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Abstract: Web tables are essential for applications such as data analysis. However, web tables are
often incomplete and short of some critical information, which makes it challenging to understand the
web table content. Automatically predicting column types for tables without metadata is significant
for dealing with various tables from the Internet. This paper proposes a CNN-Text method to deal
with this task, which fuses CNN prediction and voting processes. We present data augmentation and
synthetic column generation approaches to improve the CNN’s performance and use extracted text
to get better predictions. The experimental result shows that CNN-Text outperforms the baseline
methods, demonstrating that CNN-Text is well qualified for the table column type prediction.
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1. Introduction

In recent years, the information contained in the vast data ocean has been mixed
with the exponential growth of web data. Thus, the way by which to extract useful
information from web data and put it into practice has become a hotspot. In data analytics,
understanding web table content’s semantic structure and meaning are invaluable in
popular areas such as data integration, data cleaning, machine learning, and knowledge
discovery. Tables on the web page are high-value data because they are often used to present
important information in an organized and easily readable way. Thus, the organization
and structure of tables on a web page make them a valuable source of data for many
applications. However, web tables may lack essential information, making information
collection difficult.

Example 1. Figure 1 shows a web table example crawled on the Internet, which doesn’t have a
column header, column schema, and table title. It is unclear what the data in each column represents,
making it difficult to understand the table content.

Column1 Column2

1 Windermere 5.69 sq mi(14.7 km2)

2 Kielder Reservoir 3.86 sq mi(10.0 km2)

3 Ullswater 3.44 sq mi(8.9 km2)

4 Bassenthwaite Lake 2.06 sq mi(5.3 km2)

5 Derwent Water 2.06 sq mi(5.3 km2)

Figure 1. A web table example.
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To reasonably use the table’s contents without column name information, it is possi-
ble to understand the semantic information in the table with the help of additional and
sufficient relevant information, such as tabular master data [1], domain experts [2], and
crowdsourcing [3]. However, these resources may be scarce and are usually costly to
employ. Fortunately, there exists an increasing availability of knowledge bases (KBs) such
as Yago [4], DBpedia [5], and Freebase [6], which are well-curated and cover a large portion
of web data. Thus, we can annotate table elements with entity or type information in the
KBs to understand the semantics of each column in the web table.

Challenges. However, dealing with the column-type prediction task with the help of
KBs suffers from several issues. First, because the web tables often come from complex
semistructured webpages, metadata (such as table names and column names) are often
missing, incomplete, or ambiguous. The lack of such semantically rich information poses
a vast challenge to existing column-type prediction approaches [7–9]. Secondly, the per-
formance of a model varies with the specific architecture and hyperparameters used, as
well as the quality and amount of training data. Existing methods [10,11] that use a single
model to complete column-type prediction tasks are not compelling enough. Thirdly, the
metadata and the cells in the table lack contextual information; thus, it is difficult to predict
correct column names.

In this paper, we propose a CNN-Text model for tackling these challenges. First, we use
the lookup method to provide more semantic information related to tabular contents and pro-
pose a data augmentation approach to generate additional data for robustness. For the second
challenge, we introduce the method of combining CNN with voting to obtain more accurate
results. For the third challenge, we rationally use the text extracted from the knowledge base
to provide contextual information of entities to help improve prediction accuracy.

Contributions. We summarize our contributions as follows.

• We propose a novel model CNN-Text, which contains the CNN and voting modules,
which makes the column-type prediction results more accurate.

• We propose a data augmentation method for column-type prediction, which enables
the CNN model to have better generalization ability.

• We conducted a series of experiments to demonstrate that CNN-Text is effective and
the performance has been significantly improved compared with the baseline methods.

2. Related Work

The tabular data-prediction task aims to match table elements with semantic types,
including cell-entity and column-type predictions. Recent methods mainly focus on column-
type prediction [7–9,11–13], except that PGM [10], TabGCN [14], and Meimei [15] simul-
taneously finish these two tasks. However, TabGCN requires a complex algorithm to
transform data into graphs and is sensitive to dirty data. Furthermore, PGM and Meimei
use the Markov random field framework for prediction, which uses costly handcrafted
features. Tabbie [8] averages embedding of rows and columns for obtaining embedding of
cells. TURL [7] and Doduo [11] utilize the transformer to build features with respective
pretraining methods. The above techniques need large quantities of artificially labeled
corpora for training. Colnet [12] and TCN [9] capture features by convolutional networks.
Note that the idea of Colnet is close to ours, but our methods construct a novel framework
combined with a keyword coverage voting mechanism and get better performance on
real-world datasets.

