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Abstract: Logistic regression is one of statistical methods that used to analyze the correlation between
categorical response variables and predictor variables which are categorical or continuous. Many
studies on logistic regression have been carried out by assuming that the predictor variable and
its logit link function have a linear relationship. However, in several cases it was found that the
relationship was not always linear, but could be quadratic, cubic, or in the form of other curves, so that
the assumption of linearity was incorrect. Therefore, this study will develop a bivariate polynomial
ordinal logistic regression (BPOLR) model which is an extension of ordinal logistic regression, with
two correlated response variables in which the relationship between the continuous predictor variable
and its logit is modeled as a polynomial form. There are commonly two correlated response variables
in scientific research. In this study, each response variable used consisted of three categories. This
study aims to obtain parameter estimators of the BPOLR model using the maximum likelihood
estimation (MLE) method, obtain test statistics of parameters using the maximum likelihood ratio
test (MLRT) method, and obtain algorithms of estimating and hypothesis testing for parameters of
the BPOLR model. The results of the first partial derivatives are not closed-form, thus, a numerical
optimization such as the Berndt–Hall–Hall–Hausman (BHHH) method is needed to obtain the
maximum likelihood estimator. The distribution statistically test is followed the Chi-square limit
distribution, asymptotically.

Keywords: bivariate; ordinal logistic regression; polynomial; scientific research

MSC: 62F03; 62F10

1. Introduction

The logistic regression model is one of statistical methods which is used to analyze
the correlation between categorical response variables and predictor variables that are
categorical or continuous. If the response variable has more than two categories and
there are levels in that category (ordinal scale), then an ordinal logistic regression model
is used [1]. The logistic regression modeling often does not involve only one response
variable because of a phenomenon involving multiple response variables. Logistic regres-
sion involving one response variable is called univariate logistic regression. Meanwhile,
logistic regression that involves two or more response variables and correlates between
response variables is called multivariate logistic regression. Especially for multivariate
logistic regression involving two correlated response variables, it is called the bivariate
logistic regression.

Several studies on ordinal logistic regression have been carried out for bivariate cases.
Dale [2] has studied parameter estimationusing the MLE method. Williamson et al. [3]
used the generalized estimating equation (GEE) method, whereas Enea and Lovison [4]
used penalized MLE for the parameter estimation of bivariate ordinal logistic regression
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models. The previous studies examined logistic regression modeling by assuming that
the continuous predictor variable and its logit link function have a linear relationship.
However, the reality is that in some cases it is found that the relationship is not always
linear, but can be quadratic, cubic, or other curves, so that the assumption of linearity
is incorrect.

Royston and Altman [5] introduced the fractional polynomial approach, which is
one of the development of a polynomial model, to understand the functional form of a
continuous predictor variable. This model involves a more flexible relationship that can
be linear or non-linear and has been used by several researchers [6–9]. In its development,
several studies have examined the use of fractional polynomials in logistic regression
analysis [10–12]. However, these previous studies were limited to univariate binary logistic
regression. Furthermore, the bivariate binary logistic regression has been developed but
limited to the second order [13]. Therefore, we propose an extension of ordinal logistic
regression with two correlated response variables in which the relationship between the
continuous predictor variable and its logit is modeled as a polynomial form. The proposed
model is called the bivariate polynomial ordinal logistic regression (BPOLR) model. This
study aimed to obtain parameter estimators of the BPOLR model using the MLE method,
obtain test statistics of parameters using the MLRT method, and obtain algorithms of
estimating and hypothesis testing for parameters of the BPOLR model.

An example of applying the BPOLR model can be applied to modeling the nutri-
tional status of toddlers. Based on Narendra et al. [14], children from birth to about one
year old have growth that increases rapidly and then decreases slowly as the child gets
older. Therefore, the polynomial approach is more suitable for modeling child growth [15].
Tilling et al. [16] modeled child growth using the fractional polynomial approach and
concluded that the model with the fractional polynomial approach shows a growth rate
that is initially fast and then slows down over time.

The following discussion in this paper is divided into several main topics. In Section 2,
we introduce the BPOLR model followed by parameter estimation using the MLE method
in Section 3. We present simultaneous hypothesis testing in Section 4 to test the significance
of all parameters together using the MLRT method and we present a simulation study in
Section 5. Furthermore, Section 6 contains conclusions.

