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Abstract: The Kumaraswamy distribution is a common type of bounded distribution, which is widely
used in agriculture, hydrology, and other fields. In this paper, we use the methods of the likelihood
ratio test, modified information criterion, and Schwarz information criterion to analyze the change
point of the Kumaraswamy distribution. Simulation experiments give the performance of the three
methods. The application section illustrates the feasibility of the proposed method by applying it to a
real dataset.
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1. Introduction

The change-point problem, introduced by Page [1,2], has become more important in
many application fields, such as finance, hydrology, and genetics. In statistics, several theo-
ries and applications related to change-point analysis have been studied by scholars. Sen
and Srivastava [3] deduced the exact and asymptotic distribution of the test statistics of a
single change point in a normal random variable sequence. Cai et al. [4] considered the like-
lihood ratio test (LRT) and Schwarz information criterion (SIC) to detect the change-point
problem of an exponential distribution. Chen and Ning [5] investigated the change point
of an exponential-logarithmic distribution using the modified information criterion (MIC)
method and applied it to biological and engineering aspects of the dataset. Said et al. [6]
analyzed the change point of the skew-normal distribution by MIC, LRT, and the Bayesian
information criterion (BIC). Wang et al. [7] extended the method of LRT into the skew-slash
distribution. Tian and Yang [8] studied the change-point problem of weighted exponential
distributions based on the LRT, MIC and SIC procedures.

In real life, we often encounter some measurements, such as the proportion of a certain
feature, the scores of some ability tests, and different indicators and ratios, which are
located in the (0, 1) interval. In such cases, bounded distributions are essential to model
these phenomena. As we know, the Kumaraswamy (Kw) distribution plays an important
role in bounded distributions. The Kw distribution was introduced by Kumaraswamy [9]
to study the daily rainfall in hydrology. Its probability density function (pdf) was given by

f (x; γ, β) = γβxγ−1(1− xγ)β−1, 0 < x < 1,

where γ > 0 and β > 0 were shape parameters, and it was denoted by X ∼ Kw(γ, β). The
density function is unimodal if γ > 1 and β > 1 and uniantimodal if γ < 1 and β < 1.
The density function increases for γ > 1 and β ≤ 1, decreases for γ ≤ 1 and β > 1, and is
constant for γ = β = 1.
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The Kw distribution was considered to be a substitutive model for the beta distribution
in practical terms and has drawn much academic attention and concern. In fact, the Kw
and beta distributions have the following properties in common: the shape types of their
pdfs are the same, and the power function and the uniform distribution are similar in both
their cases. Furthermore, the Kw distribution has some additional advantages over the beta
distribution, such as its simple explicit formulas for the distribution functions and quantile
function, which did not involve any special functions. Moreover, the simplicity of the
quantile function provided a simple formula for random variable generation. See Jones [10]
for a detailed description. Fletcher and Ponnambalam [11] used the Kw distribution to
analyze reservoir storage capacity. Nadarajah [12] mentioned the Kw distribution as a
special case of the beta distribution, and clarified that the Kw distribution was more
effective than the beta distribution. Jones [10] systematically studied the basic statistical
properties of the Kw distribution and estimated its parameters by the maximum likelihood
estimation method. Nadar et al. [13] conducted a statistical correlation analysis of the Kw
distribution for the recorded values. Meanwhile, some new families of distributions have
been proposed based on the Kw distribution, such as Saulo et al. [14], who studied the
Kw Birnbaum–Saunders distribution, which provided enormous flexibility in modeling
heavy-tailed and skewed data. Lemonte et al. [15] established the exponentiated Kw
distribution and used the model to effectively fit life data. Mameli [16] pointed out that the
Kw skew-normal distribution was a valid alternative to the beta skew-normal distribution.
Iqbal et al. [17] proposed the generalized inverted Kw distribution to model a dataset of
prices of wooden toys for 31 children.

Based on our knowledge, there is little research on the change point of the Kw dis-
tribution. Therefore, it is of a certain significance to study the change-point detection of
the Kw distribution. The remaining organizational parts of the paper are as follows. The
related basic theoretical knowledge and three methods of change point detection based on
the Kw distribution are introduced in detail in Section 2. Simulation studies are carried out
for three different detection methods in Section 3. Real data applications are studied in
Section 4. Some conclusions are given in Section 5.

2. Methodology

Let X1, X2, · · · , Xn be a sequence of independent Kw random variables with parame-
ters γ1, γ2, · · · , γn and β1, β2, · · · , βn. We are interested in testing the null hypothesis,

H0 : γ1 = γ2 = · · · = γn = γ and β1 = β2 = · · · = βn = β,

against the alternative hypothesis

H1 : γ1 = γ2 = · · · = γk 6=γk+1 = γk+2 = · · · = γn,

and
β1 = β2 = · · · = βk 6=βk+1 = βk+2 = · · · = βn.

Under H0, the log-likelihood function is given by

log L0 = n log(γβ) + (β− 1)
n

∑
i=1

log(xi) + (γ− 1)
n

∑
i=1

log(1− xβ
i ). (1)

We take the first derivatives of the Equation (1) with respect to γ and β. The MLEs γ̂
and β̂ of γ and β can be obtained by solving the following equations:
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∂ log L0

∂γ
=

n
γ
+

n

∑
i=1

log(1− xβ
i ) = 0,

∂ log L0

∂β
=

n
β
+

n

∑
i=1

log(xi)− (γ− 1)
n

∑
i=1

xβ
i log(xi)

1− xβ
i

= 0.

Under H1, the log-likelihood function is given by

log L1 = k log(γ1β1) + (β1 − 1)
k

∑
i=1

log(xi) + (γ1 − 1)
k

∑
i=1

log(1− xβ1
i )

+ (n− k)(log(γnβn)) + (βn − 1)
n

∑
i=k+1

log(xi) + (γn − 1)
n

∑
i=k+1

log(1− xβn
i ).

(2)

Similarly, we take the first derivatives of Equation (2) with respect to γ1, β1, γn and
βn. The MLEs γ̂1, β̂1, γ̂n and β̂n can be obtained by solving the following equations:

∂ log L1

∂γ1
=

k
γ1

+
k

∑
i=1

log(1− xβ1
i ) = 0,

∂ log L1

∂β1
=

k
β1

+
k

∑
i=1

log(xi)− (γ1 − 1)
k

∑
i=1

xβ1
i log(xi)

1− xβ1
i

= 0,

∂ log L1

∂γn
=

n− k
γn

+
n

∑
i=k+1

log(1− xβn
i ) = 0,

∂ log L1

∂βn
=

n− k
βn

+
n

∑
i=k+1

log(xi)− (γn − 1)
n

∑
i=k+1

xβn
i log(xi)

1− xβn
i

= 0.

