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Abstract: The Voronoĭ summation formula is known to be equivalent to the functional equation
for the square of the Riemann zeta function in case the function in question is the Mellin tranform
of a suitable function. There are some other famous summation formulas which are treated as
independent of the modular relation. In this paper, we shall establish a far-reaching principle which
furnishes the following. Given a zeta function Z(s) satisfying a suitable functional equation, one
can generalize it to Z f (s) in the form of an integral involving the Mellin transform F(s) of a certain
suitable function f (x) and process it further as Z̃ f (s). Under the condition that F(s) is expressed as
an integral, and the order of two integrals is interchangeable, one can obtain a closed form for Z̃ f (s).
Ample examples are given: the Lipschitz summation formula, Koshlyakov’s generalized Dedekind
zeta function and the Plana summation formula. In the final section, we shall elucidate Hamburger’s
results in light of RHBM correspondence (i.e., through Fourier–Whittaker expansion).

Keywords: summation formulas; modular relation; Mellin tranform; Riemann zeta function;
functional equation

MSC: 11F32; 11F20; 11A25

1. The Principle and Statement of Results

We shall provide a new principle in the theory of modular relations—equivalent
assertions to the functional equation—which enables us to establish a closed form for
processed sums (Equation (5)) of ∑∞

n=1 an f (λn) in Equation (4), where f admits the Mellin
or some integral transform F, for example. We shall refer to (the use of) Theorem 1 and its
special cases in Corollary 1 and Example 1 as the Principle. This could be perceived by the
argument of [1].

Let

f (x) =
1

2πi

∫
(c)

x−sF(s)ds, Re x > 0, c > 0, F(s) =
∫ ∞

0
ξs f (ξ)

dξ

ξ
(1)

be the Mellin transform pair which satisfies the conditions of convergence necessitated in
our discussion. ( f , F) will always be used as the Mellin transform pair.

Let {λn} be a strictly increasing sequence of real numbers with λ1 > 0. Let

Z(s) =
∞

∑
n=1

an

λs
n

(2)

be absolutely convergent for Res = σ > 1. The abscissa of absolute convergence can be σ∗a ,
but we assume it to be one for the sake of simplicity. Suppose it satisfies the functional
equation of the following form (where we understand the right-hand side member may be
a different Dirichlet series):

Z(s) = G(s)Z(1− s), (3)

Mathematics 2023, 11, 535. https://doi.org/10.3390/math11030535 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11030535
https://doi.org/10.3390/math11030535
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11030535
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11030535?type=check_update&version=2


Mathematics 2023, 11, 535 2 of 32

where G(s) is a certain gamma factor to be specified in each occasion and the line of
reflection is chosen to be 1

2 instead of a more general r
2 ∈ R (cf. Convention below).

For c > 1, we have

Z f (s) =
∞

∑
n=1

an f (λn) =
1

2πi

∫
(c)

F(z)Z(z)dz (4)

in the first instance. Here and in what follows, we use this type of suggestive notation to
mean that the processing factors— f and F in this case—may also depend on the extraneous
parameter s. This is similar for Equations (5), (7), etc. The following theorem gives the
principle for obtaining a closed form for Z̃ f (s):

Theorem 1. We write Z̃ f (s) for a modified form of Z f (s) by a certain process, and we assume that

Z̃(s) = Z̃ f (s) =
1

2πi

∫
(c)

Ff (z)G f (z)Z(z)dz (5)

for some c > 1 and Re x ≥ 0 in Equation (1), where Ff (z) is the processed Mellin inversion F(s)
in Equation (1). Here and throughout, G f (z), FF(w), etc. denote certain gamma factors, and
GF(w, z) may depend only on z and may work as G f (z). FF(w) may be a function constructed
from f . Suppose the integration path (c) of Equation (5) may be shifted to (−d), 0 < d < 1, such
as with the resulting residual function P(s) (sum of the residues in the vertical strip −d < σ < c):

Z̃ f (s) =
1

2πi

∫
(−d)

Ff (z)G f (z)Z(z)dz + P(s) = J(s) + P(s), (6)

Say that

Ff (z) =
∫

GF(w, z)FF(w)δ(w)dw, (7)

where the integral for Ff (z) may be the infinite integral over (0, ∞), the contour integral or may
indicate the integrand itself, γ(z) = γ(z, s), δ(w) = δ(w, z, s) are simple functions specified at
each occasion and that the order of integration is interchangeable:

1
2πi

dz
∫
(−d)

∫
dw =

∫
dw

1
2πi

∫
(−d)

. dz (8)

We write

I(w) :=
1

2πi

∫
(−d)

GF(w, z)M(z)Z(1− z)γ(z)dz =
∞

∑
n=1

anK(w, n), (9)

where
K(w, n) =

1
2πi

∫
(−d)

GF(w, z)M(z)λn
z−1γ(z)dz (10)

and where
M(z) = G(z)G f (z). (11)

Then, if both K(w, n) and

J(s) =
∫

I(w)FF(w)δ(w)dw (12)

admit a closed form, then Equation (12) gives a closed form for Z̃ f (s).

For convenience of application, we extract an unprocessed case (Equation (4)) (i.e., the
integral operator in Equation (7) for Ff is the identity operator as a corollary):
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Corollary 1. Consider the processed zeta function Z f (z) in Equation (4). Suppose the integration
path (c) may be shifted to (−d), 1

2 < d < 1, with the resulting residual function P(s) (sum of the
residues in the vertical strip −d < σ < c):

Z f (s) =
1

2πi

∫
(−d)

F(z)Z(z)dz + P(s) = J(s) + P(s), (13)

where

J(s) = I(s) =
1

2πi

∫
(−d)

F(z)G(z)Z(1− z)γ(z.s)dz =
∞

∑
n=1

anK(s, n), (14)

K(s, n) =
1

2πi

∫
(−d)

F(z)G(z)λn
z−1γ(z, s)dz.

Then, if Equation (14) is expressed in a closed form, it gives a closed form for Z f (z).

We note the specification

Ff (z) = GF(w, z), Ff (z)G f (z) = GF(w, z)G f (z) = F(z), F(z)M(z) = G(z),

G f (z) = 1, FF(w)δ(w) = 1.

We state the consequences of Theorem 1 in terms of the Dedekind zeta function ζΩ(s)
of an algebraic number field Ω of degree of two at most, which we let represent the case of
the Riemann zeta function ζ(s), the zeta function Φ(s) associated with a modular form and
ζ2(s), which is a generating function of the divisor function according to Ω = Q, where Ω
is an imaginary quadratic field or Ω is a real quadratic field. The authors of [2,3] generalized
the divisor problem to the case of the mth power of the Dedekind zeta function and obtained
the closed form for the partial sum for arbitrary degree. The authors of [4] established the
identities of Hardy and Voronoĭ and those of the imaginary and real quadratic fields, while
the authors of [5] contained the case of the Epstein zeta function with a positive definite
binary quadratic form. These are unified as shown in Table 1 by viewing the zeta functions
as represented by the Dedekind zeta function.

Table 1. Gamma factors in respective cases.

Section FF(w) GF(w, z) G f (z) K(·, n), γ(z, s) δ(·)

Section 2 Γ(−w)Γ(w +
s) Γ(w + z) cos π

2 z (73) (−2παω)−w

Section 3 1 Γ(w− z) Γ(z) cos π
2 z (102) γ(z)

Section 4 f (iw)− f (−iw)
2i

G f (z) 1
sin π

2 z (130) 1

Let Ω be an algebraic number field of a discriminant ∆ and degree χ ≤ 2:

χ = r1 + 2r2, (15)

where r1 resp. 2r2 indicates the real resp. imaginary conjugates, and let

ζΩ(s) =
∞

∑
n=1

an

ns , an = ∑
Na=n

1, (16)

be the Dedekind zeta function, which is absolutely convergent for σ = Re s > 1 on the
grounds that

an = O(nη), (17)

for every η > 0.
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The functional equation reads

A−sΓr1
( s

2

)
Γr2(s)ζΩ(s) = A−(1−s)Γr1

(
1− s

2

)
Γr2(1− s)ζΩ(1− s), (18)

where our A is the inverse of Koshlyakov’s:

A =
2r2 π

χ
2√
|∆|

. (19)

The Dedekind zeta function has a simple pole at s = 1 with residue

ρ =
2r+1πr2 Rh

W
√
|∆|

, (20)

where r = r1 + r2 − 1 is the rank of the unit group, h is the class number, R is the regulator
of Ω and W is the number of roots of unity in Ω. This may be expressed in the case where
χ ≤ 2 as

ρ = −
2r+1πr2 ζ

(r)
Ω (0)√
|∆|

. (21)

By implementing

G(s) =
Γr1
(

1−s
2

)
Γr2(1− s)

Γr1
( s

2
)
Γr2(s)

, (22)

then we can express Equation (18) as

ζΩ(s) = A2s−1G(s)ζΩ(1− s). (23)

Necessary information on algebraic numbers is available in many books, (see, for
example, [6]). In applying Equation (23) to other cases, care must be taken regarding the
constants. For example, in the case of the zeta function Φ(s) associated with a modular
form of weight of 2k, then A = 2π, the line of reflection is 2k, and G(s) is the same value as
that of the imaginary quadratic case such that Equation (23) takes the following form (cf.
Lemma 4 below):

Φ(s) = (−1)kG(s)Φ(2k− s).

In such a case, we understand (−1)kΦ(2k− s) is another Dirichlet series ψ(2k− s) in
the setting of Definition 1:

Definition 1. Under the notation in Definition 2, we consider the functional equation

A−sΓr1
( s

2

)
Γr2(s)ϕ(s) = A−(1−s)Γr1

(
1− s

2

)
Γr2(1− s)ψ(1− s). (24)

We call the cases (r1, r2) = (1, 0), (r1, r2) = (0, 1) and (r1, r2) = (2, 0) for Equation (24)
the Riemann, Hecke and Voronoǐ type functional equations, respectively. For the Hecke type, we
understand Equation (24) to mean Equation (145) in Definition 2, with the line of reflection being
σ = r so as to include the weight aspect.

