
Citation: Alharbi, H.; Jerbi, H.;

Kchaou, M.; Abbassi, R.; Simos, T.E.;

Mourtas, S.D.; Katsikis, V.N.

Time-Varying Pseudoinversion Based

on Full-Rank Decomposition and

Zeroing Neural Networks.

Mathematics 2023, 11, 600. https://

10.3390/math11030600

Academic Editor: Simeon Reich

Received: 22 December 2022

Revised: 13 January 2023

Accepted: 17 January 2023

Published: 24 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Time-Varying Pseudoinversion Based on Full-Rank
Decomposition and Zeroing Neural Networks
Hadeel Alharbi 1, Houssem Jerbi 2 , Mourad Kchaou 3 , Rabeh Abbassi 3 , Theodore E. Simos 4,5,6,7,*,
Spyridon D. Mourtas 8,9 and Vasilios N. Katsikis 8

1 Department of Computer Science, College of Computer Science and Engineering, University of Hail,
Hail 1234, Saudi Arabia

2 Department of Industrial Engineering, College of Engineering, University of Hail, Hail 1234, Saudi Arabia
3 Department of Electrical Engineering, College of Engineering, University of Hail, Hail 1234, Saudi Arabia
4 Department of Medical Research, China Medical University Hospital, China Medical University,

Taichung 40402, Taiwan
5 Laboratory of Inter-Disciplinary Problems of Energy Production, Ulyanovsk State Technical University,

32 Severny Venetz Street, 432027 Ulyanovsk, Russia
6 Data Recovery Key Laboratory of Sichun Province, Neijing Normal University, Neijiang 641100, China
7 Section of Mathematics, Department of Civil Engineering, Democritus University of Thrace,

67100 Xanthi, Greece
8 Department of Economics, Mathematics-Informatics and Statistics-Econometrics, National and Kapodistrian

University of Athens, Sofokleous 1 Street, 10559 Athens, Greece
9 Laboratory “Hybrid Methods of Modelling and Optimization in Complex Systems”,

Siberian Federal University, Prosp. Svobodny 79, 660041 Krasnoyarsk, Russia
* Correspondence: simost@susu.ru

Abstract: The computation of the time-varying matrix pseudoinverse has become crucial in recent
years for solving time-varying problems in engineering and science domains. This paper investigates
the issue of calculating the time-varying pseudoinverse based on full-rank decomposition (FRD)
using the zeroing neural network (ZNN) method, which is currently considered to be a cutting edge
method for calculating the time-varying matrix pseudoinverse. As a consequence, for the first time in
the literature, a new ZNN model called ZNNFRDP is introduced for time-varying pseudoinversion
and it is based on FRD. Five numerical experiments investigate and confirm that the ZNNFRDP
model performs as well as, if not better than, other well-performing ZNN models in the calculation
of the time-varying pseudoinverse. Additionally, theoretical analysis and numerical findings have
both supported the effectiveness of the proposed model.

Keywords: pseudoinversion; dynamical system; full-rank decomposition; zeroing neural networks

MSC: 65F20; 15A24; 68T05

1. Introduction

The real-time solution to the matrix pseudoinverse (or Moore-Penrose inverse), which
commonly occurs in robotics [1], nonlinear systems [2], game theory [3], and other engi-
neering and science domains [4–6], has garnered a great deal of attention in recent decades.
When a matrix A is taken into consideration, the pseudoinverse A† is the generalization
of the inverse matrix A−1. For any matrix with entries that are real or complex numbers,
the unique pseudoinverse is defined, and it is typically calculated using decomposition
techniques, including the singular value decomposition, the QR decomposition, and the full-
rank decomposition (FRD) [7,8]. To the best of our knowledge, these techniques typically
targeted constant (or time-invariant) matrices. Nevertheless, real-time matrix pseudoinver-
sion issues are frequently encountered. For instance, inverse kinematic issues for online
control of redundant robot manipulators can be resolved through the online solution of the

Mathematics 2023, 11, 600. https://doi.org/10.3390/math11030600 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11030600
https://doi.org/10.3390/math11030600
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1816-3767
https://orcid.org/0000-0002-6849-1745
https://orcid.org/0000-0001-8257-6721
https://orcid.org/0000-0002-8299-9916
https://orcid.org/0000-0002-8208-9656
https://doi.org/10.3390/math11030600
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11030600?type=check_update&version=2

Mathematics 2023, 11, 600 2 of 14

time-varying pseudoinverse [9,10]. It is significant to note that the zeroing neural network
(ZNN) method effectively enables the real-time solution of the time-varying pseudoinverse
using both direct and indirect methods, such as matrix decomposition. For instance, when
computing the time-varying pseudoinverse, a ZNN model based on singular value decom-
position performs better than a direct ZNN model [11], so it is beneficial to look into ZNN
models based on various matrix decomposition techniques. Therefore, the subject of this
paper is the calculation of the time-varying pseudoinverse of a given time-varying matrix,
based on the FRD method and the ZNN method. Our approach, in particular, complies with
the concepts of Propositions 1 and 2, where Proposition 1 is based on [12] (Theorem D.4
(Full rank decomposition)) and Proposition 2 is restated from [12] [Theorem D.5] (Full
rank decomposition and pseudoinversion). It is worth mentioning that, for A ∈ Rm×n,
the calculation and representation of several generalized inverses is closely related to the
next Penrose equations:

(i) AXA = A, (ii) XAX = X, (iii) (AX)T = AX, (iv) (XA)T = XA (1)

while the pseudoinverse is the matrix X that satisfies all four Penrose equations. Addition-
ally, the following basic symbols from the paper are noteworthy: Ir implies the identity
r× r matrix; 0m×n and 1m×n imply the zero and all-ones m× n matrices, respectively; vec(·)
implies the vectorization process; ⊗ implies the Kronecker product; (̇) implies the time
derivative; ‖·‖F implies the matrix Frobenius norm. Last, the notations sum(.), zeros(.),
eye(.), reshape(.), mod(.) and floor(.) in the algorithms of this paper follow the standard
MATLAB function concept [13].

Proposition 1. Let A ∈ Rm×n be an arbitrary matrix of rank r, B ∈ Rm×n be the reduced row
echelon form of A, and p ∈ Nr be a vector that indicates the pivot columns of A. A unique
FRD A = CF is created from reduced row echelon form by setting the pivot columns of A in C,
i.e., C = A(:, p) ∈ Rm×r, and the non-zero rows of B in F, i.e., F = B(1 : r, :) ∈ Rr×n.

