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Abstract: Cross-level requirement trace links (i.e., links between high-level requirements (HLRs) and
low-level requirements (LLRs)) record the top-down decomposition process of requirements and
support various development and management activities (e.g., requirement validation). Undoubtedly,
updating trace links synchronously with requirement changes is critical for their constant availability.
However, large-scale open-source software that is rapidly iterative and continually released has
numerous requirements that are dynamic. These requirements render timely update of trace links
challenging. To address these problems, in this study, a novel deep-learning-based method, deep
requirement trace analyzer fusing heterogeneous features (DRAFT), was proposed for updating
trace links between various levels of requirements. Considering both the semantic information of
requirement text descriptions and the process features based on metadata, trace link data accumulated
in the early stage are comprehensively used to train the trace link identification model. Particularly,
first, we performed second-phase pre-training for the bidirectional encoder representations from
transformers (BERT) language model based on the project document corpus to realize project-related
knowledge transfer, which yields superior text embedding. Second, we designed 11 heuristic features
based on the requirement metadata in the open-source system. Based on these features and semantic
similarity between HLRs and LLRs, we designed a cross-level requirement tracing model for new
requirements. The superiority of DRAFT was verified based on the requirement datasets of eight
open-source projects. The average F1 and F2 scores of DRAFT were 69.3% and 76.9%, respectively,
which were 16.5% and 22.3% higher than baselines. An ablation experiment proved the positive role
of two key steps in trace link construction.

Keywords: cross-level requirement traceability; traceability maintenance; multi-features fusion;
bidirectional encoder representations from transformers

MSC: 68N01; 46-04

1. Introduction

In complex software systems, requirements are decomposed layer by layer from top
to bottom [1]. In this process, ensuring that each requirement at the high abstraction level
is refined into a requirement at a lower level is critical. Each low-level requirement (LLR)
should trace up to a specific high-level requirement (HLR); otherwise, subsequent design
and implementation cannot satisfy system objectives or may exceed the system scope
(over-standard) [2]. Many standards and norms such as DO-178C [3], IEEE Std. 830 [4],
and CMMI [5] have emphasized the importance of requirement traceability to software
development. In particular, DO-178C clearly stipulates the necessity to ensure that LLRs can
satisfy HLRs and that each HLR is developed into LLRs subsequently. In an open-source
system, developers cooperate across regions, and personnel mobility is strong [6]. Creating
cross-level requirement trace links helps participants to swiftly understand the origin and
development of requirements. Therefore, creating trace links between the requirements
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of different levels to support activities, such as requirement verification, validation, and
change management, is crucial for ensuring that system development is correct.

With the constant gathering of requirements during system evolution, the requirement
set continues to expand, and the integrity of trace links created in the early stage reduces.
Untimely update of trace links mitigates their support for other activities and causes more
errors [7]. However, manually updating trace links requires considerable manpower and
material resources, and this phenomenon is especially obvious in open-source systems.
Linus Torvalds (https://en.wikipedia.org/wiki/Linus_Torvalds, accessed on 25 January
2023), the father of Linux, proposed the principle of “Release early. Release often. And
listen to your customers” for open-source software. This principle has the characteristics
of short-cycle iterative development, rapid release, and continuous gathering of user
requirements. In the constant iteration and release process, following the initial version
release of a software project, new requirements from various origins such as new features,
user feedback, and technical updates are frequently raised, and the number of trace links
also increases rapidly [8]. In an open-source system featuring a short cycle, fast iterations,
and high-frequency addition of new requirements, the cost of updating trace links during
the evolution process is extremely high and may even exceed the cost of creating trace links
at the initial stage of the project [9].

Although both academia and industry have recognized the importance of automated
update and maintenance of trace links [10,11], few related studies have focused on it.
Mader et al. [12] proposed to maintain the trace links between UML artifacts of different
development activities (e.g., requirements and analysis) by capturing the relevant change
events. Furthermore, existing studies on trace link maintenance focus on updating the
trace links between requirements and code [9,13] and between requirements and Unified
Modeling Language (UML) models [12]. However, limited studies have focused on different
levels of requirements.

Most traceability-related studies have focused on automatic identification of require-
ment trace links. Existing methods typically use the text semantic analysis of the required
artifacts to automatically create trace links. Mainstream methods include information
retrieval-based methods (e.g., vector space model (VSM) [14], latent semantic indexing
(LSI) [15], VSM-Part-of-Speech (POS) [16], VSM-Thesaurus [17], and Relevance feedback
(RF) [18,19]), machine learning-based methods (e.g., methods mentioned in Refs. [20–23]),
and deep-learning-based methods [24–26] (e.g., TraceNN [25] and TraceBERT [26]). Al-
though trace link creation technologies can support the updating of trace links, only the
textual distance between requirements is considered, and in many cases, the process-related
information (e.g., writers and assigners) of requirement creation is ignored. Furthermore,
the trace links of historical requirements are not comprehensively utilized. These two types
of information are crucial for automatically creating trace links for new requirements.

As displayed in Figure 1, although the text descriptions (i.e., description and summary)
of the high-level requirement JBIDE-26652 (https://issues.redhat.com/browse/JBIDE-26652,
accessed on 25 January 2023) and the requirement JBIDE-26790 (https://issues.redhat.com/
browse/JBIDE-26790, accessed on 25 January 2023) exhibit a low similarity, the two require-
ments highly overlap in terms of process data (e.g., assignee, creator, and components).
A decomposition relationship exists between these two requirements, that is, cross-level
traceability because the same author is very likely to decompose HLRs into LLRs after
creating HLRs.

Figure 2 shows that historical requirements also help to trace link identification.
For the pair of JBIDE-27384 (https://issues.redhat.com/browse/JBIDE-27384, accessed
on 25 January 2023) and JBIDE-27673 (https://issues.redhat.com/browse/JBIDE-27673,
accessed on 25 January 2023), the similarity between them is insufficient in both textual and
process information. However, analysis revealed that JBIDE-27672 (https://issues.redhat.
com/browse/JBIDE-27672, accessed on 25 January 2023) is an LLR traced to JBIDE-27384,
which has a high similarity with JBIDE-27673 in terms of textual and process information.
Therefore, a trace link is very likely to exist between JBIDE-27673 and JBIDE-27384.

https://en.wikipedia.org/wiki/Linus_Torvalds
https://issues.redhat.com/browse/JBIDE-26652
https://issues.redhat.com/browse/JBIDE-26790
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Figure 2. Example: historical requirements help to identify new trace links.

Inspired by these two points, this study proposed a novel deep-learning-based method,
deep requirement trace analyzer fusing heterogeneous features (DRAFT), for automati-
cally updating trace links. This method can learn the trace the link identification model
from historical data, automatically recommend candidate trace links for analysts for new
requirements, and assist analysts in updating cross-level requirement trace links during
requirement evolution. In DRAFT, the joint feature representation (i.e., text features and
process features) of requirements is established from the perspectives of natural language
description and process information. Based on the BERT model [27], DRAFT also integrates
the direct feature extracted from the pairs of candidate requirements, as well as the extended
features by retrieving the historical trace links to automatically develop trace links between
cross-level requirements. In terms of capturing text semantic similarity, considering the
semantic differences of terms in various contexts, we proposed to perform second-phase
pre-training for the BERT language model to ensure the encoding of the required text is
highly suitable for the project context. In terms of extracting process features, DRAFT
introduces 11 heuristic features based on metadata and utilizes historical trace link data
when extracting features. We collect requirement trace links from eight open-source projects
to construct datasets and conduct experimental evaluations for DRAFT. The evaluation
results revealed that DRAFT outperformed the existing baseline methods in identifying
trace links.