Representation learning. Nowadays, the representation learning approaches can be
divided into three categories: discrete methods [16,17], distributed methods [18,19], and
deep learning methods [7,8,11,12,14]. The discrete representation methods use discrete
vectors for representation, which cannot express the semantic information of words and
will encounter the problem of sparse data and loss of information. The distributed rep-
resentation methods model the relationship between the context and the target word by
considering the contextual information. However, such methods are mainly based on
statistical computing, and the feature representation effect depends on the corpus size.
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The representation methods based on deep learning use deep neural networks to extract
features and represent them as embeddings for various downstream tasks. Based on
Word2vec [20], we use CNNs to capture deeper semantic information of tables.

Collective approaches. The collective approaches accomplish the objective by com-
bining multiple learning tasks. Current ensemble methods for table annotation tasks are
mainly divided into joint inference methods [10,15,21,22] and iterative methods [7,8,11,12].
The joint inference method combines the prediction results of multiple learners to obtain
the final goal. The iterative method updates the model parameters through multiple epochs
using optimizers to obtain better scores on the evaluation dataset. Both methods achieve
good results with metadata (such as column names and table names) but perform poorly
on tabular data consisting only of cells. We combine the strengths of these two methods
while using the CNN model to iteratively update the parameters to obtain better results.
We also use the joint inference method to combine the CNN prediction results and the text
classifier prediction results on the two datasets.

3. Problem Definition

In this section, we first define the table and text and then define the problem of
column-type prediction.

Table definition. Given a table set T, table t ∈ T contains at least one unlabeled column
K, composed of the attribute descriptions of various entities E = {e1, e2, . . . }.

Table dataset details. The T2Dv2 [12] includes common table entries on the Internet,
with 237 labeled primary key (PK) columns and 174 labeled nonprimary key (NPK) columns,
where each label corresponds to a fine-grained DBpedia class. Limaye has various tables
collected from Wikipedia. We use the version derived from the literature [23], which
contains 84 PK columns with labels.

Text definition. Suppose a text set S is obtained from KBs, wherein each piece of text
s ∈ S describes an entity e in the table t ∈ T, and its content may contain multiple entities e
and classes c that contribute to the column-type prediction.

Column-type prediction. The tabular data prediction task includes the cell entity
prediction, the column-type prediction, and the column pair relation prediction tasks.
Following [12], we focus on the column-type prediction task, which aims to predict a
possible class c ∈ C for an unlabeled column K in strict mode or a set CK = {c1, c2, . . .} ∈ C
of possible classes in tolerant mode.

4. Methodology

This section introduces the overall structure of CNN-Text, as shown in Figure 2. CNN-
Text includes four essential parts: lookup, data augmentation, CNN training, and column-
type prediction. The lookup module is designed to obtain tabular semantic information
from the KB. Then, the data augmentation module enriches the dataset based on the
abovementioned information for CNN training. Finally, we fuse the prediction of CNN
and voting to obtain the final prediction results, where voting utilizes the explanatory text
extracted from the KB. We elaborate on each part in detail in the following sections.

4.1. Lookup

Looking up the KBs for external tabular information is the crucial step of our CNN-
Text framework. As seen from Figure 3, the structured data in the KBs includes classes
and entities with many-to-many logic relationships. A class can contain multiple entities,
while an entity can also belong to various classes. Thus, we can easily find the relationship
between entities and entities, entities and classes, or classes and classes by looking up
the KBs.
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Figure 2. The architecture of CNN-Text.
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Figure 3. The relationships between the classes and the entities in a KB.