2.1. Likelihood Ratio Test

The LRT is one of the most commonly used change point detection methods. The
main idea of this method is to use the likelihood ratio idea to test the existence of some
distribution parameter change point, that is, to estimate the relevant parameters by finding
the maximum value of the likelihood function, where the change point itself is a parameter.
The LRT method is a problem discussed earlier in change-point theory, which has been
considered by many scholars. Said et al. [18] explained that the LRT procedure has
considerable ability to detect the parameter changes of the skew-normal distribution model.
Wang et al. [7] used LRT procedure to study the parameter changes of the skew-slash
distribution. In the following, we describe the LRT test procedure in detail.

Assuming that k is an integer between 1 and n, if the change point occurs at k, we
reject the null hypothesis H0 for a sufficiently large value of the log-likelihood ratio fn(x; k),
which is given by the following equation:

fn(x; k) = −2 log
(

L0

L1

)
= −2

[
n log(γ̂β̂) + (β̂− 1)

n

∑
i=1

log(xi) + (γ̂− 1)
n

∑
i=1

log(1− xβ̂
i )

− k log(γ̂1 β̂1)− (β̂1 − 1)
k

∑
i=1

log(xi)− (γ̂1 − 1)
k

∑
i=1

log(1− xβ̂1
i )

−(n− k)(log(γ̂n β̂n))− (β̂n − 1)
n

∑
i=k+1

log(xi)− (γ̂n − 1)
n

∑
i=k+1

log(1− xβ̂n
i )

]
.

We use γ̂, β̂, γ̂1, β̂1, γ̂n, and β̂n to represent MLEs under the corresponding hypothesis
of change point k. Since the change position k is unknown, the maximum value of the
selected log-likelihood ratio test statistic is naturally defined as
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Zn = max
1<k<n

fn(x; k).

Actually, if the change occurs at the very beginning or the very end of the data, we
may not have enough observations to obtain the MLEs of the parameters, or the MLEs of
the parameters may not be unique; see Said et al. [18]. Thus, we consider the trimmed
version of the test statistics given by Zou et al. [19], as shown in the following formula:

Z′n = max
k0<k<n−k0

fn(x; k),

There are several choices for k0. For example, Liu and Qian [20] suggested the choice
of k0 = [log n]2, Said et al. [18] chose k0 = 2[log n], with [x] representing the largest integer
that is not greater than x. In this paper, we also choose k0 = 2[log n]. Thus, we reject H0 if

Z′n = max
k0<k<n−k0

fn(x; k)

= max
k0<k<n−k0

{
−2

[
n log(γ̂β̂) + (β̂− 1)

n

∑
i=1

log(xi) + (γ̂− 1)
n

∑
i=1

log(1− xβ̂
i )

− k log(γ̂1 β̂1)− (β̂1 − 1)
k

∑
i=1

log(xi)− (γ̂1 − 1)
k

∑
i=1

log(1− xβ̂1
i )

−(n− k)(log(γ̂n β̂n))− (β̂n − 1)
n

∑
i=k+1

log(xi)− (γ̂n − 1)
n

∑
i=k+1

log(1− xβ̂n
i )

]}

is sufficiently large and the estimated change location k̂ = arg max
k0<k<n−k0

fn(x; k). This means

that for any given significance level α, we cannot reject H0 if Z′n < cα,n, where cα,n is the
critical value with respect to α for different sample size n. To obtain cα,n, we have to use the
following theorem.

Theorem 1 (Csörgó and Horváth [21]). Under H0, as n→ ∞, for all X ∈ R , we have

lim
n→∞

P
(

A(log u(n))Z′
1
2

n − B(log u(n)) ≤ x
)
= e−e−x

,

where
A(log u(n)) = (2 log log u(n))

1
2 ,

B(log u(n)) = 2 log log u(n) + log log log u(n)− log Γ(1),

and

u(n) =
n2 − 2n[log n] + (2[log n])2

(2[log n])2 .

Proof. According to Theorem A1 in Csörgó and Horváth [21], which is given in Appendix A,
let t1(n) =

2[log n]
n , t2(n) = 1− 2[log n]

n . Then, we obtain

u(n) =
1− t1(n)t2(n)

t1(n)(1− t2(n))
=

n2 − 2n[log n] + (2[log n])2

(2[log n])2 .

We consider the trimmed version of the test statistic Z′n and use Theorem A1 instead
of Corollary A1 in the proof.

Using Theorem 1, the approximation of cα,n is given by
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1− α =P
[
Z′n < cα,n|H0

]
= P

[
0 < Z′n < cα,n|H0

]
= P

[
0 < Z′

1
2

n < (cα,n)
1
2 |H0

]
=P
[
− B(log u(n)) < A(log u(n))Z′

1
2

n − B(log u(n)) < A(log u(n))(cα,n)
1
2

− B(log u(n))|H0

]
=P
[

A(log u(n))Z′
1
2

n − B(log u(n)) < A(log u(n))(cα,n)
1
2 − B(log u(n))

]
− P

[
A(log u(n))Z′

1
2

n − B(log u(n)) < −B(log u(n))
]

∼= exp
{
− exp

{
B(log u(n))− A(log u(n))(cα,n)

1
2

}}
− exp{− exp{B(log u(n))}}.

Thus,

cα,n ∼=
[

log[− log(1− α + exp{− exp{B(log u(n))}})]− B(log u(n))
−A(log u(n))

]2

. (3)

According to Equation (3), the empirical critical value cα,n at different significance
levels α and sample sizes n can be obtained, as shown in Table 1.

Table 1. Approximate critical values of LRT with different values of α and n.

n α = 0.01 α = 0.05 α = 0.1 n α = 0.01 α = 0.05 α = 0.1

15 27.9478 12.6744 8.8511 90 21.3668 13.6862 10.8365
20 21.6147 12.6386 9.4401 100 21.3745 13.7889 10.9661
35 21.4807 12.8847 9.7842 110 21.3845 12.6386 11.0768
40 21.4207 13.0768 10.0440 120 21.3957 13.9551 11.1734
50 21.3725 13.3602 10.4182 140 21.4191 14.0856 11.3344
60 21.3889 13.2315 10.2496 160 21.4050 14.0108 11.2422
70 21.3679 13.4170 10.4920 180 21.4238 14.1086 11.3626
80 21.3633 13.5646 10.6819 200 21.4425 14.1922 11.4649

2.2. Schwarz Information Criterion

The SIC was proposed by Schwarz [22] in order to remedy the inconsistency of
estimators in the model based on the Akaike information criterion (AIC). The advantage of
SIC is that it is unnecessary to derive the asymptotic distribution of complex test statistics.
The SIC under H0 is expressed as

SIC(n) = −2 log L0(γ̂, β̂) + 2 log n,

and for a fixed change location 1 < k < n where k is an integer, we consider

SIC(k) = −2 log L1(γ̂1, β̂1, γ̂n, β̂n) + 4 log n,

where log L0(·) and log L1(·) are the log-likelihood functions of the random sample under
H0 and H1, respectively. The choice to accept H0 or H1 depends on the principle of the
minimum information criteria, i.e., we fail to reject H0 if

SIC(n) < min
1<k<n

SIC(k),

and we reject H0 if
SIC(n) > min

1<k<n
SIC(k),

and the location of the change point can be estimated using k̂ as follows:
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SIC(k̂) = min
1<k<n

SIC(k).

