
Citation: Cheng, J.; Zhao, J.; Xu, W.;

Zhang, T.; Xue, F.; Liu, S. Semantic

Similarity-Based Mobile Application

Isomorphic Graphical User Interface

Identification. Mathematics 2023, 11,

527. https://doi.org/10.3390/

/ math11030527

Academic Editor: Jonathan

Blackledge

Received: 10 December 2022

Revised: 12 January 2023

Accepted: 16 January 2023

Published: 18 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Semantic Similarity-Based Mobile Application Isomorphic
Graphical User Interface Identification
Jing Cheng 1, Jiayi Zhao 1, Weidong Xu 1, Tao Zhang 2,*, Feng Xue 2 and Shaoying Liu 3

1 School of Computer Science and Engineering, Xi’an Technological University, Xi’an 710064, China
2 School of Software, Northwestern Polytechnical University, Xi’an 710060, China
3 School of Informatics and Data Science, Hiroshima University, Hiroshima 739-8525, Japan
* Correspondence: tao_zhang@nwpu.edu.cn; Tel.: +86-18629083628

Abstract: Applying robots to mobile application testing is an emerging approach to automated
black-box testing. The key to supporting automated robot testing is the efficient modeling of GUI
elements. Since the application under testing often contains a large number of similar GUIs, the GUI
model obtained often contains many redundant nodes. This causes the state space explosion of GUI
models which has a serious effect on the efficiency of GUI testing. Hence, how to accurately identify
isomorphic GUIs and construct quasi-concise GUI models are key challenges faced today. We thus
propose a semantic similarity-based approach to identifying isomorphic GUIs for mobile applications.
Using this approach, the information of GUI elements is first identified by deep learning network
models, then, the GUI structure model feature vector and the semantic model feature vector are
extracted and finally merged to generate a GUI embedding vector with semantic information. Finally,
the isomorphic GUIs are identified by cosine similarity. Then, three experiments are conducted to
verify the generalizability and effectiveness of the method. The experiments demonstrate that the
proposed method can accurately identify isomorphic GUIs and shows high compatibility in terms of
cross-platform and cross-device applications.

Keywords: isomorphic GUI; semantic similarity; mobile application testing

MSC: 68U10

1. Introduction

The demand for mobile devices has exploded to staggering heights over the past
few years. The latest data show that the number of apps on the Google Play Store has
grown from 2.1 million to 3.14 million in a year [1]. With intense competition and budget
constraints, most developers lack sufficient time to detect bugs and potential crashes in
their applications, resulting in frequent application problems that have a dramatic impact
on the user experience. The existing manual testing of mobile applications has problems of
low efficiency and high cost and cannot meet the needs of mobile application testing [2].
Hence, the cost-effective automated testing of mobile applications has become a potential
solution but how to realize it remains a challenge.

The graphical user interface (GUI) is an important medium for users to interact with
mobile applications. It is also a key object for mobile application testing. The existing GUI
automation testing techniques can be broadly classified into four categories: record and
playback method, data-driven method, keyword-driven method, and hybrid framework
method. The record and playback method automatically constructs test scripts by recording
the sequence of events in the GUI during the use of the software [3]. However, this method
has low test coverage and is sensitive to GUI changes, which are not suitable for a large
number of tests [4–6]. The data-driven method separates the test script from the data and
places the data into a configuration file. This approach can improve the reuse rate of test
scripts but cannot cope with GUI’s interface transformations [7,8]. The keyword-driven

Mathematics 2023, 11, 527. https://doi.org/10.3390/math11030527 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11030527
https://doi.org/10.3390/math11030527
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11030527
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11030527?type=check_update&version=1

Mathematics 2023, 11, 527 2 of 17

method is an optimization of the data-driven method which allows separating the test
case design from test development. However, these approach test scripts are difficult
to maintain [9,10]. The hybrid framework method combines the advantages of multiple
methods to form a unified functional tester based on testing requirements [11].

Robotic testing can reduce labor costs in the process of test execution and realize a full
black-box testing process [12]. It simulates real users interacting with mobile applications
only at the device level, enabling cross-platform, cross-system, and multi-device operations.
It effectively realizes the full black-box automated testing of mobile applications and has
broad development prospects. Hence, we built a GUI semantic model-based robot test to
lay the foundation for the full automated black-box GUI testing of mobile applications. A
particular challenge is the presence of isomorphic GUIs in mobile applications which may
adversely affect GUI models in terms of redundancy and sufficiency, thereby affecting test
efficiency.

GUIs that differ in appearance (images, text, colors, and size) but have the same
functionality, structure, and internal logical relationships between interfaces are isomorphic.
Figure 1 shows an example of an isomorphic GUI for Eastern Airlines. Figure 1 (W0) shows
the flight list interface for a ticket search while (W1a) to (W1d) show a detailed interface
with four columns of flights; (W1a) to (W1d) differ only in the specific image and text
information.

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 18

W1a

W1b

W1c

W1d

W0

Figure 1. Example of an isomorphic GUI.

To address the above problems, we propose a semantic-based method for identifying
the isomorphic interfaces of mobile applications. The method is based on machine vision
to obtain GUI components, texts, and layout information, and construct a GUI semantic
model. The GUI structure model feature vector and semantic model feature vector are
extracted through deep learning convolutional networks to synthesize the interface simi-
larity metric results. The main contributions of this paper are as follows:
(1) A semantic similarity-based isomorphic GUI identification method is proposed

which avoids redundant test cases and mitigates the problem of the state space ex-
plosion of GUI models.

(2) Three experiments are conducted to evaluate the performance of our proposed
method and the results show its superiority to the related existing techniques.
The rest of the paper is organized as follows: Section 2 provides the background of

the research and related work and Section 3 provides the details of the construction pro-
cess of the model and the isomorphic GUI identification method. In Section 4, we discuss
the experimental setup and analyze the results. Finally, the paper is summarized in Sec-
tion 5.

2. Related Work
In this section, we briefly describe the work related to semantic similarity-based ap-

proaches to isomorphic GUI recognition. First, the development status of GUI automation
testing is introduced. Second, the problems of current GUI models are discussed. Finally,
some application scenarios of homomorphic GUI recognition are presented.

2.1. Automated GUI Testing
The latest generation of automated testing technology is vision-based GUI automa-

tion testing (VGT). VGT automates testing by introducing image recognition algorithms
and automated scripts to simulate user behavior [16]. This approach enables the black-
box testing of mobile applications to a certain extent but limitations and challenges still

Figure 1. Example of an isomorphic GUI.

However, solutions to isomorphic GUIs identification are limited. One method is to
extract information based on the HTML structure and measure the similarity in the form
of a tree or graph. Long Y [13] simplifies the page DOM tree structure by analyzing the
page elements formally. REN [14] mines similar codes using a chunking algorithm and
similarity calculates and builds a DOM tree by code parsing. This method can quickly
obtain the elements and hierarchy of an interface to make similarity judgments. However,
it requires source code support and lacks an understanding of interface semantics. Another
method is feature extraction based on machine vision which converts images into feature
vectors. Zhang [15] used relative entropy to obtain GUI similarity by acquiring the elements
and layout features of the interface. However, this method does not capture the textual

Mathematics 2023, 11, 527 3 of 17

content of the GUI, which can affect the similarity judgment of different types of mobile
application GUIs.

To address the above problems, we propose a semantic-based method for identifying
the isomorphic interfaces of mobile applications. The method is based on machine vision to
obtain GUI components, texts, and layout information, and construct a GUI semantic model.
The GUI structure model feature vector and semantic model feature vector are extracted
through deep learning convolutional networks to synthesize the interface similarity metric
results. The main contributions of this paper are as follows:

(1) A semantic similarity-based isomorphic GUI identification method is proposed which
avoids redundant test cases and mitigates the problem of the state space explosion of
GUI models.

(2) Three experiments are conducted to evaluate the performance of our proposed method
and the results show its superiority to the related existing techniques.

The rest of the paper is organized as follows: Section 2 provides the background of the
research and related work and Section 3 provides the details of the construction process
of the model and the isomorphic GUI identification method. In Section 4, we discuss the
experimental setup and analyze the results. Finally, the paper is summarized in Section 5.