2. The Bivariate Polynomial Ordinal Logistic Regression (BPOLR) Model

The BPOLR model is an expansion of the ordinal logistic regression model when there
are two correlated ordinal response variables and the relationship between the continuous
predictor variable and its logit is modeled as a polynomial form. In this study, the response
variables used each have 3 categories. Let Y1 and Y2 be response variables which have a
value of 1; 2; or 3, then Yab = (Y1= a, Y2= b) ; a, b = 1, 2, 3 are random variables that have
their respective probabilities πab , as presented in Table 1 below.

Table 1. Probabilty of the response variables.

Y1
Y2

Total
1 2 3

1 π11 π12 π13 π1•
2 π21 π22 π23 π2•
3 π31 π32 π33 1− π1•− π2•

Total π•1 π•2 1− π•1− π•2 1

Based on Table 1, the random vector y =
[
Y11 Y12 Y13 Y21 Y22 Y23 Y31 Y32

]
have a multinomial distribution so it has a joint probability density function as follows:

P
(
Y11= y11, Y12= y12, . . . , Y32= y32

)
=

3

∏
a=1

3

∏
b=1

π
yab
ab (1)
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where 0 < πab< 1; a, b = 1, 2, 3;yab= 0, 1;
3
∑

a=1

3
∑

b=1
Yab= 1; and

3
∑

a=1

3
∑

b=1
πab= 1.

πab= P(Y1= a, Y2= b) is the joint probability of the response variables.

πa• =
3
∑

b=1
P(Y1= a, Y2= b) is the marginal probability for the variable Y1 and

π•b =
3
∑

a=1
P(Y1= a, Y2= b) is the marginal probability for the variable Y2.

The model that can be used for ordinal logistic regression is the cumulative logit model.
In this study, the BPOLR model has two ordinal-scale response variables that are correlated
with each other and each has 3 categories, so we have the cumulative probability for Y1 and
Y2, i.e., P(Y1 ≤ a |x ); a = 1, 2 and P(Y2 ≤ b |x ); b = 1, 2. Let Fa•(x)= P(Y1 ≤ a |x ); a = 1, 2
is the marginal cumulative probability of variable Y1 given x, F•b(x)= P(Y2 ≤ b |x );
b = 1, 2 is the marginal cumulative probability of variable Y2 given x and
Fab(x)= P(Y1 ≤ a, Y2 ≤ b |x ); a, b = 1, 2 is the joint cumulative probability between vari-
ables Y1 and Y2 given x, so we have the BPOLR model as follows:

• The cumulative logit model for Y1

g1 = logit(P(Y1 ≤ 1 |x )) = logit(F1•(x)) = ln
(

F1•(x)
1− F1•(x)

)
= α11 +

k

∑
j=1

β1j
Tx∗j(rj)

(2)

g2 = logit(P(Y1 ≤ 2 |x )) = logit(F2•(x)) = ln
(

F2•(x)
1− F2•(x)

)
= α12 +

k

∑
j=1

β1j
Tx∗j(rj)

(3)

• The cumulative logit model for Y2

g3 = logit(P(Y2 ≤ 1 |x )) = logit(F•1(x)) = ln
(

F•1(x)
1− F•1(x)

)
= α21 +

k

∑
j=1

β2j
Tx∗j(rj)

(4)

g4 = logit(P(Y2 ≤ 2 |x )) = logit(F•2(x)) = ln
(

F•2(x)
1− F•2(x)

)
= α22 +

k

∑
j=1

β2j
Tx∗j(rj)

(5)

• The odds ratio transformation model for Y1 and Y2

g5 = ln(ψ11(x)) = ln
(

F11(x)[1− F1•(x)− F•1(x) + F11(x)]
[F1•(x)− F11(x)][F•1(x)− F11(x)]

)
= ∆11 +

k

∑
j=1

γj
Tx∗j(rj)

(6)

g6 = ln(ψ12(x)) = ln
(

F12(x)[1− F1•(x)− F•2(x) + F12(x)]
[F1•(x)− F12(x)][F•2(x)− F12(x)]

)
= ∆12 +

k

∑
j=1

γj
Tx∗j(rj)

(7)

g7 = ln(ψ21(x)) = ln
(

F21(x)[1− F2•(x)− F•1(x) + F21(x)]
[F2•(x)− F21(x)][F•1(x)− F21(x)]

)
= ∆21 +

k

∑
j=1

γj
Tx∗j(rj)