Proposition 2. Let A ∈ Rm×n be an arbitrary matrix of rank r, and A = CF is the FRD of
A, then:

A† = FT(FFT)−1(CTC)−1CT. (2)

Many different approaches for computing the pseudoinverse have been developed
over the past few decades, including fast calculation algorithms [14] and error bounds
techniques [15]. However, when used for large-scale scenarios, these serial computational
techniques (such as iterative algorithms) are ineffective. As matrix size rises, the computing
workload increases significantly [16,17]. Thus, to decrease computational complexity and
boost computational efficiency, a model with parallel computing capabilities is recom-
mended. As effective parallel computing tools, recurrent neural networks (RNNs) have
recently been thoroughly studied and used to address a variety of problems, such as mobile
object localization [18], robotic motion tracking [19] and portfolio selection [20,21]. Gra-
dient (or Hopfield) neural networks (GNNs), which are typical RNNs, have been heavily
used to solve the constant matrix pseudoinversion problem in real time [22,23]. However,
because it is difficult or perhaps impossible for GNNs and these serial methods to take
into account the derivative information of the relevant matrices, neither serial methods nor
GNNs are useful in calculating the time-varying matrix pseudoinverse.

The ZNN, a unique RNN with strong parallel processing capabilities, was introduced
by Zhang et al. [24] to address the aforementioned problems. When it comes to computing
the time-varying pseudoinverse, the ZNN approach is currently thought to be state-of-
the-art. In particular, ZNNs were initially created to trace the time-varying inverse of a
matrix [24]. Nevertheless, later versions of them were dynamic models for computing
the time-varying pseudoinverse of full-row/column rank matrices [25–28]. Subsequent
evolution has led to the evolvent of a great number of models for computing various gener-
alized inverses [11], including the Drazin inverse [29], the ML-weighted pseudoinverse [30],

Mathematics 2023, 11, 600 3 of 14

and outer inverses [31]. Along these, the ZNN method has been thoroughly investigated
and employed to a broad variety of time-varying issues, with its main applications being
the approximation of numerous matrix functions [32,33], problems involving quadratic
optimization [10], and problems involving linear matrix equation systems [34,35]. To create
ZNN dynamics, one must first define an error matrix, E(t) ∈ Rm×n, for the subjacent issue.
The dynamical evolution is applied in the following phase:

Ė(t) =
dE(t)

dt
= −λH(E(t)). (3)

It is important to note that in (3) a design parameter λ > 0 is used to scale the convergence,
andH(·) : Rm×n → Rm×n indicates the elementwise application of an increasing and odd
activation function on the error matrix. In this work, we examine the ZNN evolution (3) by
the linear activation function, leading to the next formula:

Ė(t) = −λE(t). (4)

This paper proposes a ZNN model, dubbed ZNNFRDP, for the calculation of the
time-varying pseudoinverse based on FRD.

These are the main contributions of this investigation:

• A new ZNN model, called ZNNFRDP, for the calculation of the time-varying pseu-
doinverse based on FRD is introduced and investigated. Keep in mind that ZNNFRDP
stands for ZNN model based on FRD for the calculation of pseudoinverse.

• Theoretical analysis supported by five numerical experiments show that the ZNN-
FRDP model performs as well as, if not better than, other well-performing ZNN
models in the computation of the time-varying pseudoinverse.

The remainder of the paper’s layout is comprised of Sections 2–5. In particular,
Section 2 defines and analyzes the ZNNFRDP model for computing the time-varying
pseudoinverse, while Section 3 demonstrates and investigates the model’s computational
effectiveness. The concluding observations and inferences are given in Section 5.

2. Materials and Methods

In this section, the ZNN model, termed ZNNFRDP, that computes the time-varying
pseudoinverse based on FRD is introduced and analyzed. Assume that A(t) ∈ Rm×n is
a differentiable time-varying matrix of constant rank r. In order to guarantee that the
ZNNFRDP model applies FRD, the unique FRD presented in Proposition 1 is employed.
In particular, consider that p ∈ Nr is a vector that indicates the pivot columns of A(t).
Then, creating C(t) = A

(
:, p
)
(t) ∈ Rm×r and F(t) ∈ Rr×n as indicating in Proposition 1,

and setting Y(t) = (CT(t)C(t))−1 ∈ Rr×r, Z(t) = (F(t)FT(t))−1 ∈ Rr×r and X(t) =
A†(t) ∈ Rn×m as indicating in proposition 2, the equations of the next group are satisfied
in the case of pseudoinverse based on FRD:

A(t) = C(t)F(t),
(CT(t)C(t))Y(t) = Ir,
Z(t)(F(t)FT(t)) = Ir,
X(t) = FT(t)Z(t)Y(t)CT(t).

(5)

The ZNNFRDP model takes into account determining the four unknowns F(t), Y(t), Z(t)
and X(t) of (5). Notice that the elements below the major diagonal of F(t) are zeros since
it is a partitioned matrix of the reduced row echelon form of A(t). Additionally, Y(t) and
Z(t) are symmetric invertible matrices because C(t) and F(t) are full rank matrices. It is
significant to note that when A(t) is differentiable, C(t) and F(t) are also differentiable.

Mathematics 2023, 11, 600 4 of 14

For zeroing (5), we set the next error matrix equations group (EMEG):
E1(t) = A(t)− C(t)F(t),
E2(t) = (CT(t)C(t))Y(t)− Ir,
E3(t) = Z(t)(F(t)FT(t))− Ir,
E4(t) = X(t)− FT(t)Z(t)Y(t)CT(t).

(6)

Furthermore, the first derivative of EMEG (6) is:
Ė1(t) = Ȧ(t)− Ċ(t)F(t)− C(t)Ḟ(t),
Ė2(t) = (ĊT(t)C(t) + CT(t)Ċ(t))Y(t) + (CT(t)C(t))Ẏ(t),
Ė3(t) = Ż(t)(F(t)FT(t)) + Z(t)(Ḟ(t)FT(t) + F(t)ḞT(t)),
Ė4(t) = Ẋ(t)− ḞT(t)Z(t)Y(t)CT(t)− FT(t)Ż(t)Y(t)CT(t)

−FT(t)Z(t)Ẏ(t)CT(t)− FT(t)Z(t)Y(t)ĊT(t).

(7)

When Ė(t) from (4) is replaced with Ėi(t), i = 1, . . . , 4, defined in (7) and the equation
is solved in terms of Ḟ(t), Ẏ(t), Ż(t), Ẋ(t), the result below is obtained:

−C(t)Ḟ(t) = −λE1(t)− Ȧ(t) + Ċ(t)F(t),
(CT(t)C(t))Ẏ(t) = −λE2(t)− (ĊT(t)C(t) + CT(t)Ċ(t))Y(t),
Ż(t)(F(t)FT(t)) + Z(t)(Ḟ(t)FT(t) + F(t)ḞT(t)) = −λE3(t),
Ẋ(t)− ḞT(t)Z(t)Y(t)CT(t)− FT(t)Ż(t)Y(t)CT(t)− FT(t)Z(t)Ẏ(t)CT(t)

= −λE4(t) + FT(t)Z(t)Y(t)ĊT(t).