2. Related Work

In this section, we briefly describe the work related to semantic similarity-based ap-
proaches to isomorphic GUI recognition. First, the development status of GUI automation
testing is introduced. Second, the problems of current GUI models are discussed. Finally,
some application scenarios of homomorphic GUI recognition are presented.

2.1. Automated GUI Testing

The latest generation of automated testing technology is vision-based GUI automation
testing (VGT). VGT automates testing by introducing image recognition algorithms and
automated scripts to simulate user behavior [16]. This approach enables the black-box
testing of mobile applications to a certain extent but limitations and challenges still remain.
The test scripts for VGT are vulnerable to GUI graphical changes; graphical changes occur
during system development, which makes maintaining test scripts costly. The slow image
recognition speed of VGT technology is also a challenge for robot testing. Reinforcement
learning has also been attempted for automated GUI testing. David et al. [17] used a
Q-learning-based test generation algorithm to select events systematically and explored
the GUI of the application under testing without the need for a pre-existing abstract model.
This approach evaluates the performance of the technique based only on block coverage
and lacks the exploration of the generalizability of the method.

Because of the diversity of mobile application platforms in the market, test migration
is also an important direction for automated testing. Xue Qin et al. [18] proposed a new
approach, TestMig, which migrates GUI tests from iOS to Android without any migrated
code examples. This approach requires the precise mapping of cross-platform UI controls.
Some other assertions involve the absolute position and padding size of UI controls, which
also present challenges in the technical approach.

2.2. GUI Modeling

Model-based GUI testing is usually chosen to solve the redundancy problem of GUI
testing, facilitate the exploration of behavior space, and support effective debugging. GUI
models are usually classified into two types: state-based and event-based models. The
state-based model uses finite state machines for GUI modeling. Belli et al. [19] reduced
the number and cost of test cases by recommending a hierarchy-centric testing approach
and an associated test creation system to prevent the system under test from becoming too
large. Baek et al. [20] proposed a set of multi-level GUI comparison criteria which provides
multiple options for GUI model generation at the abstraction level. These methods can

Mathematics 2023, 11, 527 4 of 17

alleviate the space explosion problem to some extent, but the urgent need for a better
solution to the space explosion problem faced by state modeling remains.

The event-based model is another common model. Memon et al. [21] proposed
the use of event flow graph (EFG) models in the testing of GUIs, which are a later key
component of a commonly used GUI testing framework. Belli et al. [22] constructed an
event sequence graph (ESG) model, based on directed graphs, which is used to represent
legal and illegal behaviors based on GUI events. The event-based model avoids the
definition of a system state; the description of the actual system is more abstract, which
also reduces the effectiveness of model error detection to a certain extent.

2.3. Isomorphic GUIs Recognition

The study of isomorphic GUIs has been applied to various aspects of the software
development process. Farnaz Behrang et al. [23] designed a technique to use sketches of
applications as input to help simplify the process of going from drawing a GUI to creating
an actual GUI. Open-source applications from public repositories were used to identify
sketches with isomorphic GUIs and transformed applications. Leonardo Mariani et al. [24]
exploited the semantic similarity between the textual information of GUI widgets to imple-
ment a test reuse approach and led to the migration of manually designed GUI tests from a
source application to a target application with similar functionality. Almrayat et al. [25]
developed an algorithm to automatically extract GUI features and evaluated the effects of
GUI similarity on the functional similarity of Android applications.

In summary, numerous GUI modeling approaches have emerged in automated GUI
testing but they do not effectively solve the problem of the state space explosion of GUI
models. In comparison, our semantic similarity-based approach to identifying isomorphic
GUIs avoids redundant test cases by merging redundant isomorphic nodes in the GUI
model to prevent the explosive growth of the number of test cases.

2.4. Explainability for Machine Learning Models

Feature engineering can be guided by interpretable analysis. Generally, features are
made based on some expertise and experience and the analysis of feature importance
can be used to mine more useful features. Hence, deep learning and other black-box
models are becoming increasingly popular. Despite their high performance, they may
not be ethically or legally acceptable due to their lack of interpretability. Bibal et al. [26]
investigated how the legal requirements for interpretability can be interpreted and applied
in machine learning. Nadia Burkart et al. [27] provided basic definitions outlining different
principles and approaches to interpretable supervised machine learning. The trade-off
between completeness and interpretability from the user’s perspective was investigated by
Wanner et al. [28]. In particular, they evaluated how existing interpretable AI models can
be used for transfer and suggested improvements.

3. Proposed Method

We discuss our semantic similarity-based method for identifying isomorphic GUIs
in this section. The identification of GUI isomorphic interfaces is a comparison of GUI
structure graphs and GUI semantic similarity. Figure 2 shows the overall architecture
of the method. The flow of the method can be divided into three steps: extracting GUI
information, vectorizing GUI information, and identifying isomorphic GUIs. First, the class
and location of GUI elements are identified by the YOLOv5 target detection network [3].
Removing textual information will greatly reduce the difficulty of GUI modeling. However,
the skeleton-only GUI model may recognize non-isomorphic GUIs as isomorphic GUIs [15].
The element text is recognized by optical character recognition (OCR). The semantics of
the GUI elements are obtained through a comparison of the text recognition results with
the created domain application ontology model (DAOM). Then, the GUI structure map is
constructed based on the type and location information of the GUI, the interface text noise
effect is eliminated, and the GUI structure vector is extracted by an autoencoder [15]. A

Mathematics 2023, 11, 527 5 of 17

pre-trained Sentence-BERT language model is used to extract the interface semantic feature
vector [29]. Finally, the GUI structure vector and the semantic vector are combined into
a GUI interface embedding vector. The isomorphic GUIs are then identified by cosine
similarity.

Mathematics 2023, 11, x FOR PEER REVIEW 5 of 18

Feature engineering can be guided by interpretable analysis. Generally, features are
made based on some expertise and experience and the analysis of feature importance can
be used to mine more useful features. Hence, deep learning and other black-box models
are becoming increasingly popular. Despite their high performance, they may not be eth-
ically or legally acceptable due to their lack of interpretability. Bibal et al. [26] investigated
how the legal requirements for interpretability can be interpreted and applied in machine
learning. Nadia Burkart et al. [27] provided basic definitions outlining different principles
and approaches to interpretable supervised machine learning. The trade-off between com-
pleteness and interpretability from the user’s perspective was investigated by Wanner et
al. [28]. In particular, they evaluated how existing interpretable AI models can be used for
transfer and suggested improvements.

3. Proposed Method
We discuss our semantic similarity-based method for identifying isomorphic GUIs

in this section. The identification of GUI isomorphic interfaces is a comparison of GUI
structure graphs and GUI semantic similarity. Figure 2 shows the overall architecture of
the method. The flow of the method can be divided into three steps: extracting GUI infor-
mation, vectorizing GUI information, and identifying isomorphic GUIs. First, the class
and location of GUI elements are identified by the YOLOv5 target detection network [3].
Removing textual information will greatly reduce the difficulty of GUI modeling. How-
ever, the skeleton-only GUI model may recognize non-isomorphic GUIs as isomorphic
GUIs [15]. The element text is recognized by optical character recognition (OCR). The se-
mantics of the GUI elements are obtained through a comparison of the text recognition
results with the created domain application ontology model (DAOM). Then, the GUI
structure map is constructed based on the type and location information of the GUI, the
interface text noise effect is eliminated, and the GUI structure vector is extracted by an
autoencoder [15]. A pre-trained Sentence-BERT language model is used to extract the in-
terface semantic feature vector [29]. Finally, the GUI structure vector and the semantic
vector are combined into a GUI interface embedding vector. The isomorphic GUIs are
then identified by cosine similarity.

Input:GUI

concatenate

Vector

Output:
Similarity

Identify GUI
components

Identify GUI
text values

Location of
GUI components

Construct GUI
Structure Image autoencoder

Type of GUI
components

Semantic
of GUI

components

Text of GUI
components

Identify text
semantics

Sentence-BERT

ontology

InputCamera

Robotic Arm

Mobile Phone

Vectorizing GUI informationExtracting GUI Information

Figure 2. The architecture of the GUI isomorphic recognition method.

