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1. Introduction
Throughout this paper, we suppose that q = exp(πiτ), where τ has a positive imagi-

nary part and i =
√
−1.

The Jacobi theta functions θ1(z|τ), θ2(z|τ), θ3(z|τ) and θ4(z|τ) are defined by [1–3]

θ1(z|τ) = −iq
1
4

∞

∑
n=−∞

(−1)nqn(n+1)e(2n+1)zi, θ3(z|τ) =
∞

∑
n=−∞

qn2
e2nzi,

θ2(z|τ) = q
1
4

∞

∑
n=−∞

qn(n+1)e(2n+1)zi, θ4(z|τ) =
∞

∑
n=−∞

(−1)nqn2
e2nzi.

For convenience, we use the following abbreviated multiple parameter notation:

(a1, a2, · · · , al ; q)∞ = (a1; q)∞(a2; q)∞ · · · (al ; q)∞

with

(a; q)∞ =
∞

∏
n=0

(1− aqn).

With this notation, the well-known Jacobi triple product identity can be written as [2]

(q, z, q/z; q)∞ =
∞

∑
n=−∞

(−1)nqn(n−1)/2zn, z 6= 0.

Using the Jacobi triple product identity, we deduce the infinite product representations
for the Jacobi theta functions [2,4]:

θ1(z|τ) = 2q
1
4 (sin z)(q2, q2e2iz, q2e−2iz; q2)∞,

θ2(z|τ) = 2q
1
4 (cos z)(q2,−q2e2iz,−q2e−2iz; q2)∞,

θ3(z|τ) = (q2,−qe2iz,−qe−2iz; q2)∞,

θ4(z|τ) = (q2, qe2iz, qe−2iz; q2)∞.
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With respect to the (quasi) periods π and πτ, we have [4]

θ1(z + π|τ) = −θ1(z|τ), θ1(z + πτ|τ) = −q−1e−2izθ1(z|τ), (1)

θ2(z + π|τ) = −θ2(z|τ), θ2(z + πτ|τ) = q−1e−2izθ2(z|τ), (2)

θ3(z + π|τ) = θ3(z|τ), θ3(z + πτ|τ) = q−1e−2izθ3(z|τ), (3)

θ4(z + π|τ) = θ4(z|τ), θ4(z + πτ|τ) = −q−1e−2izθ4(z|τ). (4)

For brevity, we use θ2(τ), θ3(τ) and θ4(τ) to represent θ2(0|τ), θ3(0|τ) and θ4(0|τ),
respectively.

There are many experts studying theta functions. Schiefermayr [5] proved a mono-
tonicity property for the quotient of two Jacobi theta functions with respect to the modulus
k. Liu [6] derived many nontrivial identities from a single identity and also derived four
Ramanujan-type modular equations. Tsumura [7,8] deduced some series identities arising
from Jacobi’s identity of the theta function, which were a certain finite combination of the
Riemann zeta-function, Dirichlet L-function with character modulo 4, and the Eisenstein
series. Schneider [9] made an interesting connection between the Jacobi triple product and
the universal mock theta function. Singh and Yadav [10] determined certain properties
of Jacobi’s theta functions. Berndt, Chan and Liu [11] studied many important identities
involving Eisenstein series and eta functions. Chan, Cooper and Toh [12] researched the
expression of theta functions, or, rather, very close relatives of theta functions, as polyno-
mials in Ramanujan’s Eisenstein series, multiplied by powers of Dedekind’s eta function.
Chu [13] gave a new proof of the theta function identity by specializing the well-known
Bailey summation formula. The authors of [14,15] utilized the classical theory of ellip-
tic functions to prove a theta function identity and deduced some nontrivial identities
on circular summation of theta functions. For more information, please refer to above
references.

In particular, Liu [16] first established a general identity involving an entire function
f (z) satisfying two functional equations and presented several interesting applications of
these theta function identities, involving a one identity for (q; q)10

∞ . Motivated by Liu [16,17]
and the above references, we deduce some expansion formulas for products of Jacobi’s
theta functions in this paper, as applications, and we give some expressions of the powers
of (q; q)∞ by using these expansion formulas.

This article is organized as follows: In Section 2, we deduce some expansion formulas
for products of the Jacobi theta functions. In Section 3, as applications, we derive some
expressions of the powers of (q; q)∞ by using the formulas obtained in Section 2.