Convention. Throughout what follows, we form a convention where we let Equation (18)
represent the general functional equation (Equation (24)), and for the Hecke type where
(r1, r2) = (0, 1), it is to be understood in Definition 2 with all the basic results in Theorem 6.
We state the results with r = 1 elsewhere. The transition to the general r is simple while
treating different Dirichlet series ϕ(s), and ψ(s) is more involved. In most applications, we
proceed as in Example 1 below such that an represents the ideal function in Equation (16)
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or the coefficients of other allied zeta-functions. We denote the residual function with P(s),
which may be different for different zeta functions (Tables 2 and 3).

Table 2. Dedekind zeta function and allied functional equation.

Field Zeta Covering Gamma Factor

rational Riemann fundamental Γ
( s

2
)

imaginary quadr. Dedekind modular form, Hecke Γ(s)

real quadr. Dedekind divisor function, Voronoĭ Γ2( s
2
)

Table 3. Values of constants corrected and modified from the table in [1] (I, p. 122).

Constant A ζΩ(0) ρ (Residue)

Rational
√

π − 1
2 1

Imaginary quadr. 2π√
|∆|

− h
W − 2πζΩ(0)√

|∆|

Real quadr. π√
|∆|

0 − 4ζ ′Ω(0)√
∆

The Hurwitz–Lerch L-function Φ(z, s, α; χ) is defined by

Φ(z, s, α; χ) =
∞

∑
n=0

χ(n)zn

(n + α)s

which is absolutely and uniformly convergent on any compact subset of

{|z| ≤ 1} × {σ > 1} × {α > −1} (25)

According to [7] (p. 30), the special case where χ is the trivial character mod 1 is the
Hurwitz–Lerch zeta-function Φ(z, s, w), defined by

Φ(z, s, α) =
∞

∑
n=0

zn

(n + α)s (26)

which is absolutely and uniformly convergent on any compact subset of

{|z| ≤ 1} × {σ > 1} × {α ∈ C, α 6= 0,−1,−2, · · · }, (27)

where a suitable branch is chosen of (n + α)s. Compare this with [8] (I, pp. 27–31) for α ∈ C
not being a non-positive integer (often restricted to 0 < α ≤ 1) and whether |z| < 1 or
|z| = 1, σ = Re s > 1.

The Lipschitz–Lerch transcendent L(x, s, α) = Φ(e2πix, s, α)was stated in [9] (pp. 121–123)
as a special case with x ∈ R:

L(x, s, α) =
∞

∑
n=0

e2πinx

(n + α)s . (28)

For intended applications, we choose

{Im z ≥ 0} × {σ > 1} × {α ∈ C, Re α ≥ 0}, (29)

as the domain of absolute convergence. The convergence condition stated in [9] (p. 122, (11)) is
mainly as a special case, especially for the second condition x ∈ Z, and σ > 1 is the convergence
condition for the Hurwitz zeta function. The first condition x ∈ R\Z, σ > 0 (for uniform
convergence and not absolute convergence) may be changed to x ∈ H. The upper half-plane
and σ > 0 correspond to the condition |z| < 1 for Φ(z, s, α) above. The research in [10] is
devoted to the theory of the Lipschitz–Lerch transcendent, which is referred to as the Lerch
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zeta function, and contains detailed proofs of the functional equation. Compare this with [9]
(p. 121, (1)), in which the Hurwitz–Lerch zeta function part is verbatim to [8] (I, pp. 27–31).

Let `s(x) be the boundary Lerch zeta function defined by

`s(x) =
∞

∑
n=1

e2πixnn−s, σ > 1 or σ > 0, x /∈ Z, (30)

which has its counterpart in the Hurwitz zeta function:

ζ(s, x) =
∞

∑
n=0

1
(n + x)s , σ > 1. (31)

This is continued meromorphically over the whole plane with a simple pole at s = 1.
Both of them reduce to the Riemann zeta function

ζ(s, 1) = `s(1) = ζ(s).

The distribution property of Φ(z, s, w) was studied in [11], and the Lipschitz sum-
mation formula was studied in [12] (pp. 128–132) and recently [13] interpreted as the
functional equation for L(x, s, wα). In other words, Theorem 2 is the same as the functional
equation for Corollary 2.

We define the Lipschitz–Lerch transcendent associated with the field Ω by

LΩ(x, s, α) =
∞

∑
n=0

an
e2πinx

(n + α)s , (32)

where a0 is a constant, which is determined so that Equation (32) reduces to Equation (31)
for Ω = Q. Hence, we implement a0 = −2ζΩ(0) = 1. The authors of [1] (p. 241) introduced
the Hurwitz-type Dedekind zeta function

ζΩ(s, w) = LΩ(0, s, w) = −2
ζΩ(0)

ws +
∞

∑
n=1

an

(n + w)s , σ > 1, 0 < w < 1, (33)

which will be studied in Section 3:

Example 1. We assume the conditions in Theorem 4. We proceed almost verbatim to [12], and
Equation (4) reads for Z(s) = ζΩ(s) as follows:

ζΩ, f (s) =
∞

∑
n=1

an f (n) =
1

2πi

∫
(c)

F(s)ζΩ(s)ds.

which is processed as Z̃ f (s) = ζ̃Ω, f (s) in Equation (5).
Then, in light of the estimate

ζΩ(s) = O(|t|χ(1−σ)), σ ≤ 0 (34)

in the strip σ1 ≤ σ ≤ σ2 and the Stirling formula (Equation (42)), we may uniformly shift the line
of integration to σ = −d, 0 < d < 1, passing through the poles in the strip −d < σ < c. Hence,
we have Equation (13) with Z(s) = ζΩ(s).

Then, by applying Equation (7), changing the order of integration and applying the functional
in Equation (23), we arrive at Equation (12) with I(w) in Equation (9).
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Then, since 1− d > 1, we may use the Dirichlet series for ζΩ(1− ζ), and Equation (9) reads
as follows:

I(w) =
∞

∑
n=1

anK(w, n), K(w, n) =
1

2πi

∫
(−d)

GF(w, z)M(z)nz−1γ(z)dz. (35)

The most essential part is justification of the change in order of integration. In Theorems 2 and 4,
the exponential reduction is lost, and integration path(s) are to be taken such that the exponent of |t| is
< −1.

In the setting of Corollary 1, Equation (35) reads as follows:

J(s) = I(s) =
∞

∑
n=1

anK(s, n), K(s, n) =
1

2πi

∫
(−d)

F(z)M(z)nz−1γ(z, s)dz (36)

while γ(z, s) involves the factor A2z−1.

Example 2. Many transforms may be viewed as prototype applications of the Principle with-
out processing, namely the Hecke gamma transform in Equation (39) (and the X-transform in
Equation (165)) leading to the Bochner modular relation (Equation (173)), the beta transform
(Equation (51)) leading to the Fourier–Bessel expansion (Equation (151)), the Hardy transform
(and K-transform (Equation (165))) leading to the partial fraction expansion in Equation (174),
the confluent hypergeometric transform in Equation (56) leading to Lerch’s transformation formula,
Theorem 2, etc.

Notation and Terminologies

The gamma function is defined as the Mellin transform of e−ξ as in Equation (38).
The extension of its validity plays an important role in our discussion. The extended right
half-plane may be stated as follows:

x = |x|eiθ , x 6= 0, −π

2
≤ θ ≤ π

2
, (37)

which is denoted by Re x ≥ 0:

Lemma 1. The Mellin transform pair

Γ(s) =
∫ ∞

0
ξse−ξ dξ

ξ
, e−x =

1
2πi

∫
(c)

x−zΓ(z)dz (38)

which is valid for Re x > 0 and 0 < c extends to the domain in Equation (37): Re x ≥ 0 for
0 < σ < 1 resp. 0 < c < 1.

Compare this with Lemma 3.
Most of the known Mellin transform pairs may be found in [14]. Compare this with [15] for

its theory. The Mellin transform in Equation (38) is often applied as the Hecke gamma transform

x−sΓ(s) =
∫ ∞

0
ξse−xξ dξ

ξ
(39)

which holds for x > 0, σ > 0 or Re x > 0, σ > 0. This is also true for Re x = 0, x 6= 0, 0 <
σ < 1. Compare this with [16] (Lemma 4.20, p. 169) for a very enlightening remark on
prehomogeneous vector spaces.
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We often make use of the following formulas, and we will not state the details at each
occurrence. First, there is the duplication formula:

Γ(2s) = 22s−1√π
−1Γ(s)Γ

(
s +

1
2

)
. (40)

Then, we have the reciprocity relation:

Γ(s)Γ(1− s) =
π

sin πs
. (41)

The Stirling formula [8] (p. 47, (6)) is

Γ(s) =
√

2πe−
π
2 |t||t|σ−

1
2 , |t| → ∞. (42)

We shall often use the Meijer G function, especially in Section 2 (partially because we
would like to show the hierarchy of special functions) which is defined by

Gm,n
p,q

(
z
∣∣∣∣ ar

bs

)
= Gm,n

p,q

(
z
∣∣∣∣ a1, . . . , an, an+1, . . . , ap

b1, . . . , bm, bm+1, . . . , bq

)

= Hm,n
p,q

(
z
∣∣∣∣ (a1, 1), . . . , (an, 1), (an+1, 1), . . . , (ap, 1)
(b1, 1), . . . , (bm, 1), (bm+1, 1), . . . , (bq, 1)

)

=
1

2πi

∫
L

m
∏
j=1

Γ
(
bj + s

) n
∏
j=1

Γ
(
1− aj − s

)
p

∏
j=n+1

Γ
(
aj + s

) q
∏

m+1
Γ
(
1− bj − s

) z−sds.

(43)

Compare this with, for example, [8] (I, p. 207), which contains most of the information
needed in our argument. The integrals are absolutely convergent if m + n > 1

2 (p + q), a
condition which is satisfied in almost all the cases appearing below. Some delicate cases can
be dealt with by other convergence conditions. We often state the G function expression for
the special functions used such that it will yield a hierarchy.