To make the conclusion more statistically convincing, we consider the following test
statistic:

Tn = SIC(n)− min
1<k<n

SIC(k).

Thus, we fail to reject H0 if Tn < cα,n instead of SIC(n) < min
1<k<n

SIC(k), where cα,n is

determined by

1− α = P
[

SIC(n) < min
1<k<n

SIC(k) + cα,n|H0

]
.

In fact,

Tn = SIC(n)− min
1<k<n

SIC(k) = max
1<k<n

[SIC(n)− SIC(k)]

= max
1<k<n

[
−2 log L0(γ̂, β̂) + 2 log n−

(
−2 log L1(γ̂1, β̂1, γ̂n, β̂n) + 4 log n

)]
= max

1<k<n

[
−2
(
log L0(γ̂, β̂)− log L1(γ̂1, β̂1, γ̂n, β̂n)

)
− 2 log n

]
= Z′n − 2 log n,

where Z′n is the test statistic of the LRT. Therefore, we obtain that

Z′n = Tn + 2 log n.

Theorem 2 (Csörgó and Horváth [21]). Under H0, as n→ ∞, for all X ∈ R , we have

lim
n→∞

P
(

A(log n)Z′
1
2

n − B(log n) ≤ x
)
= e−2e−x

,

where
A(log n) = (2 log log n)

1
2 ,

and
B(log n) = 2 log log n + log log log n− log Γ(1).

Proof. In Csörgó and Horváth [21]’s C1− C9 conditions, we use Theorem A2 from Csörgó
and Horváth [21] to give the above conclusion; see Appendix A for Theorem A2.

From Theorem 2 above, the approximate expression of cα,n is derived as follows:

1− α =P
[

SIC(n) < min
1<k<n

SIC(k) + cα,n|H0

]
=P[Tn < cα,n|H0] = P

[
Z′n − 2 log n < cα,n|H0

]
= P

[
0 < Z′

1
2

n < (2 log n + cα,n)
1
2

]
=P
[
− B(log n) < A(log n)Z′

1
2

n − B(log n) < A(log n)(2 log n + cα,n)
1
2 − B(log n)

]
=P
[

A(log n)Z′
1
2

n − B(log n) < A(log n)(2 log n + cα,n)
1
2 − B(log n)

]
− P

[
A(log n)Z′

1
2

n − B(log n) < −B(log n)
]

∼= exp
{
−2 exp

{
B(log n)− A(log n)(2 log n + cα,n)

1
2

}}
− exp{−2 exp{B(log n)}}.

Thus,

cα,n ∼=
[

B(log n)
A(log n)

− 1
A(log n)

log log[1− α + exp{−2 exp{B(log n)}}]−
1
2

]2

− 2 log n. (4)
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According to Equation (4), the critical empirical value cα,n based on the SIC method can
be obtained under different significance levels α and sample sizes n, as shown in Table 2.

Table 2. Approximate critical values of SIC with different values of α and n.

n α = 0.01 α = 0.05 α = 0.1 n α = 0.01 α = 0.05 α = 0.1

15 21.1982 10.6171 6.7932 70 16.8038 8.0819 4.8147
20 20.1949 10.1444 6.4766 80 16.4902 7.8592 4.6200
25 19.5007 9.7790 6.2091 90 16.2178 7.6623 4.4463
30 18.9726 9.4804 5.9793 100 15.9772 7.4857 4.2894
35 18.5476 9.2275 5.7782 150 15.0740 6.8020 3.6737
40 18.1927 9.0080 5.5997 200 14.4507 6.3133 3.2268
50 17.6222 8.6400 5.2932 250 13.9751 5.9321 2.8751
60 17.1733 8.3381 5.0362 300 13.5907 5.6193 2.5847

2.3. Modified Information Criterion

The MIC approach was proposed by Chen et al. [23] to solve the issue of the re-
dundancy of parameters caused by the SIC method. The MIC under the H0 is expressed
as

MIC(n) = −2 log L0(γ̂, β̂) + 2 log n. (5)

For a fixed change location 1 < k < n,

MIC(k) = −2 log L1(γ̂1, β̂1, γ̂n, β̂n) +

[
4 +

(
2k
n
− 1
)2
]

log n, (6)

where log L0(·) and log L1(·) are the log-likelihood functions of the random sample under
H0 and H1, respectively. Then, we fail to reject H0 if

MIC(n) < min
1<k<n

MIC(k),

and we reject H0 if
MIC(n) > min

1<k<n
MIC(k).

Therefore, we can estimate the position of the change point k̂ by

MIC(k̂) = min
1<k<n

MIC(k). (7)

In addition, we give the critical empirical value of the MIC method by the test statistic
Sn in order to detect the presence of a change point faster and more efficiently. In the case
that the Sn value is large enough, we reject the null hypothesis H0, and the Sn value is
given by the following formula:

Sn = MIC(n)− min
1<k<n

MIC(k) + 2 log n

= −2 log L0(γ̂, β̂)− min
1<k<n

{
−2 log L1(γ̂1, β̂1, γ̂n, β̂n) +

(
2k
n
− 1
)2

log n

}
.

(8)

For a given significance level α, the critical value of the test statistic under the null
hypothesis H0 is simulated by the Bootstrap method. Namely, a certain number of Bootstrap
samples are drawn from the generated random numbers by sampling with replacement,
and then the values of the test statistics are obtained from the Bootstrap samples, which
are sorted, and the percentage of the sorted test statistics is used as the critical value for a
given significance level. Tables 3 and 4 are the critical value of the MIC detection method
obtained by the bootstrap method with some specific Kw distributions.
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Table 3. Approximate critical values for MIC under different parameters.

n Kw(·) α = 0.01 α = 0.05 α = 0.1 Kw(·) α = 0.01 α = 0.05 α = 0.1

15 (4, 0.5) 16.0214 12.1440 9.9910 (0.5, 3.5) 12.7805 8.4131 6.6169
20 (4, 0.5) 13.5348 9.4129 7.7097 (0.5, 3.5) 9.1797 4.8304 3.0177
30 (4, 0.5) 12.5291 9.3880 7.2124 (0.5, 3.5) 14.6126 9.0067 6.5348
40 (4, 0.5) 12.4641 9.4281 7.4635 (0.5, 3.5) 13.3377 8.6004 5.0923
50 (4, 0.5) 11.6223 7.6873 6.0628 (0.5, 3.5) 12.0217 7.2745 5.1606
55 (4, 0.5) 15.2560 12.1560 10.1627 (0.5, 3.5) 16.4481 13.0652 11.7789
60 (4, 0.5) 19.7908 13.6454 11.8123 (0.5, 3.5) 16.1109 12.2783 10.4150
80 (4, 0.5) 17.7720 13.5650 11.3690 (0.5, 3.5) 16.7704 12.3216 10.3872
100 (4, 0.5) 17.4697 12.9035 10.9909 (0.5, 3.5) 10.0437 6.7711 4.1757
150 (4, 0.5) 18.0801 13.0013 11.0911 (0.5, 3.5) 15.0437 11.7711 10.1757
200 (4, 0.5) 16.2452 12.5573 10.6762 (0.5, 3.5) 15.5848 11.9499 10.0195