(8)

As shown below, the techniques of Kronecker product and vectorization are used to
simplify the dynamic model of (8):

−(In ⊗ C(t))vec
(

Ḟ(t)
)
= vec

(
− λE1(t)− Ȧ(t) + Ċ(t)F(t)

)
,

(Ir ⊗ CT(t)C(t))vec
(
Ẏ(t)

)
= vec

(
− λE2(t)− (ĊT(t)C(t) + CT(t)Ċ(t))Y(t)

)
,

(F(t)FT(t)⊗ Ir)vec
(
Ż(t)

)
+ (F(t)⊗ Z(t))vec

(
Ḟ(t)

)
+ (Ir ⊗ Z(t)F(t))vec

(
ḞT(t)

)
= vec

(
− λE3(t)

)
,

vec
(
Ẋ(t)

)
− ((Z(t)Y(t)CT(t))T ⊗ In)vec

(
ḞT(t)

)
− (C(t)YT(t)⊗ FT(t))vec

(
Ż(t)

)
−(C(t)⊗ FT(t)Z(t))vec

(
Ẏ(t)

)
= vec

(
− λE4(t) + FT(t)Z(t)Y(t)ĊT(t)

)
.

(9)

To create a straightforward dynamical model that can quickly calculate the F(t), Y(t),
Z(t), and X(t), (9) must be simplified even more. As a consequence, the Lemma 1 based
on [36] regarding vectorization is presented.

Lemma 1. For F ∈ Rr×n, let vec(F) ∈ Rrn denote the matrix F vectorization. What follows holds:

vec(FT) = Q vec(F), (10)

where Q ∈ Rrn×rn be a fixed permutation matrix depended solely by the number of rows r and
columns n of matrix F.

The next Algorithm 1 shows an algorithmic process for computing the permutation
matrix Q in (10) that refers to a r× n matrix.

Algorithm 1 Matrix Q calculation.

Require: The number of columns n and rows r of matrix F ∈ Rr×n.
1: procedure PERMUT_MAT_Q(r, n)
2: Set c =eye(rn) and d =reshape(1 : rn, n, r)
3: return Q = c(:,reshape(dT, 1, rn))
4: end procedure

Ensure: The matrix Q.

Mathematics 2023, 11, 600 5 of 14

Moreover, since all the elements below the major diagonal of F(t) are zeros, just the
elements of Ḟ(t) located in the major diagonal and above must be obtained. Therefore, it is
significant to use a vector denoted ḟ(t) to replace Ḟ(t), by stacking these elements of F(t)
into ḟ(t). The dimension of (9) is lessened in this way, while F(t) is forced to have all of its
elements below the major diagonal zeros. Therefore, by using the w = ∑n

i=n−r+1 i elements
on and above the major diagonal of F(t), it is possible to obtain the following equation that
replaces vec(Ḟ(t)) in (9):

vec(Ḟ(t)) = Gḟ(t), (11)

where G ∈ Rrn×w is an operational matrix which can be calculated applying the algorithmic
procedure shown Algorithm 2. Further, the elements on and above the major diagonal of
vec(Ḟ(t)) are piled to create the column vector ḟ(t) ∈ Rw.

Algorithm 2 Matrix G calculation.

Require: The number of columns n and rows r of matrix F ∈ Rr×n.
1: procedure OPE_MAT_G(r, n)
2: Set w =sum(n− r + 1 : n) and G =zeros(rn, w)
3: for q = 1 : rn do
4: Set j =floor(q−1

r) + 1 and i =mod(q− 1, r) + 1
5: if i ≤ j then
6: Set G(q, j+sum(n− (1 : i− 1))(i > 1)) = 1
7: end if
8: end for
9: return G

10: end procedure
Ensure: The matrix G.

Additionally, because Y(t) and Z(t) are symmetric matrices, we only have to obtain
their elements that are placed on and above its major diagonal. Thus, it is significant to use
vectors denoted by ẏ(t) and ż(t) in place of Ẏ(t) and Ż(t), respectively, by stacking these
elements of Y(t) and Z(t) into the vectors ẏ(t) and ż(t), respectively. The dimension of (9)
is lessened in this way, while Y(t) and Z(t) are forced to be symmetric matrices. Therefore,
using the h = (r2 + r)/2 elements on and above the major diagonals of Y(t) and Z(t), it is
possible to obtain the following equations that replace vec(Ẏ(t)) and vec(Ż(t)) in (9):

vec(Ẏ(t)) = Rẏ(t), vec(Ż(t)) = Rż(t), (12)

where R ∈ Rr2×h is an operational matrix which can be calculated applying the algorithmic
procedure shown Algorithm 3. Further, the elements on and above the major diagonal of
vec(Ẏ(t)) and vec(Ż(t)) are piled to create the column vectors ẏ(t), ż(t) ∈ Rh.

Using the permutation matrix Q and the operational matrices G and R, (9) can be
rewritten as follows:

−(In ⊗ C(t))Gvec
(
ḟ(t)

)
= vec

(
− λE1(t)− Ȧ(t) + Ċ(t)F(t)

)
,

(Ir ⊗ CT(t)C(t))Rvec
(
ẏ(t)

)
= vec

(
− λE2(t)− (ĊT(t)C(t) + CT(t)Ċ(t))Y(t)

)
,

(F(t)FT(t)⊗ Ir)Rvec
(
ż(t)

)
+ (F(t)⊗ Z(t))Gvec

(
ḟ(t)

)
+ (Ir ⊗ Z(t)F(t))QGvec

(
ḟ(t)

)
= vec

(
− λE3(t)

)
,

vec
(
Ẋ(t)

)
− ((Z(t)Y(t)CT(t))T ⊗ In)QGvec

(
ḟ(t)

)
− (C(t)YT(t)⊗ FT(t))Rvec

(
ż(t)

)
−(C(t)⊗ FT(t)Z(t))Rvec

(
ẏ(t)

)
= vec

(
− λE4(t) + FT(t)Z(t)Y(t)ĊT(t)

)
.