(8)

g8 = ln(ψ22(x)) = ln
(

F22(x)[1− F2•(x)− F•2(x) + F22(x)]
[F2•(x)− F22(x)][F•2(x)− F22(x)]

)
= ∆22 +

k

∑
j=1

γj
Tx∗j(rj)

(9)

where {α1a,α2b, ∆ab} ; a, b = 1, 2 are the intercept parameters with α11 < α12 and
α21 < α22; β1j,β2j and γj are vector of parameters for the j-th predictor variable, which

are symbolized by β1j =
[
β01j β11j . . . βr1j

]T , β2j =
[
β02j β12j . . . βr2j

]T ,

γj =
[
γ0j γ1j . . . γrj

]T . x is vector of predictor variable with

x =
[
1 x∗1(r1)

. . . x∗k(rk)

]T
where x∗j(rj)

=
[
1 xj x2

j . . . x
rj
j

]T
is vector of the

j-th predictor variable with the r-th degree of polynomial.
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Based on Equations (2)–(5), the marginal cumulative probability of variable Y1 and Y2
can be obtained from the following equation:

P(Y1 ≤ a |x ) = Fa·(x) =

exp

(
α1a +

k
∑

j=1
β1j

Tx∗j(rj)

)

1 + exp

(
α1a +

k
∑

j=1
β1j

Tx∗j(rj)

) ; a = 1, 2 (10)

P(Y2 ≤ b |x ) = F·b(x) =

exp

(
α2b +

k
∑

j=1
β2j

Tx∗j(rj)

)

1 + exp

(
α2b +

k
∑

j=1
β2j

Tx∗j(rj)

) ; b = 1, 2 (11)

ψab(x) is the odds ratio (OR), a measure of association that can indicate a correlation
between the response variables. The OR value is formulated as follows:

ψab(x) =
P(Y1 ≤ a, Y2 ≤ b |x )P(Y1> a, Y2> b |x )
P(Y1> a, Y2 ≤ b |x )P(Y1 ≤ a, Y2> b |x ) =

Fab(x)[1− Fa•(x)− F•b(x) + Fab(x)]
[Fa•(x)− Fab(x)][F•b(x)− Fab(x)]

(12)

where Fab(x) can be obtained from:

Fab(x) =

{
c−
√

c2+d
2(ψab(x)−1) , ψab(x) 6= 1

Fa•(x)F•b(x) , ψab(x)= 1
(13)

where a, b = 1, 2; c = 1+(ψab(x)− 1)(Fa•(x) + F•b(x)) and d = − 4ψab(x)(ψab(x)− 1)
Fa•(x)F•b(x).

Next, the joint probability of the response variables,πab, can be obtained as follows:
π11 = F11; π12 = F12 − F11; π13 = F1• − F12; π21 = F21 − F11; π22 = F22 − F12 −

F21 + F11;π23 = F2• − F22 − F1• + F12; π31 = F•1 − F21; π32 = F•2 − F22 − F•1 + F21; π33 =
1− F2• − F•2 + F22.

3. Parameter Estimation of The BPOLR Model

In this study, the parameter estimation of the BPOLR model was carried out using the
maximum likelihood estimation (MLE) method. The principle of the MLE method is to
estimate the parameters of the BPOLR model, namely:

θ = [α11 α12 β011 β111 . . . βr1k α21 α22 β021 β121 . . . βr2k

∆11 ∆12 ∆21 ∆22 γ01 γ11 . . . γrk]
T

(14)
obtained by maximizing the likelihood function. Based on Equation (1), the likelihood
function is obtained as follows:

L(θ) =
n

∏
i=1

3

∏
a=1

3

∏
b=1

π
yabi
abi (15)

To simplify the calculation, an ln transformation is carried out on the likelihood
function so that the ln-likelihood function is formed as follows:

Q = lnL(θ) =
n

∑
i=1

3

∑
a=1

3

∑
b=1

yabi ln(πabi) =
n

∑
i=1

[
y11ilnπ11i+y12ilnπ12i+ . . . + y33ilnπ33i

]
(16)

the next step of the ln-likelihood function is the first partial derivative of the parameter to
be estimated and then equated with zero. The results of the first partial derivative of the
ln-likelihood function with respect to its parameters are as follows:
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• The first partial derivative of the ln-likelihood function to the parameter α11

