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Abstract: This work presents a novel simulation approach to couple the meshfree radial point inter‑
polation method (RPIM) with the implicit direct time integration method for the transient analysis
of wave propagation dynamics in non‑homogeneous media. In this approach, the RPIM is adopted
for the discretization of the overall space domain, while the discretization of the time domain is com‑
pleted by employing the efficient Bathe time stepping scheme. The dispersion analysis demonstrates
that, in wave analysis, the amount of numerical dispersion error resulting from the discretization in
the space domain can be suppressed at a very low level when the employed nodal support domain of
the interpolation function is adequately large. Meanwhile, it is also mathematically shown that the
amount of numerical error resulting from the time domain discretization is actually a monotonically
decreasing function of the non‑dimensional time domain discretization interval. Consequently, the
present simulation approach is capable of effectively handling the transient analysis of wave propa‑
gation dynamics in non‑homogeneous media, and the disparate waves with different speeds can be
solved concurrently with very high computation accuracy. This numerical featuremakes the present
simulation approach more suitable for complicated wave analysis than the traditional finite element
approach because the waves with disparate speeds always cannot be concurrently solved accurately.
Several numerical tests are given to check the performance of the present simulation approach for
the analysis of wave propagation dynamics in non‑homogeneous media.

Keywords: meshfree techniques; numerical methods; spatial discretization; transient analysis;
time integration

MSC: 35A08; 35A09; 35A24; 65L60; 74S05

1. Introduction
In many engineering application areas, transient wave propagation dynamics are fre‑

quently encountered [1,2]. In essence, solving this type of engineering problem is to effec‑
tively handle the time‑continuous governing partial differential equations via numerical
approaches. In practice, the finite element approach with the direct time integration algo‑
rithm is widely utilized to solve complex transient wave propagation dynamics [3]. The
finite element method (FEM) is mainly adopted to achieve the discretization of the overall
space domain. Then, a series of semi‑discrete dynamic equations, which are discrete in the
space domain and continuous in the time domain, can be obtained. By using the appropri‑
ate time integration algorithms, the required discretization in the time domain can also be
realized, and then the considered transient wave propagations can finally be solved.

Although a large number of spatial discretization schemes can be exploited to dis‑
cretize the involved problem domain spatially (such as the finite difference method [4–7],

Mathematics 2023, 11, 523. https://doi.org/10.3390/math11030523 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11030523
https://doi.org/10.3390/math11030523
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11030523
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11030523?type=check_update&version=1


Mathematics 2023, 11, 523 2 of 27

the spectral element method [8], the smoothed FEM [9–19], the meshless techniques [20–29],
and the boundary element or boundary‑based numerical algorithms [30–41]), the traditional
finite element approach is still dominantly employed in practice due to its relatively firm
mathematical background and easy implementation. Nevertheless, the finite element ap‑
proach also suffers from several inherent shortcomings in wave analysis [1,3,42]. One in‑
tractable issue of them is that the concomitant spatial discretization error always arises
in the numerical solutions and cannot be completely avoided [42]. Actually, the resultant
spatial discretization error is closely related to the number of employed elements perwave‑
length. More elements in one wavelength can lead to a smaller amount of discretization
error. In engineering practice, only the relatively low vibration modes can be accurately
represented when a fixed mesh pattern is used. For the relatively high‑vibration modes,
the obtained spatial discretization error is usually quite large because they are not spa‑
tially resolved with sufficiently high accuracy. In solving the transient wave propagation
dynamics, these spatial discretization errors in high‑order vibrationmodeswill pollute the
obtained numerical solutions and can give rise to many spurious oscillations [3].