(13)

Mathematics 2023, 11, 600 6 of 14

Then, by setting

k1(t) =− (In ⊗ C(t))G, k2(t) = (Ir ⊗ CT(t)C(t))R, k4(t) = (F(t)FT(t)⊗ Ir)R,

k3(t) =(F(t)⊗ Z(t))G + (Ir ⊗ Z(t)F(t))QG, k5(t) = −((Z(t)Y(t)CT(t))T ⊗ In)QG,

k6(t) =− (C(t)⊗ FT(t)Z(t))R, k7(t) = −(C(t)YT(t)⊗ FT(t))R,

K(t) =


k1(t) 0mn×h 0mn×h 0mn×mn
0r2×w k2(t) 0r2×h 0r2×mn
k3(t) 0r2×h k4(t) 0r2×mn
k5(t) k6(t) k7(t) Imn

, a(t) =


vec
(

F(t)
)

vec
(
Y(t)

)
vec
(
Z(t)

)
vec
(
X(t)

)
,

ȧ(t) =


vec
(

Ḟ(t)
)

vec
(
Ẏ(t)

)
vec
(
Ż(t)

)
vec
(
Ẋ(t)

)
, b(t) =


vec
(
− λE1(t)− Ȧ(t) + Ċ(t)F(t)

)
,

vec
(
− λE2(t)− (ĊT(t)C(t) + CT(t)Ċ(t))Y(t)

)
,

vec
(
− λE3(t)

)
,

vec
(
− λE4(t) + FT(t)Z(t)Y(t)ĊT(t)

)
,

(14)

the ZNN model below, termed ZNNFRDP, is proposed for calculating the time-varying
pseudoinverse based on FRD of an arbitrary input matrix A(t) ∈ Rm×n:

KT(t)K(t)ȧ(t) = KT(t)b(t), (15)

which can be solved successfully in MATLAB using an ode solver. Note that ȧ(t), a(t) ∈
R(w+2h+mn), b(t) ∈ R(2r2+2mn) and K(t) ∈ R(2r2+2mn)×(w+2h+mn), while KT(t)K(t) ∈
R(w+2h+mn)×(w+2h+mn) is a non-singular mass matrix. In accordance with Theorem 1,
the ZNNFRDP model (15) converges to the theoretical solution (TSol) of the time-
varying pseudoinverse.

Algorithm 3 Matrix R calculation.

Require: A real symmetric matrix’s column or row number r.
1: procedure OPE_MAT_R(r)
2: Put h = (r2 + r)/2 and R =zeros(r2, h)
3: for w = 1 : r2 do
4: Set d =mod(w− 1, r) + 1 and c =floor(w−1

r) + 1
5: if c ≥ d then
6: Put R

(
w, d + c c−1

2

)
= 1

7: else
8: Put R

(
w, c + d d−1

2

)
= 1

9: end if
10: end for
11: return R
12: end procedure
Ensure: The matrix R.

Theorem 1. Let A(t) ∈ Rm×n be a differentiable matrix of rank r and p ∈ Nr be a vector
that contains the numbers of all pivot columns of A(t). Starting from any initial price a(0),
the ZNNFRDP model (15) exponentially converges to the TSol a∗(t) at each time t ∈ [0, t f) ⊆
[0,+∞). Furthermore, the TSol of the time-varying pseudoinverse is the last mn elements of a∗(t).

Proof. The EMEG is declared as in (6) in order to determine the TSol of the time-varying
pseudoinverse. The model (8) is developed using the linear ZNN design (4) for zeroing (6).
When t → ∞, every equation in the EMEG (8) converges to the TSol starting from any
initial price, according to [24] [Theorem 1]. As a result, the ZNNFRDP model (15) also
converges to the TSol a∗(t) starting from any initial price a(0) when t → ∞ since it is
really an alternate version of (8). In accordance with (14), the TSol of the time-varying
pseudoinverse is the last mn elements of a∗(t). Therefore, the proof is finished.

Mathematics 2023, 11, 600 7 of 14

Additionally, diagram presentation can be used to describe the above-mentioned
ZNNFRDP model process for real-time solution of the time-varying pseudoinverse of
matrix A(t). For the block diagram presentation, the dynamical Equation (15) can be
transformed as follows:

ȧ(t) = (I(w+2h+mn) −KT(t)K(t))ȧ(t) + KT(t)b(t), (16)

and the corresponding block diagram of the ZNNFRDP model (16) is shown in Figure 1.

λ

A(t)

Σ ∫

I-KT(t)K(t))

λEi(t)

ȧ(t)

(I-KT(t)K(t))ȧ(t)

a(t) Ȧ(t)

C(t)

Ei(t)

Ċ(t)

b(t)

K(t)

A(t)

C(t)

G Q

R

Eq. (6)

+

+
Eq. (14)

Eq. (14)

KT(t)b(t)

Figure 1. Block diagram of the ZNNFRDP model for real-time solution of the time-varying pseudoin-
verse of matrix A(t).

Lastly, the complexity of producing and solving (16) contributes to the ZNNFRDP
model’s overall computational complexity. The computational complexity of producing (16)
is O((w + 2h + mn)2) operations since each iteration of the equation has (w + 2h + mn)2

multiplication and w + 2h + mn addition operations. Considering that a linear system of
equations is solved at each step by an implicit solver such as ode15s, the complexity of
solving (16) is O((w + 2h + mn)3 because it involves a (w + 2h + mn) × (w + 2h + mn)
matrix. Therefore, the ZNNFRDP model’s overall computational complexity is O((w +
2h + mn)3).

3. Results

The performance of the ZNNFRDP (15) model in five numerical experiments (NEs),
which involve calculating time-varying pseudoinverses of rank deficient matrices, is ex-
amined in this section. Furthermore, the ZNNFRDP model is compared to two additional
ZNN models, namely ZNNP and ZNNSVDP, which are presented in [11]. It is worth
mentioning that both the ZNNP and ZNNSVDP models calculate the pseudoinverse of
an arbitrary matrix, with the ZNNSVDP model employing singular value decomposition
to do so. With the exception of X(0), where all-ones matrices have been set, the initial
prices have been set to matrices with ones on the major diagonal and elsewhere zeros
for F(0), Y(0) and Z(0) in all NEs. Furthermore, in the denotation of the input matrix,
the functions η(t) = cos(t) and θ(t) = sin(t) have been used. Last, the MATLAB solver
ode15s is employed for the computations in all NEs within the time range [0, 10] and with
the parameter λ = 10. Because of this, all ZNN models find the real-time solution of the
time-varying pseudoinverse of a given matrix A(t) starting at t = 0 and ending at t = 10.

Mathematics 2023, 11, 600 8 of 14

3.1. Experiment 1

Assume the following 3× 3 input matrix of rank 2 with p = [1, 2]:

A(t) =

3 + η(2t) θ(t) + 1 θ(t) + 1
2 + θ(2t) η(t)− 20 η(t)− 20
2 + θ(2t) η(t)− 20 η(t)− 20]

.

Presuming that C(t) = A
(

:, p
)
(t), the findings of the ZNNFRDP model are displayed

in Figures 2a–c and 3a,b.