3.1. Extracting GUI Information
3.1.1. Identify GUI Components and Obtain the Structure Image

Components are the basic elements that make up a GUI window. Generally, each
GUI is composed of multiple types of components. The Finite State Machine (FSM) based
GUI modeling includes event-driven state transitions such as clicking on GUI elements.
Therefore, the classification and identification of elements are the basis of GUI modeling.
Referring to the study of the Rico dataset in [30], the GUI components are divided into
basic elements and combined elements by combining the characteristics and layout of the
GUI elements. The basic elements include text, icons, images, and input boxes. When the
text is a description of an icon or an input box, it is defined as a combination element.

To ensure real-time detection speed for mobile application robot testing, the YOLOv5
target detection model was chosen to identify the GUI elements [31]. The YOLOv5 target

Figure 2. The architecture of the GUI isomorphic recognition method.

3.1. Extracting GUI Information
3.1.1. Identify GUI Components and Obtain the Structure Image

Components are the basic elements that make up a GUI window. Generally, each
GUI is composed of multiple types of components. The Finite State Machine (FSM) based
GUI modeling includes event-driven state transitions such as clicking on GUI elements.
Therefore, the classification and identification of elements are the basis of GUI modeling.
Referring to the study of the Rico dataset in [30], the GUI components are divided into
basic elements and combined elements by combining the characteristics and layout of the
GUI elements. The basic elements include text, icons, images, and input boxes. When the
text is a description of an icon or an input box, it is defined as a combination element.

To ensure real-time detection speed for mobile application robot testing, the YOLOv5
target detection model was chosen to identify the GUI elements [31]. The YOLOv5 target
detection model sets a set of bounding boxes with a certain width and height in a pre-
defined manner. Information about the type and position of the target detection object
is returned by extracting image features. The advantage of YOLOv5 is the anchor box
mechanism included in the target detection network structure. This mechanism allows
the simultaneous detection of multiple objects present in the image. Figure 3b shows an
example of recognizing GUI elements. The position and type of this interface element are
accurately identified.

The GUI structure image is the feedback of the GUI structure and function. The GUI
structure image is constructed by extracting the type and location information of the GUI
components. Then, the GUI structure vector is extracted, which can effectively eliminate
the interference of interface text noise. The GUI structure image is constructed based on
the coloring of GUI component types, as shown in Figure 3c. That is, a color is assigned to
each type of component. Rectangular boxes are used to show the size and position of the
components, forming a GUI layout that ignores the textual information of the interface.

3.1.2. Obtain the Semantics of GUI Components

The semantics of an element is defined as the content of the element text or the name
of the named entity. As shown in Figure 3a, the semantics of “SIA” is the text “SIA”,
which represents the country Singapore. The complexity of the GUI context poses a great
difficulty for text recognition. This paper uses optical character recognition (OCR) for
the character recognition of text elements in GUI elements to ensure the accuracy of text
element recognition.

Mobile applications in the same domain often contain a large number of GUI elements
with similar semantics. The descriptions of these elements are not identical but often have
the same functionality. We address this problem by constructing a DAOM which serves as
a semantic library to provide unified semantics for GUI models.

Mathematics 2023, 11, 527 6 of 17

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 18

detection model sets a set of bounding boxes with a certain width and height in a prede-
fined manner. Information about the type and position of the target detection object is
returned by extracting image features. The advantage of YOLOv5 is the anchor box mech-
anism included in the target detection network structure. This mechanism allows the sim-
ultaneous detection of multiple objects present in the image. Figure 3b shows an example
of recognizing GUI elements. The position and type of this interface element are accu-
rately identified.

The GUI structure image is the feedback of the GUI structure and function. The GUI
structure image is constructed by extracting the type and location information of the GUI
components. Then, the GUI structure vector is extracted, which can effectively eliminate
the interference of interface text noise. The GUI structure image is constructed based on
the coloring of GUI component types, as shown in Figure 3c. That is, a color is assigned to
each type of component. Rectangular boxes are used to show the size and position of the
components, forming a GUI layout that ignores the textual information of the interface.

（a）GUI screen image （b）Yolov5 recognizes GUI elements （c） GUI structure image
Figure 3. Recognition results of GUI elements.

3.1.2. Obtain the Semantics of GUI Components
The semantics of an element is defined as the content of the element text or the name

of the named entity. As shown in Figure 3a, the semantics of “SIA” is the text “SIA”, which
represents the country Singapore. The complexity of the GUI context poses a great diffi-
culty for text recognition. This paper uses optical character recognition (OCR) for the char-
acter recognition of text elements in GUI elements to ensure the accuracy of text element
recognition.

Mobile applications in the same domain often contain a large number of GUI ele-
ments with similar semantics. The descriptions of these elements are not identical but of-
ten have the same functionality. We address this problem by constructing a DAOM which
serves as a semantic library to provide unified semantics for GUI models.

The DAOM is a unified description of the semantics of the GUI elements involved in
a mobile application in the same domain. The same domain refers to mobile applications
that provide the same or similar services, e.g., the booking software of different airlines
belong to the same domain. We combine each airline booking software to manually con-
struct the domain ontology of airline booking software. The domain knowledge is ac-
quired in a common way to provide a common understanding of the relevant concepts in
the domain and to realize the sharing and reuse of knowledge among different systems.

Figure 3. Recognition results of GUI elements.

The DAOM is a unified description of the semantics of the GUI elements involved in a
mobile application in the same domain. The same domain refers to mobile applications that
provide the same or similar services, e.g., the booking software of different airlines belong
to the same domain. We combine each airline booking software to manually construct
the domain ontology of airline booking software. The domain knowledge is acquired
in a common way to provide a common understanding of the relevant concepts in the
domain and to realize the sharing and reuse of knowledge among different systems. Some
element entities and their attributes in the manually constructed airline booking domain
ontology are shown in Figure 4. The results of text recognition are input to the DAOM.
The generalized linguistic descriptions are transformed into a unified and standardized
element description language through a comparison of the ontology domain knowledge
base. A unified description of the main functional elements, for example, flight information,
usually includes information such as ID, time, price, etc. Incorporating all this information
into the model forms a unified description of the order.

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 18

Some element entities and their attributes in the manually constructed airline booking
domain ontology are shown in Figure 4. The results of text recognition are input to the
DAOM. The generalized linguistic descriptions are transformed into a unified and stand-
ardized element description language through a comparison of the ontology domain
knowledge base. A unified description of the main functional elements, for example, flight
information, usually includes information such as ID, time, price, etc. Incorporating all
this information into the model forms a unified description of the order.

OrderTime Order

Voyage Flight

Airline

Passenger

Associate

Has-a

Has-a

Associate

OrderNo

Price

Departure

Destination

Cabin class
Flight Number

Flight Type

Departure Time

Destination Time

Flight Duration

AirlineName

LastName

FirstName

Gender

Email

Phone

User

Username

Password

UserPhone

Account

AccountId

AccountName ExpiryDate

CVV

BillAddress

Country

City

Postcode

Has-a

Has-a

Figure 4. Element entities and their attributes in the airline booking domain ontology.

3.2. Vectorizing GUI Information
The GUI information recognition results are used as the input to extract structure

vectors from the type and location information of GUI elements by the autoencoder. The
semantic vectors are extracted from the semantic information of the GUI elements by us-
ing the Sentence-BERT language model. Then, the two vectors are connected into an em-
bedding vector representing the overall features of the GUI by the concatenate function.

3.2.1. GUI Structure Embeddings
The GUI structure feature vectors are then extracted. To reduce the workload of man-

ually labeling data, an unsupervised learning method autoencoder is selected to extract
GUI structure feature vectors [32]. The autoencoder consists of two parts: the encoder en-
codes and the decoder recovers. The encoder encodes the input x into a learned feature
representation. The decoder recovers the original input by decoding the representation.

Autoencoders have certain bottleneck constraints: the compressed encoding must
have fewer data dimensions than the original input data. Only important features are kept
in the bottleneck stage and noise is ignored to extract isomorphic information from the
GUIs.