We propose expanding the training set based on the original dataset through a KB.
Figure 4a shows an example of a table structure. The entities in the same column belong
to a specific class shown in the table header, e.g., {e1, e2, e3} belongs to c1. Considering
an entity may belong to multiple classes in a KB, we expand the training set in three
steps. First, we extend classes by querying the KB based on the class name, finding similar
classes for each class in the original table. As shown in Figure 4b, the classes {c4, c5, c6},
{c7, c8, c9}, {c10, c11, c12} represent the similar classes queried by class c1, c2, c3, respectively.
The second step is to find other possible classes from the KB which contain entities in the
table based on the entity names, e.g., the class c13 is queried by the entity e1. Finally, we
query the KB to get more entities corresponding to each known class, where the retrieved
entities will be supplementally added to the training set of the corresponding class. For
instance, {e10, . . . , e22} are the retrieved entities queried by classes {c4, c5, . . . , c17} from
the KB.

When expanding the training set for different columns, there may be cases in which
different columns have the same class, and we merge all of them to be the extra training
set. After finishing the above operations for every class and entity in table t ∈ T, we get a
larger dataset for the following data augmentation, training, and voting process.
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Figure 4. (a) An example of table t. (b) Entity and class expansion for table t.

4.2. Data Augmentation

To capture intrinsic relationships among entities, alleviate overfitting, and enrich the
dataset, we propose generating three types of synthetic column samples. Before this, we
divide entities into corresponding categories.

Entity categorization. After expanding the training set with more classes and entities
during lookup, we propose a data augmentation approach to generate three types of
entities for synthetic column generation, i.e., negative entity, special positive entity, and
normal positive entity. Then we use them to generate synthetic columns for CNN training.
Specifically, for a specific class c, if an entity e belongs to c and is contained in table t, then e
is defined as a special positive entity of c. Similarly, we define the entity belonging to the
class but derived from the KB instead of table t as the normal positive entity. Last but not
least, suppose the entities e1 and e2 come from different classes c1 and c2. We define e1 as
the negative entity of c1 and e2 as the negative entity of c2.

Synthetic column samples. Based on three types of entities, we augment synthetic
column samples for training. Specifically, to generate a j-length special positive sample SP
for class c, each special positive entity is combined with (j− 1) randomly selected special
positive entities. Similarly, a j-length normal positive sample NP for class c includes j
randomly selected normal positive entities. While for the generation of the negative sample
NG for class c, the special/normal positive and negative entities are mixed, where the
number of positive and negative entities must be greater than 1.

Example 2. As shown in Figure 5, we have a training set of class “Fish”: “Spotted bass”, “Crappie”,
“European perch”, “Rainbow darter”, etc. Suppose j = 3, we combine each entity with other two
entities as one synthetic column, such as [“Spotted bass”, “Rainbow darter”, “Golden edhorse”],
[“Crappie”, “Cottus carolinae”, “Flathead catfish”], etc.

Remark 1. The synonyms for the class name can augment the training set through the KB search.
Thus, we also enrich the dataset by replacing some entities with their synonyms to improve CNN-
Text’s robustness.
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Figure 5. An illustration of synthetic columns.

4.3. The CNN Training

This section describes the CNN model, where we elaborate on column embedding
generation and CNN training.

Column embedding. We transform columns into vectors as CNN inputs for training.
Specifically, for each column K, we split all the entities and integrate them into a word
sequence w1, w2, . . . , wn, where n is the length of each word sequence and wn refer to the
n-th word in the word sequence. To simplify computation, we guarantee that all word
sequences are of the same length n. If the word sequence length is greater than n, we
discard redundant parts of word sequences. If the word sequence length is less than n, we
use NaN to fill in the missing pieces of sequences of insufficient length.

Then, we convert column K into the embedding features x(K) ∈ Rn×d via word
vectorization and vector superposition, as follows:

x(K) = v(w1)⊗ v(w2)⊗ · · · ⊗ v(wn), (1)

where v(·) represents the d-dimensional vector representation of w with a shape of 1× d,
and ⊗ represents a vector dimension superposition. v(·) can be obtained by Word2vec
methods [20], where similar words get vectors with close distances. Therefore, we obtain
the column embedding x(K) ∈ Rn × d for column K, which will be transmitted to CNN
as inputs.