The contributions of this paper are as follows:

1. A pre-trained model-based approach DRAFT is proposed for updating cross-level
requirement trace links. Compared with existing studies, we extended the features
into two dimensions. In terms of feature types, process features are added in addition
to text features. In terms of requirement types, instead of directly analyzing the can-
didate requirement pairs (i.e., direct features), the requirements related to candidate
requirements (i.e., extended features) are also analyzed.
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2. An experimental evaluation is performed for eight open-source projects in various
domains and scales. The results revealed that the performance of DRAFT is consider-
ably better than that of the baseline methods such as VSM, relevance feedback, and
TraceBERT. DRAFT achieved average F1 and F2 scores of 69.3% and 76.9%, which are
up to 16.5% and 22.3% higher than those of the baselines, respectively.

3. The datasets and DRAFT-related code are made available online (https://gitee.com/
ttstr/DRAFT, accessed on 25 January 2023).

The remainder of this paper is organized as follows: Section 2 describes the research
background and defines the problems of requirement trace links update; Section 3 sum-
marizes the relevant research status in detail; Section 4 introduces the overall framework
of DRAFT; Sections 5–7 introduce the three core steps of DRAFT, i.e., project-specific pre-
training, heuristic feature extraction, and the deep neural network architecture of the trace
link identification model; Section 8 details an experimental evaluation and comparative
analysis of the proposed method and the baseline methods; Section 9 discusses the validity
threats and limitations of this study. Finally, a conclusion is given.

2. Research Background and Problem Definition
2.1. Research Background: Cross-Level Requirements Traceability

To adapt to the loosely coupled and cross-regional cooperative development pattern, a
lightweight, informal just-in-time requirement engineering [28] is adopted in open-source
systems, and an issue log management system is used to record and manage requirements.
Requirement development in an open-source system is a top-down decomposition process.
At the beginning of a project, analysts define the HLRs that describe the long-term goals,
with requirements known as “epics”, of the project and decompose these into requirements
such as “features” (or “feature requests”), “enhancements” (or “improvements”), and
“tasks”. Tasks are broken down into finer-grained sub-tasks. Some issue log types are
predefined in the issue tracking system to record requirements [29]. The issue log types
of requirements on most widely used JIRA (Issue management tools—popularity ranking
(2017). https://project-management.zone/ranking/category/issue, accessed on 25 January
2023) are displayed in Figure 3. Requirements have three abstraction levels (from high to
low): parent (including epics), standard (including features, enhancements, and tasks), and
child (including sub-tasks).
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Cross-level requirement traceability means trace links between requirements in differ-
ent abstraction levels. Given that traceability is primarily used to record the decomposition
relationship between requirements, we focus on the trace links between the requirements
of adjacent levels, i.e., parent–standard and standard–child in JIRA.

In an open-source system, the raw data of requirement issue logs contain rich textual
information and process information [30]. The textual information of the issue log is
contained in two fields: summary (a concise summary of the issue) and description (a
detailed description of the issue) [31]. When manually constructing a requirement trace
link, an analyst should read and understand the text descriptions such as summary and
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description of the requirement. Next, the analyst analyzes the semantic association between
artifacts, which is the most intuitive basis for identifying trace links between requirements.
Therefore, requirement traceability is a sentence-pair classification problem in natural
language understanding, and the semantic similarity of a pair of requirements based on
various technologies, such as information retrieval and deep learning language models, are
measured to determine whether a trace link exists between artifacts.

Additionally, in the metadata of issue log, important process information, for example,
people-related information fields, such as creator and assignee as well as creation time, components,
and labels, is recorded. This type of information is a potential basis for analyzing require-
ment trace links. For example, requirements raised by the same developer/user are likely
to correspond to the same or related functions. Thus, trace links are more likely to exist
between requirements raised by the same developer/user.

Therefore, text semantic similarity is used for integrating the analysis of process fea-
tures between cross-level requirements, which renders accurate identification of complete
cross-level requirement trace links.

2.2. Problem Definition: Update of Requirement Trace Links

Because of feedback from end users, project technology update, and constant proposal
of new requirements during the version evolution of software systems, analysts are required
to update the trace links between requirements to ensure their continuous availability.

Figure 4 describes a trace link update task. Let a historical project requirement set
Rhist = {HLRShist, LLRShist}, where HLRShist is the HLR set and LLRShist is the LLR set.
TLShist is a set of relationships between HLRShist and LLRShist. Each element in TLShist
is a two-tuple (hlr′, llr′), where hlr′ ∈ HLRShist is the source requirement (HLR entry),
and llr′ ∈ LLRShist is the target requirement (LLR entry). When new requirements Rnew
(Rnew = HLRSnew ∪ LLRSnew) are obtained, the existing trace link set TLShist needs to be
updated. This task is to construct the trace links between requirements of different level in
Rnew and Rhist.
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The following three cases may exist when a trace link is created for new requirements:
between new HLR and historical LLR, between historical HLR and new LLR, and between
new HLR and new LLR. The trace links defined by the aforementioned three tasks are
Trace<HLRnew, LLRhist>, Trace<HLRhist, LLRnew>, and Trace<HLRnew, LLRnew>. The set of trace links
created for new requirements to be solved in this task, that is, Tracenew, is the union of the
three sets. Thus, Tracenew = Trace<HLRSnew, LLRShist>∪Trace<HLRShist, LLRSnew>∪Trace<HLRSnew, LLRSnew>.

Note that our proposed method can support the addition, deletion, and modification
scenarios regarding the requirement evolution and is not limited to establishing a trace
link for the newly added requirement. For requirements to be deleted, all related trace
links should be deleted, which is not difficult technically. The modification of require-
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ments is equal to the deletion of old requirements and the addition of new requirements
(requirements after modification).

3. Related Work

The Trace Link Evolver proposed by Rahimi and Cleland-Huang in 2019 [9] can auto-
matically update the trace link between requirements and code during the system iteration
process. They first analyzed 24 common scenarios of code change and defined the trace link
evolution rules for each change scenario to update the trace link. In 2012, Mader [12] et al.
proposed a semi-automatic approach for maintaining the trace links between requirements
and design models expressed in UML, which can update the trace links with the progress of
development activities. Under this framework, a specific UML modeling tool was used to
capture the flow of change events caused by various development activities, and heuristic
rules are predefined for development activities, leading to automatic updating of trace links.
In addition, few studies have been conducted on trace link update for cross-levels of re-
quirements. Most studies have focused on the updating of trace links between requirements
and codes and between requirements and UML models.

However, in the requirement tracing domain, numerous studies have focused on
automatically identifying and creating trace links. Such methods can ensure the contin-
uous availability of trace links by regularly recreating trace links during project version
iterations. Rath et al. [23] proposed a machine-learning-based method for identifying trace
links between requirement problems and submission records of open-source systems. This
method not only calculates the text similarity between artifacts based on the VSM [14]
model but also considers process-related attributes such as stakeholder information and
timing relationships. Weka’s J48 decision tree [32] training model was applied to verify
the identification effect when using various feature sets. Their experimental results re-
vealed that the best results can be achieved when both similarity and process features
are used. We incorporated their ideas and analyzed the heuristic features related to the
process while considering the text description content of requirement entries as the main
identification basis.

The semantic similarity of the text description is the most intuitive basis for creating
trace links between requirements. Most studies have only relied on the text descriptions
of requirements to identify trace links. The information retrieval technique and learning-
based methods have been adopted for identifying the requirement trace links based on
the text features of requirements. Early methods for automated requirement trace include
classic VSM [14] and LSI [15] that determine the trace link by capturing the same words
used in the text descriptions of source and target artifacts and calculating the similarity
between the two text vectors. However, in practice, artifacts are written by various people
or organizations, and different words may have been used to describe the same concept.
Thus, a term mismatch problem may occur, which is the primary concern of this type of
method [33]. To address this problem, adding semantic information improved identification.
For example, thesaurus [17] and domain knowledge [34] can help to capture the semantic
association between different words based on the vocabulary support. The relevance feed-
back technique [19] can improve the query statement and expand the scope of semantic
retrieval based on user feedback on information retrieval results, which increases accuracy.
With the development of artificial intelligence, methods based on machine learning and
deep learning have gradually received considerable research attention. Learning-based
methods typically regard the identification of requirement trace links as a binary classifica-
tion problem. In methods based on machine learning, first, semantic features are extracted
from the requirement descriptions, and models such as Naive Bayes [35] and random
forest [36] are used to predict the trace link between requirements pairs.