For the convolutional autoencoder, both the encoder and decoder are modeled as
convolutional neural networks. Figure 5 shows the network structure of the autoencoder
used in this paper. First, the min-max method is used to normalize the 128 × 128 GUI
structure map to improve the performance of the model. Second, the feature vectors are
extracted by auto-encoder. The encoder consists of four convolutional layers and four
pooling layers. The input data are compressed by the encoder, and the 512-dimensional
GUI structure feature vector is obtained after repeated iterations. The decoder contains
four convolutional layers and four upsampling layers. The reconstructed GUI structure is
output after iterations.

Figure 4. Element entities and their attributes in the airline booking domain ontology.

Mathematics 2023, 11, 527 7 of 17

3.2. Vectorizing GUI Information

The GUI information recognition results are used as the input to extract structure
vectors from the type and location information of GUI elements by the autoencoder. The
semantic vectors are extracted from the semantic information of the GUI elements by
using the Sentence-BERT language model. Then, the two vectors are connected into an
embedding vector representing the overall features of the GUI by the concatenate function.

3.2.1. GUI Structure Embeddings

The GUI structure feature vectors are then extracted. To reduce the workload of
manually labeling data, an unsupervised learning method autoencoder is selected to extract
GUI structure feature vectors [32]. The autoencoder consists of two parts: the encoder
encodes and the decoder recovers. The encoder encodes the input x into a learned feature
representation. The decoder recovers the original input by decoding the representation.

Autoencoders have certain bottleneck constraints: the compressed encoding must have
fewer data dimensions than the original input data. Only important features are kept in the
bottleneck stage and noise is ignored to extract isomorphic information from the GUIs.

For the convolutional autoencoder, both the encoder and decoder are modeled as
convolutional neural networks. Figure 5 shows the network structure of the autoencoder
used in this paper. First, the min-max method is used to normalize the 128 × 128 GUI
structure map to improve the performance of the model. Second, the feature vectors are
extracted by auto-encoder. The encoder consists of four convolutional layers and four
pooling layers. The input data are compressed by the encoder, and the 512-dimensional
GUI structure feature vector is obtained after repeated iterations. The decoder contains
four convolutional layers and four upsampling layers. The reconstructed GUI structure is
output after iterations.

Mathematics 2023, 11, x FOR PEER REVIEW 8 of 18

编码器 解码器

卷积 池化 上采样

输入 重构

512维特征

输
出

[2.06783438 0.00000000 … 2.716010221*10]
[1.43328583 0.00000000 … 2.0440036*10]

[1.43901002 0.00000000 … 2.75969535*10]
[1.54966819 0.00000000 … 2.06799358*10]
[1.53108644 0.00000000 … 1.98662102*10]
[1.04972649 0.00000000 … 2.67271250*10]
[1.08536959 0.00000000 … 2.04400361*10]
[1.32128251 0.00000000 … 2.01533347*10]

convolution Pooling Upsampling

encoder decoder
512 dimensional features

restructureinput

O
u
T
P
u
t

Figure 5. The network structure of the autoencoder.

In our model, the mean-square error (MSE) is used as a loss function to reduce the
difference between the input image and the reconstructed image. During the training pro-
cess of the loss layer, the difference between the original and the reconstructed images
will continue decreasing until the model converges.

Taking the GUI skeleton as the input, the encoding process extracts feature vectors
through a series of convolution and pooling operations, and the intermediate bottleneck
layer outputs the structure vectors of the input GUI skeleton. For high-dimensional GUI
information vectors, a certain degree of dimensionality reduction is possible using the
autoencoder bottleneck, which will greatly reduce the computational effort.

3.2.2. GUI Semantic Embeddings
The GUI component semantics is encoded into a 386-dimensional semantic vector

using a pre-trained Sentence-BERT language model [33]. Sentence-BERT is a modification
of the pre-trained Bidirectional Encoder Representations from Transformers (BERT) net-
work. It can map sentences to a vector space out of the box. Sentence-BERT maps each
sentence to vector space using concatenation and triadic network structures. Semantically
meaningful sentence embeddings with fixed sizes are thus derived. State-of-the-art per-
formance is established through semantic text similarity performance. Semantically simi-
lar sentences are very close in vector space, which is usually measured using cosine simi-
larity or Euclidean distance.

3.2.3. Forming the Embedding Vector
The structure vector and feature vector of the GUI are combined to form a single

fixed-length embedding vector. Using the concatenate function to join the two vectors to
obtain an 898-dimensional fixed-size embedding vector represents the overall GUI fea-
tures. The concatenate in a neural network is usually used to unite features, which is es-
sentially a union of dimensions. Concatenation functions simply concatenate scattered in-
formation. The purpose of this step is to merge the information from the structure vector
and the feature vector for the similarity calculation in the next section.

Figure 5. The network structure of the autoencoder.

In our model, the mean-square error (MSE) is used as a loss function to reduce the
difference between the input image and the reconstructed image. During the training
process of the loss layer, the difference between the original and the reconstructed images
will continue decreasing until the model converges.

Taking the GUI skeleton as the input, the encoding process extracts feature vectors
through a series of convolution and pooling operations, and the intermediate bottleneck

Mathematics 2023, 11, 527 8 of 17

layer outputs the structure vectors of the input GUI skeleton. For high-dimensional GUI
information vectors, a certain degree of dimensionality reduction is possible using the
autoencoder bottleneck, which will greatly reduce the computational effort.

3.2.2. GUI Semantic Embeddings

The GUI component semantics is encoded into a 386-dimensional semantic vector using
a pre-trained Sentence-BERT language model [33]. Sentence-BERT is a modification of the
pre-trained Bidirectional Encoder Representations from Transformers (BERT) network. It can
map sentences to a vector space out of the box. Sentence-BERT maps each sentence to vector
space using concatenation and triadic network structures. Semantically meaningful sentence
embeddings with fixed sizes are thus derived. State-of-the-art performance is established
through semantic text similarity performance. Semantically similar sentences are very close in
vector space, which is usually measured using cosine similarity or Euclidean distance.

3.2.3. Forming the Embedding Vector

The structure vector and feature vector of the GUI are combined to form a single
fixed-length embedding vector. Using the concatenate function to join the two vectors to
obtain an 898-dimensional fixed-size embedding vector represents the overall GUI features.
The concatenate in a neural network is usually used to unite features, which is essentially a
union of dimensions. Concatenation functions simply concatenate scattered information.
The purpose of this step is to merge the information from the structure vector and the
feature vector for the similarity calculation in the next section.

3.3. Identifying Isomorphic GUIs

Finite State Machines (FSM) are used to generate models for GUI model generation.
The model consists of nodes representing GUI states and edges representing interactions.
Figure 6a shows the jump events from the five pages in Figure 1, ignoring the other buttons
and internal components. In Figure 1, the four states jumped by state (W0) have different
interfaces, but their logical structures and functions are the same. When constructing the
GUI model, (W1a), (W1b), (W1c), and (W1d) transformed by state (W0) can be combined
into one state, as shown in Figure 6b. This can reduce the number of states and simplify the
GUI model. The key step in this process is the identification of isomorphic GUIs.

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 18

3.3. Identifying Isomorphic GUIs
Finite State Machines (FSM) are used to generate models for GUI model generation.

The model consists of nodes representing GUI states and edges representing interactions.
Figure 6a shows the jump events from the five pages in Figure 1, ignoring the other but-
tons and internal components. In Figure 1, the four states jumped by state (W0) have dif-
ferent interfaces, but their logical structures and functions are the same. When construct-
ing the GUI model, (W1a), (W1b), (W1c), and (W1d) transformed by state (W0) can be
combined into one state, as shown in Figure 6b. This can reduce the number of states and
simplify the GUI model. The key step in this process is the identification of isomorphic
GUIs.