Compared to the conventional finite element approach, meshless numerical techniques
might be a powerful alternative to enhance the performance of traditional FEM in spatial
discretization for wave analysis [20]. In the meshless framework, only a set of scattered
field nodes are used to represent the involved physical space domain, and the pre‑defined
meshes or elements are not required [20]. In consequence, the computed numerical solu‑
tions from the meshless techniques are usually insensitive to the employed node distribu‑
tion schemes, while this factor can severely affect the solution quality of the traditional
FEM because the distorted meshes can lead to very inaccurate solutions. Additionally, the
higher‑order numerical approximation can always be achieved by meshless techniques,
and then in wave analysis, the possible spatial discretization errors can be largely sup‑
pressed. Consequently, the high‑order vibration modes also can be well represented, and
the spurious oscillations in the solutions can be effectively eliminated. During the past
few decades, various meshfree numerical techniques have been developed and used in a
large range of engineering and scientific computation fields, such as the smoothed parti‑
cle hydrodynamics (SPH) [43], the reproducing kernel particle method (RKPM) [44], the
element‑free Galerkin method (EFGM) [45–47], the method of finite spheres (MFS) [48]
and various strong‑form collocation methods [49–53]. Due to the relatively high numeri‑
cal performance of the RPIM in a large number of numerical tests and the possession of
the Kronecker delta function property [20], the meshless RPIM is utilized in this work to
achieve the required spatial discretization in transient wave analysis.

In addition to spatial discretization, discretization in the time domain is also an indis‑
pensable step to handle complex time‑continuous dynamic equations. The widely used
numerical treatment for this step is to use a direct time integration algorithm. In the direct
time integration schemes, the required discretization in the time domain can be achieved
without any additional numerical treatments on the obtained system mass and stiffness
matrices. Generally, the frequently used direct time integration algorithms in practice can
be classified into two types, namely the explicit direct time integration algorithm [54,55]
and the implicit direct time integration algorithm [56,57]. In the explicit time integration
algorithm, only the information of the field function variables (such as displacements, ve‑
locities, and accelerated velocities) at the previous time point is needed to calculate the re‑
sponse at the current time point. The treatment of the simultaneous equations can be easily
avoided in an explicit time integration algorithm. However, the explicit time integration
algorithm is always conditionally stable. Consequently, there always exists a critical time
step increment in the numerical integration process. Due to this issue, stable and reliable
numerical solutions can be yielded unless the employed time step for time integration is
not larger than the critical time step increment.

In contrast to the explicit time integration algorithm, in the implicit time integration
scheme, both the variable information at the previous and current time points are required
to compute the responses at the current time point. In general, the treatment of the simul‑



Mathematics 2023, 11, 523 3 of 27

taneous equations cannot be avoided in an implicit method. However, the implicit direct
time integration algorithm is always unconditionally stable, and there exists no so‑called
critical time step increment. As a result, a relatively large time integration step can be
used for a stable numerical solution, and then the required number of time steps can be
largely reduced. Similar to the discretization in the space domain, the discretization in the
time domain can also give rise to considerable numerical errors. In general, the numeri‑
cal errors induced by temporal discretization are mainly determined by the order of the
computational accuracy and the temporal discretization step used.

In this work, the two‑step implicit Bathe time integration algorithm is employed to
complete the discretization in the time domain due to the fact that excellent numerical fea‑
tures can be obtained in solving complex linear and nonlinear structural dynamics [58]. It
should be noted that the numerical spatial discretization error induced by the RPIM can
be suppressed at a very low level; hence, it is reasonable to expect that the RPIM with
the Bathe time integration algorithm might be a powerful numerical approach to solve
the transient wave propagation dynamic problems. Actually, this novel simulation ap‑
proach has been developed to handle the transient wave propagations in homogeneous
media [59]. It has been demonstrated by the numerical tests and dispersion analysis that
quite fine numerical solutions can be yielded. More importantly, it is very interesting to
find that the so‑called monotonic convergence property can be basically reached by this
numerical approach in transient wave analysis; namely, the quality of the obtained numer‑
ical solutions will be better when the non‑dimensional temporal discretization step used
gets smaller. Due to this good and valuable numerical feature, this numerical approach is
particularly suitable for the analysis of complicated transient wave propagation problems,
such as wave propagation in non‑homogeneous media and composite structures. The con‑
tents of this work are mainly motivated by this idea, and the potential powerful ability of
this simulation approach in solving the transient wave propagations in non‑homogeneous
media is investigated in great detail in this work.