Table 4. Approximate critical values for MIC under parameters.

n Kw(·) α = 0.01 α = 0.05 α = 0.1

15 (5, 2) 19.4604 12.9669 10.3656
20 (5, 2) 18.4070 13.0958 10.5379
30 (5, 2) 21.8363 16.0958 14.8520
40 (5, 2) 17.5919 13.9549 11.5930
50 (5, 2) 17.2003 10.8230 8.3099
55 (5, 2) 18.2946 13.9232 11.8138
60 (5, 2) 17.9610 13.1129 11.1608
80 (5, 2) 16.4356 12.1177 10.8341
100 (5, 2) 11.3732 7.0083 6.4604
150 (5, 2) 15.2264 11.8086 9.2993
200 (5, 2) 15.6294 12.1649 10.5434

However, we do not know whether the real dataset satisfies H0 or H1, which would be
a problem. Thus, we cannot re-sample the data directly. We first assume the data satisfying
H0, which indicates it should be fitted by a Kw distribution, say, Kw0 = Kw(γ̂, β̂), where γ̂
and β̂ are obtained by the MLE method. Then. we generate a random sample based on Kw0
denoted by x1, x2, . . . , xn. Then, B Bootstrap samples are drawn from this generated sample
with replacement, denoted by y(i)1 , y(i)2 , . . . , y(i)n , i = 1, 2, . . . , B. For each Bootstrap sample,

we calculate Sn denoted by S(i)
n , i = 1, 2, . . . , B. Thus, the p_value can be approximated as

follows:

p_value =
1
B

B

∑
i=1

I
(

S(∗)
n ≤ S(i)

n

)
, (9)

where I(·) is the indicator function and S(∗)
n is the value of Sn calculated from the original

real data.

3. Simulation

Power refers to the probability of accepting the correct alternative hypothesis after
rejecting the null hypothesis in a hypothesis test. We did not consider whether the test
procedures detected the correct change point because we only evaluated whether there
was a change point. Then, we gave the performance of the test procedures based on the
efficacy of Z′n, Tn, and Sn in different simulation scenarios. In the simulation study, the
assessment of the robustness of the test relative to the underlying distribution was not the
goal of the study; thus, all the data generated in the simulation part came from the Kw
distribution. We conducted simulations 1000 times under Kw(γ, β) with different values
of the shape parameters γ and β. The test statistics Z′n, Sn and Tn were calculated and
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compared to the critical values corresponding to the significance levels of α = 0.01, 0.05
and 0.1. After rejecting the null hypothesis, we calculated the powers of the SIC, the LRT,
and the MIC with different sample sizes n = 20, 50, and 100 and assumed the change
occurs at the position of approximately 1

4 , 1
2 and 3

4 of the sample sizes n. The detailed
results are displayed in Tables 5–13. We choose the parameter values (γ1, β1) = (4, 0.5),
(0.5, 3.5) and (5, 2) before the change, which was based on the increasing, decreasing, and
unimodal types of the Kw distribution, respectively. The selection of parameter values
after the change is based on the changing of one parameter or two parameters of the Kw
distribution. In a word, the following three Kw distributions are considered:

I The distribution follows Kw(4, 0.5) before the change and follows Kw(γn, βn) after
the change, where (γn, βn) are set to be (4, 2.5), (0.2, 0.5), (2, 2), (4, 0.5).

II The distribution follows Kw(0.5, 3.5) before the change and follows Kw(γn, βn) after
the change, where (γn, βn) are set to be (0.5, 1.5), (1.2, 3.5), (0.8, 2.5), (0.5, 3.5).

III The distribution follows Kw(5, 2) before the change and follows Kw(γn, βn) after the
change, where (γn, βn) are set to be (5, 3.5), (0.5, 2), (1.5, 4.5), (5, 2).

Table 5. Powers of the LRT, SIC, and MIC procedures at (γ1, β1) = (4, 0.5), n = 20.

(γn, βn)

α k Model (γ1, β1) (4, 2.5) (0.2, 0.5) (2, 2) (4, 0.5)

0.01 5 LRT (4, 0.5) 0.116 0.037 0.146 0.000
SIC (4, 0.5) 0.048 0.015 0.075 0.000
MIC (4, 0.5) 0.483 0.594 0.610 0.016

10 LRT (4, 0.5) 0.107 0.248 0.187 0.001
SIC (4, 0.5) 0.024 0.076 0.086 0.000
MIC (4, 0.5) 0.567 0.809 0.707 0.018

15 LRT (4, 0.5) 0.036 0.225 0.079 0.004
SIC (4, 0.5) 0.008 0.159 0.018 0.000
MIC (4, 0.5) 0.592 0.804 0.583 0.015

0.05 5 LRT (4, 0.5) 0.520 0.471 0.641 0.027
SIC (4, 0.5) 0.342 0.235 0.434 0.012
MIC (4, 0.5) 0.734 0.773 0.857 0.033

10 LRT (4, 0.5) 0.601 0.846 0.780 0.029
SIC (4, 0.5) 0.337 0.615 0.551 0.026
MIC (4, 0.5) 0.838 0.968 0.930 0.037

15 LRT (4, 0.5) 0.326 0.815 0.542 0.025
SIC (4, 0.5) 0.148 0.665 0.275 0.013
MIC (4, 0.5) 0.656 0.932 0.804 0.029

0.1 5 LRT (4, 0.5) 0.726 0.782 0.831 0.049
SIC (4, 0.5) 0.558 0.510 0.673 0.030
MIC (4, 0.5) 0.853 0.928 0.912 0.065

10 LRT (4, 0.5) 0.813 0.962 0.923 0.051
SIC (4, 0.5) 0.583 0.840 0.794 0.037
MIC (4, 0.5) 0.912 0.988 0.975 0.065

15 LRT (4, 0.5) 0.610 0.893 0.778 0.030
SIC (4, 0.5) 0.354 0.835 0.549 0.017
MIC (4, 0.5) 0.782 0.970 0.908 0.037
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Table 6. Powers of the LRT, SIC, and MIC procedures at (γ1, β1) = (4, 0.5), n = 50.