Methods based on deep learning can automatically embed text features through a
deep neural network, which reduces the dependence on manual selection in the feature
representation stage in case of machine learning methods. The recurrent neural network
(RNN) is widely used in natural language processing. The method can embed contextual
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semantic information into word vectors. The RNN has a stronger ability to represent text
than the information retrieval and machine learning methods [37]. Guo et al. proposed the
TraceNN method [25] to trace requirements to design documents. In TraceNN, first, the
features of text sequences are embedded based on the RNN, and multilayer perceptron
(MLP) is then used to complete the classification of trace links. They evaluated two types
of RNN models, namely long short-term memory (LSTM) and gated recurrent unit (GRU)
on large-scale industrial datasets. Their results showed that GRU delivered better results
in terms of mean average precision. However, in RNNs, usually only one side of the
context information is encoded because of its unidirectional structure. With the increase in
the sequence length, the embedded context information gradually weakens [37]. In 2018,
Devlin et al. proposed BERT [27] based on the transformers [38], which solved this problem
satisfactorily. This method achieved state-of-the-art results in a series of natural language
processing tasks. BERT consists of two stages, namely pre-training and fine-tuning on
downstream tasks. In the pre-training stage, unsupervised task training is performed on a
large corpus. The semantic knowledge in the corpus is encoded into the language model,
which is used to embed the text representation vector. This representation is applied to
downstream tasks. Native BERT is trained on general corpora such as Wiki. Currently,
numerous corpora have been developed for various domains and trained domain-specific
language models such as BioBERT [39], FinBERT [40], and CodeBERT [41]. In the require-
ment trace field, TraceBERT [26], proposed by Lin et al. in 2021, investigated the application
effect of BERT in tracing requirements and codes. This is the first study that applied BERT
or other transformer-based methods to software traceability tasks. They performed second-
phase pre-training on large datasets of similar tasks and subsequently transferred domain
knowledge into the language model. The model was then fine-tuned and applied to the
downstream task “issue (natural language)–commit (programming language)” to improve
the trace effect. They evaluated three commonly used BERT architectures (i.e., single, twin,
and Siamese) on open-source projects. Their experimental results showed that single archi-
tecture achieves the best accuracy, while Siamese architecture achieved similar accuracy
with faster training time [26]. Considering that the requirement trace task is typically a
project-specific task, we also developed a corpus from project-related documents based on
transfer learning. After second-phase pre-training, we encoded the contextual semantic
information and knowledge of the projects into the language model to improve the quality
of text representations in the text embedding stage and subsequently achieved superior
results in cross-level requirement trace activities.

Studies have proved that the deep learning-based language model BERT achieved excellent
performance in downstream tasks of natural language understanding. Refs. [23] and [42] have
confirmed that the introduction of process features can improve the quality of trace link
identification. However, the two methods are yet to be combined in a study. This study
combined these two methods. First, the adaptability of the BERT model to the project
context was improved through the second-phase pre-training on the project corpus and
used as an encoder for the required text. Second, the trace link in the historical version
was fully utilized to extract heuristic features based on the requirement metadata. We
constructed a deep neural network to fuse the two kinds of features and improved the
effect of trace link identification.

4. DRAFT Framework

To comprehensively analyze the correlation between cross-level requirements, the
features of requirements in terms of text description are analyzed, and information, such as
components, task labels, and stakeholders, is processed based on the metadata of issue logs.
A network architecture DRAFT that integrates text features and process features is then
designed. Based on the BERT language model, DRAFT allows for the embedding and joint
feature representation of heterogeneous features, which renders the creation of cross-level
requirement trace links for new requirements.
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As displayed in Figure 5, the DRAFT architecture includes three key components:
the project-specific BERT second-phase pre-training module, the heterogeneous feature
extraction module, and the trace link identification model that integrates heterogeneous
features. These three components are executed in sequence. Trace links can be created for
new requirements by training the trace link identification model.
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In this study, the BERT pre-training model [27] was selected to embed requirement
text and features. We selected BERT because its performance is excellent in various
tasks of natural language understanding (such as question answering and sentence-pair
classification) [37]. Furthermore, Lin et al. [24,26] used considerable data and proved that
excellent transfer ability and context understanding ability of BERT make their approach
TraceBERT more effective in establishing a trace link between commit and code than base-
line methods such as the VSM and LSTM. However, the BERT pre-training model runs
on general corpora. To enhance its adaptability to projects and domains and improve its
ability to understand domain-specific corpora, we collected all text descriptions related to
the requirements in the projects. A second-phase pre-training was performed for BERT to
obtain a project-specific language model.

The second step is to identify and embed the heterogeneous features of the require-
ments. In most current requirement trace methods based on deep learning, only the text
features of requirements are considered [17–22,24–26,30,34]. The proposed DRAFT method
fully utilizes the limited historical trace data to obtain a complete representation of require-
ment features. The features of process information, such as the requirement creator and
the creation time, were also considered when using the natural language descriptions of
requirements as the basis for trace link identification. In addition to directly extracting
the text features and process features between the requirements in pairs, we retrieved
the historical trace list of each requirement from the historical trace link and analyzed
the extended features between the requirements in the historical trace list and the newly
added requirements.

Finally, a trace link identification model fusing heterogeneous features was constructed.
The model consists of three modules, namely requirement-pair feature embedding layer,
feature fusion layer, and trace link identification layer. The primary function of the
requirement-pair feature embedding layer is to embed the text features and heuristic
features of HLR-LLR pairs based on the aforementioned feature extraction method. Textual
features are high-dimensional (200-dimensional), whereas the heuristic process features are
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multiple low-dimensional (1-dimensional) features. The feature fusion layer reduces the di-
mensionality of high-dimensional text features based on cosine similarity and concatenates
them with low-dimensional features to realize the fusion of heterogeneous features. Finally,
the fused features are input into the trace link identification layer to obtain the trace link
identification result of the pair of requirements.

5. Project-Specific Pre-Training

In this study, we designed DRAFT upon BERT language model [27] for the following
reasons. Firstly, the BERT architecture is based on transformers [38]. Compared to classic
unidirectional models such as RNN, when embedding a word in a given sequence, BERT is
capable of encoding the surrounding context bi-directionally. Secondly, the training process
of BERT can be parallel. This allows BERT to obtain a more sufficient context vector with
much less time consumption. Thirdly, BERT has been successfully applied to requirement
traceability problems of open-source projects in recent studies [26,30] and outperformed
two popular RNN baselines (i.e., GRU and LSTM).

The currently BERT pre-trained language models are trained on general corpora such
as WordPiece and Wiki. Therefore, the context of the corpora differs from the technical
documents of the project. Ref. [26] proved that a second phase of pre-training using a
domain corpus (i.e., domain-adaptive pre-training) could lead to performance gains. Thus,
to obtain a language representation model that can understand project-related documents
more accurately and enhance the ability of the model to represent domain/project-related
vocabulary, the natural language text contained in the summary and description fields
of all requirements (including HLRs and LLRs) for each project was extracted to con-
struct a project-related corpus. We performed second-phase pre-training for the BERT
model “uncased_L-12_H-768_A-12” (http://github.com/google-research/bert, accessed
on 25 January 2023) based on two unsupervised tasks: masked language model (MLM)
task and next sentence prediction (NSP) task.