3.2. Experiment 2

Assume the following 4× 7 input matrix of rank 3 with p = [1, 2, 4]:

A(t) =


1 1 0 1 0 1 1
1 1 0 0 1 0 1
1 0 1 1 0 1 1
1 0 1 0 1 0 1

� 1
t + 1

.

Presuming that C(t) = A
(

:, p
)
(t), the findings of the ZNNFRDP model are displayed

in Figures 2d–f and 3c,d.

0 2 4 6 8 10
10

-15

10
-10

10
-5

10
0

10
5

(a) NE Experiment 1: EMEG
convergence.

0 2 4 6 8 10

-0.2

0

0.2

0.4

0.6

0.8

1

(b) NE Experiment 1: F(t), Y(t), Z(t)
trajectories.

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

(c) NE Experiment 1: X(t) solutions
trajectories.

0 2 4 6 8 10
10

-15

10
-10

10
-5

10
0

(d) NE Experiment 2: EMEG
convergence.

0 2 4 6 8 10

-100

-50

0

50

100

150

(e) NE Experiment 2: F(t), Y(t), Z(t) tra-
jectories.

0 2 4 6 8 10

-3

-2

-1

0

1

2

3

4

(f) NE Experiment 2: X(t) trajectories.

0 2 4 6 8 10

10
-5

10
0

(g) NE Experiment 3: EMEG
convergence.

0 2 4 6 8 10

-1.5

-1

-0.5

0

0.5

1

1.5

(h) NE Experiment 3: F(t), Y(t), Z(t)
trajectories.

0 2 4 6 8 10

-0.02

-0.01

0

0.01

0.02

0.03

0.04

(i) NE Experiment 3: X(t) trajectories.

Figure 2. EMEG convergence and solutions’ trajectories of the ZNNFRDMP model in NEs in Sections 3.1–3.3.

Mathematics 2023, 11, 600 9 of 14

0 2 4 6 8 10

10
-5

10
0

10
5

(a) NE Experiment 1: (i) and (iii) errors.

0 2 4 6 8 10

10
-5

10
0

(b) NE Experiment 1: (ii) and (iv) errors.

0 2 4 6 8 10
10

-10

10
-5

10
0

(c) NE Experiment 2: (i) and (iii) errors.

0 2 4 6 8 10
10

-10

10
-5

10
0

(d) NE Experiment 2: (ii) and (iv) errors.

0 2 4 6 8 10
10

-15

10
-10

10
-5

10
0

10
5

(e) NE Experiment 3: (i) and (iii) errors.

0 2 4 6 8 10

10
-5

10
0

(f) NE Experiment 3: (ii) and (iv) errors.

0 2 4 6 8 10
10

-15

10
-10

10
-5

10
0

10
5

(g) NE Experiment 4: (i) and (iii) errors.

0 2 4 6 8 10

10
-5

10
0

10
5

(h) NE Experiment 4: (ii) and (iv) errors.

0 2 4 6 8 10
10

-15

10
-10

10
-5

10
0

10
5

(i) NE Experiment 5: (i) and (iii) errors.

0 2 4 6 8 10
10

-10

10
-5

10
0

(j) NE Experiment 5: (ii) and (iv) errors.

Figure 3. MP equations (i)–(iv) errors of the ZNNFRDMP, ZNNSVDMP and ZNNP models solutions
in NEs in Sections 3.1–3.5.

3.3. Experiment 3

Assume the following 4× 4 input matrix of rank 1 with p = 1:

A(t) = [5− η(πt), 3 + θ(πt),−4− η(πt), 1 + 3θ(πt)]� 14×4.

Presuming that C(t) = A
(

:, p
)
(t), the findings of the ZNNFRDP model are displayed

in Figures 2g–i and 3e,f.

Mathematics 2023, 11, 600 10 of 14

3.4. Experiment 4

Assume the following m× n input matrix of rank 1 with p = 1, m = 20 and n = 10:

A(t) = [2 + θ(t), 2 + 1/2θ(t), 2 + 1/3θ(t), . . . , 2 + 1/nθ(t)]� 1m×n.

Presuming that C(t) = A
(

:, p
)
(t), the findings of the ZNNFRDP model are displayed

in Figures 3g,h and 4a–c.

0 2 4 6 8 10
10

-10

10
-5

10
0

(a) NE Experiment 4: EMEG convergence.

0 2 4 6 8 10

0

0.5

1

1.5

2

(b) NE Experiment 4: F(t), Y(t), Z(t)
trajectories.

0 2 4 6 8 10

2

2.5

3

10
-3

(c) NE Experiment 4: X(t) trajectories.

0 2 4 6 8 10
10

-10

10
-5

10
0

(d) NE Experiment 5: EMEG convergence.

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

1.2

(e) NE Experiment 5: F(t), Y(t), Z(t)
trajectories.

0 2 4 6 8 10

0

0.05

0.1

(f) NE Experiment 5: X(t) trajectories.

Figure 4. EMEG convergence and solutions’ trajectories of the ZNNFRDMP model in NEs in Sections 3.4–3.5.

3.5. Experiment 5

Assume the following 2× 3 input matrix of rank 2 with p = [1, 2]:

A(t) =
[

4 3 1
4 3 + 10−20 1

]
+ θ(t)� 12×3.

It is worth noting that the matrix A is close to a loss of rank, i.e., its singular values
are 7.2111 and 4.6962 · 10−18. Such an experiment will show how the ZNNFRDP model
converges in the case of ill-conditioned matrices. Presuming that C(t) = A

(
:, p
)
(t),

the findings of the ZNNFRDP model are displayed in Figures 3i,j and 4d–f.

4. Discussion

This section first presents the performance of the ZNNFRDP model for computing
time-varying pseudoinverses before comparing it to the performance of the ZNNP and
ZNNSVDP models.

The performance of the ZNNFRDP model for computing time-varying pseudoinverses
is investigated through NEs in Sections 3.1–3.5, with the results shown in Figures 2 and 4.
Particularly, the EMEG convergence in NEs in Sections 3.1–3.5 is measured by the Frobenius
norm in Figure 2a,d,g and Figure 4a,d, respectively. These figures demonstrate how the
EMEG’s Ei(t), i = 1, 2, 3 begin at t = 0 with a high error value above 100 and converge be-
fore t = 2 in a low error value in the range of [10−13, 10−2]. As opposed to this, the EMEG’s

Mathematics 2023, 11, 600 11 of 14

E4(t) always begins at t = 0 with a low error value under 10−3 and converges before t = 2
in an even lower error value in the range of [10−13, 10−4]. That is, the EMEG starts from
a non-optimal initial price and converges to the zero matrix finally. The trajectories of
F(t), Y(t) and Z(t) in NEs in Sections 3.1–3.5 are shown in Figure 2b,e,h and Figure 4b,e,
respectively, while the trajectories of X(t) are shown in Figure 2c,f,i and Figure 4c,f, respec-
tively. All of these images show that while the trajectories of X(t) match those of the TSol,
a certain pattern appears in the trajectories of F(t), Y(t), Z(t) and X(t) before t = 2.