(γn, βn)

α k Model (γ1, β1) (4, 2.5) (0.2, 0.5) (2, 2) (4, 0.5)

0.01 15 LRT (4, 0.5) 0.795 0.869 0.930 0.000
SIC (4, 0.5) 0.617 0.672 0.837 0.000
MIC (4, 0.5) 0.979 0.998 0.998 0.002

25 LRT (4, 0.5) 0.828 0.995 0.955 0.001
SIC (4, 0.5) 0.639 0.960 0.904 0.000
MIC (4, 0.5) 0.996 1.000 1.000 0.006

35 LRT (4, 0.5) 0.530 0.988 0.977 0.002
SIC (4, 0.5) 0.300 0.976 0.718 0.000
MIC (4, 0.5) 0.964 0.999 0.994 0.002

0.05 15 LRT (4, 0.5) 0.963 0.996 0.998 0.012
SIC (4, 0.5) 0.930 0.983 0.983 0.006
MIC (4, 0.5) 0.996 1.000 1.000 0.014

25 LRT (4, 0.5) 0.986 1.000 0.999 0.022
SIC (4, 0.5) 0.955 0.998 0.995 0.004
MIC (4, 0.5) 1.000 1.000 1.000 0.034

35 LRT (4, 0.5) 0.936 0.999 0.996 0.010
SIC (4, 0.5) 0.810 0.997 0.978 0.009
MIC (4, 0.5) 0.998 1.000 1.000 0.011

0.1 15 LRT (4, 0.5) 0.991 1.000 0.999 0.026
SIC (4, 0.5) 0.974 0.996 0.993 0.024
MIC (4, 0.5) 0.999 1.000 1.000 0.032

25 LRT (4, 0.5) 0.997 1.000 1.000 0.029
SIC (4, 0.5) 0.992 1.000 0.999 0.029
MIC (4, 0.5) 1.000 1.000 1.000 0.034

35 LRT (4, 0.5) 0.989 0.999 0.999 0.017
SIC (4, 0.5) 0.931 0.998 0.996 0.011
MIC (4, 0.5) 1.000 1.000 1.000 0.028

Table 7. Powers of the LRT, SIC, and MIC procedures at (γ1, β1) = (4, 0.5), n = 100.

(γn, βn)

α k Model (γ1, β1) (4, 2.5) (0.2, 0.5) (2, 2) (4, 0.5)

0.01 25 LRT (4, 0.5) 0.995 1.000 0.998 0.002
SIC (4, 0.5) 0.989 1.000 0.997 0.001
MIC (4, 0.5) 0.999 1.000 1.000 0.008

50 LRT (4, 0.5) 1.000 1.000 1.000 0.000
SIC (4, 0.5) 0.998 1.000 1.000 0.000
MIC (4, 0.5) 1.000 1.000 1.000 0.005

75 LRT (4, 0.5) 0.972 1.000 1.000 0.002
SIC (4, 0.5) 0.913 1.000 0.996 0.000
MIC (4, 0.5) 0.991 1.000 1.000 0.006

0.05 25 LRT (4, 0.5) 1.000 1.000 1.000 0.033
SIC (4, 0.5) 0.999 1.000 1.000 0.006
MIC (4, 0.5) 1.000 1.000 1.000 0.046

50 LRT (4, 0.5) 1.000 1.000 1.000 0.023
SIC (4, 0.5) 1.000 1.000 1.000 0.012
MIC (4, 0.5) 1.000 1.000 1.000 0.051

75 LRT (4, 0.5) 0.999 1.000 1.000 0.034
SIC (4, 0.5) 0.999 1.000 1.000 0.010
MIC (4, 0.5) 0.999 1.000 1.000 0.042
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Table 7. Cont.

(γn, βn)

α k Model (γ1, β1) (4, 2.5) (0.2, 0.5) (2, 2) (4, 0.5)

0.1 25 LRT (4, 0.5) 1.000 1.000 1.000 0.075
SIC (4, 0.5) 1.000 1.000 1.000 0.033
MIC (4, 0.5) 1.000 1.000 1.000 0.093

50 LRT (4, 0.5) 1.000 1.000 1.000 0.072
SIC (4, 0.5) 1.000 1.000 1.000 0.040
MIC (4, 0.5) 1.000 1.000 1.000 0.099

75 LRT (4, 0.5) 1.000 1.000 1.000 0.094
SIC (4, 0.5) 1.000 1.000 1.000 0.039
MIC (4, 0.5) 1.000 1.000 1.000 0.096

Table 8. Powers of the LRT, SIC, and MIC procedures at (γ1, β1) = (0.5, 3.5), n = 20.

(γn, βn)

α k Model (γ1, β1) (0.5, 1.5) (1.2, 3.5) (0.8, 2.5) (0.5, 3.5)

0.01 5 LRT (0.5, 3.5) 0.165 0.388 0.208 0.001
SIC (0.5, 3.5) 0.105 0.271 0.162 0.000
MIC (0.5, 3.5) 0.423 0.680 0.495 0.003

10 LRT (0.5, 3.5) 0.246 0.493 0.327 0.001
SIC (0.5, 3.5) 0.162 0.320 0.218 0.000
MIC (0.5, 3.5) 0.514 0.812 0.570 0.006

15 LRT (0.5, 3.5) 0.201 0.268 0.254 0.001
SIC (0.5, 3.5) 0.111 0.151 0.159 0.000
MIC (0.5, 3.5) 0.450 0.677 0.477 0.002

0.05 5 LRT (0.5, 3.5) 0.446 0.694 0.518 0.028
SIC (0.5, 3.5) 0.334 0.586 0.411 0.004
MIC (0.5, 3.5) 0.879 0.953 0.892 0.036

10 LRT (0.5, 3.5) 0.543 0.794 0.616 0.045
SIC (0.5, 3.5) 0.394 0.736 0.469 0.017
MIC (0.5, 3.5) 0.903 0.987 0.923 0.059

15 LRT (0.5, 3.5) 0.476 0.599 0,517 0.024
SIC (0.5, 3.5) 0.300 0.542 0.377 0.006
MIC (0.5, 3.5) 0.866 0.959 0.898 0.039

0.1 5 LRT (0.5, 3.5) 0.763 0.875 0.833 0.043
SIC (0.5, 3.5) 0.581 0.761 0.643 0.031
MIC (0.5, 3.5) 0.989 0.999 0.997 0.056

10 LRT (0.5, 3.5) 0.823 0.928 0.889 0.054
SIC (0.5, 3.5) 0.628 0.875 0.713 0.048
MIC (0.5, 3.5) 0.999 1.000 0.998 0.078

15 LRT (0.5, 3.5) 0.781 0.885 0.814 0.049
SIC (0.5, 3.5) 0.526 0.747 0.638 0.034
MIC (0.5, 3.5) 0.992 0.998 0.998 0.061
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Table 9. Powers of the LRT, SIC, and MIC procedures at (γ1, β1) = (0.5, 3.5), n = 50.