The following special functions will often be used. We refer to Abramowitz and Stegun
(1965), among others [8,17,18] for the J Bessel function [8] (II, p. 83, (36)), which reads as follows:

Jν(x) =
1

2πi

∫
(c)

Γ(−z)
Γ(1 + ν + z)

( x
2

)ν+2z
dz =

1
2

G0,1
2,0

(
x
2

∣∣∣∣ 1, 1 + ν
−

)
. (44)

The Bessel function of the third kind or Basset’s function, which we refer to as the K
Bessel function, is introduced in many ways. The function considered by Voronoĭ [19] (p. 211)

2
∫ ∞

1

e−2
√

xt
√

t2 − 1
dt,

√
x > 0.

is a special case (s = 0) from [8] (II, p. 18, (15)), where

Γ
(

1
2
− s
)

Ks(z) =
√

π

(
1
2

z
)−s ∫ ∞

1

e−zt

(t2 − 1)s+ 1
2

dt,
√

x > 0. (45)

According to [1], this is the theory of K Bessel functions, and it is often used as the
inverse Heaviside integral

Kν(x) =
1

2πi

∫
L

2s−2Γ
(

s + ν

2

)
Γ
(

s− ν

2

)
x−s ds, (46)
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which is the inversion of∫ ∞

0
xsKν(x)

dx
x

= 2s−2Γ
(

s + ν

2

)
Γ
(

s− ν

2

)
. (47)

Equation (46) is often expressed as

2Kν(2z) =
1

2πi

∫
L

Γ
(

s +
ν

2

)
Γ
(

s− ν

2

)
z−2s ds = G2,0

0,2

(
z2
∣∣∣∣ −

ν
2 ,− ν

2

)
, (48)

or

2Kν(2z) =
1

2πi

∫
L

Γ(s)Γ(s− ν)zν−2s ds = zνG2,0
0,2

(
z2
∣∣∣∣ −

0,−ν

)
, (49)

where L is a suitable Bromwich path, which we often abbreviate as (c). In the real quadratic
case, the following particular case appears:

2K0(2z) =
1

2πi

∫
L

Γ(s)2zν−2s ds (50)

The main ingredient in Koshlyakov’s argument is the beta transform

Γ(s)(1 + x)−s = G1,1
1,1

(
x
∣∣∣∣ 1− s

0

)
=

1
2πi

∫
(c)

Γ(z)Γ(s− z)x−z dz, (51)

where −Re z < c < 0 and Re x ≥ 0, or

G1,1
1,1

(
x−1

∣∣∣∣ 1
s

)
=

1
2πi

∫
(c)

Γ(−w)Γ(w + s)xw dw.

This is a special case of

G1,1
1,1

(
z
∣∣∣∣ a

b

)
= Γ(1− a + b)zb(1 + z)a−b−1, (52)

which is not stated in [8].
The case in [8] (p. 256, (4)) reads as follows:

1F1(a, c; x) =
Γ(c)
Γ(c)

G1,1
2,1

(
1
−x

∣∣∣∣ 1, c
a

)
=

Γ(c)
Γ(a)

1
2πi

∫
(γ)

Γ(−z)Γ(a + z)
Γ(c + z)

(−x)s dz

=
Γ(c)
Γ(c)

G1,1
1,2

(
−x
∣∣∣∣ 1− a

0, 1− c

)
,

where 1F1(a, c; x) and U(a, c : x) in Equation (56) form the fundamental system of the
confluent hypergeometric DE.

By letting c = 1, a = w + 1 and z + 1 = s, we have

1F1(w + 1, 1; x) =
1

Γ(w + 1)
1

2πi

∫
(γ+1)

Γ(1− s)Γ(w + s)
Γ(z)

(−x)s−1 ds (53)

Lemma 2. We have the Mellin transform pair e−xGm,n
p,q (ax|)̇↔ Gm,n+1

p+1,q (a|)̇ [8] (I, (16), p. 338):

∫ ∞

0
xz−1e−xGm,n

p,q

(
ax

a1, · · · , ap
b1, · · · , bq

)
dx = Gm,n+1

p+1,q

(
a

1− s, a1, · · · , ap
b1, · · · , bq

)
. (54)

In addition, according to [8] (I, (9), p. 309), we have

Gm,n
p,q

(
z−1
∣∣∣∣ ar

bs

)
= Gn,m

q,p

(
z
∣∣∣∣ 1− bs

1− ar

)
. (55)
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2. General Lipschitz Summation Formula

Since in this section we shall be concerned with the confluent hypergeometric function,
we state the basic knowledge of its theory. The confluent hypergeometric function U(a, c; z),
also denoted by Ψ(a, c; z), was defined, for example, by [8] (I, p. 256, (5)):

Γ(a)Γ(1 + a− c)zaU(a, c; z) =
1

2πi

∫
(γ)

Γ(−w)Γ(w + a)Γ(w + 1 + a− c)z−wdw (56)

= G2,1
1,2

(
z
∣∣∣∣ 1

a, 1 + a− c

)
which is valid for |arg| < 3π

2 , where (γ) signifies a vertical path w = γ + iv, −∞ < v < ∞
suitably indented to separate the poles of Γ(−a) from those of Γ(w + a)Γ(w + 1 + a− c).

The confluent hypergeometric function U(a; b; z) is single-valued and analytic for
−π < arg z < π and is one of two independent solutions to the confluent hypergeometric
differential equation satisfying the boundary condition that w(z)→ 0 as z→ ∞ (compare
with, for example, [8] (p. 278)). This verifies the formula in [8] (I, p. 255, (2), p. 260, (4)) and,
most relevant to us, [20] (p. 505, 13.2.5):

Γ(a)U(a, c; ξ) =
∫ ∞

0
tae−ξt(1 + t)c−a−1 dt

t
=M[ f (·,− · log z, c− a− 1, 1)](a) (57)

for Re a > 0.
The Mellin transform F(s) of

f (x) = f (x, z, s, w) =
zx

(x + w)s , σ > 1. (58)

is
F(z) = wz−sΓ(z)U(z, z + 1− s,− log zw). (59)

The following [13] (Corollary 3) was deduced from the Ewald expansion [13] (Corollary 2),
which in turn was a consequence of [13] (Theorem 4), where [13] (Theorem 4) is the modular
relation corresponding to the ramified functional equation proven in [13] (Lemma 1). We
shall treat the more general case (Equation (68)) in the proof, but only the rational case is
tractable. We state the quadratic case as Proposition 1 at the end of the section:

Theorem 2. (Lerch’s transformation formula) For the Lipschitz–Kerch transcendent (Equa-
tion (28)), we have the transformation formula

L(x, 1− s, α) (60)

=
Γ(s)
(2π)s

(
e

πi
2 s−2πxαiL

(
−α, s, x

)
+ e−

πi
2 s+2π(1−x)αiL

(
α, s, 1− x

))
,

where 0 < α, x < 1.

Proof. Equation (60) reads as follows

L(iω, 1− s, α) (61)

=
Γ(s)
(2π)s

(
e

πi
2 s−2πiωαi

∞

∑
n=0

e−2πiαn

(n + iω)s + e−
πi
2 s−2πiωαi

∞

∑
n=0

e2πiα(n+1)

(n + 1− iω)s

)
,

= e2πωα Γ(s)
(2π)s

(
e

πi
2 s

∞

∑
n=0

e−2πiαn

(n + iω)s + e−
πi
2 s

∞

∑
n=1

e2πiαn

(n− iω)s

)
= e2πωα Γ(s)

(2π)s

(
e

πi
2 sL(−α, s, iω) + e−

πi
2 sL(α, s,−iω)− 1

ωs

)
,
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when x = iω. Hence, by recalling Equation (32) for LΩ(x, s, α), we are to consider

1
2

e
πis
2 f+(x) =

1
2

1
2πi

∫
(c)

x−zF+(z)dz,
1
2

e−
πis
2 f−(x) =

1
2

1
2πi

∫
(c)

x−zF−(z)dz (62)

where F+(z) is the Mellin transform of f+(x), defined by

f+(x) = f (x,−α, s, ω) =
e−2πiαx

(x + iω)s , f−(x) = f (x, α, s,−ω) =
e2πiαx

(x− iω)s . (63)

By writing
1
2

e
πis
2 f+(x) =

ω−s

2
e−2πiαx(
1 + x

iω
)s ,

we then see that
F±(z) = (±i)zωz−sΓ(z)U(z, z + 1− s,−2παω). (64)

Hence, Equation (56) gives

ωsΓ(s)(−2παe∓
πi
2 )

z
F±(z) = Γ(s)Γ(z)(−2παω)zU(z, z + 1− s;−2παω) (65)

=
1

2πi

∫
(γ)

Γ(−w)Γ(w + z)Γ(w + s)(−2παω)−w dw,

such that

Ff (z) =
1
2
(F+(z) + F−(z)) =

1
ωsΓ(s)

(−2πα)−z cos
π

2
z (66)

×
(

1
2πi

∫
(γ)

Γ(−w)Γ(w + z)Γ(w + s)(−2παω)−w dw
)

Hence Equation (65) implies

1
2

e
πis
2 f+(x) +

1
2

e−
πis
2 f−(x) =

1
2

1
2πi

∫
(c)

x−z(F+(z) + F−(z))dz (67)

=
1

ωsΓ(s)
1

2πi

∫
(c)

x−z(−2πα)−z cos
π

2
z dz

×
(

1
2πi

∫
(γ)

Γ(−w)Γ(w + z)Γ(w + s)(−2παω)−w dw
)

By letting x = n and summing over n = 1, 2, · · · after multiplying by an, we have

Z̃ f (s) :=
1
2

(
e

πi
2 sLΩ(−α, s, iω) + e−

πi
2 sLΩ(α, s,−iω)− 2

ωs

)
=

1
2πi

∫
(c)

Ff (z)ζΩ(z)dz (68)

for c > 1. We work with Equation (68) up to Equation (75).
We may shift the integration path to Re z = −d at this stage or simply substitute

Equation (65) to deduce that

J(s) = Z̃ f (s) =
1

ωsΓ(s)
1

2πi

∫
(c)

ζΩ(z)(−2πα)−zΓ(w + z) cos
π

2
z dz (69)

×
(

1
2πi

∫
(γ)

Γ(−w)Γ(w + s)(−2παω)−w dw
)
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where γ < 0 is chosen to be so small that σ = γ not only separates the poles of gamma
factors but also satisfies γ + c < − 1

2 . Then, by the Stirling formula, we may change the
order of integration so that

J(s) =
1

2πi

∫
(γ)

I(w)Γ(−w)Γ(w + s)(−2παω)−w dw (70)

where

I(w) =
ω−s

Γ(s)
1

2πi

∫
(c)

ζΩ(z)(−2πα)−zΓ(w + z) cos
π

2
z dz. (71)

In the above process, we use Equation (33) and Z̃ f (s) K(s), and in Equation (68),

the correction term 2
ωs is to be replaced by 2ζΩ(0)

