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Abstract: Some images that contain sensitive information and travel through the network require
security. Therefore, a symmetric cryptosystem that encrypts images and resists known attacks is
developed. Subsequently, in this work, an encryption algorithm known as Image Cipher utilizing
Lorenz equation and a Bijective Function—ICLEBF are proposed. In the proposal, the Lorenz
equations and the Bijective function are used to generate boxes, the permutation, and schedule keys,
considering that all these elements are different in each encryption process. The encryption procedure
consists of 14 rounds, where a different box is applied in each round. In this type of algorithm,
the impact of quantum computers will be less forceful and can be useful for that epoch. On the
other hand, the quality of the encrypted images and the loss of sharpness in decoded images with
damage are measured. In addition, an attack from five types of noise (one of which is a developed
proposal) is carried out by applying it to encrypted images. Finally, the results of the proposed
ICLEBF are compared with other recent image encryption algorithms, including the Advanced
Encryption Standard. As a result, this proposal resists known attacks and others that the current
standard does not support.

Keywords: Lorenz equations; bijective function; dynamic S-box; dynamic permutation; noise in
encrypted images

MSC: 11T71

1. Introduction

Large amounts of sensitive information can be sent over the network using images
leading to the development of robust encryption systems employed to encrypt them [1–5].
In the same way, Lorenz equations have been widely applied in the different design stages
of cryptosystems for image ciphering [6–9]. In this research, a fourteen-round symmetric
algorithm is proposed, that is based on the Lorenz equations and the bijective function.
Furthermore, the distribution of keys and signs is based on the elliptic curve [10].

Regarding the security of the ICLEBF cryptosystem, three aspects are studied. First,
the security of the proposed symmetric cryptosystem is analyzed according to known
attacks such as differential, linear, algebraic, and brute force. For example, the differential
attack is evaluated according to the following parameters: Number of Pixels Change Rate
(NPCR), Unified Average Changing Intensity (UACI), and Avalanche Criteria (AC) [11]. In
addition, it must be taken into account that both the boxes and the permutation involved
in the encryption are different in each process; that is, they are variables [12].

Regarding the second aspect, the encrypted images are damaged using five types of
noise. The five noises are: additive, multiplicative, Gaussian, occlusion, and a noise that
is related to the Chi-Square (χ2) distribution. A median filter of 5 × 5 is also applied to
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the damaged decrypted images to complement the process and improve their sharpness.
On the other hand, images decoded with noise are evaluated according to a parameter
that the authors refer to as the Similarity Parameter (SP). The SP parameter is proposed in
this research to evaluate the loss of sharpness in damaged images. The resistance of the
proposed algorithm to noise attacks with respect to the AES–CBC [13] cryptosystem is also
compared and analyzed.

The third aspect involves an attack on the elliptic curve that is included in the pro-
posal to distribute the keys of the symmetrical system, resulting in the discrete logarithm
problem [14]. This point is addressed by comparing the discrete logarithm attack with
the factorization of a natural number n having two prime factors, p, q, each of which has
approximately the same number of digits [15].

The generation of schedule keys is carried out by randomly choosing a point on the
elliptic curve and the Lorenz equations. Furthermore, according to another randomly
generated point on the curve, and using a bijective function that goes from the set of
non-negative integers to the set of permutations [15], the boxes involved in each round are
built; plus, a permutation of the image size. Note that a S-box 8× 8 is a permutation of 256
elements.

The quality of the encrypted images is measured according to the following elements:
entropy, three-way correlation, discrete Fourier transform, energy, homogeneity, contrast,
NPCR, UACI, AC, and a goodness-of-fit test using the χ2 [16]. In some countries, compres-
sion with loss of information is not accepted; for instance, in Mexico [17], the images have
to accomplish a 512 × 512 pixel size in BMP format. In addition, the ICLEBF cryptosystem
was developed for software implementation in Java.

The present work is organized as follows: Section 2 presents the tools that are em-
ployed in this research. Section 3 presents the construction of the elements involved in the
encryption algorithm and the test images. Section 4 shows the construction of different
noises and their application to encrypted images. In addition, a high-level description of
the median filter 5 × 5 and the SP parameter is made. The results are shown in Section 5,
and their analysis and discussion are presented in Section 6. Finally, Section 7 presents the
conclusions and future work.

2. Materials and Methods

A high-level description of the tools required in the proposal is presented in the
next section.

2.1. Elliptic Curve

ICLEBF is a symmetric cryptosystem based on two points on the elliptic curve and the
use of the Lorenz equations. Therefore, it is convenient to provide a general description of
the elements used to generate the elliptic curve. First, the equation of the discrete elliptic
curve is written in Equation (1):

y2 ≡ x3 + ax + b mod p (1)

This work uses a prime number p greater than 2512. The prime p is related to the
equation p = a2

1 + a2
2 considering a1 as an odd number, a2 as an even number, p mod 4 ≡ 1,

and (a1 + a2) mod 4 ≡ 1. Set the constant b = 0 and a = −k, the Equation (1) results in
Equation (2).

y2 ≡ x3 − kx mod p (2)

On the other hand, the constant k must satisfy that kp−1/2 mod p ≡ 1 and kp−1/4 mod
p 6≡ 1 [18]. In addition, the proposed elliptic curve must meet certain conditions to avoid
cryptanalysis attacks known as the MOV attacks or to generate a trace one curve since the
latter is considered weak [19]. The conditions are presented in Equations (3) and (4).
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#E(Fq) 6≡ 1 mod p (3)

#E(Fq) 6= p (4)

where q =
p + 2a1 + 1

4
must be a prime number and #E(Fp) = p + 2a1 + 1 represents the

total number of solutions of the curve [20]. If q does not result in a prime number, the prime
number q must be changed.

On the other hand, the curve’s equation must have three different real roots (non-
singular solutions). This requirement is expressed in Equation (5).

4((−k)3) 6≡ 0 mod p (5)

It is possible to generate a curve that meets all these requirements by using an algo-
rithm [21]. It is pointed out that in the solution set of the curve, it is possible to define the
addition operation (+), which makes this set an abelian group [22].

In the calculation of the sums, the operation of the multiplicative inverse module p is
used. This operation is performed using Euclid’s extended algorithm [23]. However, it is
possible to perform the calculations differently to reduce execution times. In Section 3, we
will prove a theorem and propose an algorithm for calculating the multiplicative inverse.

Since the number of solutions q is prime, then there are some elements in the solution
set that generate all the others, i.e., any point P of the solution set can be written as P = kα,
where α is the generator element [24]. In fact, a curve is defined if k, p, q, and α are known.