Example 3. Consider there exists a column containing entities “Trivial. Pursuit”, “Shadowrun”,
“Go (game)”, and “Bakugan Battle Brawlers”. To generate word embedding, we removed trivial
symbols, converted all words to lowercase, and concatenated all words into a sequence: “trivial
pursuit shadowrun go game bakugan battle”. If n is 5, the word sequence will be truncated to
“trivial, pursuit, shadowrun, go, game” and then converted to column embedding according to
Equation (1). Although if n is 10, the sequence will be supplemented to “trivial, pursuit, shadowrun,
go, game, bakugan, battle, NaN, NaN, NaN”, and then converted to column embedding.

Convolution neural network. Considering that the CNNs are effective at exploring the
regional syntax of words [12], we use the CNN model to extract the features of a synthetic
column composed of multiple words. The architecture of the entire CNN model is shown
in Figure 6, including a convolution layer, a pooling layer, a fully connected layer, and a
sigmoid activation layer. The convolution base layer is responsible for extracting features,
the pooling layer is used to reduce the dimension for alleviating huge parameters and
preventing overfitting, the fully connected layer is used to change the feature dimension,
and the sigmoid activation layer is to output the prediction result. Considering feature
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vectors belonging to different classes have various significant partial features to focus on,
we train an individual binary classifier in the CNN model for each candidate class for much
more proper attention over specific partial features. Thus, the output dimension after the
fully connected layer is 1.

The CNN input is the embedding x(K) of a column K. We use a convolutional
layer that includes m multiple filters to extract features, the kernel size of each filter w is
l × d, and the height l has various choices (e.g., 2,3,4). We obtain the feature vector f via
convolution layer,

f = h(x(K)⊗W + b), (2)

where W, b is the weight matrix and bias matrix, respectively. ⊗ denotes the convolution
operation, and h(·) is an activation function. The feature vector fi output by the i-th filter
has a size of d× (n− j + 1),

fi = h(w • x(K)i:i+j−1 + bi), (3)

where • represents the matrix dot product operation. We process these feature vectors by
using a max pooling layer that stacks the maximum value of each feature vector together,
and then we get a vector f′ with size m× 1,

f′ = [max(f1), max(f2), . . . , max(fm)]. (4)

Then we use a fully connected (FC) layer and sigmoid function to predict the label of
a column for a specific candidate class from the learned distributed feature representation
as follows,

p = sigmoid(h(W • f′ + b)), (5)

where W ∈ Rm×1 is the weight matrix, b ∈ R1×1 is the bias matrix.
Finally, CNN-Text uses the cross-entropy loss function to calculate the loss based on

the predicted label of each column and its true label and reversely updates the parameters
after derivation. The computation formula is shown in Equation (6):

Loss = −
n

∑
i=1

p(xi)log(q(xi)), (6)

where p, q, and n represent the predicted label, the true label, and the number of class types,
respectively.

Input: 𝒙(𝐾)

𝑑

2×𝑑 kernel

4×𝑑 kernel

CONV
(𝑚 kernels)

Features FC layer

3×𝑑 kernel

Pooling layer

Max

𝑝

w!
𝑤"
𝑤#

𝑤$

.

.

.

.

Sigmoid

Binary Classifier(for each class)

Output

−∞,+∞ 0, 1

Figure 6. The CNN architecture (for one specific candidate class prediciton).
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4.4. Column-Type Prediction

Introducing and utilizing additional information is very effective for annotating tab-
ular data that often lack metadata. In addition to CNN prediction, CNN-Text designs a
voting module to provide different prediction results based on KB’s textual information.
Then, an ensemble approach is proposed to fuse the prediction results of the CNN model
and voting.

Candidate Class. To find the possible classes a column belongs to, CNN-Text uses the
lookup method in the KB. For entity e1, we get c1, c2 that e1 belongs to from the KB, and
for e2, we get c3 that e2 belongs to. We defined the classes of each entity in a column as the
candidate classes of the column. If a column K contains e1, e2, the candidate class for this
column will be c1, c2, c3.

Text extraction. For an entity e, besides looking up its class c in the KBs, CNN-Text
extracts its unstructured, explanatory description text s to obtain more attribute information.
For example, for the entity “Arduino”, looking up the KB for its classes, we get the keywords
“Device” and “Information Appliance”. While searching for its text description, we get an
entire paragraph of sentences, as shown in Figure 7. Then, we adopt part-of-speech tagging
tools [24–26] to extract keywords which may be the entities or classes, such as “open-source
hardware”, “software company”, “digital devices”, “microcontrollers”, and “kits”. From
the example, we can infer that an in-depth description of an entity can be obtained by
extracting unstructured text from the KB. This description has a higher probability of
including multiple possible classes to which it belongs.