In general, employing the FRD to compute the pseudoinverse as suggested in (2)
will increase rounding errors and result in a loss of precision when using conventional
computational methods. However, our study uses the ZNN method, which is considerably
different from the conventional computational methods. In fact, for example, we are not
calculating the inverse of any matrix by using conventional textbook methods. Numerous
papers and books (written in the last two decades) on the ZNN method demonstrate
how effective the ZNN design is in attempting to zero out rounding errors by defining
an appropriate EMEG (see (6)). It is important to mention that a rounding error is the
difference between a rounded-off numerical value and the actual value. Considering that
the EMEG’s actual solution is the zero matrix, any EMEG’s element that is not zero during
the computations is regarded as a rounding error. As a result, the actual task of the ZNN
method is to zero the rounding errors.

It is important to note that the steady-state errors in Figures 2 and 3 are of order 10−5

in the majority of situations because double precision arithmetic (eps = 2.22 · 10−16) is used
by default in MATLAB. Keep in mind that the symbol eps stands for the machine epsilon,
an upper bound on the relative approximation error brought on by rounding in floating
point arithmetic. Therefore, in order to achieve lower steady-state errors, a higher error
tolerance in ode15s must be chosen. Furthermore, the time of convergence, which in the
NEs is close to t = 2, and the value of λ are correlated. To decrease the time of convergence,
a larger value of λ must be chosen [24]. Therefore, the major factor used to rate the ZNN
models’ overall performance is the their convergence performance under the same value
of λ.

The performance of the ZNNFRDP, ZNNP and ZNNSVDP models is compared by
measuring the errors caused in the Moore-Penrose equations (i)–(iv) from (1) through NEs
in Sections 3.1–3.5, with the results shown in Figure 3. Particularly, the performance of the
ZNNFRDP and ZNNP models is compared through NEs in Sections 3.1 and 3.2. The results
of the ZNNFRDP and ZNNP models are shown in Figure 3a,b, where we observe that in
NE in Section 3.1, the errors caused in the Moore-Penrose equations (i)–(iii) and (ii)–(iv),
respectively, are shown in Figure 3a,b. These figures demonstrate how these errors begin
at t = 0 with a high value above 100 and converge before t = 2 in a low error value
in the range of [10−6, 10−3]. The overall performance of the ZNNFRDP model in NE in
Section 3.1 is almost identical to that of the ZNNP. In NE in Section 3.2, the errors caused in
the Moore-Penrose equations (i)–(iii) and (ii)–(iv), respectively, are shown in Figure 3c,d.
These figures demonstrate how these errors begin at t = 0 with a high value above 100 and
converge before t = 2 in a low error value in the range of [10−10, 10−3]. The convergence
performance of the ZNNFRDP model in NE in Section 3.2 is slightly better than that of the
ZNNP, while their overall performances are almost identical. As a result, the ZNNFRDP
model performed slightly better than the ZNNP in NEs in Sections 3.1 and 3.2.

Additionally, the performance of the ZNNFRDP and ZNNSVDP models is compared
through NEs in Sections 3.3–3.5. It is important to note that NE in Section 3.4 compares
the performances of these models in a high-dimensional input matrix with dimensions
20× 10, whereas NE in Section 3.5 compares their performance in an ill-conditioned input
matrix. In NE in Section 3.3, the errors caused in the Moore-Penrose equations (i)–(iii)
and (ii)–(iv), respectively, are shown in Figure 3e,f. These figures demonstrate how the
errors caused in the Moore-Penrose equations (i), (ii) and (iv) begin at t = 0 with a high
value above 100 and converge before t = 2 in a low error value in the range of [10−7, 10−3],
whereas the error caused in the Moore-Penrose Equation (i) begins at t = 0 with a lower

Mathematics 2023, 11, 600 12 of 14

value and converges before t = 2 in a lower error value in the range of [10−11, 10−5].
The convergence performance of the ZNNFRDP model in NE in Section 3.3 is slightly
better than that of the ZNNSVDP, while their overall performances are close. In NEs in
Sections 3.4 and 3.5, the errors caused in the Moore-Penrose equations (i)–(iii), respectively,
are shown in Figure 3a,b, while the errors caused in the Moore-Penrose equations (ii)–(iv),
respectively, are shown in Figure 3a,b. These figures demonstrate how the errors caused
in the Moore-Penrose equations (ii) and (iv) begin at t = 0 with a high value above
100 and converge before t = 2 in a low error value in the range of [10−7, 10−3], where
the convergence performance of the ZNNFRDP model is slightly worse than that of the
ZNNSVDP, while the overall performance of the ZNNFRDP model is slightly better than
that of the ZNNSVDP. The error caused in the Moore-Penrose Equation (i) begin at t = 0
with a lower value and converge before t = 2 in a lower error value in the range of
[10−5, 10−2]. The convergence and the overall performance of the ZNNFRDP models are
almost identical. The error caused in the Moore-Penrose Equation (iii) begin at t = 0 with a
lower value and converge before t = 2 in a lower error value in the range of [10−12, 10−5].
The convergence and the overall performance of the ZNNFRDP model are much better
than that of the ZNNSVDP. As a result, the ZNNFRDP model performed better than the
ZNNSVDP in NEs in Sections 3.3–3.5.

Finally, it was demonstrated in Section 2 that the ZNNFRDP model has an overall
computational complexity ofO((w+ 2h+mn)3), whereas [11] claims that the ZNNP model
has an overall computational complexity of O((mn)3) and the ZNNSVDP model has an
overall computational complexity of O((m2 + n2 + r + mn)3). Therefore, the ZNNFRDP
model has a lower overall computational complexity than the ZNNSVDP model, which is
an advantage, but a higher overall computational complexity than the ZNNP model, which
is a disadvantage.

To summarize, the following can be deduced from this section’s NEs:

• The convergence of the ZNNFRDP model starts from a non-optimal initial price and
converge in a small period of time to the zero matrix.

• The errors caused in the Moore-Penrose equations (i)–(iv) and the F(t), Y(t), Z(t)
and X(t) solutions trajectories act consistently due to the EMEGs’ proclivity to-
ward convergence.

• The EMEGs will converge more quickly when the price of the design parameter λ
is greater.

• The ZNNFRDP model performs as well as, if not better than, the ZNNP and
ZNNSVDP models.