Cosine similarity is a correlation measure. It measures the similarity between two
vectors by measuring the cosine of the angle between them to determine whether the two
vectors point in approximately the same direction. Cosine similarity focuses on the differ-
ence between two vectors in terms of direction. Hence, cosine similarity is an appropriate
measure of the correlation between two vectors for high-dimensional spaces. The cosine
similarity between two randomly distributed vectors X and Y can be calculated as fol-
lows:

1

2 2

1 1

_
() ()

n

i i
i

n n

i i
i i

X Y
consine score

X Y

=

= =

×
=

×

(1)

where (1,2,3,...,)i n= are the properties of vectors X and Y in the i th− dimension.
_ [1,1]consine score∈ − , a cosine similarity close to 1 indicates that the angle between

the two vectors is close to 0, which means that the two vectors are closer. Conversely, the
closer to −1 the cosine similarity is, the more dissimilar the two vectors are.

The cosine similarity value is normalized using the min-max method as a basis for
determining isomorphic GUIs. The closer to 1 the value is, the more similar the GUI is.
The threshold is set to 0.9. When the similarity value is greater than 0.9, it is judged as an
isomorphic GUI. In contrast, when the value is less than 0.9, it is judged to be a non-iso-
morphic GUI.

w0

w1a

w1b

w1c

e1
e2
e3
e4

e5
e6

w0 w1
e1

e2w1b
e5

e6

(a) Original GUI model (b) Simplified GUI model

Figure 6. Simplifying the FSM model. Figure 6. Simplifying the FSM model.

Cosine similarity is a correlation measure. It measures the similarity between two vectors
by measuring the cosine of the angle between them to determine whether the two vectors

Mathematics 2023, 11, 527 9 of 17

point in approximately the same direction. Cosine similarity focuses on the difference between
two vectors in terms of direction. Hence, cosine similarity is an appropriate measure of the
correlation between two vectors for high-dimensional spaces. The cosine similarity between
two randomly distributed vectors X and Y can be calculated as follows:

consine_score =

n
∑

i=1
Xi ×Yi√

n
∑

i=1
(Xi)

2 ×
√

n
∑

i=1
(Yi)

2
(1)

where (i = 1, 2, 3, . . . , n) are the properties of vectors X and Y in the i-th dimension.
consine_score ∈ [−1, 1], a cosine similarity close to 1 indicates that the angle between the
two vectors is close to 0, which means that the two vectors are closer. Conversely, the closer
to −1 the cosine similarity is, the more dissimilar the two vectors are.

The cosine similarity value is normalized using the min-max method as a basis for
determining isomorphic GUIs. The closer to 1 the value is, the more similar the GUI
is. The threshold is set to 0.9. When the similarity value is greater than 0.9, it is judged
as an isomorphic GUI. In contrast, when the value is less than 0.9, it is judged to be a
non-isomorphic GUI.

4. Experimental Analysis and Results

The applicability and effectiveness of our proposed method are evaluated. The cur-
rent mobile application platforms are diverse. The two most popular mobile application
platforms are iOS for Apple and Android. However, because of the variability of platform
development, the software GUI can vary greatly from one application platform to another.
The differences between the GUI on Android and iOS platforms are shown in Figure 7.
Although many approaches have been proposed to support cross-platform compilation
and execution of applications [34,35], cross-platform execution is still too inefficient for
real-world usage scenarios. The existing test migration methods tend to be highly depen-
dent on software source code, making it difficult to achieve full black-box software testing.
Hence, we design the following experiments, accuracy experiment, resolution experiment,
and cross-platform experiment, to verify the cross-device and cross-platform properties of
the proposed method. In addition, to verify the superiority of the proposed method, we set
up two baseline models for each experiment as a comparison.

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 18

4. Experimental Analysis and Results
The applicability and effectiveness of our proposed method are evaluated. The cur-

rent mobile application platforms are diverse. The two most popular mobile application
platforms are iOS for Apple and Android. However, because of the variability of platform
development, the software GUI can vary greatly from one application platform to another.
The differences between the GUI on Android and iOS platforms are shown in Figure 7.
Although many approaches have been proposed to support cross-platform compilation
and execution of applications [34,35], cross-platform execution is still too inefficient for
real-world usage scenarios. The existing test migration methods tend to be highly depend-
ent on software source code, making it difficult to achieve full black-box software testing.
Hence, we design the following experiments, accuracy experiment, resolution experi-
ment, and cross-platform experiment, to verify the cross-device and cross-platform prop-
erties of the proposed method. In addition, to verify the superiority of the proposed
method, we set up two baseline models for each experiment as a comparison.

(a) GUIs for iOS (b) GUIs for Android
Figure 7. GUI differences on Android and iOS platforms.

4.1. Dataset and Preparation for Experiments
The domain of the airline service mobile application is selected to produce the da-

taset. The selection of the test set is based on two important factors: representative soft-
ware, the chosen field needs to have a wide range of applications in daily life, and a dis-
tinct and unified interface style, the software interface design in the same field needs to
have a similar style. The airline service mobile application fits our needs perfectly. The
software has a high degree of functional overlap and the interface style is simple and clear,
which means that the element information characteristics are obvious.

For the three experiments set up, we construct the datasets separately. A total of 300
screenshots are taken from six smart devices, four of which have Android as their operat-
ing system and the rest have iOS as their operating system. The specific data set is shown
in Table 1.

During the experiments, the Kera neural network framework for deep learning was
mainly used. To maximize the flexibility and speed of the algorithm, we incorporated the
Torch framework, which is an open-source framework for machine learning.

Figure 7. GUI differences on Android and iOS platforms.

Mathematics 2023, 11, 527 10 of 17

4.1. Dataset and Preparation for Experiments

The domain of the airline service mobile application is selected to produce the dataset.
The selection of the test set is based on two important factors: representative software,
the chosen field needs to have a wide range of applications in daily life, and a distinct
and unified interface style, the software interface design in the same field needs to have a
similar style. The airline service mobile application fits our needs perfectly. The software
has a high degree of functional overlap and the interface style is simple and clear, which
means that the element information characteristics are obvious.

For the three experiments set up, we construct the datasets separately. A total of
300 screenshots are taken from six smart devices, four of which have Android as their
operating system and the rest have iOS as their operating system. The specific data set is
shown in Table 1.

Table 1. The constructed dataset.

Experiment 1: Accuracy Experiment

Resolution No.

App
Priceline Kiwi Wego Cheap

Travel
China

Eastern
Spring
Airline

Lufthansa Hainan
Airlines

1080∗2340 12 12 12 12 12 12 14 14

Experiment 2: Resolution Experiment

Resolution No.

App
Kiwi Qatar Airways Expedia Priceline Wego Kiwi

1080∗2270 6 6 6 6 6 6

1440∗3200 6 6 6 6 6 6

1080∗2340 4 4 4 4 4 4

1080∗1920 4 4 4 4 4 4

Experiment 3: Cross-platform Experiment

System No.

App
Qatar Airways Expedia Priceline Wego Qatar

Airways

Android
1080∗2400 6 6 8 6 6

1440∗3200 6 6 6 6 6

iOS
1170∗2532 6 6 6 8 6

1242∗2208 6 6 6 6 6

During the experiments, the Kera neural network framework for deep learning was
mainly used. To maximize the flexibility and speed of the algorithm, we incorporated the
Torch framework, which is an open-source framework for machine learning.

4.2. Baselines

The semantic similarity-based isomorphic GUI recognition method is compared with
the following baseline models.

1. GUI skeleton vectors only (GSVO) [15]: only GUI visual embedding is considered,
improving the approach of screen embedding used in the original RICO paper [36].
The type and location information of GUI components are obtained by end-to-end
deep learning. The GUI features are represented with feature vectors extracted by the
autoencoder. The isomorphic GUIs are determined by the similarity of the feature
vectors.

2. Screen2Vec [29]: the textual content, visual design, and layout patterns of the GUI are
considered. The final screen feature vector is derived from a multi-method synthesis.

Mathematics 2023, 11, 527 11 of 17

Screen2Vec requires the support of the underlying framework of the application under
testing to obtain the GUI layout pattern embedding vector. Only the textual content
of the GUI is considered, i.e., the semantic information contained behind the textual
content is not considered.

4.3. Evaluation Metrics

Four evaluation metrics are used to assess the effectiveness of the isomorphic GUI
recognition method: accuracy (Acc), precision (P), recall (R), and harmonic mean F1.