ωs in the general case. By moving the
integration path to Re z = −d < 0 and applying Equation (23), we obtain

I(w) =
ω−s

Γ(s)
1

2πi

∫
(−d)

Γ(w + z)G(z) cos
π

2
zζΩ(1− z)A2z−1(−2πα)−z dz (72)

=
1

2πi

∫
(−d)

Γ(w + z)M(1)(z)ζΩ(1− z)γ(z)dz =
∞

∑
n=1

anK(w, n),

where

K(w, n) =
1

2πi

∫
(−d)

Γ(w + z)M(1)(z)nz−1γ(z)dz, (73)

γ(z) =
ω−s

AΓ(s)
(−2A−2πα)

−z

and
M(1)(z) = M(1)

Ω (z) = G(z) cos
π

2
z =

1
Γ(z)

M(2)(z), (74)

where M(2)(z) is defined by Equation (101) below. Hence, we have

M(1)
Q (z) = 2z−1√π

1
Γ(z)

, (75)

M(1)
Q(
√
|∆|)

(z) =
Γ(1− z)

Γ(z)
cos

π

2
z = G(z) cos

π

2
z, ∆ < 0

M(1)
Q(
√

∆)
(z) = 22z−1 Γ(1− z)

Γ(z)
sin

π

2
z, ∆ > 0

For Ω = Q, it follows that

I(w) =
∞

∑
n=1

an

n
ω−s√π

2AΓ(s)
1

2πi

∫
(−d)

Γ(w + z)
Γ(z)

(−αn−1)
−z

dz (76)

=
∞

∑
n=1

an

n
ω−s

2Γ(s)
G1,0

1,1

(
−αn−1

∣∣∣∣ 0
w

)
,

where an = 1, but we keep them for other uses. According to [18] (p. 26) ([17] (p. 631, 8.4.2.
(3))), we have

G1,0
1,1

(
x
∣∣∣∣ a

b

)
=

θ(1− |z|)
Γ(a− b)

(1− x)a−b−1xb, (77)

and thus

G1,0
1,1

(
x
∣∣∣∣ 0

w

)
= xwG1,0

1,1

(
x
∣∣∣∣ −w

0

)
=

xw

Γ(−w)
(1− x)−w−1 =

1
Γ(−w)(1− x)

(
1
x
− 1
)−w

. (78)
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By substituting Equation (78) into Equation (76), we conclude that

I(w) =
∞

∑
n=1

an

n
ω−s

2Γ(s)Γ(−w)

(
1 +

α

n

)−1(
−1− n

α

)−w
. (79)

By substituting Equation (79) into Equation (70), we have

J(x) =
∞

∑
n=1

an
ω−s

2Γ(s)
(n + α)−1 1

2πi

∫
(γ)

Γ(w + s)(2πω(n + α))−w dw (80)

=
∞

∑
n=1

an
ω−s

2Γ(s)
(n + α)−1G1,0

0,1

(
2πω(n + α)

∣∣∣∣ −s
)

,

Since

G1,0
0,1

(
x
∣∣∣∣ −s

)
= xeG1,0

0,1

(
x
∣∣∣∣ −0

)
= xse−x, (81)

then Equation (80) leads to

J(s) =
∞

∑
n=1

an
ω−s

2Γ(s)
(n + α)−1(2πω(n + α))se−2πω(n+α) (82)

=
e−2πωα

2Γ(s)

∞

∑
n=1

an(n + α)s−1e−2πωn =
e−2πωα

2Γ(s)
LQ(iω, 1− s, α),

In other words, we have (61).

Corollary 2. (Lipschitz summation formula) For the complex variables z = x + iy, x > 0,
s = σ + it, σ > 1 and the real parameter 0 < w ≤ 1, we have the Lipschitz summation formula

(2π)s

Γ(s)

∞

∑
n=0

(n + w)s−1e−2πz(n+w) =
∞

∑
n=−∞

e2πinw

(z + in)s . (83)

Under the condition 0 < w < 1, this formula holds in the wider half-plane σ > 0.

Indeed, changing s or x in Equation (60) by 1− s or wi, respectively, leads to Equation (83)
and vice versa.

The special case of Equation (83) leads to

`1−s(x) =
Γ(s)
(2π)s

(
e−

πi
2 sζ(s, x) + e

πi
2 sζ(s, 1− x)

)
(84)

which is inverse to the Hurwitz formula:

ζ(1− s, x) =
Γ(s)
(2π)s

(
e−

πi
2 sls(x) + e

πi
2 sls(1− x)

)
. (85)

Equation (83) has sometimes been referred to as the Lipschitz summation formula
for good reason ([21–23], etc.). Knopp and Robbins [24] in Remark 1 stated their view
on the Lipschitz summation formula to the effect that it is conceptually simpler than
Riemann’s original method of using the theta series. However, at least the special case of
the Lipschitz summation formula (Corollary 2) can be readily deduced from the partial
fraction expansion for the cotangent function, which is known to be equivalent to the
functional equation for the Riemann zeta function, so we may say these are all equivalent.

In the case where Ω is a quadratic field, the argument is similar, depending on
Equation (53). In light of the form of Equation (75), it suffices to incorporate e±

π
2 z. We

rewrite nz−1γ(z) as
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nz−1γ(z) = − A2i
2πα

(−X)z−1, X = X(n) =
1

2πα
A2ni,

where

K(w, n) =
Aω−s

παΓ(s)
1

2πi

∫
(−d)

Γ(w + z)Γ(1− z)
Γ(z)

1
2i

(
(−X)z−1 − (−X̄)z−1

)
dz, (86)

=
Aω−sΓ(w + 1)

παΓ(s)
1
2i
(1F1(w + 1, 1, X)− 1F1(w + 1, 1, X̄))

We state the intermediate results for want of a better treatment:

Proposition 1.

Z̃ f (s) =
Aω−s

παΓ(s)

∞

∑
n=1

an
1

2πi

∫
(−d)

Γ(−w)Γ(w + 1)Γ(w + s) (87)

× 1
2i
(1F1(w + 1, 1, X)− 1F1(w + 1, 1, X̄))δ(w)dw

for ∆ < 0 and

Z̃ f (s) =
2Aω−s

παΓ(s)

∞

∑
n=1

an
1

2πi

∫
(−d)

Γ(−w)Γ(w + 1)Γ(w + s) (88)

× 1
2
(1F1(w + 1, 1, 4X) + 1F1(w + 1, 1, 4X̄))δ(w)dw

for ∆ > 0, where X = 1
2πα A2ni and δ(w) = (−2παω)−w

3. Koshlyakov’s Generalized Dedekind Zeta Function

The authors of [1] (pp. 243–247) established the general Lipschitz summation for-
mula for the perturbed Dedekind zeta function (Theorem 3) as a modular relation for
Koshlyakov’s slightly processed ζΩ(s) ([1] (23.10)):

Z̃ f (s) : =
e

πi
2 s

2
ζΩ(s, iω) +

e−
πi
2 s

2
ζΩ(s,−iω) + 2

ζΩ(0)
ωs (89)

=
e

πi
2 s

2

∞

∑
n=1

an

(n + iω)s +
e−

πi
2 s

2

∞

∑
n=1

an

(n− iω)s .

The authors of [25] (pp. 121–134) expounded upon Koshlyakov’s results as applica-
tions of the Fourier–Bessel expansion (compare with Equation (151)).

It is shown that in the imaginary quadratic case, each sum may be expressed as the
Fourier–Bessel expansion, which leads to Koshlyakov’s results by addition.

Here, we prove Theorem 3 as an immediate consequence of Corollary 1 and Example 1.
It is an analogue of the general Lipschitz summation formula in Section 2 as well as the
Fourier–Bessel expansion in Equation (151): G1,1

1,1 ↔ G2,0
0,2 . In [1] (p. 244), there are two

succeeding formulas for J which are incorrect. We state the corrected form (Equation (90))
for the second, which is a unified one:
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Theorem 3.

e
πi
2 s

2
ζΩ(s, iω) +

e−
πi
2 s

2
ζΩ(s,−iω) + 2

ζΩ(0)
ωs = Z̃ f (s) =

ζΩ(0)
ωs + J(s), (90)

J(s) = I(s)

=
π1− χ

2 ω−s

AΓ(s)

∞

∑
n=1

an

n
1

2πi

∫
(−d)

2r1(z−1)+rΓ(s− z)Γχ−1(1− z) sinr π

2
z cosr2

π

2
z(A2ωn)

z
dz.

I. In the case where Ω = Q, this amounts to the inverse Hurwitz formula (Equation (84)).
II. In the case where Ω = Q(

√
∆), ∆ < 0, each summand has the closed form

e
πi
2 s

2

∞

∑
n=1

an

(n + iω)s (91)

= ω1−sρi +
ζΩ(0)
2ωs + As ω

1−s
2

Γ(s)
εs+1

∞

∑
n=1

an

n
1−s

2
Ks−1(2εA

√
ωn),

where
ε = e

π
4 i. (92)

Together with its counterpart in Equation (111), this leads to the corrected version of [1]
(23.15):

Z̃ f (s) =
ζΩ(0)

ωs + As ω
1−s

2

Γ(s)

(
εs+1

∞

∑
n=1

an

n
1−s

2
Ks−1(2εA

√
ωn) (93)

+ ε̄s+1
∞

∑
n=1

an

n
1−s

2
Ks−1(2ε̄A

√
ωn)

)
.