• In essence, the time-varying pseudoinverses are calculated with exceptional and
efficient performance by the ZNNFRDP model.

5. Conclusions

In this paper, the issue of calculating the time-varying pseudoinverse based on FRD
using the ZNN method was examined. Therefore, a novel ZNN model called ZNNFRDP
that uses the FRD to compute the time-varying pseudoinverse was proposed and explored
in this research. Five NEs show that the ZNNFRDP model’s EMEG has a tendency to
converge exponentially to the zero matrix after beginning from a non-optimal initial price.
Additionally, they show that the ZNNFRDP model performs as well as, if not better than,
other well-performing ZNN models in the computation of the time-varying pseudoinverse.
Thus, theoretical analysis and numerical results both supported the effectiveness of the
proposed model.

The list below includes some possible research topics.

1. To hasten the convergence of the ZNN dynamics, nonlinear activation functions [37,38]
may be used.

2. It may be possible to use ZNN designs with terminal convergence [39,40] to produce
new improved ZNNFRDP models.

Mathematics 2023, 11, 600 13 of 14

Author Contributions: All authors (H.A., H.J., M.K., R.A., T.E.S., S.D.M. and V.N.K.) contributed
equally. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Research Deanship of Hail University-KSA Project Number
(RG -21 127).

Data Availability Statement: Not applicable.

Acknowledgments: Authors acknowledge the Research Deanship of Hail University-KSA for the
administrative, financial, and technical support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, S.; Dong, Y.; Ouyang, Y.; Yin, Z.; Peng, K. Adaptive neural control for robotic manipulators with output constraints and

uncertainties. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5554–5564. [CrossRef] [PubMed]
2. Mourtas, S.; Katsikis, V.; Kasimis, C. Feedback control systems stabilization using a bio-inspired neural network. EAI Endorsed

Trans. AI Robot. 2022, 1, 1–13. [CrossRef]
3. Yuan, Y.; Wang, Z.; Guo, L. Event-triggered strategy design for discrete-time nonlinear quadratic games with disturbance compensa-

tions: The noncooperative case. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 1885–1896. [CrossRef]
4. Yang, X.; He, H. Self-learning robust optimal control for continuous-time nonlinear systems with mismatched disturbances.

Neural Netw. 2018, 99, 19–30. [CrossRef] [PubMed]
5. Mourtas, S.D. A weights direct determination neuronet for time-series with applications in the industrial indices of the federal

reserve bank of St. Louis. J. Forecast. 2022, 14, 1512–1524. [CrossRef]
6. Li, S.; He, J.; Li, Y.; Rafique, M.U. Distributed recurrent neural networks for cooperative control of manipulators: A game-theoretic

perspective. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 415–426. [CrossRef]
7. Ben-Israel, A.; Greville, T.N.E. Generalized Inverses: Theory and Applications, 2nd ed.; CMS Books in Mathematics; Springer: New

York, NY, USA, 2003. [CrossRef]
8. Wang, G.; Wei, Y.; Qiao, S.; Lin, P.; Chen, Y. Generalized Inverses: Theory and Computations; Springer: Singapore, 2018; Volume 53.
9. Tan, N.; Yu, P.; Ni, F. New varying-parameter recursive neural networks for model-free kinematic control of redundant

manipulators with limited measurements. IEEE Trans. Instrum. Meas. 2022, 71, 3161713. [CrossRef]
10. Zhong, N.; Huang, Q.; Yang, S.; Ouyang, F.; Zhang, Z. A varying-parameter recurrent neural network combined with penalty

function for solving constrained multi-criteria optimization scheme for redundant robot manipulators. IEEE Access 2021,
9, 50810–50818. [CrossRef]

11. Kornilova, M.; Kovalnogov, V.; Fedorov, R.; Zamaleev, M.; Katsikis, V.N.; Mourtas, S.D.; Simos, T.E. Zeroing neural network
for pseudoinversion of an arbitrary time-varying matrix based on singular value decomposition. Mathematics 2022, 10, 1208.
[CrossRef]

12. Aleskerov, F.; Ersel, H.; Piontkovski, D. Linear Algebra for Economists; Springer Texts in Business and Economics; Springer:
Berlin/Heidelberg, Germany, 2011. [CrossRef]

13. Gupta, A.K. Numerical Methods Using MATLAB; MATLAB solutions series; Apress: Berkeley, CA, USA, 2014.
14. Katsikis, V.N.; Pappas, D.; Petralias, A. An improved method for the computation of the Moore–Penrose inverse matrix. Appl.

Math. Comput. 2011, 217, 9828–9834. [CrossRef]
15. Stanimirović, P.S.; Roy, F.; Gupta, D.K.; Srivastava, S. Computing the Moore-Penrose inverse using its error bounds. Appl. Math.

Comput. 2020, 371, 124957. [CrossRef]
16. Leithead, W.E.; Zhang, Y. O(N2)-operation approximation of covariance matrix inverse in Gaussian process regression based on

quasi-Newton BFGS method. Commun. Stat. Simul. Comput. 2007, 36, 367–380. [CrossRef]
17. Zhang, Z.; Lu, Y.; Zheng, L.; Li, S.; Yu, Z.; Li, Y. A new varying-parameter convergent-differential neural-network for solving

time-varying convex QP problem constrained by linear-equality. IEEE Trans. Autom. Control 2018, 63, 4110–4125. [CrossRef]
18. Simos, T.E.; Katsikis, V.N.; Mourtas, S.D.; Stanimirović, P.S.; Gerontitis, D. A higher-order zeroing neural network for pseu-

doinversion of an arbitrary time-varying matrix with applications to mobile object localization. Inf. Sci. 2022, 600, 226–238.
[CrossRef]

19. Zhang, Z.; Zheng, L.; Yu, J.; Li, Y.; Yu, Z. Three recurrent neural networks and three numerical methods for solving a repetitive
motion planning scheme of redundant robot manipulators. IEEE/ASME Trans. Mechatron. 2017, 22, 1423–1434. [CrossRef]

20. Katsikis, V.N.; Mourtas, S.D.; Stanimirović, P.S.; Li, S.; Cao, X. Time-varying mean-variance portfolio selection problem solving
via LVI-PDNN. Comput. Oper. Res. 2022, 138, 105582. [CrossRef]

21. Bai, L.; Zheng, K.; Wang, Z.; Liu, J. Service provider portfolio selection for project management using a BP neural network. Ann.
Oper. Res. 2022, 308, 41–62. [CrossRef]

22. Zhang, Y.; Guo, D.; Li, Z. Common nature of learning between back-propagation and Hopfield-type neural networks for
generalized matrix inversion with simplified models. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 579–592. [CrossRef]