To conclude this section, an example is provided below:
Example. Given a1 = 341 and a2 = 40, it follows that p is 117881. It can be verified that

p mod 4 ≡ 1, and a1 + a2 ≡ 1 mod 4. A primitive element is selected, namely α = (95360,
92352), and k value is given by k = 85264. Then, k is verified using Equations (6) and (7).
Therefore the resulting curve is: y2 ≡ x3 − 85264x mod 117881.

(85264)117881−1/4 mod 117881 6≡ 1 (6)

(85264)117881−1/2 mod 117881 ≡ 1 (7)

To verify the primitive element α, it must meet that (q− 1)[α = (x, y)] = (x,−y). In this case,
we have (29641− 1)(95360, 92352) = (95360,−92352), taking into account that q = 29641.
The total number of solutions is #E(F117881) = 118564. In addition, it meets the following
conditions: 29641 mod 117881 6≡ 1, 4(−85264)3 mod 117881 6≡ 0 and #E(F29641) 6= 117881.
So, the curve is not supersingular, not singular and neither trace one.

2.2. Lorenz Equations

The Lorenz equations describe the atmospheric phenomenon of convection, and they
are expressed according to Equations (8)–(10) [7].

ẋ = τ(−x + y) (8)

ẏ = rx− y− xy (9)

ż = −bx + xy (10)

The critical points are obtained when Equations (8)–(10) are equal to zero. Furthermore,
the values τ, r, and b are considered positive real numbers. From here, it is not difficult
to obtain the following critical points: Q1 = (0, 0, 0), Q2 = (

√
b(r− 1),

√
b(r− 1), r− 1) y

Q3 = (−
√

b(r− 1),−
√

b(r− 1, r− 1).
In this investigation, the values τ = 10 and b = 8/3 are chosen. The solution to this

system of equations is written as in Equation (11).
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~X = ~ξeλt (11)

Considering that the Lorenz equations describe the phenomenon of convection in the
Earth’s atmosphere, the following parameters are set as: σ = 10 and b = 8

3 . The solution to
the Lorenz system of equations has the form ~X = ~ξeλt where ~ξ represents the eigenvectors,
and λ the eigenvalues.

On the other hand, to calculate the solutions in the neighborhood of the point Q2, we
start from the equation where the matrices B, X and X

′
are described in Equations (12), (13)

and (14), respectively.

B =

 10 10 0
r −1 −

√
8/3(r− 1)√

8/3(r− 1)
√

8/3(r− 1) −8/3

 (12)

X =

x
y
z

 (13)

X
′
=

x′

y′

z′

 (14)

The eigenvalues are calculated from the characteristic polynomial, which is obtained
from Equation (15).

|B− λI| = 0 (15)

Considering that the parameter r = 28, the characteristic polynomial is expressed in
Equation (16).

3λ3 + 41λ2 − 50λ + 2160 = 0 (16)

From Equation (16), one real root and two complex ones are obtained; these are written
in Equations (17)–(19).

λ1 = −22.558424 (17)

λ2 = 4.445878 + 3.485904i (18)

λ3 = 4.445878− 3.485904i (19)

Regarding the eigenvectors, it is only necessary to generate two of them to obtain
the general solution. Equations (20) and (21) show the eigenvectors ~ξ1 and ~ξ2, where
c = 4.445878.

~ξ1 =

 9.163288
−11.507650

1

 (20)

~ξ2 =

0.359510 + 0.116796i
0.478680 + 0.294040i

1 + 0i

 (21)

~u(t) =

0.3595 cos(3.4859)t− 0.1167 sin(3.4859)t
0.4786 cos(3.4859)t− 0.2940 sin(3.4859)t

cos(3.4859)t

ec (22)
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~v(t) =

0.1167 cos(3.4859)t− 0.3595 sin(3.4859)t
0.2940 cos(3.4859)t− 0.4786 sin(3.4859)t

sin(3.4859)t

ec (23)

Note that the solution ~ξ2e(4.445878+3.485904i)t contains a real part and a complex part.
The real part is presented as ~u and the complex one as ~v× i, where ~u and ~v are expressed
in Equations (22) and (23). Furthermore, if we set ~w = ~ξ1e−22.5584t, the general solution is
then written in Equation (24).

~X(t) = e−22.5584tD1~ξ1 + D2~u(t) + D3~v(t)× i (24)

In this work, the second coordinate of vectors that appear in Equation (24) is taken,
resulting in φy(t). Considering that the constant D1 of the general solution becomes equal
to zero, and the variable t takes the value t1 = 1/4.445878, φy(t1) results in Equation (25).

φy(t1) = (0.4750)D2e + (0.2881)D3e (25)

In practice, although a finite sequence of decimals is taken, this does not imply that
the conditions of Chaos are not met.

2.3. Correlation Coefficient

The correlation coefficient, or simply correlation, is calculated in three directions. The
correlation parameter is a measure of the figure quality; furthermore, it is used in many
works of this kind of research [25,26].

The procedure to carry out this measurement is explained next: m pixels are randomly
selected from the encrypted image. Subsequently, for each one of them, the pixels adjacent
to it are taken, that is, in the horizontal, vertical, and diagonal directions. For example,
suppose we want to analyze the vertical direction for the color green. So, each of these m
pixels has the green color, which ranges from the values 0 to 255, denoting this value as xg.
Next, the adjacent pixel in the vertical direction is taken. This pixel has the green color with
a certain level that varies in the same way as the previous one. Therefore, let us call it yg.

Hence, the formulas to calculate the correlation in the vertical direction for the green
color are presented in the Equation (26). The terms xg, yg are the averages of xg and yg, and
their calculations are shown in Equations (27) and (28).

rv;xg ,yg =

1
m (∑m

i=1(xi,g − xg)(yi,g − yg))√
( 1

m ∑m
i=1(xi,g − xg)2( 1

m ∑m
i=1(yi,g − yg)

2))
(26)

xg =
1
m

m

∑
i=1

xi,g (27)

yg =
1
m

m

∑
i=1

yi,g (28)

The calculation of the correlation in the other directions and colors is very similar.

2.4. Entropy

Another parameter useful to evaluate the encrypted images is the information en-
tropy [27]. This parameter is measured according to Equation (29) [28]. In addition, it
is pointed out that this measurement is carried out for each primary color in the case of
encrypted images.

In this same order of ideas, it is mentioned that each primary color in an encrypted
image is described by 256 levels, represented by a byte. The primary colors are: red, green
and blue. From here, an image is well encrypted if the entropy of each color is close to
8. It is pertinent to clarify that this condition is necessary but not sufficient because the



Mathematics 2023, 11, 599 6 of 25

distribution of information can have entropy 8, and the information cannot have a random
distribution [18].