(γn, βn)

α k Model (γ1, β1) (0.5, 1.5) (1.2, 3.5) (0.8, 2.5) (0.5, 3.5)

0.01 15 LRT (0.5, 3.5) 0.543 0.889 0.735 0.001
SIC (0.5, 3.5) 0.326 0.750 0.551 0.000
MIC (0.5, 3.5) 0.790 0.987 0.820 0.010

25 LRT (0.5, 3.5) 0.639 0.932 0.825 0.004
SIC (0.5, 3.5) 0.426 0.841 0.624 0.001
MIC (0.5, 3.5) 0.897 0.995 0.901 0.015

35 LRT (0.5, 3.5) 0.588 0.805 0.744 0.000
SIC (0.5, 3.5) 0.365 0.648 0.547 0.000
MIC (0.5, 3.5) 0.832 0.981 0.827 0.007

0.05 15 LRT (0.5, 3.5) 0.724 0.975 0.844 0.029
SIC (0.5, 3.5) 0.608 0.929 0.810 0.010
MIC (0.5, 3.5) 0.929 0.999 0.965 0.033

25 LRT (0.5, 3.5) 0.803 0.989 0.906 0.033
SIC (0.5, 3.5) 0.742 0.956 0.858 0.010
MIC (0.5, 3.5) 0.954 1.000 0.988 0.048

35 LRT (0.5, 3.5) 0.732 0.966 0,850 0.034
SIC (0.5, 3.5) 0.635 0.886 0.789 0.012
MIC (0.5, 3.5) 0.926 0.999 0.971 0.048

0.1 15 LRT (0.5, 3.5) 0.922 0.994 0.968 0.070
SIC (0.5, 3.5) 0.720 0.969 0.817 0.031
MIC (0.5, 3.5) 0.992 1.000 0.997 0.085

25 LRT (0.5, 3.5) 0.950 1.000 0.980 0.079
SIC (0.5, 3.5) 0.823 0.986 0.916 0.033
MIC (0.5, 3.5) 0.999 1.000 1.000 0.095

35 LRT (0.5, 3.5) 0.908 0.996 0.950 0.077
SIC (0.5, 3.5) 0.749 0.952 0.868 0.035
MIC (0.5, 3.5) 0.988 1.000 0.999 0.090

Table 10. Powers of the LRT, SIC, and MIC procedures at (γ1, β1) = (0.5, 3.5), n = 100.

(γn, βn)

α k Model (γ1, β1) (0.5, 1.5) (1.2, 3.5) (0.8, 2.5) (0.5, 3.5)

0.01 25 LRT (0.5, 3.5) 0.773 0.974 0.821 0.002
SIC (0.5, 3.5) 0.618 0.932 0.693 0.001
MIC (0.5, 3.5) 0.890 1.000 0.945 0.011

50 LRT (0.5, 3.5) 0.840 0.996 0.854 0.007
SIC (0.5, 3.5) 0.759 0.984 0.763 0.001
MIC (0.5, 3.5) 0.981 1.000 0.993 0.019

75 LRT (0.5, 3.5) 0.835 0.948 0.839 0.002
SIC (0.5, 3.5) 0.625 0.908 0.638 0.000
MIC (0.5, 3.5) 0.919 1.000 0.949 0.007

0.05 25 LRT (0.5, 3.5) 0.809 0.997 0.880 0.032
SIC (0.5, 3.5) 0.673 0.993 0.857 0.007
MIC (0.5, 3.5) 0.939 1.000 0.994 0.060

50 LRT (0.5, 3.5) 0.895 1.000 0.957 0.038
SIC (0.5, 3.5) 0.780 1.000 0.911 0.012
MIC (0.5, 3.5) 0.992 1.000 0.998 0.074

75 LRT (0.5, 3.5) 0.819 0.996 0,870 0.025
SIC (0.5, 3.5) 0.674 0.996 0.813 0.007
MIC (0.5, 3.5) 0.955 1.000 0.992 0.039
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Table 10. Cont.

(γn, βn)

α k Model (γ1, β1) (0.5, 1.5) (1.2, 3.5) (0.8, 2.5) (0.5, 3.5)

0.1 25 LRT (0.5, 3.5) 0.943 1.000 0.989 0.076
SIC (0.5, 3.5) 0.833 0.996 0.900 0.037
MIC (0.5, 3.5) 0.997 1.000 1.000 0.087

50 LRT (0.5, 3.5) 0.987 1.000 0.995 0.080
SIC (0.5, 3.5) 0.890 1.000 0.963 0.029
MIC (0.5, 3.5) 0.999 1.000 1.000 0.090

75 LRT (0.5, 3.5) 0.945 1.000 0.992 0.064
SIC (0.5, 3.5) 0.847 1.000 0.895 0.034
MIC (0.5, 3.5) 0.992 1.000 1.000 0.082

Table 11. Powers of the LRT, SIC, and MIC procedures at (γ1, β1) = (5, 2), n = 20.

(γn, βn)

α k Model (γ1, β1) (5, 3.5) (0.5, 2) (1.5, 4.5) (5, 2)

0.01 5 LRT (5, 2) 0.274 0.263 0.295 0.000
SIC (5, 2) 0.099 0.114 0.118 0.000
MIC (5, 2) 0.483 0.600 0.513 0.007

10 LRT (5, 2) 0.381 0.494 0.333 0.002
SIC (5, 2) 0.144 0.218 0.119 0.000
MIC (5, 2) 0.686 0.749 0.808 0.007

15 LRT (5, 2) 0.186 0.358 0.152 0.001
SIC (5, 2) 0.069 0.144 0.036 0.000
MIC (5, 2) 0.445 0.617 0.611 0.005

0.05 5 LRT (5, 2) 0.670 0.796 0.848 0.013
SIC (5, 2) 0.514 0.599 0.635 0.004
MIC (5, 2) 0.749 0.926 0.870 0.050

10 LRT (5, 2) 0.828 0.887 0.963 0.038
SIC (5, 2) 0.648 0.684 0.864 0.006
MIC (5, 2) 0.885 0.974 0.968 0.063

15 LRT (5, 2) 0.659 0.694 0,818 0.043
SIC (5, 2) 0.319 0.358 0.731 0.005
MIC (5, 2) 0.750 0.954 0.804 0.059

0.1 5 LRT (5, 2) 0.743 0.922 0.884 0.053
SIC (5, 2) 0.629 0.784 0.861 0.049
MIC (5, 2) 0.823 0.983 0.957 0.074

10 LRT (5, 2) 0.782 0.975 0.894 0.062
SIC (5, 2) 0.635 0.888 0.881 0.051
MIC (5, 2) 0.857 0.998 0.996 0.080

15 LRT (5, 2) 0.623 0.871 0.883 0.049
SIC (5, 2) 0.569 0.658 0.820 0.043
MIC (5, 2) 0.835 0.996 0.968 0.080
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Table 12. Powers of the LRT, SIC, and MIC procedures at (γ1, β1) = (5, 2), n = 50.