2. Main Results
In this section, we first recall some identities on the Jacobi theta functions and then

deduce some expansion formulas for products of the Jacobi theta functions. See [14,15,17]
for examples of the Jacobi theta function identities and their applications.

Lemma 1 (See [18]). We have:

θ1(x|τ)θ1(y|τ) = θ2(x− y|2τ)θ3(x + y|2τ)− θ2(x + y|2τ)θ3(x− y|2τ). (5)

In order to prove Lemma 1, we need the following Lemma will be needed.

Lemma 2 (See [18]). If the elliptic function f has no poles, it is a constant.

Proof. Let f (x, y) be the function defined as [18]

f (x, y) =
θ2(x− y|2τ)θ3(x + y|2τ)− θ2(x + y|2τ)θ3(x− y|2τ)

θ1(x|τ)θ1(y|τ)
. (6)
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Next, replacing (x, y) = (x + π, y + π) and (x, y) = (x + 2πτ, y + 2πτ) and using (1)
to (4), we get:

f (x + π, y) = f (x, y), f (x, y + π) = f (x, y) (7)
f (x + 2πτ, y) = f (x, y), f (x, y + 2πτ) = f (x, y). (8)

Hence, the function f (x, y) in an elliptic function with periods π and 2πτ. If we fixed
y, then f (x, y) is a function of x. From the definition of theta functions, we know that x = 0
and x = πτ are likely poles. Furthermore, they are simple poles. However, when x = 0 the
numerator of f (x, y) is reduced that

θ2(−y|2τ)θ3(y|2τ)− θ2(y|2τ)θ3(−y|2τ) = 0.

Therefore, x = 0 is not a simple pole. We can see a similar case when x = πτ and for
y. Then, we know f (x, y) is an elliptic function. By Lemma 2, it is a constant independent x
and y. Let x = y = π/4 in f (x, y), easily know f (x, y) = 1. This completes the proof.

Lemma 3 (See [19]). We have:

θ1(x|τ)θ3(x|τ)θ4(x|τ) = 2q1/4(q2; q2)2
∞

∞

∑
n=−∞

qn(3n+1) sin(6n + 1)x, (9)

θ1(x|τ)θ2(x|τ)θ4(x|τ) = −2q3/2(q2; q2)2
∞

∞

∑
n=−∞

qn(3n+4) sin(6n + 4)x. (10)

Using the infinite product representation for Jacobi theta functions, we can derive the
following identity easily.

Lemma 4. We have

θ1

(
x|τ

2

)
= q−1/8θ1(x|τ)θ4(x|τ) (q; q)∞

(q2; q2)2
∞

. (11)

Our main results are as follows.

Theorem 1. We have
1

(q; q)∞
θ1

(
x| τ

2

)
θ1

(
x + y

2
| τ
2

)
θ1

(
x− y

2
| τ
2

)
(12)

= 2q1/8θ2(y|τ)
∞

∑
n=−∞

qn(3n+1) sin(6n + 1)x + 2q11/8θ3(y|τ)
∞

∑
n=−∞

qn(3n+4) sin(6n + 4)x.

Proof. We first replace τ by
τ

2
and then replace x and y by

x + y
2

and
x− y

2
, respectively,

in the identity of Lemma 1 to get

θ1

(
x+y

2 |
τ
2

)
θ1

(
x−y

2 |
τ
2

)
= θ2(y|τ)θ3(x|τ)− θ2(x|τ)θ3(y|τ). (13)

Next, multiplying the identity (13) by the identity (11) gives

θ1

(
x|τ

2

)
θ1

(
x + y

2
|τ
2

)
θ1

(
x− y

2
|τ
2

)
=

q−1/8(q; q)∞

(q2; q2)2
∞
{θ1(x|τ)θ2(y|τ)θ3(x|τ)θ4(x|τ)− θ1(x|τ)θ2(x|τ)θ3(y|τ)θ4(x|τ)}.

Inserting the Equations (9) and (10) into the right side of the above equation, we obtain
the required identity.
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Theorem 2. We have

1
4q3/2(q; q)2

∞
θ1

(
x|τ

2

)
θ1

(
y|τ

2

)
θ1

(
x + y

2
|τ
2

)
θ1

(
x− y

2
|τ
2

)
=

∞

∑
n=−∞

q3n2+4n sin(6n + 4)x
∞

∑
n=−∞

q3n2+n sin(6n + 1)y

−
∞

∑
n=−∞

q3n2+n sin(6n + 1)x
∞

∑
n=−∞

q3n2+4n sin(6n + 4)y.