H(x) = −∑
xεX

P(x)log2P(x) (29)

On the other hand, it is pointed out that entropy is not the only parameter used to
evaluate encrypted images. In practice, an entropy value close to 8 is associated with a
good randomness [29].

2.5. Discrete Fourier Transform

This test is part of the NIST 800-22 [30] standard. It evaluates that there are no repeating
patterns in a binary string, which means that it is random. Furthermore, it can be stated
that it is a statistical hypothesis test, where the null hypothesis is that the binary string is
random, against the alternative one that it is not.

On the other hand, the variables that intervene in this procedure are expressed below.
N0 is a quantity obtained according to Equation (30), where m represents the chain

length of zeros and ones.
The function f j is defined in the Equation (31) where i is the complex number

√
−1,

and the variable xk is equal to ±1.
Once the function f j is defined, the variable N1 is determined as the number of times

that ‖ f j‖ is less than the value h; considering that it is defined as: h =
√

Ln 1
0.05 (m).

Taking into account the variables N0, N1; the variable d is represented in Equation (32).

On the other hand, the function er f c
| d |√

2
is represented in Equation (33). Based on the

above, the decision rule P− value = er f c
| d |√

2
is defined as follows:

If P−Value > 0.01, the null hypothesis is accepted; that is, the string of zeros and ones
is random; otherwise, it is rejected.

N0 = (0.95)×m/2 (30)

f j =
m

∑
k=1

xke
2π(i)(k−1)j

n (31)

d =
N1 − N0√
n(0.95)(0.05)

4

(32)

erfc
| d |√

2
= 2(1−Φ(| d |)) (33)

2.6. Goodness-of-Fit Test

This tool is a statistical hypothesis test, where the null and alternative hypotheses are
as follows:

(I) Null hypothesis. The string of bits is random.
(II) Alternative hypothesis. The string of bits is not random.
In addition, it is necessary to define a statistic and a level of significance, which in

this investigation is α = 0.01 [31], that determines a region of acceptance or rejection and,
subsequently, the decision rule.

The statistic is shown in Equation (34), which has a χ2 distribution with n− 1 degrees
of freedom. Regarding the variables involved in Equation (34), it is noted that oi, exp
correspond to the observed and expected values. Furthermore, considering that each
primary color is described with 256 levels (a byte), we conclude that the degrees of freedom
are n− 1 = 255. With this argument, and in accordance with the central limit theorem,
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in this paper we assume that the variable χ2 approximates a normal distribution N(µ, σ);
where µ = 255 and σ = 22.58 [32].

χ2 =
k

∑
i=1

(oi − exp)2

exp
(34)

On the other hand, according to the significance level value defined above, it follows
that when χ2 < 308, the null hypothesis is accepted. On the contrary, it is rejected if
χ2 ≥ 308.

Furthermore, it is mentioned that the measurement of the encrypted image quality is
carried out for each primary color; red, green, and blue. In addition, it is pointed out that
this type of test is not found in the NIST 800-22.

2.7. Parameters NPCR, UACI and AC

In this research, three parameters are used to measure the strength of ICLEBF to
differential attacks and the quality of encryption. These parameters are: NPCR, UACI,
and AC.

Equation (35) describes the NPCR parameter, where the subscript c indicates the pri-
mary color; red, green, or blue. Regarding the elements that intervene in it, it is mentioned
that the function D(i, j) proceeds as follows: it is equal to 1 when the bytes in position (i, j)
of the encrypted images have the same value. On the contrary, it presents a zero value
when they are different. It is important to point out that the flat images are only different
by one byte. The variables W, H represent the width and height of the image. The value
considered appropriate for this parameter is a percentage close to 99.6% [33].

NPCRc =
Σi,jD(i, j)c

W × H
× 100% (35)

Equation (36) describes the value of UACI, considering that the variable C(i, j)l,c is in
a range from 0 to 255 and corresponds to the l-th encrypted images. As commented before,
the flat images are only different by one byte. On the other hand, (i, j) and c correspond to
the byte position and the primary color.

The value considered adequate for this parameter is 33.4% [34].

UACIc =
1

W × H
[Σi,j
| C1,c − C2,c |

255
]× 100% (36)

Equation (37) describes the parameter AC, where the function b(i, j) is equal to 1 when
the pixels of images related to the position (i, j) are the same. Otherwise, b(i, j) is equal to 0.
The variable T represents the number of bits in the image. Likewise, to resist the differential
attack, it is considered that AC is close to 50% [35]. In addition, the subscript c indicates the
type of primary color that is analyzed.

ACc =
Σi,jb(i, j)c

T
× 100% (37)

2.8. Parameters of Homogeneity, Contrast, Energy and Median Filter

In many image encryption investigations, Contrast, Homogeneity, and Energy param-
eters are used to assess the quality of encryption. Each of them is briefly described below.

Regarding Homogeneity, it is evaluated with Equation (38), considering that (i, j) are
the coordinates of the pixel and g(i, j) its value at that position. On the other hand, an
image is said to be “well” encrypted when the Homogeneity values are small, i.e., the
smaller the Homogeneity value, the higher the quality of the encryption obtained [36].

Homogeneity = ∑
i,j

g(i, j)
1+ | i− j | (38)
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Equation (39) represents the Contrast parameter, which measures the degree of in-
equality between a pixel and its neighbors. We then say that the encryption of an image
is “good” if the contrast values are large. In the results section, the obtained values are
compared with other investigations [37]. The function g(i, j) provides the value of g in the
pixel (i, j).

Contrast = ∑
i,j
| i− j |2 g(i, j) (39)

The third parameter, Energy, is evaluated according to Equation (40). This parameter
measures the degree of disorder between the pixels. The closer this value is to zero, the
greater the disorder, which implies that the encryption is “good” [38].

Energy = ∑
i,j

g(i, j)2 (40)

2.9. Median Filter

It is clear that when damage is inflicted upon the encrypted image, there will be a loss
of sharpness in the decrypted image. Therefore, improving the sharpness of the decrypted
image with damage is convenient and thus complements this process. This represents the
motivation in this work to use a median filter 5 × 5 [39]. In this sense, a filter manipulates
neighboring pixels of size (n×m) in a general perspective.

Hence, the median filter 5 × 5 proceeds as follows: given any pixel (x1, x2) of the
image map, a mask of 25 pixels is constructed, leaving the point (x1, x2) in the center, and
the other pixels as its neighbors. Table 1 illustrates this aspect.

Table 1. A mask of 5 × 5 for the median filter.