III. In the case where Ω = Q(
√

∆), ∆ > 0, we have

e
πi
2 s

2
ζΩ(s, iω) +

e−
πi
2 s

2
ζΩ(s,−iω) (94)

= (2A)s ω
1−s

2

Γ(s)

( εs+1

i

∞

∑
n=1

an

n
1−s

2
Ks−1(4εA

√
ωn)− ε̄s+1

i

∞

∑
n=1

an

n
1−s

2
Ks−1(4ε̄A

√
ωn)

)
,

Proof. With the beta transform in Equation (51), we have

1
2

e
πis
2

1
(x + iω)s =

ω−s

2
1(

1 + x
iω
)s =

ω−s

2
1

2πi

∫
(c)

Γ(z)Γ(s− z)
Γ(s)

e
πiz
2 ωz dz

xz . (95)

Hence, we have

1
2

e
πis
2

1
(x + iω)s +

1
2

e−
πis
2

1
(x− iω)s =

ω−s

Γ(s)
1

2πi

∫
(c)

Γ(z)Γ(s− z) cos
π

2
zωz dz

xz , (96)

so that for c > 1, we have

Z̃ f (s) =
1

2πi

∫
(c)

Ff (z)G f (z)Z(z)dz =
ω−s

Γ(s)
1

2πi

∫
(c)

Γ(s− z)Γ(z) cos
π

2
z

ζΩ(z)
ω−z dz. (97)
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where

Ff (w) =
ω−s

Γ(s)
Γ(s− w)Γ(w) cos

π

2
w

1
ω−w = GF(w, z)FF(w)δ(w, s), (98)

GF(w, z) = 1,FF(w) = Γ(s− w)Γ(w) cos
π

2
w, δ(w, s) =

ω−s

Γ(s)
1

ω−w

In other words, without integration, the case of Corollary 1 is

Z̃ f (s) = P(s) + J(s), P(s) =
ζΩ(0)

ωs , (99)

where

J(s) = I(s) =
1

2πi

∫
(−d)

Γ(s− z)M(2)(z)ζΩ(1− z)γ(z, s)dz (100)

=
ω−s

AΓ(s)
1

2πi

∫
(−d)

Γ(s− z)M(2)(z)ζΩ(1− z)
dz

(A2ω)−z ,

In addition, 0 < d < 1, and

M(2)(z) = M(2)
Ω (z) = Γ(z)G(z) cos

π

2
z. (101)

Hence, Equation (36) reads as follows:

J(s) =
∞

∑
n=1

anK(s, n), K(s, n) =
1

2πi

∫
(−d)

Γ(s− z)M(2)(z)nz−1γ(z, s)dz (102)

γ(z, s) =
ω−s

AΓ(s)
(A2ω)

z
.

and

M(2)
Q (z) = 2z−1√π, (103)

M(2)
Q(
√
|∆|)

(z) = Γ(1− z) cos
π

2
z, ∆ < 0

M(2)
Q(
√

∆)
(z) = 22z−1Γ(1− z) sin

π

2
z, ∆ > 0.

I. The case where Ω = Q.

Since

K(s, n) =
(2π)s

2Γ(s)
1

n1−s e−2πwn,

then Equation (99) reads as follows:

Z̃ f (s) = −
1
2

ω−s +
(2A2)

s

2Γ(s)

∞

∑
n=1

e−2πwn

n1−s (104)

or
e

πi
2 s

2
ζ(s, iω) +

e−
πi
2 s

2
ζ(s,−iω)− 1

2
ω−s =

(2π)s

2Γ(s)

∞

∑
n=1

e−2πωn

n1−s , (105)

which amounts to the inverse Hurwitz formula (Equation (84)).
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II. The case where Ω = Q(
√

∆), ∆ < 0.

In this case, as can be seen from Equation (103), there is no effect of processing Z f (s) to
form Z̃ f (s) in Equation (89), and each term admits the Fourier–Bessel expansion. However,
as noticed in deriving Equation (99), the cosine function cancels the pole of ζΩ(z) at z = 1.
Thus, in treating each term, we must compute the residue at z = 1. In place of Equation (97),
we consider

e
πi
2 s

2

∞

∑
n=1

an

(n + iω)s =
ω−s

Γ(s)
1

2πi

∫
(c)

Γ(s− z)Γ(z)e
πi
2 z ζΩ(z)

ω−z dz. (106)

The residue of the integrand at z = 1 is

ω−s

Γ(s)
Res
z=1

Γ(s− z)Γ(z)e
πi
2 z ζΩ(z)

ω−z dz = ω1−sρi, (107)

Hence, we have

e
πi
2 s

2

∞

∑
n=1

an

(n + iω)s = ω1−sρi +
ζΩ(0)
2ωs +

1
2

∞

∑
n=1

anK(ε)(s, n), (108)

where

K(ε)(s, n) =
ω−s

2nAΓ(s)
1

2πi

∫
(−d)

Γ(s− z)Γ(1− z)ξ2z dz. (109)

with ξ = e
π
4 i A
√

ωn = εA
√

ωn, for example. By implementing s− z = w, the integral be-
comes

ξs+1 1
2πi

∫
(s+d)

Γ(w)Γ(w− (s− 1))ξs−1−2w dw = ξs+1ξs−1G2,0
0,2

(
ξ2
∣∣∣∣ −

0,−(s− 1)

)
(110)

= 2ξs+1Ks−1(2ξ)

under Equation (49). When substituting Equation (110) into Equation (108), we deduce
Equation (91).

The counterpart of Equation (91) (with ε̄ in place of ε in Equation (109)) reads as follows:

e
−πi

2 s

2

∞

∑
n=1

an

(n− iω)s (111)

= −ω1−sρi +
ζΩ(0)
2ωs + As ω

1−s
2

Γ(s)
ε̄s+1

∞

∑
n=1

an

n
1−s

2
Ks−1(2ε̄A

√
ωn)

Hence, by addition, Equation (93) follows. Clearly, this also follows from Equation (102)
under Euler’s formula.

III. The case where Ω = Q(
√

∆), ∆ > 0.

Equation (90) reads as follows:

Z̃ f (s) =
ζΩ(0)

ωs + J(s), J(s) =
∞

∑
n=1

anK1(s, n). (112)

where
K1(s, n) =

1
2πi

∫
(d)

Γ(s− z)Γ(1− z) sin
π

2
z(4A2ωn)

z
dz. (113)



Mathematics 2023, 11, 535 18 of 32

Under Euler’s identity, we have

J(s) =
1
2i

∞

∑
n=1

an

(
K(ε)

1 (s, n)− K(ε̄)
1 (s, n)

)
(114)

where
K(ε)

1 (s, n) =
1

2πi

∫
(d)

Γ(s− z)Γ(1− z)ξ1
z dz, ξ1 = 2εA

√
ωn. (115)

Hence, similar to Equations (93) and (94) follows.

The character analogue of the Lipschitz summation formula is known [26] (pp. 59–62),
and thus in the case where the characters are Kronecker characters associated with a
quadratic field, we can expect coincidence of the results. Treatment of a more general case
will be conducted elsewhere.

4. Plana’s Summation Formula à la Koshlyakov

In this section, we prove the general Plana summation formula in Theorem 4 (see
also [27] (Section 3) [9] (p. 90) for the classical case). For a proof, we appeal to:

Lemma 3. We extend the domain {Rex > 0} of f (x) to Equation (37).
Then, f (x) is analytic in the domain of Equation (37), and we may speak of f (±ix), x > 0.

We have

F(s) =
1

sin πs
2

∫ ∞

0

f (ix)− f (−ix)
2i

xs−1dx. (116)

The double integral in Equation (127) is absolutely convergent, and the order of the integrals
may be changed.

Proof. The first assertion was proven in [1] (II, pp. 215–216). By rotating the positive real
axis by π

2 , we obtain

F(s) =
∫ ∞

0
f (ix)(ix)s−1idx = e

πi
2 s
∫ ∞

0
f (ix)xs−1dx

and similarly

F(s) = e−
πi
2 s
∫ ∞

0
f (−ix)xs−1dx.

Hence, we have

sin
π

2
sF(s) =

e
πi
2 s − e−

πi
2 s

2i
F(s) =

∫ ∞

0

f (ix)− f (−ix)
2i

xs−1dx, (117)

which is Equation (116).
The second assertion was proven in [1] (II, p. 216) based on the estimate σ(z) =

o
(
|z|−δ

)
for every δ > 0. In our case, we estimate the integral in Equation (117) by the

left-hand side using the Stirling formula (Equation (118)). Since the integral is absolutely
convergent and is estimated to be O(|t|−λ), λ > 1, the outer integral

∫
(−d) is absolutely

convergent.

Theorem 4. (Plana’s summation formula [1] (p. 217))
Suppose that the Mellin transform F(s) of the function f (x) (x > 0)

F(s) =
∫ ∞

0
f (x)xs−1dx, σ = Re s > 0 (118)

satisfies the growth condition
F(s) = O

(
e−

π
2 |t||t|mσ−n

)
, (119)
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uniformly in −d ≤ σ ≤ c, where −1 < −d < 0, 1 < c and where m > 0, n > 0 are subject to
the condition m

2
+ n ≥ 1, (120)

while F(s) is regular in the strip −d ≤ σ ≤ c, except for a simple pole at s = 0 with residue f (0).
Then, we have

Z f (s) =
∞

∑
n=1

an f (n) = J(s) + P(s), (121)

where

P(s) = ζΩ(0) f (0) + ρ
∫ ∞

0
f (x)dx, J(s) =

∫ ∞

0

f (ix)− f (−ix)
2i

I(x)dx, (122)

and where 1
2 I(x) = σ(s) is Koshlyakov’s function (Equation (135)), while ρ is defined as in

Equation (20). Equation (121) entails Plana’s summation formula [9] (p. 90, (9))

∞

∑
n=1

f (n) = −1
2

f (0) +
∫ ∞

0
f (x)dx− 2

∫ ∞

0

f (ix)− f (−ix)
2i

1
e2πx − 1

dx, (123)

under the conditions in Lemma 3 and the infinite series and the integral in Equation (123) are (abso-
lutely) convergent.

For the quadratic fields Ω = Q(
√
|∆|), we have

J(s) =
∫ ∞

0

f (ix)− f (−ix)
2i

I(x)dx

=
2A
πi

∞

∑
n=1

an
(
K0(2ε̄A

√
xn)− K0(2εA

√
xn)
)
, ∆ < 0 (124)

=
4A
π

∞

∑
n=1

an
(
K0(4ε̄A

√
xn) + K0(4εA

√
xn)
)
, ∆ > 0.

Proof. We shift the integration path to σ = −d. In the strip, there are two simple poles
at s = 0 and 1 with residue Rj = Res

s=j
F(s)ζΩ(s), j = 0, 1, which were found in [1] (I,

pp. 214–1215) as follows:
R0 = ζΩ(0) f (0) (125)

and
R1 = ρ lim

s→1
F(s) = ρ

∫ ∞

0
f (x)dx.

Hence, P(s) is as in Equation (122) and

J(s) =
1

2πi

∫
(−d)

F(z)ζΩ(z)dz, (126)

where 1
2 < d < 1.