∂Q
∂α11

=
n

∑
i=1

[(
y11i
π11i
− y12i

π12i
− y21i

π21i
+

y22i
π22i

)
δ11i +

(
y12i
π12i
− y13i

π13i
− y22i

π22i
+

y23i
π23i

)
δ12i +

(
y13i
π13i
− y23i

π23i

)]
ξ1•i (17)

• The first partial derivative of the ln-likelihood function to the parameter α12

∂Q
∂α12

=
n

∑
i=1

[(
y21i
π21i
− y22i

π22i
− y31i

π31i
+

y32i
π32i

)
δ21i +

(
y22i
π22i
− y23i

π23i
− y32i

π32i
+

y33i
π33i

)
δ22i +

(
y23i
π23i
− y33i

π33i

)]
ξ2•i (18)

• The first partial derivative of the ln-likelihood function to the parameter
β1j; j = 1, 2, . . . , k

∂Q
∂β1j

=
n
∑

i=1
[
{(

y11i
π11i
− y12i

π12i
− y21i

π21i
+ y22i

π22i

)
δ11i +

(
y12i
π12i
− y13i

π13i
− y22i

π22i
+ y23i

π23i

)
δ12i +

(
y13i
π13i
− y23i

π23i

)}
ξ1•ix∗j(rj)

+{(
y21i
π21i
− y22i

π22i
− y31i

π31i
+ y32i

π32i

)
δ21i +

(
y22i
π22i
− y23i

π23i
− y32i

π32i
+ y33i

π33i

)
δ22i +

(
y23i
π23i
− y33i

π33i

)}
ξ2•ix∗j(rj)

]
(19)

• The first partial derivative of the ln-likelihood function to the parameter α21

∂Q
∂α21

=
n

∑
i=1

[(
y11i
π11i
− y12i

π12i
− y21i

π21i
+

y22i
π22i

)
µ11i +

(
y21i
π21i
− y22i

π22i
− y31i

π31i
+

y32i
π32i

)
µ21i +

(
y31i
π31i
− y32i

π32i

)]
ξ•1i (20)

• The first partial derivative of the ln-likelihood function to the parameter α22

∂Q
∂α22

=
n

∑
i=1

[(
y12i
π12i
− y13i

π13i
− y22i

π22i
+

y23i
π23i

)
µ12i +

(
y22i
π22i
− y23i

π23i
− y32i

π32i
+

y33i
π33i

)
µ22i +

(
y32i
π32i
− y33i

π33i

)]
ξ•2i (21)

• The first partial derivative of the ln-likelihood function to the parameter
β2j; j = 1, 2, . . . , k

∂Q
∂β2j

=
n
∑

i=1
[
{(

y11i
π11i
− y12i

π12i
− y21i

π21i
+ y22i

π22i

)
µ11i +

(
y21i
π21i
− y22i

π22i
− y31i

π31i
+ y32i

π32i

)
µ21i +

(
y31i
π31i
− y32i

π32i

)}
ξ•1ix∗j(rj)

+{(
y12i
π12i
− y13i

π13i
− y22i

π22i
+ y23i

π23i

)
µ12i +

(
y22i
π22i
− y23i

π23i
− y32i

π32i
+ y33i

π33i

)
µ22i +

(
y32i
π32i
− y33i

π33i

)}
ξ•2ix∗j(rj)

]
(22)

• The first partial derivative of the ln-likelihood function to the parameter ∆11

∂Q
∂∆11

=
n

∑
i=1

[(
y11i
π11i
− y12i

π12i
− y21i

π21i
+

y22i
π22i

)
z11iψ11i

]
(23)

• The first partial derivative of the ln-likelihood function to the parameter ∆12

∂Q
∂∆12

=
n

∑
i=1

[(
y12i
π12i
− y13i

π13i
− y22i

π22i
+

y23i
π23i

)
z12iψ12i

]
(24)

• The first partial derivative of the ln-likelihood function to the parameter ∆21

∂Q
∂∆21

=
n

∑
i=1

[(
y21i
π21i
− y22i

π22i
− y31i

π31i
+

y32i
π32i

)
z21iψ21i

]
(25)

• The first partial derivative of the ln-likelihood function to the parameter ∆22
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∂Q
∂∆22

=
n

∑
i=1

[(
y22i
π22i
− y23i

π23i
− y32i

π32i
+

y33i
π33i

)
z22iψ22i

]
(26)