(x1 − 2, x2 + 2) (x1 − 1, x2 + 2) (x1, x2 + 2) (x1 + 1, x2 + 2) (x1 + 2, x2 + 2)

(x1 − 2, x2 + 1) (x1 − 1, x2 + 1) (x1, x2 + 1) (x1 + 1, x2 + 1) (x1 + 2, x2 + 1)

(x1 − 2, x2) (x1 − 1, x2) (x1, x2) (x1 + 1, x2) (x1 + 2, x2)

(x1 − 2, x2 − 1) (x1 − 1, x2 − 1) (x1, x2 − 1) (x1 + 1, x2 − 1) (x1 + 2, x2 − 1)

(x1 − 2, x2 − 2) (x1 − 1, x2 − 2) (x1, x2 − 2) (x1 + 1, x2 − 2) (x1 + 2, x2 − 2)

From here, it is possible to order these 25 values according to their intensity, and then
the value that meets the following requirement is chosen as the median: it is greater than
or equal to the first d 25

2 e − 1 element, i.e., the 50%, and less than the remaining points.
Because in this investigation the analysis is carried out for each of the primary colors

(red, green and blue), the median of each of these colors are then denoted as follows:
Mr,(x1,x2)

, Mg,(x1,x2)
and Mb,(x1,x2)

, respectively.
Finally, the intensity value of each of the mask points is replaced by the median value.

3. Model Development

In this section, the theorem to compute the multiplicative inverse of a number when
the modulus is prime, the encryption algorithm, and the generations of permutations and
boxes using an algorithm that defines a bijective function [21] are described.

3.1. Calculation of the Multiplicative Inverse

The multiplicative inverse modulo p is used by following the next theorem:

Theorem 1. Given a prime number p, and an element xεZp such that x 6= 0, then the multiplica-
tive inverse modulo p of x is calculated as: xp−2 mod p.
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Proof of Theorem 1. Since p is prime, the greatest common divisor (gcd) gcd(x, p) = 1. So,
it is stated that x has an inverse, and it is also unique.

From here,

xp−2 × x = xp−1 mod p

However, xp−1 mod p ≡ 1. According to Lagrange theorem [40] and considering
that Euler’s φ satisfies φ(p) = p− 1, then, xp−2 is the multiplicative inverse of x.

The advantage of computing the multiplicative inverse modulo p according to
Theorem 1 is that this process is parallelizable [40], in contrast to Euclid’s algorithm,
whose procedure for calculating the inverse is sequential.

3.2. SP Parameter

The SP parameter is proposed to evaluate the loss of sharpness in the decrypted
images with damage. This parameter is represented by Equation (41), where the subscript
c indicates the primary color type.

SPc = |100−UACIc(2.994)| (41)

In this work, the UACI instrument defined in Equation (36) is used to produce SP,
taking into account the following argument.

Because UACI evaluates the differences | C1,c − C2,c | between two images, which in
this case would be the original and the decrypted with damage, it can be seen that when
the two images are the same, UACI = 0, and therefore, SP = 100; however, if UACI u 33%,
which happens when the image is well encrypted, it follows that SP u 0. The factor 2.994
indicates the range of SP from 0 to 100.

So, the parameter SP provides information about the degree of similarity between
two images.

3.3. Algorithm for the Generation of Permutations

Given a positive integer n, the following set is defined: Zn = {m ∈ N | 0 ≤ m ≤ n!− 1}.
Any element of Zm can be expressed according to Equation (42). That is, express it on a
factorial basis.

m = A0(n− 1)! + A1(n− 2)! + . . . An−2(1)! + An−1(0)! (42)

On the other hand, according to the division algorithm, the Ai are unique. Moreover,
that An−1 = 0. Thus, the values Ai satisfy Equation (43).

0 ≤ Ai < (n− i) with 0 ≤ i ≤ (n− 2) (43)

Recent research uses the above arguments to develop an algorithm that builds permu-
tations in a set of n different elements [21]. In this paper, this set is {0, 1, · · · n− 1}.

Furthermore, it is shown that the algorithm defines a bijective function [41]. The latter
is highlighted because it is convenient that there are two different permutations for two
positive integers m1, m2 ∈ Zn. The above allows for building dynamic permutations and
boxes for a cryptosystem.

3.4. Cipher Procedure

The high-level description of the ICLEBF cryptosystem consists of a 14-round sym-
metric encryption algorithm [42]. In this algorithm, both the permutations, the 8× 8 S-box,
and the schedule keys are dynamic, i.e., in each encryption procedure, they are different.
Furthermore, the size of permutations and the schedule keys are the same as the image size.
Below, we present the steps of the algorithm in each round.

(I) The encryption algorithm applies a permutation P, on the pixel positions of the
original image. This is done before the rounds start. Next, the xor operation is performed
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between the string that results from the permutation and the first schedule key. Subse-
quently, the string that results from the xor operation is divided into 8-bit substrings, i.e.,
a byte. Finally, the substitution operation is applied to each of these bytes, using the first
8× 8 S-box. The criteria used in the substitution operation are the same as in FIPS 197 [43].
Later, the permutation P, boxes, and schedule keys are generated.

(II) From rounds two to thirteen, the algorithm executes the following steps: it starts
with an xor between the output of the previous round and the corresponding schedule key.
Then, the substitution operation is performed with the corresponding 8× 8 S-box.

(III) In round 14, the following steps are executed: first, the xor operation is applied
between schedule key 14 and the output of round 13. Next, the result of the previous
operation is subdivided into blocks of 8 bits, and the substitution process is then carried
out with the last box. It is terminated with an xor operation with schedule key 15. This last
result provides the encrypted image.

Regarding the construction of the permutation, the schedule keys and the boxes are
shown in the next section.

3.5. Generation of the S-Boxes, Permutation, and Schedule Keys

The procedure for generating the 8 × 8 S-boxes is shown below:
(a) An integer C1 is randomly obtained that satisfies 0 < C1 < 2512. Subsequently,

the point C1α is calculated, where α is the primitive number. Let us denote the result
C1α = (w1, w2).

(b) In this investigation, the constant D3 of Equation (25) is proposed. It has a value
associated with the binary string w1 ‖ w2. Afterward, the operations 0.2881D3e are performed.

(c) According to the result of section (b), the bits from the decimal point to the right
are divided into blocks of 8 bits. Furthermore, it is clarified that an 8 × 8 S-box is a
permutation of the 256 elements of the set {00, 01, · · · f f }. The constants Ai of Equation (42)
are computed, and then the permutation is obtained. In this order of ideas, the calculation
of A0 is done as follows: the first 8 bits after the decimal point are taken, and the integer
associated with this string of bits is called a0. Then, the following calculation is carried out:
A0 = a0 mod 256, such that 0 5 A0 < 256 holds. Ai is related to the i-th block of 8 bits to
the right of the decimal point. This block has an associated integer value which we denote
as ai. So, Ai = ai mod 256 - i with 0 5 i < 255, considering that A255 = 0.

