides a uniform bound for the left-hand side
of (6). Hence, the integrability of H0 provides a sufficient condition for the validity of the
trans-Planckian censorship conjecture.

In other words, under assumption (1), inequality (3) (and similarly (5)) implies (4)
(or (6)), but not vice-versa. Sometimes a stronger version of the trans-Planckian censorship
conjecture is stated in the form of a double implication, which, however, assumes more
than just the integrability of H0. The following equivalence,

a(t f )

a(ti)
lP < H−1

f if and only if H0(t f − ti) < ln
MP
H f

, (7)
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is true (not just as a one-way implication), provided that the equality ȧ/a = H0 is assumed
instead of the differential inequality (1).

Another possible form is to take the trans-Planckian censorship conjecture to mean
the reverse statement, namely that (4)⇒ (3) for any integrable H0; namely, that for any t f
and any nonzero H f , we have [5]:

a(t f )

a(ti)
lP < H−1

f implies
∫ t f

ti

H0(s)ds < ln
MP
H f

. (8)

This statement is different in meaning from Equations (4), (6), or (7), and is true provided
again that H0 is an integrable function.

3. A Breakdown Criterion

In this Section we show that a trans-Planckian bound together with the additional
assumption of the existence of a lower bound for the scale factor are sufficient conditions
for producing singularity-free universes.

First we show that since any of the trans-Planckian bounds discussed in the previous
section provide an upper bound for a, we can obtain a criterion about the possible absence
of blowup solutions for the scale factor a in any interval of the form [ti, t f ].

For an initial time ti, we take the the ‘initial datum’ to be a(ti) = ai, and consider the
maximal interval of existence of solutions a(t) to be I = (T−, T+) where −∞ ≤ T− < ti <
T+ ≤ ∞. Any trans-Planckian bound provides a suitable upper bound for a, and therefore
by the Picard existence and uniqueness theorem (cf. e.g., [10], p. 14) we have a global
solution, which is T+ = ∞, that does not go to infinity in a finite time in the future.

A physical interpretation of this result is that singularities of the finite-time blow-up
type for a(t) are strictly prohibited when (2) holds and H0 is integrable.

However, in general relativity a singularity is defined as geodesic incompleteness [1].
The previous discussion does not of course prove geodesic completeness, and so cannot
provide an argument for a resolution of singularities of spacetime under the above assump-
tions. The physical problem is to prove the existence for an infinite proper time, and in this
respect the work in Ref. [2] becomes relevant.

In [2], a theorem was proven giving sufficient conditions for geodesic completeness in
the following sense. We assume the standard (3+ 1)-splitting of a globally hyperbolic space-
time where the lapse function, shift vector field and spatial metric are all bounded (regular
hyperbolicity). If we further take the norms of the spatial gradient of the lapse function as
well as that of the extrinsic curvature to be bounded by integrable functions on the interval
[ti, ∞), then it follows that the spacetime is future timelike and null geodesically complete.

For example, in the case of an FRW universe with scale factor a, the lapse N = 1,
the shift β = 0, and thus the gradient of the lapse vanishes, while the norm of the extrinsic
curvature is given by |K|g2 = 3(ȧ/a)2 = 3H2. Hence, this result tells us that in FRW
universes that have their scale factor bounded below will be singular only if there is a finite
time t1 ∈ [ti, ∞) such that the Hubble parameter H is not integrable on the corresponding
interval [t1, ∞).

Previously we assumed the Gronwall bound (2) for H, where H0 could also be negative,
and we discussed its importance in the formulation of trans-Planckian bounds. That
discussion provides only half of the conditions needed for a complete singularity resolution,
however, and we will now discuss the other half.

Let us introduce the following ‘anti-Gronwall’ assumption, namely,

H(t) ≥ b > 0, (9)

with t ∈ [ti, t f ], for some constant b, so that 0 < b ≤ ȧ/a. Integrating on [ti, t f ] we find that,

a(t f ) ≥ a(ti) eb(t f−ti), (10)
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i.e., the scale factor a is bounded from below. This is a way to circumvent the singularity
at a(t) = 0 for some t earlier than ti that is expected from the Raychaudhuri equation,
because the anti-Gronwall condition (9) is the opposite of the usual one, i.e., negative
expansion (or positive convergence) assumed in the singularity theorems (cf. [1], Thm. 3,
p. 271).