• The first partial derivative of the ln-likelihood function to the parameter γj;
j = 1, 2, . . . , k

∂Q
∂γj

=
n
∑

i=1
[{( y11i

π11i
− y12i

π12i
− y21i

π21i
+ y22i

π22i
)z11iψ11i + ( y12i

π12i
− y13i

π13i
− y22i

π22i
+ y23i

π23i
)z12iψ12i+

( y21i
π21i
− y22i

π22i
− y31i

π31i
+ y32i

π32i
)z21iψ21i + ( y22i

π22i
− y23i

π23i
− y32i

π32i
+ y33i

π33i
)z22iψ22i}x∗j(rj)

]
(27)

where δab = 1
2{1− Sab

−1[1+ψab(Fa• − F•b)− Fa• − F•b]}; µab = 1
2{1− Sab

−1[1+ψab(F•b
−Fa•)− Fa• − F•b]}

Sab =
[
[1+(ψab − 1)(Fa• + F•b)]

2 − 4ψab(ψab − 1)Fa•F•b
] 1

2 ; ξa• = Fa•(1− Fa•);
ξ•b = F•b(1− F•b)

zab =
[
2(ψab − 1)2Sab

]−1
{1− Sab + (ψab − 1)[Fa• + F•b − 2Fa•F•b]}.

The result of the first partial derivatives are not closed-form, thus, a numerical opti-
mization such as the Berndt–Hall–Hall–Hausman (BHHH) method is needed to obtain the
maximum likelihood estimators and the BHHH algorithm is as follows:

• Step 1. Determine the initial value for

θ(0) =
[

α
(0)
11 α

(0)
12 β

(0)
011 β

(0)
111 . . . β

(0)
r1k α

(0)
21 α

(0)
22 β

(0)
021 β

(0)
121 . . . β

(0)
r2k

∆(0)
11 ∆(0)

12 ∆(0)
21 ∆(0)

22 γ
(0)
01 γ

(0)
11 . . . γ

(0)
rk

]T

obtained from the parameter estimator of the ordinal logistic regression model on each
response variable.

• Step 2. Calculate the gradient vector elements obtained from the first partial derivative
of the ln-likelihood function for each parameter

q(θ) =
[

∂Q
∂α11

∂Q
∂α12

∂Q
∂β011

∂Q
∂β111

. . . ∂Q
∂βr1k

∂Q
∂α21

∂Q
∂α22

∂Q
∂β021

∂Q
∂β121

. . . ∂Q
∂βr2k

∂Q
∂∆11

∂Q
∂∆12

∂Q
∂∆21

∂Q
∂∆22

∂Q
∂γ01

∂Q
∂γ11

. . . ∂Q
∂γrk

]T

• Step 3. Calculate the Hessian matrix H(θ) that can be obtained from the
following formula

H(θ)=−
[
qT(θ)q(θ)

]
• Step 4. Start the BHHH iteration process with the following formula

θ̂
(t+1)=θ̂(t)−H−1

(
θ̂
(t)
)

q

(
^
θ

(t)
)

, for t = 0, 1, 2, ....

• Step 5. The iteration will stop if
∥∥∥θ̂(t+1)−θ̂(t)

∥∥∥ < ε, where ε is a very small positive
number. The last iteration produces an estimator value for each parameter.

Furthermore, the best model in this study is determined using the criteria of Akaike
information criterion corrected (AICc), Bayesian information criterion (BIC), and deviance
which are defined as follows:

AICc = −2 ln L
(
θ̂
)
+ 2K +

2K(K + 1)
n− K− 1

(28)

BIC = −2 ln L
(
θ̂
)
+ K ln n (29)
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Deviance = −2 ln L
(
θ̂
)

(30)

where L
(
θ̂
)

is the likelihood value of the parameter’s estimate,K is the number of covariates,
and n is the sample size. The best model is the BPOLR model, which has the smallest
values of AICc, BIC, and deviance.

4. Hypothesis Testing of The BPOLR Model

The simultaneous hypothesis testing of the BPOLR model aims to determine the
influence of the predictor variable on the response variable simultaneously or to discover
at least one predictor variable which has a significant effect against the response variable.
The hypothesis used is as follows:

H0 : βp1q = βp2q = γpq = 0 ; p = 1, 2, . . . , rq ; q = 1, 2, . . . , k (31)

H1 : at least one βp1q 6= 0 or βp2q 6= 0 or γpq 6= 0

In this study, we used the MLRT method to obtain the test statistics by calculating
the ratio between the maximum value of the likelihood function under H0, L(ω), with the
maximum value of the likelihood function under population, L(Ω).