(d) Once the Ai has been obtained, the algorithm outlined in Section 3.3 is used to
generate the permutation. To get the other boxes, i.e., from two to fourteen, continue to
shift to the right of the 8-bit decimal point and then perform the modular operation.

Regarding the generation of the permutation, the procedure is shown below.
(a) In the same way as before, an integer C2 is randomly generated, that is in a range

of 0 < C2 < 2512.
(b) Once the value C2 is obtained, the point C2α is calculated, considering that α is the

primitive number. Let us write the result of C2α as (z1, z2). Then, the concatenation of the
coordinates of (z1, z2) is performed; that is, z1 ‖ z2. The integer value associated with the
binary string z1 ‖ z2 is assigned to the constant D2 of the Equation (25).

(c) According to the previous step, the calculation (0.4750× e)D2 is carried out. So,
in this investigation, it is proposed to divide the binary string formed from the decimal
point to the right into blocks of three bytes; that is, it starts with bytes 0, 1, 2. Let us refer
to the non-negative integer associated with the binary string of the first three bytes as b0;
furthermore, let us denote the number of pixels in the image as l. With this information,
the first constant, A0, of Equation (42) is calculated as follows: A0 = b0 mod l − 0. To
obtain the constant Ai with i > 0, we will proceed as follows: i shifts one byte to the right
of the decimal point, and the bytes i, i + 1, i + 2 are taken. In the same way as before, this
24-bit block has a non-negative integer, which is written as bi. From here, the i-th constant
is obtained as follows: Ai = bi mod l − i.

(d) When the constants indicated in Equation (42) are calculated, it is possible to
generate a permutation as mentioned in Section 3.3.



Mathematics 2023, 11, 599 11 of 25

On the other side, the previous steps are essentially described below. A positive
integer C1 is chosen, that satisfies the condition where it is less than the number of solutions
(2512). This value leads us to a point on the curve (w1, w2). The previous point generates
the integer D3 = w1 ‖ w2. From here, it is possible to execute the operation indicated in
Equation (25). Blocks of one byte are taken to the right of the decimal point. Each byte can be
interpreted as an integer and used to obtain the Ai constants in Equation (42). Subsequently,
a permutation is obtained over an array of 256 positions, which leads us to a box.

Regarding the schedule keys (third aspect), the same calculations in items (a) and
(b) are performed to obtain the permutation of bytes of the image. Then, the constant C2

is used.
Subsequently, the decimal point to the right l pixels are obtained from the product

(0.4750× e)D2; that is, a binary string of the image size. This paper sets this string as the
first schedule key, denoted as k1. To generate the other schedule keys; that is, k2 · · · k15 the
following is done:

For ki with i > 1, a one-byte left circular shift of the key ki−1 is performed.
In order to illustrate the point, the elliptic curve used in this investigation is shown be-

low. Furthermore, it is pointed out that the proposed curve meets the conditions mentioned
in Equations (3)–(5).

The values of p, q, a, b, k, as well as, the primitive element α = (x1, x2) are expressed next.

p = 988464ba59685284506433ccd3f83450166fda2d2ec7
109a5c0679434e9dfb46b3a447043b406c4115af9a2c7fdc17
bc9b6668f07d80d7142f534a1dc64ef400b9b2100acb691

q = 2621192e965a14a114190cf334fe0d14059bf68b4bb1
c42697019e50d3a77ed1ace911d9c1e6fa9ecb772f44670d2
9e05a69fc249b108ed06114d9e01b7662721ecf151ce2329

a = 31662dbf1d0c1691728e2c47e26720c3d0f760b216aa8
00eb153c54ae3e0c522345eb09

b = 308

k = 870eebe8cf19ece84593dd9deaec2ebab1380c94c240fe
8fc1d45836fff18114c42308e5aafef0ee4d1a643b179415eb
34d8b2118e51ad727b63efc5dba104179bcece5a0d7cb

On the other hand, the generator element α = (x1, x2) is presented below:

x1 = 28b1f61561824dac022aa29d37df70295a2d7f34f696
5e032d85b35b6e4c8403a47922b96753ba338061a05eee5
30f5759043d58aa09d69ae8b2377b640c01e484ac14d27d
693

x2 = 288189d9988f9d839ae797195f3a4b512b36773156af
fd0b64a5ed740c9ea059233eab4765397a0a5de87ea46a20
d208cf8988d433e4d703792e2f950ad6a0a631f0d424e6951

In another order of ideas, it can be seen that the points (w1, w2) and (z1, z2) are
important in constructing the symmetric cryptosystem. So, in a secure communication
scheme, for example, the PKI [44], the recipient only needs to know these points to develop
the particular symmetric cryptosystem. In this sense, the sender can send the points
mentioned above using the recipient’s public key called Q. Later, the recipient using their
private key can get (w1, w2) and (z1, z2). Furthermore, the sender can sign the message
according to the Elliptic Curve Signature Algorithm (ECSA) [45] standard.



Mathematics 2023, 11, 599 12 of 25

3.6. Images Used to Evaluate ICLEBF

Figure 1 shows the images used in this research to evaluate the encryption quality
of the proposed cryptosystem. The size of the images is 512 × 512 pixels, according to
the convention used in this kind of research work [46], although they can be of different
dimensions.

Figure 1. Images used for evaluating ICLEBF: (a) Lena, (b) Barbara, (c) Vicky, (d) Cameraman.

The Barbara and Cameraman images (Figure 1b and Figure 1d, respectively) are used
to test the proposed encryption algorithm because, when using 256-gray-level images, there
is a risk of poor-quality encryption if a secret-key cryptosystem is used. In fact, this is why
AES is not used as a standard in image encryption, and the AES–CBC [47] cryptosystem is
instead employed. Furthermore, in those images, parts are entirely white, and in the other
image, parts are completely black.
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On the other hand, Figure 1a is widely known in the encryption field; the Lena image.
Furthermore, in this research, the image of Vicky in Figure 1c is used, and both images
are in color, i.e., the three primary colors appear, red, green, and blue, with 256 levels for
each one.

To conclude this section, it is noted that Figure 1c is encrypted with AES–CBC, and
then an occlusion noise damage of 40% of the encrypted figure size is applied. This is later
decrypted. The previous result is compared with that obtained when the same procedure
is carried out, except that Figure 1c is now encrypted with the ICLEBF algorithm. Finally,
in the “Result” section, the comparison is shown.