23. Lv, X.; Xiao, L.; Tan, Z.; Yang, Z.; Yuan, J. Improved gradient neural networks for solving Moore–Penrose inverse of full-rank
matrix. Neural Process. Lett. 2019, 50, 1993–2005. [CrossRef]

http://doi.org/10.1109/TNNLS.2018.2803827
http://www.ncbi.nlm.nih.gov/pubmed/29994076
http://dx.doi.org/10.4108/airo.v1i.17
http://dx.doi.org/10.1109/TSMC.2017.2704278
http://dx.doi.org/10.1016/j.neunet.2017.11.022
http://www.ncbi.nlm.nih.gov/pubmed/29306801
http://dx.doi.org/10.1002/for.2874
http://dx.doi.org/10.1109/TNNLS.2016.2516565
http://dx.doi.org/10.1007/b97366
http://dx.doi.org/10.1109/TIM.2022.3161713
http://dx.doi.org/10.1109/ACCESS.2021.3068731
http://dx.doi.org/10.3390/math10081208
http://dx.doi.org/10.1007/978-3-642-20570-5
http://dx.doi.org/10.1016/j.amc.2011.04.080
http://dx.doi.org/10.1016/j.amc.2019.124957
http://dx.doi.org/10.1080/03610910601161298
http://dx.doi.org/10.1109/TAC.2018.2810039
http://dx.doi.org/10.1016/j.ins.2022.03.094
http://dx.doi.org/10.1109/TMECH.2017.2683561
http://dx.doi.org/10.1016/j.cor.2021.105582
http://dx.doi.org/10.1007/s10479-020-03878-0
http://dx.doi.org/10.1109/TNNLS.2013.2238555
http://dx.doi.org/10.1007/s11063-019-09983-x

Mathematics 2023, 11, 600 14 of 14

24. Zhang, Y.; Ge, S.S. Design and analysis of a general recurrent neural network model for time-varying matrix inversion. IEEE
Trans. Neural Netw. 2005, 16, 1477–1490. [CrossRef]

25. Chai, Y.; Li, H.; Qiao, D.; Qin, S.; Feng, J. A neural network for Moore-Penrose inverse of time-varying complex-valued matrices.
Int. J. Comput. Intell. Syst. 2020, 13, 663–671. [CrossRef]

26. Sun, Z.; Li, F.; Jin, L.; Shi, T.; Liu, K. Noise-tolerant neural algorithm for online solving time-varying full-rank matrix
Moore-Penrose inverse problems: A control-theoretic approach. Neurocomputing 2020, 413, 158–172. [CrossRef]

27. Wu, W.; Zheng, B. Improved recurrent neural networks for solving Moore-Penrose inverse of real-time full-rank matrix.
Neurocomputing 2020, 418, 221–231. [CrossRef]

28. Zhang, Y.; Yang, Y.; Tan, N.; Cai, B. Zhang neural network solving for time-varying full-rank matrix Moore-Penrose inverse.
Computing 2011, 92, 97–121. [CrossRef]

29. Qiao, S.; Wang, X.Z.; Wei, Y. Two finite-time convergent Zhang neural network models for time-varying complex matrix Drazin
inverse. Linear Algebra Its Appl. 2018, 542, 101–117. [CrossRef]

30. Qiao, S.; Wei, Y.; Zhang, X. Computing time-varying ML-weighted pseudoinverse by the Zhang neural networks. Numer. Funct.
Anal. Optim. 2020, 41, 1672–1693. [CrossRef]

31. Wang, X.; Stanimirovic, P.S.; Wei, Y. Complex ZFs for computing time-varying complex outer inverses. Neurocomputing 2018,
275, 983–1001. [CrossRef]

32. Zhang, H.; Wan, L. Zeroing neural network methods for solving the Yang-Baxter-like matrix equation. Neurocomputing 2020,
383, 409–418. [CrossRef]

33. Dai, J.; Yang, X.; Xiao, L.; Jia, L.; Liu, X.; Wang, Y. Design and analysis of a self-adaptive zeroing neural network for solving
time-varying quadratic programming. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–10. . [CrossRef]

34. Dai, J.; Tan, P.; Yang, X.; Xiao, L.; Jia, L.; He, Y. A fuzzy adaptive zeroing neural network with superior finite-time convergence for
solving time-variant linear matrix equations. Knowl.-Based Syst. 2022, 242, 108405. [CrossRef]

35. Xiao, L.; Tan, H.; Dai, J.; Jia, L.; Tang, W. High-order error function designs to compute time-varying linear matrix equations. Inf.
Sci. 2021, 576, 173–186. [CrossRef]

36. Graham, A. Kronecker Products and Matrix Calculus with Applications; Courier Dover Publications, Mineola, NY, USA 2018.
37. Liao, B.; Zhang, Y. From different ZFs to different ZNN models accelerated via Li activation functions to finite-time convergence

for time-varying matrix pseudoinversion. Neurocomputing 2014, 133, 512–522. [CrossRef]
38. Wang, X.Z.; Ma, H.; Stanimirović, P.S. Nonlinearly activated recurrent neural network for computing the Drazin inverse. Neural

Process. Lett. 2017, 46, 195. [CrossRef]
39. Xiao, L. A finite-time convergent neural dynamics for online solution of time-varying linear complex matrix equation. Neurocom-

puting 2015, 167, 254–259. [CrossRef]
40. Xiao, L. A nonlinearly-activated neurodynamic model and its finite-time solution to equality-constrained quadratic optimization

with nonstationary coefficients. Appl. Soft Comput. 2016, 40, 252–259. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TNN.2005.857946
http://dx.doi.org/10.2991/ijcis.d.200527.001
http://dx.doi.org/10.1016/j.neucom.2020.06.050
http://dx.doi.org/10.1016/j.neucom.2020.08.026
http://dx.doi.org/10.1007/s00607-010-0133-9
http://dx.doi.org/10.1016/j.laa.2017.03.014
http://dx.doi.org/10.1080/01630563.2020.1740887
http://dx.doi.org/10.1016/j.neucom.2017.09.034
http://dx.doi.org/10.1016/j.neucom.2019.11.101
http://dx.doi.org/10.1109/TNNLS.2021.3138900
http://dx.doi.org/10.1016/j.knosys.2022.108405
http://dx.doi.org/10.1016/j.ins.2021.06.038
http://dx.doi.org/10.1016/j.neucom.2013.12.001
http://dx.doi.org/10.1007/s11063-017-9581-y
http://dx.doi.org/10.1016/j.neucom.2015.04.070
http://dx.doi.org/10.1016/j.asoc.2015.11.023

	Introduction
	Materials and Methods
	Results
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5

	Discussion
	Conclusions
	References