The first step to obtaining the maximum value of L(ω) is to define the parameter space un-
der H0, ω = {α11, α12, α21, α22, ∆11, ∆12, ∆21, ∆22, β011, . . . , β01k, β021, . . . , β02k, γ01, . . . , γ0k}.
The likelihood function under H0 is:

L(ω) =
n

∏
i=1

3

∏
a=1

3

∏
b=1

(π∗abi)
yabi (32)

Let Qω = ln L(ω), then the log-likelihood function under H0 is

Qω =
n

∑
i=1

(y11i ln π∗11i + y12i ln π∗12i + . . . + y33i ln π∗33i) (33)

Furthermore, we can obtain the estimated value of the maximum log-likelihood
function under H0:

Qω̂ =
n

∑
i=1

(y11i ln π̂∗11i + y12i ln π̂∗12i + . . . + y33i ln π̂∗33i) (34)

where
π̂∗11i = F̂∗11i ; π̂∗12i = F̂∗12i − F̂∗11i; π̂∗13i = F̂∗1•i − F̂∗12i; π̂∗21i = F̂∗21i − F̂∗11i;

π̂∗22i = F̂∗22i − F̂∗12i − F̂∗21i + F̂∗11i ; π̂∗23i = F̂∗2•i − F̂∗1•i − F̂∗22i + F̂∗12i; π̂∗31i = F̂∗•1i − F̂∗21i;

π̂∗32i = F̂∗•2i − F̂∗22i − F̂∗•1i + F̂∗21i; π̂∗33i = 1− F̂∗2•i − F̂∗•2i + F̂∗22i

with

F̂∗abi =
p3 −

√
p3

2+q3

2
(
ψ̂ab−1

) , ψ̂ab 6= 1; p3= 1+
(
ψ̂ab−1

)(
F̂∗a•i+F̂∗•bi

)
; q3 = −4ψ̂ab

(
ψ̂ab−1

)
F̂∗a•iF̂

∗
•bi

F̂∗a•i =

exp

(
α̂1a +

k
∑

j=1
β̂01j

)

exp

(
α̂1a +

k
∑

j=1
β̂01j

) ; F̂∗•bi =

exp

(
α̂2b +

k
∑

j=1
β̂02j

)

exp

(
α̂2b +

k
∑

j=1
β̂02j

) ; ψ̂11 =
n11i(n22i+n23i+n32i+n33i)

(n12i+n13i)(n21i+n31i)
;

ψ̂12 =
(n11i+n12i)(n23i+n33i)

n13i(n21i+n22i+n31i+n32i)
; ψ̂21 =

(n11i+n21i)(n32i+n33i)

(n12i+n13i+n22i+n23i)n31i
; ψ̂22 =

(n11i+n12i+n21i+n22i)n33i

(n13i+n23i)(n31i+n32i)
.
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Furthermore, to obtain the maximum value of L(Ω) is to define the parameter space under popu-
lation, Ω = {α11, α12, α21, α22, ∆11, ∆12, ∆21, ∆22, βp1q, βp2q, γpq;.p = 0, 1, 2, . . . , rq;.q = 1, 2, . . . , k}.
Then, the likelihood function under population is

L(Ω) =
n

∏
i=1

3

∏
a=1

3

∏
b=1

(πabi)
yabi (35)

Let QΩ = ln L(Ω), then the log-likelihood function under population is

QΩ =
n

∑
i=1

(y11i ln π11i + y12i ln π12i + . . . + y33i ln π33i) (36)

Furthermore, we can obtain the estimated value of the maximum log-likelihood
function under population, that is:

QΩ̂ =
n

∑
i=1

(y11i ln π̂11i + y12i ln π̂12i + . . . + y33i ln π̂33i) (37)

The test statistic using MLRT method is obtained by

G2 = −2 ln

(
L(ω̂)

L
(
Ω̂
)) = 2

(
QΩ̂ −Qω̂

)
(38)

where Qω̂ and QΩ̂ are given in Equations (36) and (39), respectively. Furthermore, the test
statistic in Equation (38) can be expressed as follows