4. Damage in Encrypted Images

This work employs five types of noise and applies them to images encrypted with
ICLEBF. These noises are the following: χ2, Gaussian, occlusion, additive and multiplicative;
considering that in this research, the noise χ2 is proposed. On the other hand, the parameter
Similarity Parameter (SP) defined above is proposed to evaluate the damage in sharpness.
In addition, a median filter 5 × 5 is applied to complement the process.

4.1. Noise Generated by the Variable χ2

This section begins with a description of the noise χ2, that is based on the random

variable χ2 = ∑k
i=1

(oi−exp)2

exp . Considering that the noise χ2 is presented in Section 2 and
using the central limit theorem, this noise variable is distributed as a normal variable, with
a mean µ = 255 and a standard deviation σ = 22.58.

Furthermore, the images damaged in this research have two domains: spatial and
frequency. The process begins with the choice of n points at random in the spatial domain
of the encrypted image. These points have an associated intensity in the frequency domain,
which we call Ic; furthermore, it satisfies 0 ≤ Ic ≤ 255. The subscript indicates the primary
color type.

Once the n points, denoted as (x, y), have been chosen for each color, a value zc ∼N(0, 1)
is randomly chosen. Subsequently, we calculate the value I′c according to Equation (44).

I′c(x, y) = 255 + zc(x, y)42.5 (44)

The next step is to assign an integer value to the variable I′c, i.e., this variable is
discretized. In this sense, we will use the symbols b c and d e as follows: when the decimal
part of I′c is less than or equal to 0.5, the integer part is taken I′c, which is denoted as bI′cc.
Otherwise, when the decimal fraction is greater than 0.5, the integer part plus one of I′c is
taken. The above is denoted as dI′ce.

In this work, the discretized value of I′c is denoted as I′dc and is calculated according to
Equation (45).

I′dc(x, y) = bd255 + zc(x, y)42.5ec mod 256 (45)

It is necessary to replace the value of Ic with I′dc to apply the noise to the encrypted
image. Furthermore, note that the symbols b c or d e in Equation (45) are used as appropriate.
Before concluding this section, it is important to mention that the vast majority of the
intensities (95%) are replaced by values that fall within the following ranges: [0, 84] or [170,
255]; i.e., by extreme values.

4.2. Additive and Multiplicative Noises

In the same way, as in the previous section, there are two domains. In this sense, n
points (x, y) are randomly chosen from the spatial domain, that is, from the encrypted
image; each has an associated intensity Ic that complies with 0 5 Ic 5 255.
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In the case of additive noise, for each point (x, y) and color, an integer γ(x, y) is
chosen at random, and then the calculations indicated in Equation (46) are done. To
apply the additive noise, proceed as follows: the value of Ic is replaced by I′c, obtained in
Equation (46).

I′c(x, y) = [Ic(x1, x2) + γ(x1, x2)] mod 256 (46)

The procedure of the multiplicative noise is similar to the additive one. In fact, the
value of I′c is obtained according to Equation (47). Then, to apply the multiplicative noise
shown in Equation (47), the value of Ic is replaced by I′c.

I′c(x, y) = [Ic(x1, x2)× γ(x1, x2)] mod 256 (47)

4.3. Gaussian Noise

This part analyzes the application of Gaussian noise, which leads to the random
variable x with a standard normal distribution, i.e., x ∼ N(0, 1).

In this sense, in the spatial domain, n points (x1, x2) are randomly chosen according
to the uniform distribution. These points also have an associated intensity Ic, which meets
the following condition: 0 5 Ic 5 255.

In this work, the intensity I′c is calculated according to Equation (48) considering that
z ∼ N(0, 1). Furthermore, it is mentioned that the values of z are obtained with a standard
normal distribution generator; that is, z ∼ N(0, 1). In addition, the following rule applies:
when the value of z generated with this standard normal distribution is less than −3, this
takes the value z = −3. On the contrary, when the generated value is greater than 3, this
takes the value z = 3. It follows that the range of z is [−3, 3].

I′c = 127.5 + z× (42.5) (48)

The symbols b, c and d, e are used to discretize the variable I′c. In this sense, it proceeds
as follows: when the decimal fraction of I′c is less than or equal to 0.5, only the integer part
is considered, and the above is denoted as Idc = bI′cc. On the other hand, if the decimal
fraction is greater than 0.5, then the integer part plus one is taken, and this is denoted as
Idc = dI′ce.

From here, it is proposed to apply the Gaussian noise to the encrypted image in the
following way: the value of Ic is replaced by that of Idc = bI′cc or Idc = dI′ce according to
the case. On the other hand, 95% of the substituted values are in the interval [42, 212]; i.e.,
centered around 127.5.

4.4. Occlusion Noise

The occlusion noise is applied in the following way: the intensity of all points of
a concentric parallelogram is replaced by a single color, which in this investigation is a
cherry color.

As can be seen, the above is equivalent to producing noise inside the concentric
parallelogram. In order to clarify ideas, this procedure is illustrated in Figure 2.
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Figure 2. Occlusion noise in an encrypted image.

5. Results

First, we will show the results of encrypted images without damage and later the
results when damaged. In addition, it starts with the correlation and entropy parameters.
Subsequently, the NPCR, UACI, AC, energy, contrast, and homogeneity measurements are
presented. Later, the parameters that apply hypothesis tests are described.

Figure 3 shows how the ICLEBF algorithm encrypts. In this sense, it is mentioned that
regardless of whether the flat image (original) is in color or 256 levels of gray, the encrypted
figure will always be in color. The encrypted image is Figure 1b (Barbara).

Figure 3. Barbara image (a) original and (b) ciphered with AICPBD.
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5.1. Correlation and Entropy

Table 2 presents the results of the correlation when the test images of Figure 1 are
encrypted.

Table 2. Correlation of the encrypted test images of Figure 1.

Color Correlation Lena Barbara Vicky Cameraman

Horizontal 0.0004 −0.0080 −0.0011 −0.0061
Red Vertical −0.0097 0.0086 0.0034 0.0009

Diagonal 0.0069 −0.0034 0.0079 0.0133

Horizontal −0.0037 −0.0196 −0.0170 0.0014
Green Vertical −0.0052 0.0060 0.0006 0.0131

Diagonal 0.0058 −0.0065 0.0174 0.0062

Horizontal −0.0044 0.0198 −0.0037 0.0030
Blue Vertical 0.0116 −0.0021 −0.0019 −0.0012

Diagonal 0.0009 −0.0020 0.0042 0.0146

Table 3 shows the entropy results. As pointed out previously, only results are presented
in this part. Later, the corresponding analysis will be made.