The MLM task randomly masks some words in the original text to construct a training
set. The training goal is to allow the encoder to predict the masked words based on the
context. The MLM prediction task enables the model encoding result to contain the context
information. The following original MLM training strategy of BERT was adopted: (1) 15%
of the tokens in the sentence are randomly selected; (2) among the 15% tokens, 80% are
replaced by “[mask]”, 10% remain unchanged, and the remaining 10% are replaced with a
random token; (3) the tokens selected in the first step are predicted based on the context.

NSP is used to train the sentence-level feature extraction ability of BERT, which is
a sentence-pair classification task. Thus, given a pair of input sentences S1 and S2, NSP
predicts whether S2 is the next sentence of S1. The NSP task was selected to increase the
ability of the language model to understand sentence relationships. For the NSP task, first,
the paragraphs and sentences of the long natural language descriptions are identified in the
corpus based on the Stanford CoreNLP tool. Next, sentence pairs with a sliding window of
length 2 are extracted for each natural language description. Finally, the sentence pairs in
the original order are considered positive samples, whereas sentence pairs in the reversed
order are considered negative samples to construct a training set.

After second-phase pre-training, a project-specific pre-training model was obtained to
extract the features of natural language descriptions in the requirements.

6. Heuristic Feature Extraction Based on Metadata

Based on the three scenarios defined in Section 2.2, the following three types of
requirements pairs should be considered when updating trace links between different
levels of requirements: (a) new HLR and historical LLR, hlrnew–llrhist; (b) historical HLR
and new LLR, hlrhist–llrnew; (c) new HLR and new LLR, hlrnew–llrnew. This section designs
11 features of cross-level requirement pairs for these three scenarios, including process
features and text feature (Table 1).

http://github.com/google-research/bert
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Table 1. Metadata-based feature extraction in DRAFT.

ID Feature Type Feature Name Applicable Requirement Pair Explanation

Ft.1

Process feature

same_coms

* (a), * (b), and * (c)

The normalized representation
of the number of components

shared by a pair of cross-level
requirements. (See Section 6.1)

Ft.2 find_coms

The maximal degree that the
component labels of one

requirement can be covered by
the summary and description of
the other one. (See Section 6.1)

Ft.3 same_labels

The normalized representation
of the number of labels shared by

a pair of cross-level
requirements. (See Section 6.2)

Ft.4 same_creator

Whether the two requirements
have the same creator, i.e., if

hlr.creator = llr.creator.
(See Section 6.2)

Ft.5 same_assignee

Whether the two requirements
are assigned by the same assignee,

i.e., if hlr.assignee = llr.assignee.
(See Section 6.2)

Ft.6 same_stk

Whether the creator of one
requirement is equal to the

assignee of the other one, i.e., if
hlr.creator = llr.assignee or

hlr.assignee = llr.creator.
(See Section 6.2)

Ft.7–10 extended_features (a) and (b)

Extracting Ft. 1, Ft.2, Ft.4, Ft.5
between *llrhist.tracedReq and

hlrnew (in scenario a), or between
*hlrhist.tracedReq and llrnew (in
scenario (b)). (See Section 6.3)

Ft.11 Text feature text_feature (a), (b), and (c)
Text embedding of hlr.description,

hlr.summary, llr.description and
llr.summary. (See Section 6.4)

* (a): a pair of new hlr and historical llr, hlrnew–llrhist; * (b): a pair of historical hlr and new llr, hlrhist–llrnew; * (c): a
pair of new hlr and new llr, hlrnew–llrnew *llrhist.tracedReq: historical hlrs traced to llrhist; * hlrhist.tracedReq: historical
llrs traced to hlrhist.

In Table 1, Ft.1–Ft.10 are process features. For a given pair of cross-level requirements
hlr and llr, Ft.1–Ft.6 are extracted directly from the metadata of this requirement pair by
using the methods mentioned in Sections 6.1 and 6.2. Further, to fully utilize historical trace
link, we designed extended features Ft.7–10 for two requirement pairs (hlrnew–llrhist and
hlrhist–llrnew) and extract process-related features (same_coms, find_coms, same_creator
and same_assignee) between hlrnew and llrhist.tracedReq (or hlrhist.tracedReq and llrnew). Here,
llrhist.tracedReq and hlrhist.tracedReq are the lists of hlrhist and llrhist requirements that have
trace links with llrhist and hlrhist, respectively, according to the historical trace links TLShist.
They can be defined as follows:

hlrhist.tracedReq = {llrhist|hlrhist∈HLRShist ∩ llrhist∈LLRShist ∩ <hlrhist, llrhist>∈TLShist};

llrhist.tracedReq = {hlrhist|llrhist∈LLRShist ∩ hlrhist∈HLRShist ∩ <hlrhist, llrhist>∈TLShist} (1)

where HLRShist and LLRShist are the sets of HLRs and LLRs in the historical version, and
TLShist is a set of historical trace links.
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Ft.11 is a set of text embedding features which we extracted from the natural language
descriptions (typically included in two metadata fields, summary and description) of the
requirement using the language model obtained in Section 5.

6.1. Heuristic Features Related to Components and Labels

The component attribute of a requirement marks the specific components that the
requirement targets. If two cross-level requirements share the same component, a trace
link is more likely to exist between them. This likeliness is also true for a pair of cross-level
requirements with the same labels. Therefore, for a pair of cross-level requirements (hlr, llr),
heuristic features based on the components and labels fields of the requirements should be
designed. Based on these considerations, the features (same_coms and find_coms) based
on the components field and the feature (same_labels) based on the labels field are extracted.

The feature same_coms is a floating-point number in the range of 0~1.0 and is a
normalized representation of the number of components shared by a pair of cross-level
requirements, as presented in Equation (1). The numerator is the number of components
that appear in the component lists of both HLRs and LLRs, and the denominator is the
maximum length of the component lists of HLRs and LLRs. To prevent the phenomenon of
dividing by 0 when the component lists of both HLRs and LLRs are empty, we add 1 to
the denominator.

pair.samecoms =
|hlr.coms ∩ llr.coms|

max(|hlr.coms|, |llr.coms|) + 1
(2)

We extract the find_coms feature, which reflects how many keywords in the component
list of one requirement can be obtained in the summary of the other requirement in a pair
of cross-level requirements. The find_coms feature of a requirement pair is obtained by
considering the maximum value from both find_hcoms and find_lcoms, as presented in
Equation (2). In this equation, find_hcoms is the normalized representation of the number
of keywords in the component list of the HLR appearing in the LLR summary, as shown in
Equation (3). Here, |llr.sum+llr.des| indicates the number of words in the summary and
description of llr. Similarly, Equation (3) can be used to calculate find_lcoms, that is, the
number of keywords in llr.components appearing in hlr.summary and hlr.description, and
then find_coms can be obtained.

Similarly, the feature same_labels is designed for labels. Its extraction method is the
same as the extraction methods of same_coms.

pair. f indcoms = max( f indhcoms, f indlcoms) (3)

pair. f indhcoms =
|{com|com ∈ hlr.coms and com in (llr. sum + llr.des)}|

|llr.sum + llr.des| ∗ (|llr.coms|+ 1)
(4)

6.2. Heuristic Features of Stakeholder Information

The person making the request could be the project developer or the end user. A
pair of cross-level requirements with the same stakeholder indicates that their themes or
contents are correlated to some extent, and they are more likely to have a trace link.