G2 = 2
[

n
∑

i=1

(
y11i ln

(
π̂11i
π̂∗11i

)
+ y12i ln

(
π̂12i
π̂∗12i

)
+ . . . + y33i ln

(
π̂33i
π̂∗33i

))]
= 2

[
n
∑

i=1

(
nπ̂11i ln

(
1 + π̂11i−π̂∗11i

π̂∗11i

))
+

n
∑

i=1

(
nπ̂12i ln

(
1 + π̂12i−π̂∗12i

π̂∗12i

))
+ . . . +

n
∑

i=1

(
nπ̂33i ln

(
1 + π̂33i−π̂∗33i

π̂∗33i

))]
Based on the Taylor expansion of ln

(
1 + π̂abi−π̂∗abi

π̂∗abi

)
with a, b = 1, 2, 3 and i = 1, 2, . . . , n

it will be proved that lim
n→∞

G2 = G∗.

G∗ =
n
∑

i=1

(nπ̂11i−nπ̂∗11i)
2

nπ̂∗11i
+

n
∑

i=1

(nπ̂12i−nπ̂∗12i)
2

nπ̂∗12i
+ . . . +

n
∑

i=1

(nπ̂33i−nπ̂∗33i)
2

nπ̂∗33i

=
n
∑

i=1

3
∑

a=1

3
∑

b=1

(nπ̂abi−nπ̂∗abi)
2

nπ̂∗abi

=
n
∑

i=1

3
∑

a=1

3
∑

b=1

(yabi−nπ̂∗abi)
2

nπ̂∗abi

(39)

The test statistic in Equation (39) has an asymptotic Chi-square limit distribution with
v degree of freedom, where v is the difference between the number of parameters in the

BPOLR model under population and H0, v =

(
8 + 3

(
k
∑

j=1
rj + k

))
− (8 + 3k) = 3

k
∑

j=1
rj.

Therefore, reject H0 when G2 > χ2
(v,1−α), where χ2

(v,1−α) is the 1− α quantile from a Chi-

square distribution (χ2) with ν degree of freedom.

5. Simulation Study

In this section, we outline a simulation study for the present performance of parameter
estimation of the BPOLR model based on the BHHH algorithm. The simulation was
constructed by two ordinal response variables that each have three categories and three
predictor variables. In this paper, the simulation is carried out for one example of the
BPOLR model, i.e., the BPOLR model with degree polynomial (1,2,1). The simulation
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was carried out for 100 replications with different sample sizes, i.e., n = 100, n = 200, and
n = 300. The simulation scenarios are decided as follows:

• Generate three predictor variables (X1, X2 and X3) that are constructed from a standard
uniform distribution

• Set the initial coefficients of the BPOLR model as follows:

α11 = 0.05 ; α12 = 0.5 ; β111 = −1 ; β112 = 0.5 ; β212 = 2 ; β113 = 1.5 ; α21 = 0.25 ; α22 = 1.25 ;

β121 = −2 ; β122 = 2 ; β222 = 2 ; β123 = 2 ; ∆11 = 0.1 ; ∆12 = 0.15 ; ∆21 = 0.25 ; ∆22 = 0.3 ;

γ11 = −1.5 ; γ12 = 2 ; γ22 = 3 ; γ13 = 2

• Generate two ordinal response variables (Y1 and Y2) with the following steps:

� Determine the cumulative logit model for Y1 and Y2 as in Equations (2)–(5) and
the odds ratio transformation model, as in Equations (6)–(9)

� Determine the marginal cumulative probability for Y1 and Y2 as in Equations (10)
and (11) and the joint cumulative probability as in Equation (13).

� Determine the joint probability of Y1 and Y2
� Generate two ordinal response variables based on the joint probabilty obtained

• Examine the independence of the response variables using the Mantel–Haenszel test
to fulfill the assumption of dependence between the response variables in the bivariate
model. If the response variable is independent, then the data generation process is
repeated until the dependent response variable is obtained.

• Estimate the parameters of the BPOLR model based on the BHHH algorithm
• Repeat the process for up to 100 replications for each sample size
• Calculate the mean of parameter estimated and its standard error (SE)

The results and comments regarding the simulation study are given in the following
tables and figures below. The mean of the estimated parameters and their corresponding
standard error (SE) for different sample sizes are presented in Table 2. The results show that
the estimated parameters approach their true coefficient on average and the corresponding
standard errors also decrease as the sample size increases.