Table 3. Entropy of the encrypted test images of Figure 1.

Color Lena Barbara Vicky Cameraman

Red 7.99919 7.99935 7.99919 7.99932
Green 7.99929 7.99925 7.99928 7.99926
Blue 7.99923 7.99935 7.99927 7.99947

Table 4 shows a comparative results of Lena entropy with other cryptosystems.

Table 4. Entropy analysis of Lena Figure 1a.

Color ICLEBF System [48] [49] [50]

Red 7.9992 7.9921 7.9987 7.9972
Green 7.9993 7.9917 7.9991 7.9973
Blue 7.9992 7.9972 7.9983 7.9972

5.2. Results of NPCR, UACI, AC, Energy, Contrast and Homogeneity

Tables 5–7 present the results of NPCR, UACI and AC, respectively. On the other hand,
the energy, contrast and homogeneity are presented in Tables 8–10.

Table 5. NPCR of the test images after encryption.

Color Lena Barbara Vicky Cameraman

Red 99.609 99.606 99.602 99.603
Green 99.614 99.608 99.598 99.620
Blue 99.613 99.604 99.608 99.620

Table 6. UACI of the test images after encryption.

Color Lena Barbara Vicky Cameraman

Red 33.414 33.437 33.478 33.486
Green 33.461 33.562 33.483 33.452
Blue 33.365 33.468 33.421 33.457
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Table 7. AC of the test images after encryption.

Color Lena Barbara Vicky Cameraman

Red 49.997 49.994 50.003 49.996
Green 49.996 50.020 49.985 49.961
Blue 49.963 49.981 50.014 49.944

Table 8. Energy of Figure 1 images after encryption.

Color Lena Barbara Vicky Cameraman

Red 0.0156 0.0156 0.0156 0.0156
Green 0.0156 0.0156 0.0156 0.0155
Blue 0.0156 0.0156 0.0155 0.0156

Table 9. Contrast of Figure 1 images after encryption.

Color Lena Barbara Vicky Cameraman

Red 10.501 10.516 10.475 10.472
Green 10.504 10.450 10.514 10.538
Blue 10.526 10.494 10.503 10.503

Table 10. Homogeneity of Figure 1 images after encryption.

Color Lena Barbara Vicky Cameraman

Red 0.388 0.389 0.390 0.389
Green 0.389 0.389 0.389 0.388
Blue 0.389 0.388 0.389 0.389

5.3. Discrete Fourier Transform and Goodness-of-Fit Test

This part shows the parameters’ results, including a statistical hypothesis test. Table 11
presents the measurements obtained when the parameter of the discrete Fourier transform
is applied to the encrypted images of Figure 1, and Table 12 illustrates the values obtained
when using the goodness-of-fit test in the encrypted figures of the four test images.

Table 11. The randomness measurement using the Discrete Fourier Transform (X Accept, x Reject),
with α = 0.01.

Color Lena Barbara Vicky Cameraman

Red 0.671/X 0.978/X 0.342/X 0.093/X
Green 0.368/X 0.116/X 0.737/X 0.272/X
Blue 0.191/X 0.214/X 0.182/X 0.469/X

Table 12. Results of the Goodness-of-Fit test (X Accept, x Reject), with α = 0.01.

Color Lena Barbara Vicky Cameraman

Red 242.9/X 256.3/X 259.3/X 243.9/X
Green 252.7/X 229.8/X 254.6/X 251.9/X
Blue 287.5/X 260.7/X 264.2/X 272.3/X
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5.4. Tests on Black or White Images

The purpose of conducting tests on entirely black or white images is because ICLEBF
defines a symmetric cryptosystem. Subsequently, the encryption may not perform correctly.
For this reason, the measurements of NPCR, UACI, and AC are carried out in the encrypted
figures, one of the images in black and the other in white. In this sense, the results are
reported in Table 13. Furthermore, the size of both images is set to 512 × 512 pixels.

Table 13. NPCR, UACI and AC values for the completely black and completely white images.

Parameter Color Black Image White Image

Red 99.610 99.588
NPCR Green 99.606 99.605

Blue 99.603 99.627

Red 33.429 33.384
UACI Green 33.428 33.520

Blue 33.480 33.410

Red 50.039 50.005
AC Green 49.950 49.989

Blue 49.986 50.006

5.5. Result of Encrypted Images with Noise

We start this section by showing Figure 4, which has three images. The first, Figure 4a
presents Barbara’s flat (original) image. In the second one, Figure 4b, Barbara’s image is
encrypted with the AES–CBC algorithm, and then multiplicative noise is applied to the
encrypted figure at 40% of its size. Finally, in the last Figure 4c, Barbara is encrypted with
the ICLEBF algorithm, then multiplicative noise is applied to 40% of the encrypted figure
and it is subsequently decrypted.

On the other hand, Figure 5 illustrates the case of the Vicky image shown in Figure 1c,
which is encrypted with AES–CBC (Figure 5a), and then occlusion noise is applied to 40%
of the encrypted image (Figure 5b). In this sense, Figure 6 shows the case in which the Vicky
image is encrypted with the ICLEBF algorithm, and then the occlusion noise is applied
to 40% of the encrypted figure, as shown in Figure 6a. It is later deciphered, resulting in
Figure 6b.

Regarding the application of the median filter of 5 × 5 to complement the procedure,
the deciphered images with noise are evaluated using the SP parameter to know the degree
of improvement in sharpness. It is observed in Figure 7b the improvement of the sharpness
of Vicky’s image when the median filter 5 × 5 is applied to the damaged image. It is
also important to comment that the Vicky image is encrypted with the ICLEBF algorithm.
Furthermore, in Table 14 the sharpness evaluation is shown based on the SP parameter
results. Different damage sizes χ2 are applied to the encrypted test images in this case.
On the other hand, Table 15 shows the SP parameter results when five types of noise are
applied from 40% of the size of the encrypted test images, and the filter 5 × 5 is used to
improve sharpness.
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Figure 4. Flat image of Barbara (a). Decrypted image of Barbara when a multiplicative noise of
size 40% is applied to a figure encrypted with AES–CBC (b). Decrypted image of Barbara when a
multiplicative noise of size 40% is applied to a figure encrypted with ICLEBF (c).

Figure 5. Image (a) is the Vicky cat image ciphered of Figure 1c using AES–CBC with 40% occlusion
damage and (b) is the deciphered image.
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Figure 6. Vicky cat image (a) ciphered using ICLEBF with 40% occlusion damage and (b) is the
deciphered image.

Figure 7. (a) The Vicky cat image deciphered with 40% occlusion noise, and (b) deciphered with
noise and then median filter is applied.