(γn, βn)

α k Model (γ1, β1) (5, 3.5) (0.5, 2) (1.5, 4.5) (5, 2)

0.01 15 LRT (5, 2) 0.512 0.886 0.999 0.001
SIC (5, 2) 0.403 0.719 0.998 0.001
MIC (5, 2) 0.600 1.000 1.000 0.004

25 LRT (5, 2) 0.519 0.954 1.000 0.002
SIC (5, 2) 0.415 0.761 1.000 0.001
MIC (5, 2) 0.649 1.000 1.000 0.013

35 LRT (5, 2) 0.507 0.932 1.000 0.000
SIC (5, 2) 0.404 0.754 0.998 0.000
MIC (5, 2) 0.612 1.000 1.000 0.005

0.05 15 LRT (5, 2) 0.832 0.997 1.000 0.028
SIC (5, 2) 0.668 0.842 1.000 0.008
MIC (5, 2) 0.834 1.000 1.000 0.035

25 LRT (5, 2) 0.894 0.999 1.000 0.036
SIC (5, 2) 0.670 0.853 1.000 0.011
MIC (5, 2) 0.866 1.000 1.000 0.048

35 LRT (5, 2) 0.814 0.878 1.000 0.017
SIC (5, 2) 0.655 0.796 1.000 0.008
MIC (5, 2) 0.848 1.000 1.000 0.027

0.1 15 LRT (5, 2) 0.909 1.000 1.000 0.064
SIC (5, 2) 0.777 0.998 1.000 0.028
MIC (5, 2) 0.948 1.000 1.000 0.078

25 LRT (5, 2) 0.923 1.000 1.000 0.069
SIC (5, 2) 0.796 0.999 1.000 0.038
MIC (5, 2) 0.962 1.000 1.000 0.083

35 LRT (5, 2) 0.881 1.000 1.000 0.050
SIC (5, 2) 0.737 0.979 1.000 0.031
MIC (5, 2) 0.958 1.000 1.000 0.081

Table 13. Powers of the LRT, SIC, and MIC procedures at (γ1, β1) = (5, 2), n = 100.

(γn, βn)

α k Model (γ1, β1) (5, 3.5) (0.5, 2) (1.5, 4.5) (5, 2)

0.01 25 LRT (5, 2) 0.755 0.917 1.000 0.002
SIC (5, 2) 0.628 0.767 1.000 0.000
MIC (5, 2) 0.799 1.000 1.000 0.009

50 LRT (5, 2) 0.869 0.993 1.000 0.003
SIC (5, 2) 0.722 0.869 1.000 0.001
MIC (5, 2) 0.890 1.000 1.000 0.013

75 LRT (5, 2) 0.832 0.962 1.000 0.002
SIC (5, 2) 0.710 0.814 1.000 0.001
MIC (5, 2) 0.765 1.000 1.000 0.010

0.05 25 LRT (5, 2) 0.894 0.999 1.000 0.035
SIC (5, 2) 0.775 0.860 1.000 0.008
MIC (5, 2) 0.937 1.000 1.000 0.061

50 LRT (5, 2) 0.945 0.949 1.000 0.039
SIC (5, 2) 0.804 0.921 1.000 0.009
MIC (5, 2) 0.979 1.000 1.000 0.071

75 LRT (5, 2) 0.848 0.973 1.000 0.025
SIC (5, 2) 0.716 0.885 1.000 0.009
MIC (5, 2) 0.940 1.000 1.000 0.067
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Table 13. Cont.

(γn, βn)

α k Model (γ1, β1) (5, 3.5) (0.5, 2) (1.5, 4.5) (5, 2)

0.1 25 LRT (5, 2) 0.979 1.000 1.000 0.065
SIC (5, 2) 0.898 0.998 1.000 0.028
MIC (5, 2) 0.989 1.000 1.000 0.086

50 LRT (5, 2) 0.984 1.000 1.000 0.081
SIC (5, 2) 0.918 1.000 1.000 0.037
MIC (5, 2) 0.997 1.000 1.000 0.091

75 LRT (5, 2) 0.943 1.000 1.000 0.075
SIC (5, 2) 0.852 0.999 1.000 0.030
MIC (5, 2) 0.992 1.000 1.000 0.087

From the simulation results in Tables 5–13, we observe that the power of the SIC
procedure is generally the lowest for all situations, and the power of the MIC procedure is
higher than the powers of the procedures based on SIC and LRT. At a small sample size of
n = 20, the powers of the SIC and LRT procedures are relatively low compared to the MIC
procedure; even the power of the MIC is not good enough. We also note that the generated
data do not have variable points; in many cases, the rejection rate of the MIC test is greater
than the nominal α level, probably because the MIC-based approach takes into account the
effect of variable point location on model complexity. Next, we can also observe that as
the significance level α and sample size n increase, the powers of the LRT, SIC and MIC
procedures increase accordingly. The power values are higher when the change occurs
around the middle of the data than the power values when the change occurs near the
beginning or the end. Furthermore, we notice that the smaller the difference between
(γ1, β1) and (γn, βn), the smaller the power. In other words, when the parameter value
of the null hypothesis and the alternative hypothesis are closer, the smaller the power is.
Moreover, when sample sizes are large enough, the power approaches 1, which indicates
that the three criteria are consistent. In the simulation results shown, if the statistics of
the three criteria satisfy Pr (reject H0 when H0 is false) ≥ Pr (reject H0 when H0 is true),
then the statistics of the three criteria are unbiased. From the comparison, the MIC test is
usually anti-conservative and does not respect the nominal α, but it is the most powerful
test in H1 among the settings with good behavior under H0. Therefore, we conclude that
the MIC method has a significant ability to detect change points compared to the LRT and
SIC methods.

4. Application

The Kw distribution is widely used in hydrology and related fields. Meanwhile, all the
methods to detect the change point of the real dataset can be extended to the case where
there may be a dependency between the observations, which is also common in the case
of time series data, as in the literature, such as Chen and Ning [5] and Tian and Yang [8].
In this section, since the overall effect of the MIC is better, we consider applying the MIC
testing procedure to detect possible change points in the following real datasets.

4.1. Shasta Reservoir

The first dataset describes the monthly water capacity from the Shasta reservoir in
California, USA. The data are recorded for February from 1991 to 2010 (see for details the
website http://cdec.water.ca.gov/reservoir_map.html (accessed on 15 December 2022),
which can also be found in Sultana et al. [24]. The parameter estimates and the Kolmogorov–
Smirnov (K-S) test correlation results are given in Table 14. The probability density fitting
curves for the dataset are also shown in Figure 1, which means the dataset fits the Kw
distribution reasonably well. In fact, Nadar et al. [13] used this dataset to conduct statistical
analyses on the Kw distribution based on record data.

http://cdec.water.ca.gov/reservoir_map.html
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Table 14. The MLEs and the goodness-of-fit statistics for the Shasta reservoir dataset.

Model n γ̂ β̂ K–S (pval)

Kw 20 6.060 4.083 0.221 (0.245)

Figure 1. Histogram and PDF fitting of Shasta reservoir dataset.