Proof. It follows from the identity in Lemma 4 that:

θ1

(
x|τ

2

)
θ1

(
y|τ

2

)
= q−1/4θ1(x|τ)θ4(x|τ)θ1(y|τ)θ4(y|τ)

(q; q)2
∞

(q2; q2)4
∞

. (14)

Multiplying the identity (13) by (14), we obtain

q−1/4 (q; q)2
∞

(q2; q2)4
∞

θ1(x|τ)θ4(x|τ)θ1(y|τ)θ4(y|τ){θ2(y|τ)θ3(x|τ)− θ2(x|τ)θ3(y|τ)}

= θ1

(
x|τ

2

)
θ1

(
y|τ

2

)
θ1

(
x + y

2
|τ
2

)
θ1

(
x− y

2
|τ
2

)
.

Plugging (9) and (10) into the above equation and then simplifying, we obtain the
required result.

3. Powers of (q; q)∞

In this section, we deduce some expressions of the powers of (q; q)∞ by using the iden-
tities in Theorems 1 and 2. These formulas can also be written as Dedekind’s eta-functions

η(τ) = q1/24
∞

∏
j=1

(1− qj), (15)

where q = e2πiτ and =m(τ) > 0.

Theorem 3. We have

(q; q)2
∞ =

∞

∑
n=0

qn(n+1)/3
∞

∑
n=−∞

q3n2 −
∞

∑
n=0

q3n(n+1)
∞

∑
n=−∞

q(n
2+6)/3. (16)

Proof. Let x =
π

3
, y =

2π

3
in the identity of Lemma 1. We have

θ1

(π

3
|τ
)

θ1

(
2π

3
|τ
)
= θ2

(π

3
|2τ
)

θ3(π|2τ)− θ2(π|2τ)θ3

(π

3
|2τ
)

.

Noticing the definitions of the Jacobi theta functions and the identity θ1

(π

3
|τ
)

=

θ1

(
2π

3
|τ
)
=
√

3q1/4(q6; q6)∞, we have:

3(q6; q6)2
∞ =

∞

∑
n=0

q2n(n+1)cos
2n + 1

3
π

∞

∑
n=−∞

q2n2
+

∞

∑
n=0

q2n(n+1)
∞

∑
n=−∞

q2n2
cos

2n
3

π.

Namely,

3(q6; q6)2
∞ = 3

∞

∑
n=0

q2n(n+1)
∞

∑
n=−∞

q18n2 − 3
∞

∑
n=0

q18n(n+1)
∞

∑
n=−∞

q2(n2+6).
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Replacing q6 by q in the above identity gives

(q; q)2
∞ =

∞

∑
n=0

qn(n+1)/3
∞

∑
n=−∞

q3n2 −
∞

∑
n=0

q3n(n+1)
∞

∑
n=−∞

q(n
2+6)/3. (17)

Namely,

η(τ)2
∞ =

∞

∑
n=0

q(2n+1)2/12
∞

∑
n=−∞

q3n2 −
∞

∑
n=0

q3n(n+1)
∞

∑
n=−∞

q(4n2+25)/12. (18)

This completes the proof.

Theorem 4. We have

4(q; q)4
∞ =

∞

∑
n=−∞

(6n + 1)qn(3n+1)/2
∞

∑
n=−∞

qn(n+1)/2

−
∞

∑
n=−∞

(6n + 4)qn(3n+4)/2
∞

∑
n=−∞

q(n
2+1)/2.

Proof. In Theorem 1, take derivative on both sides with respect to x, and then set x = 0.
We get

1
(q; q)∞

θ′1

(
0|τ

2

)
θ2

1

(y
2
|τ
2

)
= 2q1/8θ2(y|τ)

∞

∑
n=−∞

(6n + 1)qn(3n+1)

+ 2q11/8θ3(y|τ)
∞

∑
n=−∞

(6n + 4)qn(3n+4).

Notice that: 
θ′1(0|τ) = 2q1/4(q2; q2)3

∞,
θ1
(

π
2 |τ
)

= θ2(τ),
θ3(π|τ) = θ3(τ),
θ2(π|τ) = −θ2(τ).

Letting y = π in the above equation, and after some simplifications, we obtain

4(q2; q2)4
∞ =

∞

∑
n=−∞

(6n + 1)qn(3n+1)
∞

∑
n=−∞

qn(n+1) − q
∞

∑
n=−∞

(6n + 4)qn(3n+4)
∞

∑
n=−∞

qn2
.