Entity Text
Cold Pike Cold Pike is a fell in the English Lake District.  It is a satellite of Crinkle Crags and stands above 

the Upper Duddon Valley.

High Hartsop Dodd High Hartsop Dodd is a fell in the English Lake District, an outlier of the Fairfield group in the 
Eastern Fells. It stands above Kirkstone Pass on the road from Ullswater to Ambleside.

Arduino

Arduino is an open-source hardware and software company, project, and user community that 
designs and manufactures single-board microcontrollers and microcontroller kits for building 
digital devices. Arduino board designs use a variety of microprocessors and controllers. The 
boards are equipped with sets of digital and analog input/output (I/O) pins that may be interfaced 
to various expansion boards or breadboards and other circuits. The boards feature serial 
communications interfaces, including Universal Serial Bus (USB) on some models, which are 
also used for loading programs. The microcontrollers can be programmed using the C and C++ 
programming languages, using a standard API which is also known as the Arduino language, 
inspired by the Processing language and used with a modified version of the Processing IDE. In 
addition to using traditional compiler toolchains, the Arduino project provides an integrated 
development environment (IDE) and a command line tool developed in Go....

Figure 7. Explanatory text for entities.

Voting. With the extracted text, we vote on all candidate classes for a given column,
and the voting result determines whether it belongs to the corresponding class. Specifically,
we gather all defining words (e.g., entities and types related to the class) into a keyword
vocabulary and calculate the keyword coverage in all extracted text corresponding to
entities under that given column. The coverage is defined as vc, i.e., the probability of the
column belonging to each candidate class c.

CNN Prediction. For a column, the trained CNN model predicts the probability
{pc1 , . . . , pcn} for all candidate classes {c1, . . . , cn}. As the time complexity of permuting
and combining all entities as input is exponential, we adopt two methods to build multiple
subcolumns: (1) the sliding window method to select a continuous part of entities or (2)
random selection. The number of subcolumns for each column sample is defined as η, and
we evaluate the model performance under different η in the experiments. The CNN model
predicts the probability for each subcolumn, and finally, these results are averaged to get
the CNN prediction result,

pc =
1
η

η

∑
i=1

pc
i , (7)
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where pc
i represents the probability of the i-th subcolumn belonging to candidate class c.

Ensemble. Voting utilizes keyword features through the statistical method, and CNN
captures the context information among the entities. To take advantage of both methods,
we use an ensemble approach [12] to calculate the final probability sc of each candidate
class c by fusing the CNN and voting results,

sc =

{
vc, vc < ϕ2 or vc ≥ ϕ1;
pc, otherwise,

(8)

where ϕ1 and ϕ2 are hyperparameters (0 ≤ ϕ2 ≤ ϕ1 ≤ 1). The formula illustrates that we
accept the voting result when it is greater than or equal to ϕ1 or less than ϕ2. Otherwise,
we reject it and adopt the predicted result from CNN. Last but not least, we create a
prediction threshold ε for judging whether the final result can provide sufficient evidence
for column-type prediction; that is, we accept column K to be predicted as class c if sc ≥ ε.

5. Experiments
5.1. Experiment Setup

Datasets. We use two datasets to demonstrate CNN-Text’s performance. The statistics
of datasets are summarized in Table 1, where # Cell(Avg.) represents the average number of
cells in the table. Considering the few labeled samples in datasets, we adopt the synthetic
columns generated by the data augmentation as the training data while keeping the original
labeled part of the dataset as the test set for evaluation. The random subcolumn generation
will construct η subcolumn training sample for each synthetic column sample. Specifically,
we use η × 84 training samples and 84 validation (or testing) samples for Limaye, and we
use η × 411 training samples and 411 validation (or testing) samples for T2Dv2.

Table 1. Dataset statistics.

Dataset # Column (Labeled) # Cell (Avg.)

T2Dv2 411 124
Limaye 84 23

Compared methods. To verify the effectiveness of CNN-Text, we compare our model
with the SOTA methods ColNet and T2K Match. We summarize these methods below.