By substituting Equations (23) and (116) into Equation (126), we deduce that

J(s) =
1

2πi

∫
(−d)

A2s−1G(z)ζΩ(1− z)
1

sin πz
2

dz
∫ ∞

0

f (ix)− f (−ix)
2i

xz−1 dx (127)

=
∫ ∞

0

f (ix)− f (−ix)
2i

I(x)dx =
∫ ∞

0
I(x)FF(x)δ(x)dx

upon changing the order of integration. Here, we have

FF(x) =
f (ix)− f (−ix)

2i
, δ(x) = 1, (128)
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and

I(x) =
1

2πi

∫
(−d)

A2z−1xs−1G(z)
1

sin πz
2

ζΩ(1− z)dz =
1

2πi

∫
(−d)

G(z)
1

sin πz
2

ζΩ(1− z)γ(z)dz (129)

=
∞

∑
n=1

an
1

2πi

∫
(−d)

M(3)(z)nz−1γ(z)dz =
∞

∑
n=1

anK(x, n),

where

γ(z) = A2z−1xs−1, K(x, n) =
1

2πi

∫
(−d)

M(3)(z)nz−1γ(z)dz =
2A
π

Kr1,r2(A2xn), (130)

and where
M(3)(z) = G(z)

1
sin π

2 z
=

2
π

Γ(1− z)M(2)(z) (131)

while Kr1,r2 is Koshlyakov’s function, defined by Equation (136). Hence, under (103), we have

M(3)
Q (z) =

2z
√

π
Γ(1− z), (132)

M(3)
Q(
√
|∆|)

(z) =
2
π

Γ(1− z)2 cos
π

2
z, ∆ < 0

M(3)
Q(
√

∆)
(z) =

22z

π
Γ(1− z)2 sin

π

2
z, ∆ > 0

Hence, in the rational case, we have

K(x, n) =
2

2πi

∫
(−d)

Γ(1− z)(2A2xn)
z−1

dz (133)

=
2

2πi

∫
(1+d)

Γ(z)(2πxn)−z dz

and thus I(x) amounts to the left-hand side of Equation (178) (which, together with
Equation (174), implies Equation (178)). Hence, when summing the geometric series,
Equation (127) leads to

J(s) = −2
∫ ∞

0

f (ix)− f (−ix)
2i

1
e2πx − 1

dx, (134)

which proves Equation (123).
Equation (124) follows by substituting Equation (137) into Equation (130).

Koshlyakov makes a change of variables in the last integral on the right side of
Equation (126):

J(s) =
1

2πi

∫
(1+d)

F(1− s)ζ(1− s)ds =
∫ ∞

0

f (ix)− f (−ix)
2i

σ(x)dx,

which leads to the argument in the above proof. We collect data necessary for the proof.
σ(x) is defined as in [1] (I, (2.9),(2.13)) by (c > 1):

σ(x) =
A
π

∞

∑
n=1

anKr1,r2(A2xn) =
1

2πi

∫
(c)

1
2 cos πs

2
A1−2sG(1− s)ζΩ(s)x−s ds, (135)
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where [1] (I, (2.8)) such that

Kr1,r2(x) =
1

2πi

∫
(c)

π

2 cos πs
2

G(1− s)x−s ds =
1

2πi

∫
(c)

π

2
M(3)(1− s)x−s ds. (136)

As in [1] (I, p. 114, (2.5), (2.6)), or as can be readily checked by Equation (50), we have
the closed form for the K function

K1,0(x) =
√

π e−2x, (137)

K0,1(x) = −2 kei0

(
4
√

x
4

)
=

1
i
(
K0
(
2ε
√

x
)
− K0

(
2ε̄
√

x
))

,

K2,0(x) = 4 ker0(4
√

x ) = 2
(
K0
(
4ε
√

x
)
+ K0

(
4ε̄
√

x
))

,

where kei0 and ker0 are modified Kelvin functions ([8] (p. 6), [17]) and ε is defined by
Equation (92).

Theorem 5. For
f (x) = f (x; z, s, a) = zx(x + a)−s (138)

Theorem 4 reduces to the generalized Hermite formula

ΦΩ(z, s, w) =
1
2

w−s + Rr1,r2

∫ ∞

0

zx

(x + w)s dx (139)

− 2
∫ ∞

0

(
x2 + w2

)− s
2 sin

(
x log z− s arctan

x
w

)
σ(t)dt

which is valid for Re w > 0 and is a consequence of the functional Equation (18) for the Dedekind
zeta function.

Proof. We note that

1
2i
( f (ix)− f (−ix)) =

(
a2 + x2

)− s
2 Imei(x log z−s arctan x

a ) (140)

=
(

a2 + x2
)− s

2 sin
(

x log z− s arctan
x
a

)
for z > 0 in the first instance and then for Re z > 0 by analytic continuation.

By substituting Equation (140) into Equation (123), we arrive at Equation (139).

We assemble corollaries to the above theorem which were proven in [28] directly:

Corollary 3. For Re a > 0, we have

Φ(z, s, a) =
1
2

a−s +
∫ ∞

0

zx

(x + a)s dx (141)

− 2
∫ ∞

0

(
x2 + a2

)− s
2 sin

(
x log z− s arctan

x
a

) dx
e2πx − 1

.

Corollary 4. (Hermite’s formula [9], p. 91, (12)). For Re a > 0, we have

ζ(s, a) =
1
2

a−s +
a1−s

s− 1
+ 2

∫ ∞

0

(
a2 + x2

)− s
2 sin

(
s arctan

x
a

) dx
e2πx − 1

. (142)
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Corollary 5. (Binet’s second expression [9], p. 17, (30)).
For Re a > 0, we have

log
Γ(a)√

2π
=

(
a− 1

2

)
log a + 2

∫ ∞

0

arctan x
a

e2πx − 1
dx (143)

5. Voronoĭ-Type Summation Formulas

Here, we shall elucidate the genesis of some identities (especially summation formulas)
equivalent to the functional equations given in [29] (Corollary 7) and [30–32], with emphasis
on Hamburger’s results. The latter three papers of Soni et al. will be discussed elsewhere
in light of [1] and the Principle (Theorem 8).

The research of [29] precedes [1] in the use of the partial fraction expansion (Equation (178))
for the cotangent function. The authors of [33] mentioned Hamburger’s partial fraction
expansion as a special case of Hardy’s formula, and the authors of [30] only quoted this
and the other two results as (10–12): the Fourier expansion (Equation (179)) for the second
periodic Bernoulli polynomial B̄2(y) and the Poisson summation formula (Equation (180)).
The latter is valid for a function of bounded variation having an integral expression which
is analytic in a vertical strip. We shall elucidate the meaning of Hamburger’s results in the
light of the Riemann–Hecke–Bochner–Maass (RHBM) correspondence [34], whose main body is
the equivalence of the ramified functional equation and the Fourier–Whittaker expansion
(covering the case where there is no q expansion). For the unramified functional equation in
question, the expansion reduces to the Fourier–Bessel expansion (Equation (151)), perceived
as the Chowla–Selberg integral formula in the theory of the Epstein zeta function of positive
definite quadratic forms. A variant of the Fourier–Bessel expansion is the partial fraction
expansion in Equation (174) as well as Hardy’s formula (Equation (155)). Most of the
subsequent results up to Theorem 7 are for elucidating Equation (178) in the framework of
the RHBM correspondence. The research in [30] is an extract from [31] and centers around
the extension of Koshlyakov’s results [35–37], overlooking the more far-reaching research
in [1]. The main results of [15,17,23,30–32,38] are summation formulas of Sierpiński (a
special case of Hecke tyoe) and Voronoǐ in the case where the functions are a Mellin trans-
form pair, which are essentially consequences of the theory of Koshlyakov’s X functions
(Equation (165)) and L functions (Equation (168)). (The X function aspect was explained
by [25] (pp. 97–100). Here, the Principle applies without processing in the simple change
in the Mellin transform and the interchange of integration (compare with Theorem 8).
The novelty of [15,17,23,30,31,38] lies in the study of the functional equation of Hecke and
Vononoĭ in analogy to Riemann’s and establishing identities corresponding to the ones
for the Riemann zeta function in the same sprit as Koshlyakov’s study of Dedekind zeta
functions, where the line of reflection is r = 1. The only difference occurs in the Vononoĭ
case, and the difference is in the residual function. The authors of [32] gave proof of two
more identities in [31] (p. 63) equivalent to the functional equation, which may be clarified
through Equation (173) [1] (I, p. 119, (4.7)).

We state the case of the Hecke functional equation in its full generality:

Definition 2. Let

0 < λ1 < λ2 < · · · → ∞, 0 < µ1 < µ2 < · · · → ∞

be increasing sequences of real numbers. For complex sequences {an}, {bn} form the Dirichlet series

ϕ(s) =
∞

∑
n=1

an

λs
n

and ψ(s) =
∞

∑
n=1

bn

µs
n

(144)
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which we assume are absolutely convergent for σ > σ∗a and σ > σ∗b , respectively. Then, ϕ(s) and
ψ(s) are said to satisfy Hecke’s functional equation

A−sΓ(s)ϕ(s) = A−(r−s)Γ(r− s)ψ(r− s), (145)

where A > 0 is a constant if there exists a regular function χ(s) outside of a compact set S such that

χ(s) = A−sΓ(s)ϕ(s), σ > α(≥ σ∗a )

and
χ(s) = A−(r−s)Γ(r− s)ψ(r− s), σ < β (≤ r− σ∗b )

such that χ(s) is convex in the sense that

e−ε|t|χ(σ + it) = O(1), 0 < ε <
π

2
, (146)

uniformly in σ, σ1 ≤ σ ≤ σ2, |t| → ∞.
Following Bochner [39], the residual function is defined as

P(x) =
1

2πi

∫
C

χ(s)x−sds, (147)

where C encircles all the singularities of χ(s) in S . In the applications above, this is to be understood
to mean the sum of the residues in the strip r− σ∗b < σ < σ∗a (corresponding to −d < σ < c).

We introduce the modular-type functions corresponding to the Dirichlet series in Equation (144):

f (τ) =
∞

∑
n=o

aneAinτ and g(τ) =
∞

∑
n=o

bneAinτ , τ ∈ H (148)

which are absolutely convergent and satisfy the (theta) transformation formula

f (τ) = C
(τ

i

)−r
g
(
− 1

τ

)
. (149)

Lemma 4. (Hecke) The Dirichlet series in Equation (144) satisfying the condition that
A−sΓ(s)ϕ(s) + a0

s + Cb0
r−s is bounded in every vertical strip (BEV) and satisfying the functional

Equation (145) with ψ(r− s) replaced by Cψ(r− s) = ∑∞
n=1

Cbn
µr−s

n
is equivalent to Equation (149).