• Acc indicates the percentage of correct predictions.
• P is for the predicted outcome, which indicates how many of the samples predicted to

be positive are truly positive.
• R is specific to the original sample, which indicates how many positive classes in the

sample are correctly predicted.
• F1 is the summed average of precision and recall. F1 combines Acc and R into one

metric which evaluates the performance of the model on images where the true value
is known.

4.4. Results and Discussion
4.4.1. Accuracy Experiments

One hundred GUI screenshots containing 66 pairs of isomorphic GUIs are selected
from eight airline service mobile applications (because some GUIs have more than one
isomorphic GUI pair). Then, the first 50 and last 50 GUI feature values are compared
sequentially for a total of 2500 times. The recognition results of the isomorphic GUI
are represented in the form of a heat map, shown in Figure 8. The similarity measure
is represented by the color shade of the heat map; the darker the color, the higher the
similarity value.

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 18

4.4. Results and Discussion
4.4.1. Accuracy Experiments

One hundred GUI screenshots containing 66 pairs of isomorphic GUIs are selected
from eight airline service mobile applications (because some GUIs have more than one
isomorphic GUI pair). Then, the first 50 and last 50 GUI feature values are compared se-
quentially for a total of 2500 times. The recognition results of the isomorphic GUI are rep-
resented in the form of a heat map, shown in Figure 8. The similarity measure is repre-
sented by the color shade of the heat map; the darker the color, the higher the similarity
value.

（a) proposed method (b) GUI skeleton vectors only (GSVO) (c) Screen2Vec

Figure 8. Results of similarity discriminant matrix for accuracy experiments.

Figure 9. ROC for the accuracy experiments.

(a) Proposed method GUI skeleton vectors only (GSVO) Screen2Vec

Figure 10. Results of similarity discriminant matrix for resolution experiments.

Figure 8. Results of similarity discriminant matrix for accuracy experiments.

Figure 8 shows that the GSVO method heat map has the darkest color, indicating
that the obtained GUI similarity value is high due to the fact that GSVO only constructs
the GUI layout structure information vector. While the element text semantic information
is ignored, the GUI feature vector acquires incomplete information, leading to the iden-
tification of non-isomorphic GUIs as isomorphic GUIs. The Screen2Vec method obtains
the structure information along with the GUI text information. However, because of the
differences in the textual representation of elements, some isomorphic GUIs are recognized
as non-isomorphic GUIs, resulting in low GUI similarity values. Our proposed method
shows superiority compared to the first two baseline models. The GUI structure vector is
considered and the textual variability is taken into account. The text is transformed into
domain ontology semantics, which is universal in the scope of the domain.

The performance metrics of the three methods for identifying isomorphic GUIs are
shown in Table 2. The indicator data show that our proposed method has the highest
recognition accuracy in 2500 comparative experiments and shows strong superiority in
terms of precision and recall, and has an F1 score above 0.8.

Mathematics 2023, 11, 527 12 of 17

Table 2. The proposed method of the accuracy experiment.

Proposed Method GUI Skeleton Vectors Only Screen2Vec

Acc 0.993 0.986 0.989

P 0.853 0.670 0.885

R 0.879 0.894 0.697

F1 0.866 0.766 0.789

We plotted the receiver operating characteristic (ROC) curves of the three methods
to compare the recognition results of the three methods for isomorphic GUIs. As shown
in Figure 9, the area under the curve (AUC) of the three methods were 0.907, 0.852, and
0.906, respectively. The AUCs of all three methods were above 0.85. Our proposed method
has the highest AUC value, which indicates that the proposed method has the highest
accuracy value.

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 18

4.4. Results and Discussion
4.4.1. Accuracy Experiments

One hundred GUI screenshots containing 66 pairs of isomorphic GUIs are selected
from eight airline service mobile applications (because some GUIs have more than one
isomorphic GUI pair). Then, the first 50 and last 50 GUI feature values are compared se-
quentially for a total of 2500 times. The recognition results of the isomorphic GUI are rep-
resented in the form of a heat map, shown in Figure 8. The similarity measure is repre-
sented by the color shade of the heat map; the darker the color, the higher the similarity
value.

（a) proposed method (b) GUI skeleton vectors only (GSVO) (c) Screen2Vec

Figure 8. Results of similarity discriminant matrix for accuracy experiments.

Figure 9. ROC for the accuracy experiments.

(a) Proposed method GUI skeleton vectors only (GSVO) Screen2Vec

Figure 10. Results of similarity discriminant matrix for resolution experiments.

Figure 9. ROC for the accuracy experiments.

4.4.2. Resolution Experiment

Different kinds of smart devices result in GUIs with inconsistent resolutions; the same
software will produce different display effects on smart devices with different resolutions,
which also affects the screen layout. For example, the same text is displayed as two lines
of text on a GUI with a wider screen, but it will be displayed as three lines of text on a
GUI with a narrower screen. Hence, resolution can have some effect on isomorphic GUI
recognition.

A total of 100 interfaces containing 109 pairs of isomorphic GUIs are intercepted
from five pieces of software in the field of airline services selected from four Android
smart devices with different resolutions. The heat map of similarity for the three methods
for isomorphic GUI recognition at different resolutions is shown in Figure 10. The heat
map is lighter in color compared to Figure 8, indicating that the recognition accuracy of
the isomorphic GUI has decreased. However, the distribution of the similarity matrix is
consistent with Figure 8 as a whole.

An intuitive demonstration of the performance of the three methods in identifying
isomorphic GUIs at different resolutions is shown in Table 3. It shows that the resolution
has some influence on the recognition results of all three methods. The difference in the
resolution of the tested application affects the size of the GUI elements on the screen,
resulting in differences in the GUI layout. Some of the isomorphic GUIs are identified as
non-isomorphic, which to some extent leads to a decrease in the evaluation score. However,
the recognition accuracies of all three methods remain above 0.97, while our proposed

Mathematics 2023, 11, 527 13 of 17

method remained at 0.98. Compared with the first two baseline models, the F1 score of the
integrated performance index of this method is above 0.8, which demonstrates the stability
of the method. It is verified that our proposed method still has good usability in the face of
GUIs with different resolutions.

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 18

4.4. Results and Discussion
4.4.1. Accuracy Experiments

One hundred GUI screenshots containing 66 pairs of isomorphic GUIs are selected
from eight airline service mobile applications (because some GUIs have more than one
isomorphic GUI pair). Then, the first 50 and last 50 GUI feature values are compared se-
quentially for a total of 2500 times. The recognition results of the isomorphic GUI are rep-
resented in the form of a heat map, shown in Figure 8. The similarity measure is repre-
sented by the color shade of the heat map; the darker the color, the higher the similarity
value.

（a) proposed method (b) GUI skeleton vectors only (GSVO) (c) Screen2Vec

Figure 8. Results of similarity discriminant matrix for accuracy experiments.

Figure 9. ROC for the accuracy experiments.

(a) Proposed method GUI skeleton vectors only (GSVO) Screen2Vec

Figure 10. Results of similarity discriminant matrix for resolution experiments. Figure 10. Results of similarity discriminant matrix for resolution experiments.

Table 3. The proposed method of the resolution experiment.

Proposed Method GUI Skeleton Vectors Only Screen2Vec

Acc 0.984 0.979 0.976

P 0.752 0.798 0.853

R 0.872 0.743 0.674

F1 0.808 0.769 0.753

The ROCs of the three methods are plotted according to Table 3. As shown in Figure 11,
the area under the curve (AUC) of the three methods are 0.945, 0.926, and 0.906, respectively.
The AUCs of all three methods are above 0.9, but our proposed method has the highest
AUC value. This indicates that the proposed method still performs well in identifying
isomorphic GUIs with different resolutions.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 18

Figure 11. ROC for the resolution experiments.

(a) proposed method (b) GUI skeleton vectors only (GSVO) (c) Screen2Vec

Figure 12. Results of similarity discriminant matrix for cross-platform experiments.

Figure 13. ROC for the cross-platform experiments.

Figure 11. ROC for the resolution experiments.

Mathematics 2023, 11, 527 14 of 17

4.4.3. Cross-Platform Experiment

Smart devices in the market employ various platforms, among which Android and
iOS are the mainstream, and the different development methods of Android and IOS are
inconvenient for mobile application testing. Our approach is based on robot testing and
uses industrial cameras instead of human eyes and robotic arms instead of human arms
for click experiments. There is no need to obtain the source code of the mobile application,
which is theoretically compatible with different operating systems.