Replacing q2 with q in the above equation, we can get the required conclusion.

Theorem 5. We have

(q; q)4
∞ =

∞

∑
n=0

qn(n+1)/2

[
∞

∑
n=0

qn(3n+1)/2 −
∞

∑
n=0

q(n−1)(3n−4)/2

]
. (19)

Proof. Setting x =
3π

4
and y =

π

4
in the identity of Theorem 1, we are able to obtain that

1
(q; q)∞

θ1

(
3π

4
|τ
2

)
θ1

(π

2
|τ
2

)
θ1

(π

4
|τ
2

)
= 2q1/8θ2

(π

4
|τ
) ∞

∑
n=−∞

qn(3n+1) sin(6n + 1)
3π

4

+ 2q11/8θ3

(π

4
|τ
) ∞

∑
n=−∞

qn(3n+4) sin(6n + 4)
3π

4
.
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It is obvious that θ1

(π

4
|τ
)
= θ1

(
3π

4
|τ
)
=
√

2q1/4(q2; q2)∞(−q4; q4)∞. Then:

2(q2; q2)4
∞ = 2

∞

∑
n=0

qn(n+1)cos
2n + 1

4
π

∞

∑
n=−∞

qn(3n+1)sin
2n + 3

4
π

+ q
∞

∑
n=−∞

qn2
cos

n
2

π
∞

∑
n=−∞

qn(3n+4)sin
n + 2

2
π.

In addition, when n is odd, cos
n
2

π = 0 and when n is even, sin
n + 2

2
π = 0. Thus, after

some simplifications, the above formula can be transformed into the following formula:

(q2; q2)4
∞ =

∞

∑
n=0

qn(n+1)

[
∞

∑
n=0

qn(3n+1) −
∞

∑
n=0

q(n−1)(3n−4)

]
.

In the above equation, replacing q2 with q, we can get the required conclusion.

Remark 1. Using the expression of (q; q)4
∞ , a new proof of the partition congruence p(5m + 4) ≡

0(mod5) can be given.

Theorem 6. We have

(q; q)6
∞ =

∞

∑
n=0

(2n + 1)2qn(n+1)
∞

∑
n=−∞

qn2 −
∞

∑
n=0

qn(n+1)
∞

∑
n=−∞

(2n)2qn2
. (20)

Proof. In the identity of Lemma 1, take derivative with respect to x and y respectively, and
then let x = y = 0. After simplifications, we obtain the required equation.

Theorem 7. We have

4(q; q)8
∞ = −

∞

∑
n=−∞

qn(n+1)
∞

∑
n=−∞

(6n + 1)3qn(3n+1)

−
∞

∑
n=−∞

qn2+1
∞

∑
n=−∞

(6n + 4)3qn(3n+4). (21)

Proof. In the equation of Theorem 1, take the third derivative with respect to x, and then
let x = y = 0. We get

1
(q; q)∞

[
θ′1

(
0|τ

2

)]3
= −q1/8θ2(τ)

∞

∑
n=−∞

(6n + 1)3qn(3n+1)

− q11/8θ3(τ)
∞

∑
n=−∞

(6n + 4)3qn(3n+4).

Using the following identities

θ′1(0|τ) = 2q1/4(q2; q2)3
∞, θ2(τ) = q1/4

∞

∑
n=−∞

qn(n+1), θ3(τ) =
∞

∑
n=−∞

qn2

in the above formula and after some simplifications, we can obtain the required equation.

Remark 2. The identity in Theorem 7 appeared in [12]. In [20] Winquist gave without proof a
formula for η8(τ).
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Theorem 8. We have

(q; q)10
∞ = q

∞

∑
n=−∞

(6n + 1)3qn(3n+1)
∞

∑
n=−∞

(6n + 4)qn(3n+4)

− q
∞

∑
n=−∞

(6n + 4)3qn(3n+4)
∞

∑
n=−∞

(6n + 1)qn(3n+1). (22)

Proof. In the identity of Theorem 2, first take the third derivative with respect to x, and
then take the first derivative with respect to y. Finally, set x = y = 0 and after some
simplifications, we obtain the required conclusion.

Remark 3. The identity of Theorem 8 appeared in [12]. Expressions for (q; q)10
∞ has been discussed

in [11,13,16]. With the expression for (q; q)10
∞ , the partition congruence p(11m + 6) ≡ 0(mod 11)

can be re-proved.
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