• T2K Match [13] is an iterative matching method that combines schema matching and
instance matching, the major process of which includes candidate selection, value-
based matching, property-based matching, and iterative matching.

• ColNet [12] is a framework that utilizes a KB, word representations, and machine learn-
ing to automatically train prediction models for annotating types of entity columns.

Implementation details. We implement the proposed CNN-Text method in Tensorflow
and Word2Vec [20] Library. For Word2Vec, we use GoogleNews pretrained corpus [27],
which contains 300-dimensional vectors for three million words and phrases. We use Spacy
as the part-of-speech tagging tool. For external information, we use Wikipedia to extend
the entity and the class in lookup process, and we use DBpedia to query unstructured text.
All the experiments are performed on an R9-3900X server with 32G RAM and 1080Ti GPU.
The training epoch is set to 50. The average training time per epoch for CNN module in
CNN-Text ranges from 0.5556 s for Limaye to 8.5657 s for T2Dv2, and the training time of
ColNet is similar. But for the prediction process, CNN-Text takes 19.98 s for T2Dv2 and
2.95 s for Limaye whereas ColNet takes 12.6 s for T2Dv2 and 2.34 s for Limaye. We adopt
precision, recall, and F1-score metrics to compare our method’s performance with other
baseline methods. To ensure the repeatability and validity of the model, all experiments
were repeated five times, and the scores were averaged to obtain the final results. To verify
the model’s performance on both single-label and multilabel classification, we use the
“tolerant” mode and the “strict” mode for evaluation, which involve different truth datasets.
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Generally, we got only one or two truth values in strict mode, while tolerant typically has
more (up to five) truth values for each label of column. Therefore, we compute metrics’
scores for strict mode based on a single-label classification problem, but scores for tolerant
mode are based on a multilabel classification problem. The length of subcolumn for ColNet
and CNN-Text is set to 2 and 4 (subsequent experiments will demonstrate). For CNN-Text,
we manually optimize ϕ1 and ϕ2 to 0.5 and 0.08, respectively.

5.2. Experimental Results

Tables 2 and 3 illustrate the performance of various methods on the Limaye dataset
and T2Dv2 dataset respectively, where we only use the augmented data derived from the
whole original dataset as the training set and use original labeled columns as the test set.
Limaye does not have labeled NPK columns, so we can only accomplish the type prediction
for PK columns. First, T2K Match only adopts the candidate matching method, which
cannot fully utilize the semantic features buried in columns. Therefore, T2K Match achieves
the worst results on all datasets and in all evaluation modes. On the Limaye dataset,
CNN-Text outperforms other methods in both modes, which can contribute to the impact
of combining the CNN prediction with the voting mechanism. CNN module focuses on
capturing the critical entity information in the column, and its prediction results are more
inclined to the types labeled in the original dataset. At the same time, the voting mechanism
adopts a method similar to knowledge base matching, which can efficiently complete the
prediction for those types from the knowledge base. Therefore, the combination of this
method and CNN can make up for the defect that CNN cannot predict the type from the
knowledge base well. In the strict mode, the recall of CNN-Text can be improved by nearly
6%, and the F1-score can be improved by 2.9% and the precision is generally improved.
While in the tolerant mode, the F1-score of CNN-Text has a 4.7% improvement compared
with ColNet, with significantly increased precision and naturally enhanced recall. On the
T2Dv2 dataset, CNN-Text achieves comparable performance with Colnet, while both are
still much higher than T2K Match. These results indicate that the extracted text of T2Dv2 is
dirty to describe the corresponding entity, bringing about poor voting results.

Table 2. Performance comparison on T2Dv2.

Evaluation Mode Method All Columns PK Columns
Precision Recall F1 Precision Recall F1

Tolerant
T2K Match 0.664 0.773 0.715 0.738 0.895 0.809

ColNet 0.886 0.807 0.847 0.942 0.906 0.924
CNN-Text 0.868 0.829 0.848 0.923 0.912 0.918

Strict
T2K Match 0.624 0.727 0.671 0.729 0.884 0.799

ColNet 0.749 0.757 0.753 0.853 0.874 0.864
CNN-Text 0.743 0.767 0.754 0.843 0.883 0.863

Table 3. Performance comparison on Limaye.