We took 100 GUI screen images of airline service mobile applications including 116
pairs of isomorphic GUIs from two Android OS and two iOS OS smart devices. In the 2500
comparison experiments, isomorphic GUIs were mainly present in the comparison of the
1st to 30th GUI screen images and the 50th to 80th GUI screen images. The heat map of
the similarity matrix obtained by the three methods under different operating systems is
shown in Figure 12.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 18

Figure 11. ROC for the resolution experiments.

(a) proposed method (b) GUI skeleton vectors only (GSVO) (c) Screen2Vec

Figure 12. Results of similarity discriminant matrix for cross-platform experiments.

Figure 13. ROC for the cross-platform experiments.

Figure 12. Results of similarity discriminant matrix for cross-platform experiments.

The consistent color of the thermogram in regard to the initial experimental design as a
whole can determine the correct direction of the experiment. The performance metrics of the
three methods for isomorphic GUI recognition under different operating systems are shown
in Table 4. The interface of the same software in different OS platforms has some differences,
for example, the resolution of Android and iOS smart devices is not consistent. These factors
add many variables to the experiment and cause a decrease in the recognition accuracy of
the isomorphic GUI. Table 4. shows the recognition accuracy of our method reached 97.7%,
indicating that the method has good stability. The F1 scores are much higher than those of
the two baseline methods, highlighting the advantage of the proposed method in performing
isomorphic GUI recognition tasks across operating systems.

Table 4. The proposed method of the platform experiment.

Proposed Method GUI Skeleton Vectors Only Screen2Vec

Acc 0.977 0.969 0.975

P 0.736 0.679 0.798

R 0.793 0.655 0.612

F1 0.763 0.667 0.693

The ROCs of the three methods are plotted according to Table 4. As shown in Figure 13,
the area under the curve (AUC) for the three methods is 0.967, 0.945, and 0.946, respectively.
Our proposed method has the highest AUC value, indicating that our proposed method
has good adaptability across platforms.

In summary, the three experiments show that our proposed method maintains an
accuracy above 0.97 for isomorphic GUI recognition, which is significantly better than
the two baseline models. In terms of the resolution and cross-platform experiments, the
proposed method exhibits stability that far exceeds that of the two baseline models. It is

Mathematics 2023, 11, 527 15 of 17

shown that the proposed method has a well-performed cross-device and cross-platform
compatibility.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 18

Figure 11. ROC for the resolution experiments.

(a) proposed method (b) GUI skeleton vectors only (GSVO) (c) Screen2Vec

Figure 12. Results of similarity discriminant matrix for cross-platform experiments.

Figure 13. ROC for the cross-platform experiments.

Figure 13. ROC for the cross-platform experiments.

Despite the progress we have made in our method, it still has some limitations. Since
our DAOM is built manually, it consumes upfront preparation time to some extent. In
addition, if the domain model does not contain enough element semantics, it may result
in unresolved element semantics. Hence, our next step is to build more complete domain
knowledge to automate the generation of the DAOM. In the future, we will continue to
improve the detection efficiency of the method and promote its integration with the testing
process of commercial mobile applications.

5. Conclusions

We propose a semantic similarity-based isomorphic GUI identification method to deal
with the state space explosion problem of GUI models. The information on GUI elements
(type, location, and semantic information) is first obtained through deep learning network
models, and then the GUI information is vectorized by extracting GUI structure vectors
and semantic vectors. Finally, the isomorphic GUIs are identified through a comparison of
cosine similarity. The proposed method can simplify the GUI model and lay the foundation
for the full black-box mobile application robot testing. Our experiments prove that the
proposed method is compatible with smart devices of different resolutions and platforms.

The proposed approach is fully black-boxed and does not violate users’ data and
privacy in real-world scenarios. However, there are still some limitations to the method.
Since our DAOM is built manually, this consumes upfront preparation time to some extent.
Our next step is to build more complete domain knowledge to automate the generation
of the DAOM. In addition, a large amount of image information needs to be processed
which places high demands on the configuration of the experimental equipment. This
poses a considerable challenge for project implementation. Furthermore, we are currently
conducting research on isomorphic GUIs in English visual interfaces only and have not
conducted experiments in other languages. In the future, we will consider extending the
model to full language validation.

Author Contributions: Conceptualization, writing—original, J.C. and S.L.; supervision, J.C.; valida-
tion, J.Z., W.X. and T.Z.; propose the new method or methodology, J.C. and T.Z.; formal analysis,
investigation, J.C.; resources, F.X. and W.X.; writing—review and editing, J.C., T.Z. and F.X. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Mathematics 2023, 11, 527 16 of 17

Data Availability Statement: The data that support the findings of this study are openly available at
https://zenodo.org/record/7519136#.Y7zV6nZBxnI (accessed on 10 January 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wimalasooriya, C.; Licorish, S.A.; da Costa, D.A.; MacDonell, S.G. A systematic mapping study addressing the reliability of

mobile applications: The need to move beyond testing reliability. J. Syst. Softw. 2022, 186, 111166. [CrossRef]
2. Contan, A.; Dehelean, C.; Miclea, L. Test automation pyramid from theory to practice. In Proceedings of the 2018 IEEE International

Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 24–26 May 2018; pp. 1–5.
3. Zhang, T.; Su, Z.; Cheng, J.; Xue, F.; Liu, S. Machine vision-based testing action recognition method for robotic testing of mobile

application. Int. J. Distrib. Sens. Netw. 2022, 18, 15501329221115375. [CrossRef]
4. Pandya, A.; Eslamian, S.; Ying, H.; Nokleby, M.; Reisner, L.A. A Robotic Recording and Playback Platform for Training Surgeons

and Learning Autonomous Behaviors Using the da Vinci Surgical System. Robotics 2019, 8, 9. [CrossRef]
5. Garousi, V.; Elberzhager, F. Test automation: Not just for test execution. IEEE Softw. 2017, 34, 90–96. [CrossRef]
6. Ilyin, V.K.; Morozova, Y.A.; Usanova, N.A.; Gotovskiy, M.Y.; Roik, O.A.; Matiushin, A.O. Ultra-weak electromagnetic signals:

Effects of storing and playback on example of saccharomyces. Int. J. High Dilution Resarch 2018, 17, 40. [CrossRef]
7. Huang, T.X.; Ji, J.W.; Shou, Y.X.; Kong, Y. Research and Application of a User Interface Automatic Testing Method Based on Data

Driven. In International Symposium on Software Reliability, Industrial Safety, Cyber Security and Physical Protection for Nuclear Power
Plant; Springer: Singapore, 2019; pp. 202–211.

8. Anbunathan, R.; Basu, A. Data driven architecture based automated test generation for Android mobile. In Proceedings of
the 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Madurai, India,
10–12 December 2015; pp. 1–5.

9. Pereira, R.B.; Brito, M.A.; Machado, R.J. Architecture Based on Keyword Driven Testing with Domain Specific Language for a
Testing System. In Lecture Notes in Computer Science, ICTSS 2020, Naples, Italy, 9–11 December 2020; Springer Science & Business
Media: Berlin/Heidelberg, Germany, 2020; Volume 12543, pp. 310–316.

10. Divya, R.; Prasad, K.N. Automation of Desktop Applications Using Keyword Driven Approach. In Proceedings of the Second
International Conference on Emerging Trends in Science & Technologies For Engineering Systems (ICETSE-2019), Chickballapur,
India, 17–18 May 2019.

11. Lenka, R.K.; Nayak, K.M.; Padhi, S. Automated Testing Tool: QTP. In Proceedings of the 2018 International Conference on Advances
in Computing, Communication Control and Networking (ICACCCN), Greater Noida, India, 12–13 October 2018; pp. 526–532.