To mark the correlation between a pair of cross-level requirements in terms of stake-
holders, we extract the following three Boolean features to record whether the pair of
requirements are raised by the same user/developer (same_creator), whether they are
assigned to the same person to handle (same_assignee), and whether the stakeholder
(same_stk) is the same.

pair.same_creator = (hlr.creator == llr.creator)?1 : 0 (5)

pair.same_assignee = (hlr.assignee == llr.assignee)?1 : 0 (6)

pair.samestk = (hlr.creator == llr.assignee OR hlr.assignee == llr.creator)?1 : 0 (7)
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6.3. Extended Features Based on Historical Trace Links

Because of the intricate relationship between requirements in the same system, some
association may exist between new requirements and existing requirements. This associa-
tion is helpful for creating traces for new requirements. Therefore, extended features were
designed based on the historical trace list. As displayed in Figure 6, when determining
whether a trace link exists between the new LLRnew and the existing HLRhist, the features
between these two requirements (i.e., direct features) should be extracted. If LLRnew has
high similarity to one or more LLRs related to the HLRhist, the probability that LLRnew has a
trace link with HLRhist is also high. Therefore, we use LLRs contained in HLRhist.traced_reqs
(i.e., the historical trace list of HLRhist) with LLRnew to form requirement pairs and ex-
tract features such as same_coms, find_com, same_creator, and same assignee by pairs
as extended features (Ft.7–10). The vectors of direct features and extended features were
concatenated into the final feature vector between LLRnew and HLRhist.
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Similarly, when identifying a trace link between a pair of requirements hlr∈HLRSnew
and llr∈LLRShist, extended features based on the historical trace list of llr can be extracted.

6.4. Textual Feature

The natural language descriptions contain primary semantic information of require-
ments, and textual feature is an important factor when identifying trace links. Textual
contents of a requirement mainly lie in the metadata attributes summary and description.
Therefore, for a pair of hlr and llr, we extract the text features (Ft. 11) by embedding texts
in hlr.summary, hlr.description, llr.summary and llr.description, utilizing the second-phase
pre-trained project-specific language representation model BERTpjt (seen in Section 5).

7. Trace Link Identification Model Fusing Heterogeneous Features

To support the joint analysis of high-dimensional text features of requirement de-
scription and heuristic features based on metadata, a neural network model that fuses
heterogeneous features was designed.

7.1. Model Structure

As displayed in Figure 7, the model typically includes three layers, namely requirement-
pair feature embedding, heterogeneous feature fusion, and trace link identification layers.
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1. Requirement-pair feature embedding layer. This layer embeds text features and
process features for the input cross-level requirement pair <hlr, llr> using the feature
extraction method described in Section 6.

First, the text features of requirements are embedded by the second-phase pre-trained
project-specific language representation model BERTpjt (seen in Section 5). For a serialized
text T = {t1,t2 . . . tn}, the last layer of BERTpjt (embedding layer) can output the word
embedding {ECLS,Et1,Et2..Etn, ESEP} of each word in T, where Ei is a 768-dimensional
vector. This embedding is typically used as a representation of sentences for downstream
tasks. Nils Reimers [43] et al. argued that three most commonly used strategies are as
follows: (1) use ECLS directly; (2) use the average pooling strategy, that is, calculate the
average value of the representation vector corresponding to each word in T to obtain
Emean; (3) use the maximum pooling strategy, that is, calculate the maximum value of all
word vectors in T in each dimension to obtain Emax. This study revealed that the strategy
of using Emean as the input of the downstream sentence-pair relationship classification
task yields the best performance. Therefore, we adopted this strategy, as presented in
Equation (7). To improve the adaptability of the sentence representation output by the
pre-training model to the described requirement trace task, we added a fully connected
layer after the pooling layer. After Emean passes through the fully connected layer, the
embedding vector ET can be obtained for downstream tasks, as presented in Equation (8).
In this equation, W is a k × j-dimensional trainable parameter, j is the dimension of Emean,
and k is the dimension of the output text representation vector, which is set to 200.

Emean = meanpooling(BERTpjt .encoder(T)) (8)

ET = W ∗ Emean (9)

The text content of a requirement is stored in the summary and description fields.
As displayed in Figure 7, after the natural language descriptions of HLRs and LLRs, that
is, hlr.sum, hlr.des, llr.sum, and llr.des, pass by the feature embedding layer, we obtain four
200-dimensional sentence representation vectors, namely

→
u ,
→
v ,
→
m, and

→
n , and use these as

abstract text features of sentences.
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Second, based on keywords and process information, we extract the common features
of low-dimensional heuristic requirement pairs such as find_coms and same_creator using
the method mentioned in Section 6. If a historical trace link between the HLR and LLR in a
requirement pair exists, then extended features should be extracted based on the historical
trace list. Finally, 10 one-dimensional heuristic features Fheu were obtained.

2. Heterogeneous feature fusion layer. The feature fusion layer is used to fuse text
features and heuristic features with various dimensions to comprehensively analyze
the commonality of a pair of requirements in terms of text semantics and process
data. After the processing at the feature embedding layer, the 200-dimensional text
embedding representation vector is obtained in the natural language description,
whereas heuristic features are one-dimensional.

The text embedding vector is an abstract feature obtained through a deep network.
Heuristic features are shallow features, which can directly represent the common features
of the HLR and LLR. To fuse the two types of features, the cosine similarity layer is used
to reduce the dimensionality of the text vector. In particular, the cosine distance between
the summary and description representations

→
u and

→
v of the HLR and the commendation

vectors (
→
m and

→
n ) of the summary and description fields of the LLR is calculated to

obtain four similarity values: sim(
→
u ,
→
m), sim(

→
u ,
→
n ), sim(

→
v ,
→
m), and sim(

→
v ,
→
n ). The similarity

value represents the semantic similarity between the requirements in the requirement pair
<hlr, llr>, and Fheu represents the commonality of the pair of requirements in terms of
process features, as presented in Equation (9). Next, the similarity value was fused with
the heuristic low-dimensional feature Fh at the concatenation layer to obtain a complete
requirement-pair feature representation Fpair, with its dimension being 14 (4 similarities
plus 10 heuristic features).

Fpair = concat
([

sim
(→

u ,
→
m
)

, sim
(→

u ,
→
n
)

, sim
(→

v ,
→
m
)

, sim
(→

v ,
→
n
)]

, Fheu

)
(10)

3. Trace link identification layer. This layer includes two fully connected layers and
one Softmax output layer. As presented in Equation (10), the feature Fpair of the
requirement pair in the previous step is used as the input, and the trace link iden-
tification result Cpair of this pair of cross-level requirements is output. Here, Cpair is
one-dimensional, and takes the value of 0 (no trace link) or 1 (with a trace link), and
W is a 1 × 10-dimensional trainable parameter.

Cpair = so f tmax
(

σ
(

W ∗ Fpair
) )

(11)

7.2. Loss Function

We determine whether a trace link exists between a pair of requirements based on
the joint feature representation of the pair of requirements in text information and process
information and consider the identification of cross-level trace link to be a binary classi-
fication problem. Therefore, cross entropy (CE) was selected as the loss function to train
the trace link identification model. The training goal is to minimize this loss. CE measures
the difference between the true distribution and the predicted distribution of a random
variable, as defined in Equation (11). In this equation, m is the number of samples; n is the
number of class labels of the samples; yij is the true probability that the class of sample i is
label j; and y’ij is the probability of the neural network predicting the class of sample i to be
label j.

CE = −
m

∑
i=1

n

∑
j

yij ln
(

y′ ij
)

(12)
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In the presented binary classification problem scenario, the real label of the sample can
only take 1 (with a trace link) or 0 (no trace link) values. The binary cross entropy (BCE)
can be defined as follows:

BCEloss = −
m

∑
i=1

(
yi ∗ ln

(
y′ i
)
+ (1− yi) ∗ ln

(
y′ i
) )

(13)

In requirement trace, the number of positive and negative samples is highly unbal-
anced. Negative samples far exceed positive samples. This phenomenon is severe in
projects with more requirements. The ratio of negative samples to positive samples in
the eight projects selected in this study is approximately 300:1 on average. This ratio is
the highest in the JBIDE project, reaching 570:1. In this case, predicting the sample as the
majority class (negative sample here) causes a smaller loss. Thus, the model always tends to
predict a pair of cross-level requirements as having no trace link, which causes the model to
fail. To solve this problem, a weight coefficient was set for the BCE loss function according
to the ratio of positive and negative samples, and the loss weight of positive examples is
increased as follows:

BCEweightedloss
= −

m

∑
i=1

(
yi ∗ ln

(
y′ i
)
∗ α + (1− yi) ∗ ln

(
y′ i
)
∗ β
)

(14)

where α and β are calculated using the ratio of positive and negative samples, respectively.
If the numbers of positive and negative samples are npos and nneg, respectively, then
α = (npos + nneg)/npos, and β = (npos + nneg)/nneg.