Evaluation Mode Method PK Columns
Precision Recall F1

Tolerant
T2K Match 0.560 0.408 0.472

ColNet 0.796 0.799 0.798
CNN-Text 0.811 0.791 0.801

Strict
T2K Match 0.453 0.330 0.382

ColNet 0.603 0.639 0.620
CNN-Text 0.607 0.697 0.649

Data augmentation validation. To show the effect of data augmentation, we added
a comparative experiment on whether to use the data generated by data augmentation
to train the model. For Limaye, the average number of original samples and augmented
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samples per class are 42 and 2492 respectively. For T2Dv2, the average number of original
samples and augmented samples per class are 320 and 17,493 respectively. We divided
the original dataset into 70% of the training set and 30% of the test set, and the data
augmentation was only conducted on 70% of the training set. We train three variants of
models: (A) using only 70% of the original dataset, (B) using only the augmented dataset
from 70% of the training set, (C) using both 70% of the original dataset and the dataset
generated by data augmentation. The results are shown in Tables 4 and 5. We can find that
variants (B) and (C) using the augmented dataset outperform variant (A), which only uses
the original dataset in both restrict and tolerant mode, and the greatest improvement is
achieved for the Limaye dataset in tolerant mode, close to 42%. Therefore, it demonstrates
the effectiveness of data augmentation. Across all experiments, variant (B) performs best in
most cases. It achieves the highest precision and F1-score in all tolerant modes and most
strict modes. Variant (B) achieves better scores than variant (C), showing that only using
the dataset generated by data augmentation as the training set can alleviate the overfitting
problem of using a mixed dataset used by variant (C). Therefore, using the different dataset
from data augmentation as the training set is worthwhile. It is also worth considering why
the model performs differently on different datasets. The experiment results on the Limaye
dataset have better results because the Limaye dataset has relatively straightforward and
tidy data fields, and we can get better results when querying the KB and voting. But
T2Dv2 contains many special or dirty characters, and the text extracted from KB contains
less valuable keywords. These two problems make it difficult for CNN prediction and
precise voting.

Table 4. Validation experiment results (precision, recall, F1-score) on T2Dv2.

Mode Strict (All Columns) Tolerant (All Columns) Strict (PK Columns) Tolerant (PK Columns)
Metric Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

(A) 0.5679 0.0335 0.0632 0.4610 0.1130 0.1810 0.7931 0.0587 0.1094 1.0000 0.0270 0.0520
(B) 0.5097 0.1142 0.1866 0.4851 0.2495 0.3295 0.7931 0.0587 0.1094 1.0000 0.0270 0.0520
(C) 0.4952 0.1135 0.1846 0.4908 0.2516 0.3327 0.6555 0.1992 0.3056 1.0000 0.1230 0.2180

Table 5. Validation experiment results (precision, recall, F1-score) on Limaye.

Mode Strict Tolerant
Metric Precision Recall F1 Precision Recall F1

(A) 0.1459 0.5533 0.2310 0.1980 0.8074 0.3180
(B) 0.6186 0.4918 0.5479 0.7004 0.7664 0.7319
(C) 0.5644 0.5205 0.5416 0.4561 0.7869 0.5774

Ablation study. We conduct the ablation experiment to verify the effect of CNN-Text,
which ensembles the voting and CNN modules. Table 6 shows the experiment results of
CNN, Voting, and CNN-Text, from which we can see that CNN-Text utilizes the advantages
of CNN and Voting, therefore achieving the best performance.

Table 6. Ablation experiment results (precision, recall, and F1-score) on Limaye.

Evaluation Mode Method PK Columns
Precision Recall F1

Tolerant
CNN 0.763 0.820 0.791

Voting 0.732 0.660 0.694
CNN-Text 0.811 0.791 0.801

Strict
CNN 0.576 0.619 0.597

Voting 0.571 0.447 0.501
CNN-Text 0.607 0.697 0.649



Mathematics 2023, 11, 560 12 of 15

Effect of the number of subcolumns. We investigated the effect of subcolumn number
η on the experimental results (precision, recall, F1-score). Figure 8 shows the results of
ColNet and CNN-Text, which indicates that the performance of CNN-Text is better than
ColNet under the same number of subcolumns. What is more, the scores of ColNet achieve
the highest when η is set to 4, whereas CNN-Text performs best when it comes to 2. To
maximize their performance, we set η of ColNet and CNN-Text to 2 and 4, respectively.