12. Mao, K.; Harman, M.; Jia, Y. Robotic Testing of Mobile Apps for Truly Black-Box Automation. IEEE Softw. 2017, 34, 11–16.
[CrossRef]

13. Long, Y.; Wang, J.L. Picture-text webpage model and pale element feature induction. Comput. Eng. Sci. 2013, 35, 136–143.
14. Ren, S.; Wang, Z.; Wang, Y. Layout mining and pattern matching algorithm on automatic Web page design. Comput. Eng. Appl.

2018, 54, 227–232.
15. Zhang, T.; Liu, Y.; Gao, J.; Gao, L.P.; Cheng, J. Deep Learning-Based Mobile Application Isomorphic GUI Identification for

Automated Robotic Testing. IEEE Softw. 2020, 37, 67–74. [CrossRef]
16. Dobslaw, F.; Feldt, R.; Michaëlsson, D.; Haar, P.; de Oliveira Neto, F.G.; Torkar, R. Estimating return on investment for gui test

automation frameworks. In Proceedings of the 2019 IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE), Berlin, Germany, 28–31 October 2019; pp. 271–282.

17. Adamo, D.; Khan, M.K.; Koppula, S.; Bryce, R. Reinforcement learning for Android GUI testing. In Proceedings of the 9th ACM
SIGSOFT International Workshop on Automating TEST Case Design, Selection, and Evaluation, Lake Buena Vista, FL, USA,
5 November 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 2–8.

18. Qin, X.; Zhong, H.; Wang, X. Migrating GUI test cases from iOS to Android. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA 2019), Beijing, China, 15–19 July 2019; Association for
Computing Machinery: New York, NY, USA, 2019; pp. 284–295.

19. Belli, F. Finite state testing and analysis of graphical user interfaces. In Proceedings of the 12th International Symposium on
Software Reliability Engineering ISSRE 2001, Hong Kong, China, 27–30 November 2001.

20. Baek, Y.M.; Bae, D.H. Automated model-based Android GUI testing using multi-level GUI comparison criteria. In Proceedings of
the 2016 31st IEEE/ACM International Conference on Automated Software Engineering (ASE), Singapore, 3–7 September 2016;
pp. 238–249.

21. Memon, A.M.; Soffa, M.L.; Pollack, M.E. Coverage Criteria for GUI Testing. In Proceedings of the 8th European Software
Engineering Conference Held Jointly with 9th ACM SIGSOFT International Symposium on Foundations of Software Engineering
ESEC/FSE-9, Vienna, Austria, 10–14 September 2001; pp. 256–267.

22. Belli, F.; Hollmann, A.; Nissanke, N. Modeling, Analysis and Testing of Safety Issues—An Event-Based Approach and Case
Study. In Lecture Notes in Computer Science, Proceedings of the International Conference on Computer Safety, Reliability, and Security,
SAFECOMP 2007, Nurmberg, Germany, 18–21 September 2007; Saglietti, F., Oster, N., Eds.; Springer: Berlin/Heidelberg, Germany,
2007; Volume 4680.

https://zenodo.org/record/7519136#.Y7zV6nZBxnI
http://doi.org/10.1016/j.jss.2021.111166
http://doi.org/10.1177/15501329221115375
http://doi.org/10.3390/robotics8010009
http://doi.org/10.1109/MS.2017.34
http://doi.org/10.51910/ijhdr.v17i2.942
http://doi.org/10.1109/MS.2017.49
http://doi.org/10.1109/MS.2020.2987044

Mathematics 2023, 11, 527 17 of 17

23. Behrang, F.; Reiss, S.P.; Orso, A. Supporting app design and development through GUI search. In Proceedings of the 5th
International Conference on Mobile Software Engineering and Systems (MOBILESoft ‘18), Gothenburg, Sweden, 27–28 May 2018;
Association for Computing Machinery: New York, NY, USA, 2018; pp. 236–246.

24. Mariani, L.; Mohebbi, A.; Pezzè, M.; Terragni, V. Semantic matching of GUI events for test reuse: Are we there yet? In
Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2021), Virtual,
Denmark, 11–17 July 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 177–190.

25. Almrayat, S.; Yousef, R.; Sharieh, A. Evaluating the Impact of GUI Similarity between Android Applications to Measure their
Functional Similarity. Int. J. Comput. Appl. 2018, 975, 8887. [CrossRef]

26. Bibal, A.; Lognoul, M.; De Streel, A.; Frénay, B. Legal requirements on explainability in machine learning. Artif. Intell. Law 2021,
29, 149–169. [CrossRef]

27. Burkart, N.; Huber, M.F. A Survey on the Explainability of Supervised Machine Learning. J. Artif. Intell. Res. 2021, 70, 245–317.
[CrossRef]

28. Wanner, J.; Herm, L.V.; Janiesch, C. How much is the black box? The value of explainability in machine learning models. In
Proceedings of the 2020 European Conference on Information Systems, Marrakech, Morocco, 15–17 June 2020; 2020; Volume 85.
Available online: https://aisel.aisnet.org/ecis2020_rip/85 (accessed on 12 May 2020).

29. Li, T.J.J.; Popowski, L.; Mitchell, T.; Myers, B.A. Screen2Vec: Semantic Embedding of GUI Screens and GUI Components. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI ‘21), Yokohama, Japan, 8–11 May 2021;
Association for Computing Machinery: New York, NY, USA, 2021. Article no. 578. pp. 1–15.

30. Liu, T.F.; Craft, M.; Situ, J.; Yumer, E.; Mech, R.; Kumar, R. Learning Design Semantics for Mobile Apps. In Proceedings of the 31st
Annual ACM Symposium on User Interface Software and Technology, Berlin, Germany, 14–17 October 2008; Association for
Computing Machinery: New York, NY, USA, 2018; pp. 569–579.

31. Cheng, J.; Tan, D.; Zhang, T.; Wei, A.; Chen, J. YOLOv5-MGC: GUI Element Identification for Mobile Applications Based on
Improved YOLOv5. Mob. Inf. Syst. 2022, 2022, 8900734. [CrossRef]

32. Boutarfass, S.; Besserer, B. Convolutional Autoencoder for Discriminating Handwriting Styles. In Proceedings of the 2019 8th
European Workshop on Visual Information Processing (EUVIP), Roma, Italy, 28–31 October 2019; pp. 199–204.

33. Reimers, N.; Gurevych, I. Sentence embeddings using siamese bert-networks. arXiv 2019, arXiv:1908.10084.
34. Choi, W.; Sen, K.; Necula, G.; Wang, W. DetReduce: Minimizing Android GUI Test Suites for Regression Testing. In Proceedings

of the 2018 ACM/IEEE 40th International Conference on Software Engineering, Gothenburg, Sweden, 27 May–3 June 2018;
pp. 445–455.

35. Xue, F.; Wu, J.; Zhang, T. Visual Identification of Mobile App GUI Elements for Automated Robotic Testing. Comput. Intell.
Neurosci. 2022, 2022, 447–455. [CrossRef] [PubMed]

36. Deka, B.; Huang, Z.; Franzen, C.; Hibschman, J.; Afergan, D.; Li, Y.; Nichols, J.; Kumar, R. Rico: A mobile app dataset for building
data-driven design applications. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology,
Québec City, QC, Canada, 22–25 October 2017; pp. 845–854.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.5120/ijca2019919075
http://doi.org/10.1007/s10506-020-09270-4
http://doi.org/10.1613/jair.1.12228
https://aisel.aisnet.org/ecis2020_rip/85
http://doi.org/10.1155/2022/8900734
http://doi.org/10.1155/2022/4471455
http://www.ncbi.nlm.nih.gov/pubmed/35502358

	Introduction
	Related Work
	Automated GUI Testing
	GUI Modeling
	Isomorphic GUIs Recognition
	Explainability for Machine Learning Models

	Proposed Method
	Extracting GUI Information
	Identify GUI Components and Obtain the Structure Image
	Obtain the Semantics of GUI Components

	Vectorizing GUI Information
	GUI Structure Embeddings
	GUI Semantic Embeddings
	Forming the Embedding Vector

	Identifying Isomorphic GUIs

	Experimental Analysis and Results
	Dataset and Preparation for Experiments
	Baselines
	Evaluation Metrics
	Results and Discussion
	Accuracy Experiments
	Resolution Experiment
	Cross-Platform Experiment

	Conclusions
	References