8. Experimental Evaluation

Experimental evaluation was performed to verify the effectiveness of our DRAFT. We
selected eight open-source projects involving different domains and collected requirements
and trace links from their issue tracking systems. The evaluation was conducted from two
aspects. First, the overall effects of DRAFT and the baseline methods in cross-level trace link
identification were compared, and the strengths and weaknesses of the proposed method
were analyzed. Then, two ablation experiments were performed to study the effects of two
key designs of pre-training and extended features.

8.1. Objectives of Experimental Evaluation

RQ1 (overall evaluation): How is the performance of DRAFT in identifying cross-level
trace links for new requirements? Is DRAFT better than the baseline methods?

RQ2 (ablation experiment): Do the project-specific second-phase pre-training in
DRAFT and the heuristic feature extraction based on metadata play a positive role?

8.2. Data Acquisition

This sub-section details the project selection and the process of collecting raw data
(HLRs, LLRs, and trace links).

Project selection. Following the process in Figure 8, we selected eight open-source
projects under the Apache (https://issues.apache.org/jira/, accessed on 25 January 2023)
and Redhat (https://issues.redhat.com/, accessed on 25 January 2023) and constructed a
dataset for each project by collecting requirements and trace links from their issue tracker.
First, based on the API provided by JIRA, we obtained all projects under Apache and
Redhat that use JIRA as the issue tracker and have been active for more than three years
and collected their issue logs and trace link data between issue logs. Next, we counted
the number of cross-level trace links in each project and selected the projects with a link
size of more than 600. Because this study investigated the trace link prediction method
for new requirements in the continuous release process of a project, the verification data
should have clear version information to distinguish historical requirements from new
requirements. Therefore, we selected the projects in which the version number and release

https://issues.apache.org/jira/
https://issues.redhat.com/
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time were clearly recorded. To improve the generalizability of the experimental conclusions,
we manually screened projects from various domains and finally obtained the following
eight projects: Apache’s Beam, CB (apache cordova), and Redhat’s FH (feedHenry), JBIDE
(jbosstools), AAH (automation hub), KEYLOACK, KOGITO, and PROJQUAY (project
quay). Details of these eight projects are presented in Table 2.
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Table 2. Details of selected projects.

Project Affiliated
Foundation

Number of
Requirements

Number of Cross-Level
Trace Links

Project Duration
(till 10 March 2022) Related Domain

BEAM Apache 1837 1637 Over 6 years Data stream processing
CB 1985 1814 Over 10 years Mobile software development

FH

Redhat

1498 1906 Over 7 years Enterprise mobile
application platform

JBIDE 4464 4208 Over 18 years Development tool integration

AAH 482 620 Over 3 years Application configuration
and deployment platform

KEYCLOAK 2978 3788 Over 9 years Authentication and
rights management

KOGITO 2244 2998 Over 5 years Service process modeling
PROJQUAY 483 647 Over 4 years Openshift container platform

Data collection. For each requirement entry, we collected requirement ID, text infor-
mation, and process information, and other metadata fields (e.g., Section 6.1), including
type, summary, description, labels, components, creator, assignee, and create_time (creation time).

All requirement texts (including text descriptions of historical requirements and new
requirements) of the project were used to construct a corpus to pre-train the BERT model.
For making the constructed dataset more suitable for practical scenarios, a released version
from each project was selected, and the requirements before and after the release time were
refined as historical and new requirements, respectively. The target splitting point should
satisfy a condition: after the project dataset is split with this version, the ratio of trace links
in the training set to those in the test set is between 2:1 and 4:1.

Table 3 lists the information, such as the training set, test set, and specific dataset size
of each project, the ratio of the trace links in the training set to those in the test set, and the
splitting version. The trace space is the product of the numbers of HLRs and LLRs [44].
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Table 3. Dataset size of each project in the DRAFT verification experiment.

Project Pre-trained Corpus
Size (MB)

Training Set Size Test Set Size
Tracetrain/Tracetest Splitting Version V

Trace Space Trace Links Trace Space Trace Links

AAH 0.56 18,303 492 5060 128 3.8: 1 “4.4.0”
PROJQUAY 1.0 18,842 487 6832 160 3.0:1 “quay-v3.5.5”

FH 1.2 145,338 1285 205,038 621 2.1: 1 “ios-swift-6.0.0”
CB 3.45 270,184 1350 200,796 464 2.9:1 “3.5.0”

KOGITO 3.34 280,191 2329 149,946 669 3.5:1 “1.7.0.Final”
BEAM 14.5 333,796 1264 16,063 373 3.4:1 “2.29.0”

KEYCLOAK 7.07 810,648 2943 601,183 845 3.5:1 “11.0.0”
JBIDE 15.9 1,588,846 3448 853,117 850 4.0:1 “4.5.0.Final”

8.3. Implementation and Results of Experimental Evaluation
8.3.1. Baseline Methods and Evaluation Indicators

Four baseline methods, namely classic information retrieval algorithms VSM [14]
and LSI [15], relevance feedback technique RF [18], and TraceBERT [26], were selected.
The primary reason for selecting VSM and LSI is that they can be used to calculate the
text similarity between artifacts in a lightweight and intuitive manner and exhibit a good
practical effect. The relevance feedback method is an improvement of VSM technology and
can fully use historical trace links and optimize the text vector of the query statements. Thus,
this method can achieve superior results to those of VSM when retrieving trace links [15,16].
We used TraceBERT as a baseline algorithm for two reasons. First, in this method, the
online negative sampling strategy is used to solve the overfitting problem that is prone to
occur when deep learning technology is applied to the field of requirement trace. Second,
the algorithm improves the effect of trace link identification through domain knowledge
transfer. Experiments have revealed that this method can produce results superior to those
of information retrieval and other technologies (including recall and precision).

When applying RF to the identification of new trace links, the query vector of HLRs
can be improved based on the trace links recorded in the system. When implementing
the TraceBERT method, the second-phase pre-trained model provided by Ref. [26] was
used to fine-tune the training set in Table 3 and then evaluate its performance in cross-level
requirement trace tasks for each project on the test set.

We used F1 and F2 scores, which are the harmonic mean of precision and recall, as the
evaluation indicators. They measure the ability of the algorithm to consider both precision
and recall. These measures can be calculated using Equations (14) and (15). For a given
HLR set and LLR set, T is used to represent the set of real trace links between them, C to
represent the set of candidate trace links identified by the algorithm, and Cr and Cw to
represent the correct-link set and incorrect-link set in the candidate link set, respectively.
Thus, C = Cr + Cw. Next, we have the following expression:

Recall =
Cr

T
, Precision =

Cr

C
(15)

F1 and F2 scores are the harmonic mean of recall and precision:

Fβ =

(
1 + β2)·Precision·Recall
β2·Precision + Recall

(16)

In the F1 score, the weight of precision and recall is the same, that is, β = 1. The weight
of the recall rate in the F2 score is two times precision. The F2 score is used because a more
complete but less accurate set of candidate trace links is more useful when assisting analysts
to construct or update trace links. In this case, analysts only manually filter incorrect data
from them. If the recall rate is insufficient, analysts identify a small number of requirement
pairs with trace links from numerous requirement pairs, which requires considerable time
and effort.
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8.3.2. Evaluation Results and Analysis
RQ1: Performances of DRAFT (the Proposed Method) and Baseline Methods in Trace
Link Identification

The experimental results are presented in Table 4. The F2 score of DRAFT (the pro-
posed method) is close to or exceeds 80% in five projects, and it is higher than 60% in the
other three projects; its F1 score achieves 70–80% in five projects and 50–65% in the other
three projects. The proposed method can achieve average F1 and F2 scores of 69.3% and
76.9%, respectively. The results revealed that DRAFT can identify high-quality trace link
sets and provide automatic assistance for analysts.