Case study. To prove the performance of CNN-Text, we select several examples from
the Limaye dataset to analyze why text can improve the performance of CNN-Text. In the
strict mode, there is only one truth value of the dataset, and there can only be one strict class
“Book” in “file151614_2_cols_rows105.csv”. For Colnet, the highest predicted probability is
“Work” (probability is 0.91), while the probability of the actual class “Book” is only 0.80, so
Colnet will incorrectly predict the type as “Work”. While for CNN-Text, after introducing
text features, the predicted probability of “Book” will increase from 0.80 to 1.00, which
leads the detection model to output the correct classification result “Book”. The same goes
for another file “file223755_0_cols1_rows27.csv”. Therefore, in the strict evaluation mode,
the recall can be improved a lot, so as to the F1-score, and from the prediction probability
of other classes, the text features we used do not affect the expression of the original model
too much.
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Figure 8. (a) The performance of ColNet in different η of sub-columns. (b) The performance of
CNN-Text in different η of subcolumns.

For Limaye, when evaluating CNN-Text, the prediction threshold ε is set to 0.5. As a
result, in the two files in Table 7, although CNN-Text improves the prediction probability
of the truth value under the strict mode, CNN-Text and ColNet can predict all the truth
values, so the model prediction effect of the two models is similar under the tolerant mode.
Similarly, to verify this phenomenon’s universality, we select other data for further analysis.
In Table 8, we use bold text to indicate that the prediction value is accepted by exceeding
the threshold ε of 0.5. Intuitively, CNN-Text and ColNet can classify almost all classes
correctly under tolerant mode. But CNN-Text can identify the class “College” that ColNet
cannot predict in “file101640_0_cols1_rows31.csv”, which also verifies that CNN-Text has a
certain degree of improvement in tolerant mode.
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Table 7. Partial example prediction probability table for Limaye in strict mode.

Filename(.csv) Truth Value Predicte Result
Target ColNet CNN-Text

file151614_2_cols1_rows105 Book

Place 0.09 0.09
Architectural Structure 0.09 0.09

Work 0.91 0.91
Location 0.10 0.10

Sport Facility 0.08 0.08
Book 0.8 1.00

Television Show 0.31 0.31
Person 0.16 0.16
Agent 0.19 0.19
Film 0.32 0.32

Organisation 0.13 0.13
Written Work 0.81 0.81

file223755_0_cols1_rows27 Film

File 0.76 1.00
Musical Work 0.28 0.28

Work 0.99 0.99
Album 0.18 0.18

Table 8. Partial example prediction probability table for Limaye in tolerant mode.

Filename(.csv) Truth Value Predicte Result
Target ColNet CNN-Text

file101640_0_cols1_rows31

University,
EducationalInstitution,

Agent,
Collage,

Organisation

Location 0.15 0.15
College 0.31 1.00
Agent 0.92 0.92
Place 0.14 0.14

Soccer Club 0.03 0.03
City 0.05 0.05

Populated Place 0.03 0.03
Educational Institution 0.95 0.95

Person 0.05 0.05
Architectural Structure 0.14 0.14

Building 0.16 0.16
University 0.94 1.00

Organisation 0.92 0.92

file227142_1_cols1_rows7 Work,
Software

Software 0.97 0.97
Work 0.96 0.96

Device 0.41 0.41

6. Conclusions

We propose CNN-Text, a novel column-type prediction model based on CNN and
voting. Compared with baseline methods, with little difference in time cost, however, CNN-
Text can extract more meaningful textual information from the knowledge base as a piece
of solid evidence for prediction, eliminating the prediction failure caused by insufficient
information in the web table data. We evaluate CNN-Text on T2Dv2 and Limaye datasets
in strict and tolerant modes. The evaluation results demonstrate that CNN-Text is well
qualified for the column-type prediction task. Note that current dataset for column-type
prediction is scarce, small and precious. We do not adopt the pretraining method as it will
require a huge cost. In the future, we aim to find more valuable datasets to develop our
model with the pretraining method.
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