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Abstract: We study dynamics of a unidirectional ring of three Rulkov neurons coupled by chemical
synapses. We consider both deterministic and stochastic models. In the deterministic case, the
neural dynamics transforms from a stable equilibrium into complex oscillatory regimes (periodic
or chaotic) when the coupling strength is increased. The coexistence of complete synchronization,
phase synchronization, and partial synchronization is observed. In the partial synchronization state
either two neurons are synchronized and the third is in antiphase, or more complex combinations of
synchronous and asynchronous interaction occur. In the stochastic model, we observe noise-induced
destruction of complete synchronization leading to multistate intermittency between synchronous
and asynchronous modes. We show that even small noise can transform the system from the regime
of regular complete synchronization into the regime of asynchronous chaotic oscillations.

Keywords: chaos; coupled oscillators; discrete system; intermittency; multistability; nonlinear
dynamics; synchronization
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1. Introduction

Coexistence of various attractors in phase space (or multistability) is a universal phe-
nomenon in dynamical systems of various nature, including electronics, optics, mechanics,
and biology (see [1] and references therein). The choice of attractors in multistable systems
is determined by the initial conditions. At present, the phenomenon of multistability is
widely studied in many papers devoted to the destruction of synchronous modes using
bifurcation analysis, in discrete maps, genetic elements, laser systems, and ensembles of
coupled oscillators (see, for example, [2–6]). However, a detailed analysis of synchronous
dynamics of interacting units near the boundaries of various types of synchronization in
multistable systems was not yet carried out.

In recent years, the interest of many researchers in a study of multistable systems
synchronization [7] has shifted from two coupled periodic oscillators to complex systems
of interconnected chaotic units (see [8] and references therein). Among extensive research
devoted to synchronization of different systems, a study of synchronous dynamics of
coupled neurons takes an important place, since the simulation of such systems helps to
better understand brain activity mechanisms, as well as to reveal general concepts of key
dynamical regimes in coupled systems of different nature. Many applications use identical
dissipative neural generators. To simulate cooperative neuron dynamics, numerous models
were developed based either on iterative maps [9–12] or differential equations [13–16] in
various communication configurations.

Interest in the study of collective dynamics of ring-coupled oscillators grew signif-
icantly after publication of the Turing’s pioneering paper on morphogenesis [17]. Later,
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ring geometry was widely explored in a number of physiological and biochemical appli-
cations [18,19] because ring-shaped network motifs often occur in biological systems, for
example, in peripheral nervous systems and locomotion [20–22]. A motif is a link pattern
that appears much more often than in randomized network versions. The network motif
concept was first used to characterize patterns of relationships in the regulation network of
Escherichia coli genes [23].

At the same time, all natural systems, including neurons and the brain, are known
to be subject to random fluctuations. Therefore, the study of stochastic phenomena in
interacting non-linear systems and development of new methods for their analysis is an
attractive problem for modern mathematical modeling [24]. Among them, it is worth
mentioning noise-induced transitions [6,25,26], stochastic and coherent resonance [27,28],
stochastic generation of patterns [29], noise-induced bifurcations [30] and chaos [31–33],
and stochastic excitability [34]. In the studies of such phenomena, along with direct
numerical simulations [35,36], asymptotics and approximations were actively used [37,38].

In this paper, we are interested in understanding how synchronization occurs in
a unidirectional ring of three identical Rulkov neurons coupled by chemical synapses.
Neurons in a neural network are known to be connected by either electrical or chemical
synapses. While electrical synapses are generally bidirectional, chemical synapses provide
one-way communication. Neurons that are initially in a stable equilibrium when they are
uncoupled follow a path to chaos as the coupling strength is increased. On this route, a
number of attractors are born that coexist in a certain range of the coupling strength and
other parameters. When studying the dynamics of a ring of coupled oscillators, some
researchers paid special attention to the dynamics of rotational waves circulating along the
ring [39–43]. Although in this work we also observe such waves, we mainly focus on the
mechanisms for the emergence of multistability and noise-induced intermittency. We will
also show how stochastic perturbations induce switching between coexisting states, thus
resulting in multistate intermittency.

2. Deterministic System

Consider a ring of three identical neurons coupled unidirectionally as follows

xt+1 = f (γ, xt)− σϕ(xt, zt),
yt+1 = f (γ, yt)− σϕ(yt, xt),
zt+1 = f (γ, zt)− σϕ(zt, yt),

(1)

where σ is the coupling strength used as a control parameter. In the model (1), the neurons
are modeled by the Rulkov function [44]

f (γ, x) =
α

1 + x2 + γ,

where α = 4.1 and γ is a coefficient which regulates the neuron dynamics. Since we are
interested in a one-way connection, the coupling is realized through a chemical synapse,
given as

ϕ(x, z) =
x− v

1 + exp[−k(z− θ)]
,

where v = −1.2, θ = −1.55, and k = 50.
Figure 1a shows the bifurcation diagram of the isolated Rulkov map xt+1 = f (γ, xt)

using γ as a control parameter. As seen from the diagram, this model demonstrates a
regular behavior for γ > −1.25 and chaos for γ < −1.25.