Lemma 4 is a slight modification of [38] (Theorem 1, p. I-5), which is a handy statement
of Hecke’s epoch-making discovery [40]. Ogg [38] (p. I-7) stated that “Theorem 1 was a
great step forward 75 years after the functional equation for the zeta-function, for it reduces
a question about Dirichlet series to one about modular forms, which are easier to work
with.” This is in contrast to Weil’s interpretation that this is a revival of the theory of
automorphic forms [41].

The following theorem constitutes the basis of the results related to Hecke’s functional
equation (compare with [22,42], [25] ([p.10])).

Theorem 6. The functional Equation (145), the theta transformation formula (Equation (149)),
the Bochner modular relation (Equation (150)), the Fourier–Bessel expansion (Equation (151)),
the Riesz sum (Equation (153)), and the Ewald expansion (Equation (154)) below are all equivalent:

∞

∑
n=1

ane−λnx =

(
A
x

)r ∞

∑
n=1

bne−µn
A2
x + P

( x
A

)
(150)
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with Re x > 0, and we have

A−sΓ(s)ϕ(s, α) =2α
r−s

2

∞

∑
n=1

bnµ
− r−s

2
n Ks−r(2A

√
αµn) (151)

+ A−s
∫ ∞

0
e−αuus−1P

( u
A

)
du

with α > 0, σ > max{r− 1
2 ,−1}, s 6= 0, where

ϕ(s, α) =
∞

∑
n=1

an

(λn + α)s (152)

denotes the (Hurwitz-type) perturbed Dirichlet series associated with ϕ.
The Riesz sum is

1
Γ(κ + 1) ∑′

λn≤x
an(x− λn)

κ = A−κ
∞

∑
n=1

(
x

µn

) 1
2 (κ+r)

bn Jκ+r(2A
√

µnx) + Pκ(x), (153)

Pκ(x) =
1

2πi

∫
C

Γ(s)ϕ(s)xs+κ

Γ(s +κ + 1)
ds,

where C is as depicted in Equation (147).
The Ewald expansion is

A−sΓ(s)ϕ(s) = A−s
∞

∑
n=1

an

λs
n

Γ(s, Awλn) (154)

+ A−(δ−s)
∞

∑
n=1

bn

µδ−s
n

Γ(δ− s, Aw−1µn) +
∫ w

0
P(x)xs−1dx

with Re w > 0.

In [42] (Lemma 6), the first three are equivalent assertions, and the Fourier–Bessel
expansion (Equation (151)) is replaced by Hardy’s formula:(

−1
s

d
ds

)κ ∞

∑
n=1

an
1
s

e−s
√

λn

= 23r+κ Γ
(

r +κ +
1
2

)
πr− 1

2

∞

∑
n=1

bn

(s2 + 16π2µn)
r+κ+ 1

2

+
1

2πi

∫
C

Γ(z)ϕ(z)Γ(2z + 2κ + 1)2−κ

Γ(z +κ + 1)
s−2z−2κ−1dz.

(155)

This is first derived by the Hardy transform in [43] without differentiation. It is
remarked in [44] (Theorem 8.1, p.342) and [34] that the Hardy transform and the beta
transform are almost reverse processes leading to the partial fraction expansion and the
Fourier–Bessel expansion, respectively.

The Riesz sum of the order κ is defined by

Aκ
λ (x) =

1
Γ(κ + 1) ∑′

λn≤x
an(x− λn)

κ =
1

2πi

∫
c

Γ(s)ϕ(s)xs+κ

Γ(s +κ + 1)
ds, (156)

where ϕ(s) = ∑∞
n=1

ak
λs

n
and the prime on the summation means that the term corresponding

to x = [x] is to be halved [25] (p. 171, (G-8-1)).
The following lemma reveals the situation surrounding equating the Riemann-type

(Hecke-type) as the Hecke-type (Riemann-type) functional equation:
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Lemma 5. ([25] (p. 119, Corollary 4.1)) Under similar assumptions to those in Definition 2,
the functional equation

Γ(A1s)ϕ(s) = Γ(A1(r− s))ψ(r− s) (157)

is equivalent to

1
A1

Γ(A1s)
∞

∑
k=1

αk(
λ

1
A1
k + z

1
A1

)A1s (158)

= 2A1
−1z

1
2 A1(r−s)

∞

∑
k=1

βk

µk
1
2 A1(r−s)

KA1(r−s)

(
2(µkz)

1
2A1

)
+ P(s),

where P(s) = ∑L
k=1 Res

(
Γ(A1(s− w))Γ(A1s)ϕ(s) zw−s, w = sk

)
and where sk represents all

the poles of Γ(A1(s− w))Γ(A1s)ϕ(s) zw−s in S .

The next corollary is a consequence of Lemma 5 with A1 = 1
2 and Theorem 6, and it

elucidates Hamburger’s Equation (178) (compare with Theorem 7):

Corollary 6. The Riemann functional Equation (176), viewed as the Hecke type

π−sΓ(s)ζ(2s) = π−(
1
2−s)Γ

(
1− 2s

2

)
ζ(1− 2s) (159)

is equivalent to

∞

∑
n=1

e−πn2x = x−
1
2

∞

∑
n=1

e−
πn2

x +
1
2

(
x−

1
2 − 1

)
, Re x > 0, (160)

and Watson’s formula

π−sΓ(s)
∞

∑
n=1

1
(n2 + α2)s = 2α

1
2−s

∞

∑
n=−∞

|n|s−
1
2 Ks− 1

2
(2πα|n|), (161)

where the term corresponding to n = 0 on the right-hand side is to be understood to mean

lim
u→0

us− 1
2 Ks− 1

2
(2παu) =

√
π

2
α

1
2−sΓ

(
s− 1

2

)
. (162)

Hamburger’s Results

Although the authors of [42] (p. 2) stated that the equivalence “established constitutes
an analogue, for Hecke’s functional equation, of a result of Hamburger [29] on Riemann’s
equation,” the analogous part is limited to the Bochner modular relation and Hardy’s
formula (Equation (155)) as a counterpart of the partial fraction expansion (Equation (178))
(compare with Theorem 6 and Remark 1). The third equivalence is for the Riesz sum in
Equation (153), but it does not reduce to Equation (179).

In restoring Hamburger’s results in a wider framework of modular relations for the
Riemann, Hecke and Voronoǐ functional equation, we interpret Equation (179) as a Riesz
sum (Equation (153)) in addition to elucidating Equation (178) as (a variant of) the Fourier–
Bessel expansion. In the proof of equivalence of Equations (179) and (176), we encounter
completing the integral from [1, ∞] to [0, ∞], which is the genesis of the Ewald expansion
(Equation (154)): Γ(s, a) + γ(s, a)0Γ(s).
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In its original form, the Fourier expansion (Equation (179)) looks rather foreign com-
pared with others. Note that the left-hand side of Equation (179) is equal to

1
2

x(x− 1)− 1
2

B̄2(x) +
1

12
=

1
2
(B2(x)− B̄2(x)),

where B̄2(x) = B2(x− [x]), with [x] denoting the integer part of x, is the second periodic
Bernoulli polynomial. Hence, as remarked in [25] (p. 170), the left-hand side is the Riesz
sum of the first order

1
2
(B2(x)− B̄2(x)) = ∑

n≤x
(x− n) =

1
2πi

∫
(c)

1
s(s + 1)

ζ(s)xs+1 ds (163)

for c > 1. Hence, Equation (179) amounts to the familiar absolutely convergent Fourier series

B̄2(x) = B2(x− [x]) =
1

π2

∞

∑
n=1

cos 2πnx
n2 . (164)

Around the same time, the authors of [2,3] remarked that the Fourier series for the
first periodic Bernoulli polynomials is a consequence of the functional equation.

Following Koshlyakov, we define the X function as

X(x) = Xr1,r2(x), to be Hχ,0
0, χ

(
x

∣∣∣∣∣ −
{(0, 1

2 )}
r1
j=1, {(0, 1)}r2

j=r1+1

)
,

In other words, we have

Xr1,r2(x) =
1

2πi

∫
(c)

Γr1
( s

2

)
Γr2(s)x−s ds, c > 0, (165)

for x > 0 (Re(x) > 0). It can be easily verified that

X1,0(x) = 2e−x2
, X0,1(x) = e−x, X2,0(x) = 4K0(2x). (166)

The Koshlyakov L function is a relative of the K functions and is related through

Lr1,r2(x) =
1
2

(
Kr1,r2(−ix) + Kr1,r2(ix)

)
(167)

([1] (7.11)).
It is defined by [1] (8.9)

Lr1,r2(x) =
1

2πi

∫
(c)

π

2
G(1− s) x−sds

=
1

2πi

∫
(c)

π

2
Γr1
( s

2
)
Γr2(s)

Γr1

(
1−s

2

)
Γr2(1− s)

x−sds, c > 0, x > 0
(168)

We have

L1,0(x) = πx
1
2 J 1

2
(2x), L0,1(x) =

sin(x)
x

= si(x), (169)

L2,0(x) = π

(
2
π

K0
(
4
√

x
)
−Y0

(
4
√

x
))

where si(x) is the sinus cardinalis function. Proof is given in [25] (p. 105, Example 3.8).
We use the data on the Dedekind zeta function (Equation (16)). We let P(x) = R0 + R1

be the residual function, where

Rj = Res
(
χK(s)z−s, s = j

)
, j = 0, 1, (170)
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and where

χK(s) =
π

2 cos πs
2

G(1− s)x−s for K = Kr1,r2 (171)

χK(s) = Γr1
( s

2

)
Γr2(s)x−s for K = Xr1,r2

χK(s) =
π

2
Γr1
( s

2
)
Γr2(s)

Γr1

(
1−s

2

)
Γr2(1− s)

x−s for K = Lr1,r2

For K = Xr1,r2 we have

P(x) = 2r1 ζ
(r)
Ω (0)− 2r1 ζ

(r)
Ω (0)x−1 for ζΩ(s) (172)

P(x) =
1
4

(
γ− log

4π

x
− 1

x
(γ− log 4πx)

)
for ζ(s)2

Theorem 7. (Koshlyakov) The functional Equation (18) (which we apply in the form of Equa-
tion (23)) is equivalent to each of the following

The Bochner modular relation, which is

∞

∑
n=1

anXr1,r2(Axn) = P(x) + x−1
∞

∑
n=1

anXr1,r2(Ax−1n), Re x > 0. (173)

and the partial fraction expansion, expressed as

A
π

∞

∑
n=1

anKr1,r2(A2xn) = σ(x) = −1
2

ρ− ζΩ(0)
π

1
x
+

x
π

∞

∑
n=1

an

n2 + x2 , (174)

where this gives Soni’s result [32] ((5)) if the residual function is replaced by − 1
4πx −

1
2 log x− γ.