Table 4. Comparison of cross-level requirement trace link identification performance between DRAFT
and baseline methods on eight datasets.

Project/Method
DRAFT VSM LSI RF-Keydim T-BERT

F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

AAH 0.536 0.621 0.309 0.322 0.232 0.289 0.356 0.369 0.212 0.173
PROJQUAY 0.767 0.829 0.349 0.323 0.203 0.198 0.454 0.413 0.335 0.419

FH 0.797 0.872 0.363 0.329 0.236 0.249 0.59 0.615 0.322 0.286
CB 0.611 0.660 0.486 0.545 0.505 0.460 0.589 0.574 0.503 0.460

KOGITO 0.544 0.647 0.413 0.407 0.334 0.312 0.557 0.542 0.383 0.336
BEAM 0.739 0.796 0.540 0.513 0.423 0.411 0.67 0.704 0.471 0.556

KEYCLOAK 0.805 0.859 0.466 0.456 0.398 0.417 0.566 0.553 0.435 0.457
JBIDE 0.748 0.868 0.497 0.653 0.464 0.620 0.438 0.596 0.737 0.763

AVERAGE 0.693 0.769 0.428 0.444 0.349 0.37 0.528 0.546 0.425 0.431

Additionally, the pair-wise Wilcoxon signed-rank test was used to test the significant
difference between the results obtained by DRAFT and the four baseline methods and
set two p-value thresholds: 5% and 1%. The results are presented in Table 5. DRAFT
achieved the highest F2 score in all the eight projects of different scales. Its performance is
significantly improved by 32% (p-value < 0.01) and 40% (p-value < 0.01), compared with the
baseline methods VSM and LSI, respectively. In the FH project, the F2 score of DRAFT was
up to 62.3% higher than that of the LSI method. The similarity in the text description and
semantic information of cross-level requirements is the primary basis for determining the
trace link between the two requirements. Conventional VSM and LSI are more intuitive and
can be used to calculate the similarity by capturing the common vocabulary between cross-
level requirements. However, semantic information (e.g., inability to handle polysemy and
close/synonymous words) is not considered. Compared with the baseline methods, in
DRAFT, the BERT language model is used as a text feature embedding module. Therefore,
the model can capture the implicit semantic association between words when calculating
the semantic similarity of the required text [27]. In DRAFT, the language model obtained
after the second-phase pre-training on the project corpus is used. Therefore, DRAFT can be
adapted based on the project context, which leads to a performance superior to those of
information retrieval methods such as VSM and LSI.

Table 5. Pair-wise Wilcoxon signed-rank test results of the proposed method and baseline methods.

Metrics

Methods for Comparison
VSM LSI RF-Keydim T-BERT

F1 p < 0.01 p < 0.01 p < 0.05 p < 0.01
F2 p < 0.01 p < 0.01 p < 0.01 p < 0.01

p < 0.05 indicates significant difference; p < 0.01 indicates more significant difference.

The RF method improves the query statement vector of information retrieval based
on historical trace links. In TraceBERT, domain knowledge transfer is realized by using
the pre-training model, which enhances the semantic expression ability of the model, and
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its trace effect is improved compared with those of VSM and LSI. TraceBERT achieves an
F2 score higher than 0.763 in the JBIDE project, of which the training data were the largest.
DRAFT considerably outperformed RF and TraceBERT, with an F2 improvement of 22%
(p-value < 0.01) and 33% (p-value < 0.01), respectively, because heuristic features based on
metadata, in addition to the similarity in text semantics, should be considered during the
creation of trace links. For example, in some requirement pairs (e.g., between AAH-1074
and AAH-1138, and between JBIDE-26680 and JBIDE-26652), capturing the similarity from
the text semantics alone is difficult because of differences in the use of terms. However,
the process features have some common properties (the same creator and component).
Therefore, DRAFT can identify trace links, but the baseline methods miss them.

In terms of F1, the average improvement of the proposed method compared with the
four baseline methods was 0.265 (p-value < 0.01), 0.344 (p-value < 0.01), 0.165 (p-value < 0.05),
and 0.268 (p-value < 0.01). DRAFT achieved the highest F1 in seven projects. DRAFT was
only slightly lower (1.3% lower) than the RF-keydim method in the KOGITO project. The
highest F1 and F2 scores in each project are presented in bold in the table. DRAFT presents
obvious superiority over VSM, LSI, RF-keydim, and T-BERT.

RQ1 can be answered as follows: DRAFT can identify high-quality cross-level trace
link sets for new requirements, and its performance is significantly superior to those of the
four baseline methods.

RQ2: Ablation Experiment

1. Role of Second-Phase Pre-Training in DRAFT

Table 6 presents the trace link identification results when the BERT pre-training model
provided by Google and the model after second-phase pre-training are used for extracting
the natural language description features of requirements. The improvements and gains
(percentage of improvements) are displayed in the last two columns of the table.

Table 6. Effect of second-phase pre-training on trace link identification.

Project

BERT
F1 Improvement

(Gain)
F2 Improvement

(Gain)
Original Project-Specific Second-Phase Pre-Training

P * R * F1 F2 P R F1 F2

AAH 0.408 0.695 0.514 0.609 0.436 0.695 0.536 0.621 0.02 (4%) 0.01 (2%)
PROJQUAY 0.826 0.744 0.783 0.759 0.685 0.875 0.767 0.829 −0.02 (−3%) 0.07 (9%)

FH 0.598 0.703 0.646 0.679 0.543 0.698 0.611 0.660 −0.03 (−5%) −0.02 (−3%)
CB 0.778 0.747 0.762 0.753 0.696 0.931 0.797 0.872 0.04 (5%) 0.12 (16%)

KOGITO 0.427 0.745 0.543 0.648 0.430 0.740 0.544 0.648 0.00 (0%) 0.00
BEAM 0.400 0.802 0.578 0.668 0.660 0.839 0.739 0.796 0.16 (28%) 0.13 (19%)

KEYCLOAK 0.742 0.803 0.771 0.790 0.729 0.899 0.805 0.859 0.03 (4%) 0.07 (9%)
JBIDE 0.550 0.971 0.702 0.842 0.608 0.972 0.748 0.868 0.05 (7%) 0.03 (4%)

AVERAGE 0.591 0.776 0.662 0.719 0.598 0.831 0.693 0.769 0.03 (5%) 0.05 (7%)

* P: precision; * R: recall.

The results of eight projects reveal that second-phase pre-training improves the perfor-
mance in identifying cross-level trace links, and the average F1 and F2 scores increased by
0.03 (5%) and 0.05 (7%), respectively. Here, F1 and F2 scores are improved after second-
phase pre-training in five projects. Their improvements (F1: 16%; F2: 13%) are the most
obvious in the BEAM project. In the PROJQUAY project, the F2 score improves by 0.07,
but the F1 score decreases slightly (−2%). In the FH project, the performance is similar to
that of the original pre-training model, but F1 and F2 scores are slightly reduced after the
second-phase pre-training (−3%, −2%).