Table 14. SP parameter for distinct noise size of the testing images after encryption, utilizing chi
square damage.

Color Size Noise Lena Barbara Vicky Cameraman

20% 80.17 82.12 77.06 81.44
Red 30% 70.39 73.25 65.49 72.15

40% 60.26 64.31 54.10 62.75

20% 81.66 82.17 76.83 81.45
Green 30% 72.49 73.21 64.86 72.08

40% 63.35 64.28 53.30 62.64

20% 83.43 82.12 76.47 81.34
Blue 30% 75.14 73.15 64.68 72.12

40% 66.92 64.33 52.89 62.80
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Table 15. SP after a 5 × 5 median filter was applied to encrypted images with 40% damage from
different noise sources.

Color Noise Type Lena Barbara Vicky Cameraman

Chi square 92.39 85.76 93.78 92.38
Additive 92.36 85.81 93.76 92.49

Red Multiplicative 92.54 85.93 94.11 92.57
Gaussian 92.43 85.80 93.81 92.41
Occlusion 92.59 85.84 93.86 92.47

Chi square 90.71 85.85 93.61 92.47
Additive 90.72 85.78 93.59 92.51

Green Multiplicative 90.87 85.93 93.91 92.52
Gaussian 90.76 85.80 93.75 92.40
Occlusion 90.80 85.87 93.69 92.44

Chi square 91.94 85.85 93.42 92.48
Additive 91.96 85.75 93.53 92.45

Blue Multiplicative 92.03 85.94 93.94 92.60
Gaussian 91.93 85.82 93.63 92.40
Occlusion 91.97 85.87 93.57 92.45

6. Discussion

Considering that the security of the ICLEBF algorithm is essential, we begin with
possible attacks on the proposed cryptosystem. Later, an attack on the elliptic curve is
observed, and then those that damage the encrypted figures.

In this order of ideas, the proposed cryptosystem attacks include the following: differ-
ential, linear, brute force, and algebraic. Regarding the differential attack, Tables 5, 6 and 7
show the results of the encrypted figures of the test images. It is observed that their values
are in the desired range, i.e., NPCR around 99.6%, UACI values close to 33.3%, and AC
around 50%. Therefore, it can be concluded that it resists differential attack. Regarding the
linear attack, it is mentioned that the boxes are unknown since they are different in each
encryption process, which means that the linear attack cannot be carried out as described
in [51]. In addition, due to this same characteristic, the algebraic attack cannot be carried
out either. Regarding the brute force attack, the following consideration is made: taking
into account that when two points of the curve are known, the proposed cryptosystem can
be built; furthermore, considering that the number of solutions is q > 2512, it follows that
the complexity of the problem is greater than (2512)2. This is larger than the complexity of
AES-256, and has not yet been solved by brute force [52].

The elliptic curve attack leads to the discrete logarithm problem, which consists of
discovering the private key m when the public key Q is known. On the other hand, the
discrete logarithm problem on the curve is equivalent to factoring a positive integer n in
the RSA scheme [21]. In this sense, when the number of solutions q is a prime larger than
2512 (which is our case), the discrete logarithm problem is equivalent to factoring an n
larger than 215000. The above is much larger than the application currently used in the RSA
cryptosystem (24096 [53]).

Two aspects are mentioned regarding the attack on encrypted images using noise: the
first refers to a comparison of the proposed algorithm ICLEBF with the algorithm of the
AES–CBC standard. Figures 5 and 6 show that ICLEBF better resists the occlusion attack
because, after decrypting the damaged image, the original image is still visible. However,
this is not the case with AES–CBC. Furthermore, the same happens in Figure 4. Figure 4b
illustrates the case when Barbara’s image is encrypted with AES–CBC, then corrupted with
multiplicative noise, and deciphered. On the other hand, if the image is encrypted with
ICLEBF and the same process is done as before, then Figure 4c is obtained.

The second aspect refers to the application of the median filter 5 × 5 to a decrypted
image with corruption. In this sense, Figure 7b illustrates how a damaged image changes
when the filter is applied. On the other hand, the IP parameter is applied to damaged
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images. Table 14 presents the results concerning the extent to which the sharpness dete-
riorates when χ2 noise is applied, at different sizes, to the encrypted images of Figure 1.
Table 15 shows the extent to which the sharpness improves when the median filter 5 × 5 is
applied to the damaged images. It is worth noting that the noise χ2 of size 40% applied to
the Vicky image provides a result of IP ≈ 53%. However, after applying the filter, as shown
in Table 15, the IP parameter value is around 93%.

According to the results presented in Tables 2–12, it is affirmed that the image encryp-
tion is of sound quality because the color distribution in the encrypted images presents
a random behavior. In this sense, the obtained quality is superior to those reported in
some recent investigations [2,11,27] and are similar to [1,3,5]. Furthermore, according to
the results in Table 13 related to the NPCR, UACI, and AC parameters of the encrypted
black and white images, it is observed that they present suitable values [54]. On the other
hand, in Table 14, the damages in the encrypted images are evaluated when the noise χ2 of
different sizes are applied to them. This measurement is carried out with the SP parameter.
Table 15 evaluates the application of the 5 × 5 filter to images with different types of noise.
In this sense, it is highlighted that the Vicky image with noise improves by more than 40%
when the median filter is applied, according to the SP parameter.

Additionally, the algorithm was programmed in Java language, achieving an execution
time for encryption/decryption of 0.3 s. This time was registered on a computer with an
i9-10900K CPU with 10 cores and Windows 11 operating system.

7. Conclusions

This research proposes a symmetric cryptosystem, ICLEBF, to encrypt color images.
The proposed cryptosystem is secure based on two aspects. The first aspect details that the
boxes and permutations are dynamic; they are different in each encryption process. The
second relates to the number of solutions q of the curve, which in this work is approximately
2562. Futhermore, it bears certain advantages over existing cryptosystems, particularly
over AES–CBC. Another essential issue to highlight regarding the ICLEBF cryptosystem
is that in its construction, an asymmetric cryptosystem was utilized, the elliptic curve,
making it possible to distribute its keys. Finally, the main reason behind proposing the
current symmetric cryptosystem for the encryption of color images is that this type of
cryptosystem will have less impact on quantum computers [18]. This is advantageous
because, in this case, only the curve is required and not two cryptosystems, as in the PKI
scheme. In addition, it is possible to sign the information. Furthermore, the encryption
quality produces outstanding results according to 10 evaluation instruments. Finally, future
quantum computers will have a drastic impact on current asymmetric algorithms [18], and
thus future work will involve the sending of a seed via a post-quantum cryptosystem [18].
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