Deduction of Equation (18) from Equation (173) was performed in [1] (I, p. 120, (3.4)).
For Equation (174) compare with the results in [1] (I, p. 117, (3.4)) as modified in [25] (p. 129,
Theorem 4.7). Deduction of Equation (18) from Equation (174) was performed in [1] (II,
pp. 225–226) based on a version of the Plana summation formula [1] (II, p. 223, IV). The
main ingredient is from [1] (II, p. 225, (16.1)) in its limit case as α→ 0, which should read
(supplementing the missing second integral on the right) as follows:

ζΩ(s) = ρ
α1−s

s− 1
+
∫ α+i∞

α
σ(−iz)z−s dz +

∫ α−i∞

α
σ(iz)z−s dz, 0 < α < 1. (175)

Formulas similar to this appeared in [29] (p. 137) and [32] (p. 547), used by Ham-
burger and Soni to deduce Equation (180) from Equation (178) and Equation (174) from
Equation (173), respectively. It would turn out that Equation (175) is a version of the Plana
summation formula. More details on this aspect and Theorem 8 below will be given in a
forthcoming paper:

Corollary 7. ([29])
The functional equation for the Riemann zeta function

π−
s
2 Γ
( s

2

)
ζ(s) = π−

1−s
2 Γ
(

1− s
2

)
ζ(1− s) (176)

is equivalent to the following equalities: the theta transformation formula (the Bochner modular
relation), expressed as

∞

∑
n=1

e−πn2x = x−
1
2

∞

∑
n=1

e−
πn2

x +
1
2

(
x−

1
2 − 1

)
, Re x > 0. (177)
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the partial fraction expansion for the cotangent function i cot πiz, which is

1 + 2
∞

∑
n=1

e−2πnz =
1

πz
+

2z
π

∞

∑
n=1

1
z2 + n2 (178)

the Fourier expansion, expressed as

[x]

∑
n=1

(x− n) =
x(x− 1)

2
− 1

2π2

∞

∑
n=1

n−2(cos 2πnx− 1) (179)

and the Poisson summation formula (T > 0), where

T
∞

∑
n=−∞

ϕ(Tn) =
∞

∑
n=−∞

Φ
(

T
2π

n
)

(180)

is valid for a function ϕ(u) which is of bounded variation in any finite interval satisfying the
convergence conditions at infinity (p. 136) and such that

Φ(z) :=
∫ ∞

−∞
ϕ(u)ezu du (181)

is analytic in a certain (vertical) strip.

Proof. The first two are contained in Theorem 7. We give an independent proof of equiva-
lence of Equations (179) and (176). We first assume Equation (179) and recall the special
case in [45] ((3.50), p. 72):

ζ(s) =
1

s− 1
+

1
2
+

1
12

s− s(s + 1)
2

∫ ∞

1
B̄2(t)t−s−2 dt (182)

which is valid for σ > −1. Noting that

− s(s + 1)
2

∫ 1

0
B̄2(t)t−s−2 dt =

1
s− 1

+
1
2
+

1
12

s. (183)

we may then complete the integral in Equation (182) with Equation (183) to obtain

ζ(s) = − s(s + 1)
2

∫ ∞

0
B̄2(t)t−s−2 dt. (184)

By substituting Equation (164) into Equation (184) and changing the order of integra-
tion and summation (by the absolute convergence of both), we arrive at

ζ(s) = − s(s + 1)
2π2

∞

∑
n=1

1
n2

∫ ∞

0
t−s−1 cos 2πnt

dt
t

(185)

= − s(s + 1)
2π2

∞

∑
n=1

1
n2 (2πn)s+1

∫ ∞

0
u−s−1 cos u

du
u

after transformation. We appeal to a generalized Euler’s formula valid for |α| ≤ π
2 , σ > 0

Γ(s) cos αs =
∫ ∞

0
tse−t cos α cos(t sin α)

dt
t

(186)

with α = π
2 . In other words, we substitute

Γ(s) cos
π

2
s =

∫ ∞

0
ts cos t

dt
t

(187)
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into Equation (185) to deduce that

ζ(s) = 2sπs−1 sin
π

2
Γ(1− s)ζ(1− s) (188)

after simplification, which is equivalent to Equation (176).
Now, we deduce Equation (179) from Equation (176). We generalize Equation (163) as

the Riesz sum of the first order of an:

Z f (x) := ∑
n≤x

(x− n)an =
∞

∑
n=1

(x− n)an f
(n

x

)
=

1
2πi

∫
(c)

1
s(s + 1)

ζΩ(s)xs+1 ds, (189)

where f (y) = f1(y) and

fκ(y) =


1

Γ(κ+1) (1− y)κ , (|y| < 1)
1
2 , (y = 1)
0, (|y| > 1).

The Mellin inversion of f (y) is

f (x) =
1

2πi

∫
c

Γ(s)
Γ(s + 2)

x−s ds = G1,0
1,1

(
x
∣∣∣∣ 2

0

)
. (190)

Hence, we have

F(z) = Ff (z) = GF(s, z) =
Γ(s)

Γ(s + 2)
=

1
s(s + 1)

.

Now, we apply Corollary 1. Equation (36) reads as follows:

K(x, n) =
1

2πi

∫
(−d)

F(z)G(z)A2z−1nz−1xz+1 dz =
1

2πi

∫
(−d)

1
z(z + 1)

G(z)γ(z, x)dz, (191)

where γ(z, x) = 1
A(An)2 (A2xn)z+1.

For the rational case, P(x) = B2(x), A =
√

π and

1
z(z + 1)

G(z) =
1√
π

2z sin
π

2
zΓ(−z− 1) = − 1

2i
√

π
2z
(

e
π
2 z − e−

π
2 z
)

Γ(−z− 1)

Hence, we have

K(x, n) = − 1
4iπ2n2

1
2πi

∫
(−d)

(
e

π
2 z − e−

π
2 z
)

Γ(−z− 1)(2πxn)z+1 dz (192)

=
1

4π2n2
1

2πi

∫
(1−d)

(
e

π
2 w + e−

π
2 w
)

Γ(−w)(2πxn)w dw

by the change in variable. Hence, by Lemma 1, we have

J(x) = I(x) =
∞

∑
n=1

K(x, n) =
1

2π2

∞

∑
n=1

1
n2

(
e2πixn + e−2πixn

)
,

which leads to the Fourier series in Equation (164).
In the quadratic case, we state the results on the Riesz sum of a zero order in Remark 1,

and the corresponding results are the integrals thereof.
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Remark 1. (1) We remark that the partial fraction expansion for the cotangent function in
Equation (174) is the special case of Watson’s formula (Equation (161)) (i.e., by viewing the
Riemann-type functional equation as being of the Hecke type). On the other hand, as elucidated
in [25] (pp. 241–243), Equation (155) is a special case of Equation (151) and follows from Lemma 5
with A1 = 1

2 (i.e., by viewing the Hecke-type functional equation as being of the Riemann type).
Since the partial fraction expansion in Equation (174) is essential in Hamburger’s determination of
the Riemann zeta function, we see a plausible hint to Hecke’s theory.

(2) The above deduction of Equation (176) from Equation (179) is a simplified version of the
first proof given in [46] (pp. 13–17). The proof is given for B̄1(x), and term-by-term integration is
checked as in [46] (p. 13) by integration by parts. It is seen that this corresponds with the integration
of B̄1(x) to arrive at B̄2(x).

In the case of an imaginary quadratic field, we have

K(x, n) =
√

x
n

J1(2A
√

xn)

through Equation (44) such that

Z f (x) = ρx + ζΩ(0) +
√

x
∞

∑
n=1

an√
n

J1

(
4π

√
xn√
|∆|

)
,

according to [4] (p. 19), which reduces to the form in [4] (p. 14) in the case of ∆ = −4.
In the case of a real quadratic field, we have

K(x, n) = −
√

x
n

(
Y1(4A

√
xn) +

2
π

K1(4A
√

xn)
)

according to [2], modified so that J2,0(w) = −Y1(w)− 2
π K1(w) in the notation of Watson. Hence,

we have

Z f (x) = ρx + ζΩ(0)−
√

x
∞

∑
n=1

an√
n

(
Y1

(
4π

√
xn√
|∆|

)
+

2
π

K1

(
4π

√
xn√
|∆|

))
,

according to [4] (p. 18), which reduces to the series in [4] (p. 16) in the case of ∆ = 1. The residual
function is the well-known x log x + (2γ− 1)x + 1

4 coming from the double pole at s = 1, and the
coefficients are d(n).

As mentioned above, the author of [2] (p. 175) stated that his main theorem leads to the Fourier
expansion

B̄1(x) = x− [x]− 1
2
= − 1

π

∞

∑
n=1

sin 2πnx
n

, x /∈ Z. (193)

In Corollary 7, the Fourier expansion (Equation (179)) may be replaced with

∑′

n≤x
1 = B1(s) +

1
π

∞

∑
n=1

sin 2πnx
n

, x /∈ Z. (194)

Some more analysis revealed the following:

Theorem 8. Hamburger’s equation (Equation (180)) is manifestation of the Principle with the
Fourier transform pair. The Soni–Oberhettinger formula of the form

∞

∑
n=1

an f (λn) = P(·) +
∞

∑
n=1

bn f̂ (µn), f̂ (y) =
∫ ∞

0
f (x)K(xy)dx (195)

is a consequence of Corollary 1, with F(z) replaced by the Mellin transform in Equation (1).
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19. Voronoĭ, G.F. Sur une fonction transcendente et ses applications à la sommation de qulques séries. Ann. École Norm. Sup. 1904, 21,
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