The dataset size of each project in Table 3 reveals that in projects with small requirement
sets, such as AAH, PROJQUAY, and FH, the effect of second-phase pre-training is not as
obvious as that in other projects because the pre-training effect of the language model is
directly related to the size and quality of the corpus. BooksCorpus (Zhu et al., 2015) and
English Wikipedia are used for BERT pre-training. BooksCorpus contains 800 million words,



Mathematics 2023, 11, 623 20 of 24

whereas English Wikipedia contains 2500 million words. In both corpora, grammatically
standardized natural languages are used. In second-phase pre-training, the requirement
documents of the project were used to develop an expected corpus, of which the size is
small. For convenience, open-source projects do not have restrictions on the standardization
of the text description of the requirement issue log. Therefore, the quality of the corpus is
poor. Figure 9 displays two examples of requirement descriptions that are less standard.
In Figure 9a), the requirement description contains considerable debugging information;
in Figure 9b), the summary field is too short, and the description field has no available text
content. Therefore, a limited improvement is achieved in the design of the requirement trace
link identification, and slightly worse results were obtained on a small number of datasets.
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Another reason for the different performance of DARFT is the varied quality of require-
ment descriptions. In terms of semantics, DRAFT can capture the textual similarities and
identify the trace links better for the projects whose traced requirement pairs are described with
more consistent terminology usage. For example, when taking the HLR KEYLOACK-7445
(“Test performance of Authorization Services”) and LLR KEYLOACK-7620 (“Generating per-
formance datasets for authorization services”) as input, DRAFT could yield a high semantic
similarity score between their textual description and create their trace link. In contrast,
for the projects (e.g., AAH) whose traced requirement pairs share fewer semantically close
terminologies, the trace links are more challenging to identify.

Therefore, RQ2 can be answered as follows: second-phase pre-training plays a positive
role in trace link identification, and F1 and F2 scores for most projects are improved.
However, the performance of cross-level requirement trace link identification for one
project degrades slightly.

2. Metadata-Based Heuristic Features in DRAFT

To verify the effect of heuristic features (Section 6), an ablation experiment was de-
signed to compare the effects on trace link identification for new requirements between the
case of using text features only and the case of using complete heuristic features. The results
are presented in Table 7. Compared with using text features only, DRAFT considerably
improves precision, recall, F1 score, and F2 score in all projects when complete heuristic
features are used. The average improvements of F1 and F2 scores are 0.274 (72%) and
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0.325 (84%), respectively. These two scores improve the most in the PROJQUAY project;
their improvements are 0.44 (130%) and 0.50 (150%), respectively.

Table 7. Effect of heuristic features on trace link identification.

Project

Whether to Use Heuristic Features
F1

Improvement
(Gain)

F2
Improvement

(Gain)
No Yes

P * R * F1 F2 P R F1 F2

AAH 0.268 0.375 0.313 0.347 0.436 0.695 0.536 0.621 0.22 (70%) 0.27 (78%)
PROJQUAY 0.344 0.331 0.338 0.334 0.685 0.875 0.767 0.829 0.44 (130%) 0.50 (150%)

FH 0.339 0.403 0.368 0.388 0.696 0.931 0.797 0.872 0.43 (117%) 0.48 (124%)
CB 0.48 0.416 0.446 0.427 0.543 0.698 0.611 0.660 0.21 (47%) 0.23 (54%)

KOGITO 0.404 0.424 0.414 0.420 0.43 0.74 0.544 0.647 0.13 (31%) 0.23 (55%)
BEAM 0.402 0.374 0.387 0.379 0.66 0.839 0.739 0.796 0.35 (90%) 0.42 (111%)

KEYCLOAK 0.45 0.433 0.441 0.436 0.729 0.899 0.805 0.859 0.36 (82%) 0.42 (96%)
JBIDE 0.572 0.912 0.703 0.815 0.608 0.972 0.748 0.868 0.05 (7%) 0.05 (6%)

AVERAGE 0.407 0.459 0.426 0.443 0.598 0.831 0.693 0.769 0.274 (72%) 0.325 (84%)

* P: precision; * R: recall.

The results revealed that these heuristic features extracted from metadata contain
important commonalities between cross-level requirements, which provide a basis for the
creation of trace links. For example, the find_coms feature in Section 6.1 reflects whether
the components involved in a pair of cross-level requirements were identical. If the two
features are submitted for the same component, a trace link can exist between them. The
commonality in these processes is a supplement of the commonality in the requirement
text description. DRAFT comprehensively analyzes the semantic similarity and process
information commonality between cross-level requirements and provides a comprehensive
and sufficient basis for trace link creation.

RQ3 can be answered as follows: by fusing metadata-based heuristic features, DRAFT
can comprehensively capture the commonality in cross-level requirement pairs, which
helps to create higher-quality trace links.

9. Discussion
9.1. Validity Threats

External validity risks typically originate from the selection of test items and the
construction of datasets. To mitigate external validity threats, eight open-source software
were selected from various domains. We collected cross-level requirements and their trace
links from corresponding JIRA issue log trackers and constructed datasets for experimental
evaluation. In addition to JIRA, other widely used issue log trackers, such as Github and
Bugzila, are used for requirement acquisition and management. Although the method
of storage and requirement management in these methods differs from that in JIRA, the
process-related features of the requirements selected in this study (such as the requirement
creator) are reflected on these platforms and are all available. Therefore, the proposed
method provides a reference for the construction and evolution of cross-level requirements
on these platforms.

To eliminate the internal validity threats, we selected the release date of the actual his-
torical version in the project as the splitting point when splitting the training set and the test
set to ensure the experimental scenario was as close as possible to the requirement trace prac-
tice. We selected four automated trace methods (including information retrieval-based and
deep-learning-based methods) from previous studies as baseline methods to reuse open-
source codes to avoid implementation errors and ensure accurate experiment execution.

To alleviate the threats of structural validity, we selected the most widely used indica-
tors, such as precision, recall, F1 score, and F2 score, in requirement trace in the experimental
evaluation stage. Finally, the trace link identification results can be comprehensively and
objectively evaluated in terms of accuracy and completeness.
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9.2. Limitations

A second-phase pre-training was performed for the BERT language model on the
project requirement text corpus, and a project-specific language model that encodes the
semantic knowledge of projects was obtained. When the corpus is of large size and high
quality, the pre-training effect of the language model can be maximized. In this study, the
data size for the second-phase pre-training is considerably smaller than the data size for
the initial pre-training (0.5–15.5 MB vs. 800 M and 2500 M words), and the data are also
less standard. The second-phase pre-training still plays a positive role in most projects in
this study. In the future, superior results can be obtained by collecting more project-related
data (not limited to requirements) and performing fine-tuned preprocessing.

The proposed requirement trace link update method applies to new requirements in
the process of project evolution. In practice, in addition to new additions, deletions and
modifications of requirements should also be considered. As mentioned in Section 2.2,
traceability changes caused by the deletion of requirements are simple, and traceability
updates caused by modification of requirements can be performed based on the proposed
method. However, no related experiments were conducted. In the future, the comprehen-
sive support of the proposed method should be studied for the three evolution scenarios of
cross-level requirement trace.

10. Conclusions

During the iteration process of open-source software projects, new requirements are
frequently added. Therefore, cross-level trace links should be updated in a timely manner.
To address this problem, a cross-level requirement trace method fusing heterogeneous
features, that is, DRAFT, was proposed to fully use historical data and abstract the trace link
identification method. First, we investigated the project-specific second-phase pre-training
method based on BERT. This method can enhance the ability of the pre-training to represent
project-related terms and extract the text features in the natural language requirement
description that integrates context information. Second, we studied the heuristic feature
extraction method for process data to obtain comprehensive feature representations of
requirement entries. This method can extract direct features between candidate requirement
pairs and extended features based on historical trace list. We then explored the neural
network architecture that can fuse heterogeneous features. This architecture can train the
requirement trace link identification model, providing automated support for analysts.
Finally, we collected cross-level requirements and trace links between them from real-world
open-source projects, developed datasets based on the trace link update scenario for new
requirements in practical scenarios, and verified the application effect of DRAFT. The
experiment results revealed that DRAFT outperformed baseline methods such as VSM,
LSI, and TraceBERT in the trace link update task. Although DRAFT is designed to trace
requirements at different levels, it can also be referenced to the construction or evolution of
trace links between other textual software artifacts (e.g., design documents, UML models,
and test cases). Moreover, the architecture of DRAFT can be easily extended to incorporate
more features of the related artifacts.
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