The question is then whether the interval I = (T−, T+), where the scale factor a is
bounded, is finite or infinite. From the results above it follows that using the anti-Gronwall
condition (9) (i.e., a is bounded below) together with the trans-Planckian bound, we find
that the norm |H(t)| will be bounded for all time, not just H, so that the interval I can be
infinite (to the left, right, or both). This is so because according to the completeness theorem
of [2] mentioned above, the integrability of |H|, i.e., |H| is bounded by the integrable
function H0 as in (1), and is also a sufficient condition for geodesic completeness (the others
being that spacetime is globally and regularly hyperbolic) to the past, future, or both.

We note that this argument is independent of the the usual assumption on the Ricci
tensor, because the positive convergence condition is an independent hypothesis (i.e.,
RµνXµXν ≥ 0 for non-spacelike vector fields), and leads to the absence of past or fu-
ture singularities.

For a Friedman universe, in particular, geodesic completeness can only fail if there
exists a time ti such that the norm of the Hubble parameter |H| becomes non-integrable in
the interval [ti, ∞). The non-integrability of |H| provides the only necessary condition for
a Friedman universe to be singular. There are different ways for this non-integrability to
arise, and an exhaustive classification of the nature of possible singularities that occur this
way was presented in [13,14].

Therefore we are led to conclude that using the completeness theorem, the trans-
Planckian bounds, and the anti-Gronwall assumption, there is a way out of the inevitability
of the singular nature of Friedman universes either in the past or future, by providing
conditions for the norm of the Hubble parameter to be bounded and hence be integrable.

This argument also explains why the trans-Planckian censorship conjecture favors
scenarios such as the ekpyrotic universe where the scale factor is bounded below, or the
emergent universe scenarios [15] where H is not only integrable but in fact is asymptotically
vanishing [13], rather than an inflationary universe where there is a singularity with a finite
H, cf. [13,16].

Therefore, we conclude that future (or past) geodesic completeness and the associated
absence of future (past) singularities is a necessary consequence of trans-Planckian bounds
in any scenario in which the universe satisfies the anti-Gronwall assumption.

4. Examples

As an application of the previous results, we consider here a few representative
examples that illustrate some of the features of the use of trans-Planckian bounds in
proving geodesic completeness.

A a first example, let us consider the emergent universe scenario of [15]. For this
model, the Gronwall hypothesis, namely that the expansion is sub-Hubblian, together
with the trans-Planckian bound (4), implies that the initial (Einstein static universe) scale
factor a(ti) is bounded from below, avoiding the usual fine-tuning issues associated with
the emergent scenario. In addition, the anti-Gronwall bound on the Hubble parameter (9)
implies a large classical expanding universe with a scale factor given by (10) at late times.
This universe is also future geodesically complete because the Hubble parameter is not
only bounded by asymptotically vanishing, cf. [13].

In fact it is not difficult to devise universes with an asymptotically vanishing Hubble
parameter, thus signaling future geodesic completeness. As an example, in any flat or
negatively curved FRW model filled with a perfect fluid and scalar field with a positive,
bounded potential, one can show that not only H but also the fluid density are future
asymptotically vanishing, cf. [17], Proposition 2. Hence, in any model with logarithmic
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or generalized potentials, e.g., of the form studied in [18,19], the trans-Planckian bound
together with the anti-Gronwall hypothesis imply a singularity-free evolution.

5. Discussion

In this paper we have discussed the role of trans-Planckian bounds in relation to the
formation of singularities. We have first shown that such bounds can be naturally deduced
from the Gronwall hypothesis, which provides upper bounds to the Hubble parameter.

This leads to a new criterion for the absence of diverging cosmological solutions either
at a finite time or at infinity.

Furthermore, we have shown that trans-Planckian bounds, when combined with the
condition that the Hubble parameter is bounded away from zero, lead to geodesically
complete universes satisfying the usual causality assumptions. We therefore conclude
that trans-Planckian bounds provide a way to singularity-free universes if the Hubble
parameter is integrable.

This result opens the way to constructing singularity-free cosmologies starting from a
trans-Planckian bound and examining the integrability of the expansion parameter. This in
turn depends on the type of matter content of the universe, and may lead to selection rules
for non-singular cosmologies from suitable restrictions on the fluid or other parameters of
the matter fields. Due to the generality of our criteria, we believe that our present results
may also be extended to more general anisotropic or inhomogeneous cosmologies.
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