We applied the MIC test criteria of Equations (5)–(7). Under the null hypothesis H0,
the MIC(n) is calculated as −20.958. Under the alternative hypothesis H1, min

2≤k≤19
MIC(k)

is calculated as −31.156, which corresponds to k = 3. The corresponding estimated values
of the parameters are γ̂1 = 4.131, β̂1 = 6.074, γ̂n = 10.801, β̂n = 9.253 and Sn = 16.189 with
p_value = 0.004 when using Equations (8) and (9). Since p_value is less than 0.05, there is
a change point occurring at position 3, which corresponds to the year 1993. According to
Yates et al. [25], 1993 corresponded to a wet year in the Shasta reservoir, California. Figure 2
shows the dataset of monthly water capacity for the Shasta reservoir and the position of
the change point.

Figure 2. The Shasta reservoir dataset and position of change point.
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Figure 3 shows the MIC values associated with different values of k. The estimated
change location corresponds to the smallest MIC value.

Figure 3. The distribution of MIC for the Shasta reservoir.

4.2. Susquehanna River

The second dataset describes the maximum flood level (in millions of cubic feet per
second) for the Susquehanna River at Harrisburg, Pennsylvania, from 1890 to 1969. Each
number is the maximum flood level for four years. Khan et al. [26] investigated these
data with the Kw distribution and also considered fitting the flood data with the Kw
distribution. Mazucheli et al. [27] used this dataset to verify the practicability of the unit
Weibull distribution. Bantan et al. [28] applied the improved Kw model to this dataset,
demonstrating the superiority of the distribution. Furthermore, the parameter estimates
and the Kolmogorov–Smirnov (K-S) test correlation results are given in Table 15. The
probability density fitting curves for the dataset are also shown in Figure 4.

Figure 4. Histogram and PDF fitting of Susquehanna river dataset.
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Table 15. The MLEs and the goodness-of-fit statistics for Susquehanna river dataset.

Model n γ̂ β̂ K–S (pval)

Kw 20 3.353 11.658 0.213 (0.284)

In order to detect the change point in the dataset, we obtained, under the null hypothe-
sis H0, the MIC(n), which was calculated as −19.741. Under the alternative hypothesis H1,

min
2≤k≤19

MIC(k) was calculated as −34.055 which corresponds to k = 13. The corresponding

parameters are γ̂1 = 14.116, β̂1 = 3.444, γ̂n = 8.504, β̂n = 5.992 and Sn = 20.306 with
p_value = 0.018. Since p_value is less than 0.05, we can say that the data have a change
point, and the position of the change point is 13, which corresponds to the period 1934–1937.
According to Roland et al. [29], a serious flood occurred in 1936. Figure 5 shows the dataset
of the maximum flood level for the Susquehanna River and the position of the change
point.

Figure 5. The Susquehanna river dataset and position of change point.

Figure 6 shows the MIC values for all possible values of k. The smallest value of the
MIC corresponds to the estimated change location.

Figure 6. The distribution of MIC for the Susquehanna river.
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4.3. Strengths of 1.5 cm Glass Fibres

The third dataset represents the strengths of 1.5 cm glass fibres, initially obtained by
workers at the UK National Physical Laboratory. Glass fiber is used to make a variety of
products. It is a good electrical insulator; therefore, it is used in the manufacture of many
electrical and electronic products and circuit boards. It is also a heat-resistant material used
to make products that heat up quickly, such as batteries and motors. The observations of the
dataset are found in Elgarhy [30]. The parameter estimates and the Kolmogorov–Smirnov
(K–S) test correlation results are given in Table 16. The probability density fitting curves for
the dataset are also shown in Figure 7. Thus, the dataset fit the Kw distribution reasonably
well.

Table 16. The MLEs and the goodness-of-fit statistics for 1.5cm glass fibre strengths dataset.

Model n γ̂ β̂ K–S (pval)

Kw 27 1.383 6.461 0.240 (0.074)

Figure 7. Histogram and PDF fitting of 1.5 cm glass fibre strengths dataset.

Under the null hypothesis H0, the MIC(n) was calculated as −24.539. Under the
alternative hypothesis H1, min

2≤k≤26
MIC(k) was calculated as −30.775, which corresponds to

k = 20. The corresponding estimated value of the parameters are γ̂1 = 2.414, β̂1 = 0.829,
γ̂n = 2.844, β̂n = 1.404, and Sn = 12.828, with p_value = 0.001. Since p_value is less than
0.05, that is to say, there is a change point occurring at position 20, it can be seen that a
change point is indicated at the strength of the twentieth, corresponding to the dataset of
0.10. This shows that for the dataset of twenty-seven strengths, the strength of the glass
fibers changes at the twentieth strength, and this change remains until the twenty-seventh
strength. Figure 8 shows the original data and change point position.
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Figure 8. The strengths of 1.5cm glass fibres dataset and position of change point.

Figure 9 shows the values of the MIC associated with different values of k. The
estimated change location corresponds to the smallest MIC value.

Figure 9. The distribution of the MIC for the strengths of 1.5 cm glass fibres.

5. Conclusions

In this paper, we use the LRT, SIC and MIC methods to perform a change point analysis
of the Kw distribution, which is widely used in hydrology. Simulations are performed
under different scenarios as a means to elucidate the performance of the three change point
detection methods. The simulation results show that, in general, the MIC method has
more advantages than the SIC and LRT methods in detecting the position of change points.
Finally, the MIC method is used to detect the change point of real datasets, and significant
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change points can be detected. Although the MIC method can work well for the change
point detection based on the Kw distribution, the power of it is not big enough for small
sizes, and we will work on an alternative method to improve it.

Author Contributions: W.T.: Conceptualization, Methodology, Validation, Investigation, Resources,
Supervision, Project Administration, Visualization, Writing—review and editing; L.P.: Software,
Formal analysis, Data curation, Writing—original draft preparation, Visualization; C.T., W.N.: Soft-
ware, Methodology, Visualization. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The source of the datasets are provided in the paper.

Acknowledgments: We would like to thank the reviewers for carefully and thoroughly reading this
manuscript and for the thoughtful comments and constructive suggestions, which helped us improve
the quality of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Theorem A1 (Csörgó and Horváth [21]). If 0 < t1(n) < t2(n) < 1 and

u(n) =
1− t1(n)t2(n)

t1(n)(1− t2(n))
→ ∞, as n→ ∞;

then we have

lim
n→∞

P(A(log u(n)) sup
t1(n)≤t≤t2(n)

Mr(t) ≤ x + Dr(log u(n))) = exp(−e−x),

for all x.

Corollary A1 (Csörgó and Horváth [21]). We have for all 0 < λ < ∞

lim
n→∞

P(A(log n) sup
λ/n≤t<1−λ/n

Mr(t) ≤ x + Dr(log n)) = exp(−2e−x), −∞ < x < ∞.

Theorem A2 (Csörgó and Horváth [21]). If H0 and C1− C9 hold; then we have

lim
n→∞

P
{

A(log n)Z
1
2
n ≤ t + Dd(log n)

}
= exp(−2e−t),

for all t.
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