Furthermore, the suitability of the estimated parameter with the true coefficients for
each sample size can be presented in Figure 1 below:

Figure 1. Mean of the true and estimated parameter coefficients for different sample sizes, i.e n = 100,
n = 200 and n = 300.
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Table 2. Mean of the estimated parameter and the corresponding standard errors of the BPOLR
model for different sample sizes.

No. Parameter True Coeff.
Mean of the est. Parameter Standard Error

n = 100 n = 200 n = 300 n = 100 n = 200 n = 300

1 α11 0.05 0.138 0.097 0.005 1.193 0.662 0.519
2 α12 0.5 0.615 0.549 0.474 1.195 0.666 0.521
3 β111 −1 −1.069 −1.176 −0.96 1.144 0.632 0.501
4 β112 0.5 −0.005 0.679 0.283 4.856 2.566 2.004
5 β212 2 3.213 1.949 2.418 5.492 2.762 2.169
6 β113 1.5 1.607 1.604 1.582 1.159 0.652 0.516
7 α21 0.25 0.382 0.337 0.236 1.556 0.777 0.604
8 α22 1.25 1.35 1.349 1.282 1.573 0.789 0.614
9 β121 −2 −2.34 −2.216 −2.032 1.546 0.826 0.625

10 β122 2 1.119 1.686 1.873 6.949 3.417 2.513
11 β222 2 4.466 2.928 2.47 9.294 4.291 3
12 β123 2 2.442 2.115 2.094 1.565 0.823 0.638
13 ∆11 0.1 0.636 0.44 0.155 5.038 1.941 1.354
14 ∆12 0.15 0.677 0.414 0.269 5.101 1.98 1.387
15 ∆21 0.25 0.587 0.461 0.25 5.047 1.952 1.354
16 ∆22 0.3 0.671 0.455 0.351 5.145 1.978 1.383
17 γ11 −1.5 −1.926 −1.585 −1.662 5.088 1.992 1.396
18 γ12 2 0.475 0.226 0.929 26.556 9.533 6.397
19 γ22 3 7.729 6.204 5.216 40.777 13.805 8.713
20 γ13 2 2.33 2.134 2.273 5.22 2.008 1.447

Based on Figure 1, the results show that the greater of samples size, the closer the
estimated parameter values get to the true coefficient values. This can be seen from the
movement of the estimated parameter coefficients for n = 300, which are closest to the
true coefficients, and for n = 100, the coefficients which are farthest for each parameter. In
addition, the standard error range values from parameter estimation was also investigated
for different samples in the form of boxplots. When the sample size increases, the standard
error values of the model parameter estimation becomes less, as presented in Figure 2
as follows:

Figure 2. Boxplot of Standard Error (SE) for different sample sizes.
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6. Conclusions

We developed ordinal logistic regression with two correlated response variables in
which the relationship between the continuous predictor variable and its logit is modeled
as a polynomial form, called the BPOLR model. The proposed BPOLR model contributes
to the development of statistical science that can be used as an alternative solution in
statistical modeling related to the bivariate ordinal logistic regression, where the relation-
ship between continuous predictor variables and their logit links is assumed to be not
always linear, so that it is more flexible. Therefore, the advantage of the BPOLR model can
accommodate linear, quadratic, cubic or other relationships between continuous predictor
variables and their logit links in a model. We used the MLE method to obtain parameter
estimators of the BPOLR model. The first partial derivatives are not closed-form, thus, a
numerical optimization such as the method of BHHH is needed to obtain the maximum
likelihood estimators. We used the MLRT method to obtain test statistics of parameters.
The simultaneous test was used to make the simultaneous of the parameters significantly.
The statistical test distribution has a Chi-square limit that, asymptotically with the degree
of freedom, is the difference between the parameter effective number in the reduced and
full models. The optimal degree value for each predictor variable is obtained when the
value of AICc, BIC, and deviance are minimum. Based on the simulation study results, the
estimated parameters approach their true coefficient on average and the corresponding
standard errors also decrease as the sample size increases.
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Nomenclature

AICc Akaike’s Information Criterion Correcction
BHHH Berndt–Hall–Hall–Hausman
BIC Bayesian Information Criterion
BPOLR Bivariate Polynomial Ordinal Logistic Regression
MLE Maximum Likelihood Estimation
MLRT Maximum Likelihood Ratio Test.
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