In this paper, we consider the case when isolated neurons are in stable equilibrium
modes. In the system xt+1 = f (γ, xt), the stable equilibria are observed for γ > γ∗ =
0.50795. As the parameter γ passes γ∗ from right to left, the equilibrium loses its stability,
and the stable 2-cycle appears. Therefore, in what follows we fix γ = 0.6 and study
dynamics of the system (1) depending on the coupling parameter σ.
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To analyze the stability of the equilibrium x̄ = ȳ = z̄ in the system (1), we consider the
corresponding Jacobi matrix

J =


a− σb 0 −σc

−σc a− σb 0

0 −σc a− σb

,

where

a = − 2αx̄
(1 + x̄2)2 , b =

1
1 + exp[−k(z̄− θ)]

, c = k exp[−k(z̄− θ)]
x− v

(1 + exp[−k(z̄− θ)])2 .

Eigenvalues of the Jacobi matrix can be found explicitly:

λ1,2,3 = a− σ(b + c).

The general condition |λ1,2,3| < 1 of asymptotic stability of the equilibrium for the
considered set of parameters α = 4.1, γ = 0.6, v = −1.2, θ = −1.55, and k = 50 is equivalent
to the inequality σ < σ∗ = 0.020154. As the parameter σ passes σ∗ from left to right, the
equilibrium loses its stability, and the stable 2-cycle appears.

Changes in the system (1) behavior with increasing σ are illustrated in Figure 1b,
where we present the bifurcation diagram of the x-coordinate of the system (1) on the
x = y = z line versus σ. The red line in the figure shows the largest Lyapunov exponent,
which is a standard criterion to identify regular (Λ < 0) and chaotic (Λ > 0) dynamics.
One can see that for weak coupling (σ < 0.48) the system is in a regular mode, whereas
for stronger coupling the ring system turns to chaos; a 2-cycle window is observed for
0.74 < σ < 0.84. As can be seen, even in this restricted subspace of R3, the system exhibits
the diversity of regular and chaotic oscillatory regimes.
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Figure 1. Bifurcation diagrams of (a) isolated Rulkov map versus control parameter γ and (b) cou-
pled system (1) with γ = 0.6 versus coupling parameter σ, using identical initial conditions. The red
line shows the largest Lyapunov exponent.

Next, we illustrate the coexistence of different dynamical regimes in the system (1)
for various values of σ. Note that the system (1) is monostable on the x = y = z line and
multistable in R3. In particular, for σ = 0.2 the system (1) exhibits the coexistence of four
2-cycles shown in Figure 2a by color dots. For ease of visualization, the dots are connected
by color lines. The cycle in red exhibits complete synchronization (x = y = z) (see time
series in Figure 2b), while other three cycles exhibit partial synchronization. Namely, the
green line in Figure 2a represents a cycle in which x-neuron and y-neuron are identical
while z-neuron is in antiphase (see time series in Figure 2c). Here, the antiphase dynamics
are manifested in the fact that both x and y values alternate with the z value, i.e., when x
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and y neurons fire, z-neuron is at rest state and vice versa. The other coexisting states are
shown by the blue and pink lines. They indicate, respectively, a cycle in which x-neuron
and z-neuron are identical while y-neuron is in antiphase, and a cycle in which y-neuron
and z-neuron are identical while x-neuron is in antiphase.

(a)
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2

4

0 2 4 6 8

0

2

4

(b) (c)

Figure 2. Coexisting 2-cycles in system (1) for σ = 0.2. (a) Four coexisting attractors in R3. Time
series of (b) completely synchronized mode ([03]-pattern) and (c) partially synchronized mode
([21]-pattern).

The time series of two of four coexisting 2-cycles shown by the red and green lines
in Figure 2a are presented in Figure 2b,c, respectively. As seen from Figure 2b, all three
neurons are completely synchronized because their trajectories coincide (x = y = z). One
can see that at the first stage (t = 0), all three neurons are at the same minimum, which we
refer to as “rest state”, whereas at the second stage (t = 1) they are at the same maximum
referred to as “active state”. Since in this 2-cycle all neurons fire on and fire off at the same
time, the active state is periodically followed by the rest state. We formally denote this
synchronization mode as the [03]-pattern. The number of digits in the square brackets
indicates the cycle length (2-cycle), and the digit values indicate the number of neurons in
the active (firing) mode at each stage, i.e., at the first stage zero neurons are active and in
the second stage all three neurons are active.

Figure 2c shows the time series of one of three coexisting partially synchronized 2-
cycles (green line in Figure 2a). One can see that in this state x and y are identical, but
z-neuron is in antiphase. Due to the symmetry of attractors, this type of synchronization
can be formally identified as [21]-pattern, the same for all three attractors. This means
that at the first stage, two neurons fire and one neuron is at rest and at the second stage,
two neurons are at rest and one neuron fires, and so on. Thus, depending on the initial
conditions, the system can be in different synchronization modes representing either [03]-
or [21]-patterns.
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As the coupling strength σ is increased, the number of coexisting attractors also
increases. For example, the system (1) with σ = 0.4 exhibits 16 coexisting 4-cycles. The
(x, y)-projections of these attractors are illustrated in Figure 3a in different colors.
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Figure 3. Coexisting 4-cycles in system (1) for σ = 0.4. (a) Projections of 16 coexisting 4-cycles on the
(x, y) plane. Time series of (b) complete synchronization ([0003]-pattern) and mixed synchronization
with (c) [0111]-pattern, (d) [1002]-pattern, (e) [0102]-pattern, and (f) [2001]-pattern.

The time series in Figure 3b–f represent five coexisting patterns. Here, we use a similar
pattern classification as for the 2-cycle. Namely, the state with maximum y we refer to
as “active state”, and other states we call “rest states”. One can see that the pattern in
Figure 3b can be classified as [0003]-pattern because at the first three stages (t = 0, 1, 2),
all three neurons are in the rest state, and at the fourth stage (t = 3) they fire, i.e., reach
maximum. Moreover, this pattern exhibits complete synchronization. Instead, the patterns
in Figure 3c–f display partial synchronization representing, respectively, [0111]-, [1002]-,
[0102]-, and [2001]-patterns. Other coexisting 2-cycles also exhibit partial synchronization
with combination of the above patterns.

As the coupling strength is further increased, chaotic attractors are born in the coupled
system (1). The two coexisting 2-piece chaotic attractors are shown in Figure 4a on the
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(x, y, z) plane for σ = 0.6. Here, the attractor in red corresponds to a completely synchro-
nized chaotic state, while the attractor in blue corresponds to a phase synchronized chaotic
state. The time series of these attractors are presented in Figure 4b,c, respectively. We
should note that it is not possible to use the same classification scheme for chaotic patterns
as for periodic cycles because the neurons fire chaotically.

(a)
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Figure 4. Coexisting chaotic attractors in system (1) for σ = 0.6. (a) Projections of two coexisting
chaotic attractors on the (x, y, z) plane. The red line indicates the completely synchronized chaotic
attractor and the blue dots correspond to the phase synchronized chaotic attractor. Time series of
(b) completely synchronized neurons and (c) phase synchronized neurons.

For σ = 0.8, the coupled neurons are in the periodic window (see Figure 1b), where
the system (1) has several coexisting stable solutions illustrated in Figure 5. Specifically, in
Figure 5a we show 2-cycle (red line) and two 12-cycles (blue and green dots). The time series of
these attractors are presented in Figure 5b–d, respectively. As seen from Figure 5b, the 2-cycle
demonstrates complete synchronization with the [30]-pattern. At the same time, the blue
12-cycle exhibits phase synchronization with the [010101010101]-pattern (Figure 5c), while the
green 12-cycle represents an asynchronous mode with the [011001100110]-pattern (Figure 5d).

For σ = 0.9, the system exhibits the coexistence of two chaotic attractors shown in
Figure 6a. They are a 1-piece chaotic attractor (red line) and a 6-piece chaotic attractor
(blue dots). The corresponding time series are presented in Figure 6b,c. In the 1-piece
attractor, the neurons are completely synchronized, while in the 6-piece attractor they are
phase synchronized.
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Figure 5. Coexisting cycles in system (1) for σ = 0.8. (a) Projections of coexisting 2-cycle (red line)
and two 12-cycles (blue and green dots) on the (x, y) plane. Time series of (b) completely synchronized
2-cycle ([30]-pattern), (c) phase synchronized 12-cycle ([010101010101]-pattern), and (d) asynchronous
12-cycle ([011001100110]-pattern).
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Figure 6. Coexisting chaotic attractors of system (1) for σ = 0.9. (a) Projections of coexisting 1-piece
synchronous (red line) and 6-piece (blue dots) chaotic attractors on the (x, y) plane. Time series of
(b) completely synchronized chaotic attractor and (c) phase synchronized chaotic attractor.
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Thus, the deterministic system (1) of three neurons unidirectionally coupled by chem-
ical synapses in a ring exhibits the coexistence of regular and chaotic attractors, which
represent different synchronization states: complete synchronization, partial synchroniza-
tion, phase synchronization, and asynchronous behavior.

In the following section, we will demonstrate how the system behavior changes under
random perturbations.

3. Stochastic System

Now, suppose that the three ring-coupled Rulkov neurons undergo independent
random perturbations:

xt+1 = f (γ, xt)− σϕ(xt, zt) + εξ1,t

yt+1 = f (γ, yt)− σϕ(yt, xt) + εξ2,t,

zt+1 = f (γ, zt)− σϕ(zt, yt) + εξ3,t,

(2)

where ξi,t (i = 1, 2, 3) are uncorrelated white Gaussian noises with parameters Eξi,t = 0
and Eξ2

i,t = 1 and ε is the noise intensity.
Let us consider first stochastic effects for σ = 0.2 at which the deterministic system

exhibits two patterns, [03] and [21]. Figure 7 shows the time series of the difference
(x− y) of the system (2) for different values of the noise amplitude. Under weak noise, the
difference (x− y) undergoes small-amplitude oscillations near zero, i.e., the system remains
in complete synchronization (Figure 7a). However, stronger noise induces intermittent
switching between the completely synchronization regime with [03]-pattern and partial
synchronization with [21]-pattern (Figure 7b). One can see that the switching frequency
increases as the noise amplitude ε is increased (Figure 7c).
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Figure 7. Stochastic system (2) with σ = 0.2. Time series of difference (x− y) for (a) ε = 0.1 (noisy syn-
chronous state), (b) ε = 0.3 (low-frequency intermittency), and (c) ε = 0.4 (high-frequency intermittency).
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Consider now the stochastic system (2) for σ = 0.8. We remind that the deterministic
system is in the periodic window exhibiting regular dynamics with the coexistence of
several cycles shown in Figure 5. Let the initial state of the stochastic system (2) be at the
deterministic 2-cycle (red dots in Figure 5a). For weak noise (ε = 0.02), random states leave
this cycle and form some distribution around the stable solution (small light blue zones
around the red dots in Figure 8a and red lines in Figure 8b). As the noise amplitude is
increased (ε = 0.03), random solutions begin to hop between basins of coexisting attractors
and form complex multimodal stochastic oscillations (green zones in Figure 8).
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Figure 8. Stochastic system (2) with σ = 0.8. (a) Phase states and (b) time series for ε = 0.02 (light
blue zones) and ε = 0.03 (green zones). The deterministic in-phase 2-cycle is shown in red.

In Figure 8, we see areas where the random states are highly concentrated and areas
with a blurred distribution. The concentrated areas correspond to the location of points of
the deterministic cycles while the blurred areas appear in zones of chaotic transients. The
example of such chaotic transient in the deterministic system (1) is illustrated in Figure 9
by x-time series. As can be seen, the system behaves chaotically before approaching the
deterministic 2-cycle.

0 20 40 60 80

-4

-2

0

2

Figure 9. Chaotic transient in deterministic system (1) with σ = 0.8.

Note that such stochastic transformations in the dynamics are accompanied by transi-
tions from order to chaos. These transitions occur for a certain noise level, as seen from
Figure 10, where we plot the largest Lyapunov exponents versus the noise amplitude for
random solutions starting at the points of the completely synchronized 2-cycle. Negative
values of Λ localize ε-zones of order. As ε exceeds some threshold, the Lyapunov exponents
become positive, so that the system dynamics becomes chaotic.
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Figure 10. Largest Lyapunov exponent of system (2) versus noise intensity for three different cou-
pling parameters.

4. Conclusions

The topic of the presented research relates to a new actively developed area of the
mathematical modeling and analysis of complex processes in neuron networks. Strong
non-linearity of mathematical models and difficulties of obtaining analytical solutions
require new methods of computational mathematics, which include bifurcation analysis,
description of coexisting attractors and their basins of attraction. In this paper, we have
explored complex dynamics of a cyclic ring of Rulkov neurons. Such a ring of three coupled
neurons is the elementary cell of a complex neural network, so-called network motif.

Despite its apparent simplicity, the system of three neurons connected by chemical
synapses exhibits extremely rich dynamics, including the coexistence of a multitude of
attractors. In the deterministic neural model we have found the coexistence of various
synchronous regimes: complete synchronization, partial synchronization, and phase syn-
chronization, as well as asynchronous oscillations. As the coupling strength is increased,
the system dynamics transforms from stable equilibria to periodic oscillations and chaos.

We have demonstrated that adding stochastic perturbations to each neuron drastically
changes the neural dynamics. Specifically, random noise induces intermittent switching
between coexisting synchronous and asynchronous regimes. Even relatively weak noise is
able to transform the regular synchronous mode to chaotic asynchronous oscillations.

We believe that complex dynamics observed in the small motif of three coupled
neurons will help to better understand the functionality of larger neural networks with
different topologies. Our study sheds light on the complex mechanisms of the mutual effect
of the coupling and random perturbations on the oscillatory behavior of neural systems.
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