2. Problem Statement
We consider the involved wave propagation domain contains two different regions,

Ω1 and Ω2, with the interface Γ (See Figure 1). Suppose that the different regions are
occupied with different acoustic fluid media. When the considered acoustic fluid media
are inviscid and compressible, for the linear theory of acoustics, the acoustic pressure p is
governed by the following equations: ∇2 p1 − 1

c2
1

∂2 p1
∂t2 = 0, in Ω1

∇2 p2 − 1
c2

2

∂2 p2
∂t2 = 0, in Ω2

, (1)

in which ∇2 represents the Laplace operator, pi (i = 1,2) are the acoustic pressures in dif‑
ferent acoustic fluid regions, ci (i = 1,2) are the corresponding acoustic wave speeds, and t
denotes the time variable.
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On the interface of the different wave propagation regions, the following continuity
conditions of acoustic pressure and normal acoustic particle velocity should be satisfied:{

p1 = p2
1
ρ1
∇p1 · n1 +

1
ρ2
∇p2 · n2 = 0 , on Γ, (2)

inwhich ρi (i = 1,2) are themass densities of the considered acoustic fluidmedia in different
regions, and ni (i = 1,2) stand for the outward normal unit vector on interface Γ.

According to the principle of virtual work, the governing equations of acoustic wave prop‑
agation in non‑homogeneous media can be written in the following integral form [1,60–62]:

2

∑
i=1

∫
Ωi

p(∇2 pi −
1
c2

i

∂2 pi
∂t2 )dΩ = 0, (3)

in which p denotes the assumed “virtual” acoustic pressure distributions.
It should be noted that p in Equation (3) is arbitrary, hence the satisfaction of Equation (3)

requires that the field variables in the bracket should be zero. Therefore, Equation (3) is
actually equivalent to the original governing equation in Equation (1).

In order to decrease the order of derivatives in Equation (3), by using the divergence
theorem, the following equation can be obtained:

2

∑
i=1

(∫
Ωi

∇p · ∇pidΩ +
1
c2

i

∫
Ωi

p
∂2 pi
∂t2 dΩ −

∫
ΓN

p(∇pi · ni)dΓ

)
= 0, (4)

in which ΓN denotes the involved Neumann boundary conditions (see Figure 1).
In thiswork, the Lagrangemultipliers are employed to handle the acoustic wave prop‑

agation in non‑homogeneous media in which the discontinuities in the gradient fields of
acoustic pressure are usually involved in the interface of different acoustic fluid media. By
using the usual field function approximation in the standard finite element approach and
thewell‑knownLagrangemultiplier technique, the following equations inmatrix form can
be obtained from Equation (4):

1
c2

1

∫
Ω1

NT
f1
N f1

∂2p1
∂t2 dΩ +

∫
Ω1

(
∇N f1

)T
∇N f1p1dΩ −

∫
ΓN

NT
f1
(∇p1 · n1)dΓ

−
∫

Γ

(
∇N f1

)T
n1Nλ

1
ρ1
λdΓ = 0

1
c2

2

∫
Ω2

NT
f2
N f2

∂2p2
∂t2 dΩ +

∫
Ω2

(
∇N f2

)T
∇N f2p2dΩ −

∫
ΓN

NT
f2
(∇p2 · n2)dΓ

−
∫

Γ

(
∇N f2

)T
n2Nλ

1
ρ2
λdΓ = 0

−
∫

Γ N
T
λn1

(
∇N f1

)
1
ρ1
p1dΓ −

∫
Γ N

T
λn2

(
∇N f2

)
1
ρ2
p2dΓ = 0

, (5)

inwhichN f1 andN f2 represent the constructed nodal interpolation functions for the acous‑
tic pressure in different regions, andNλ is the nodal interpolation function for the Lagrange
multiplier λ on the interface Γ.

Of course, Equation (5) can also be expressed in the following simplified form:M1 0 0
0 M2 0
0 0 0




..
p1..
p2..
λ

+

K1 0 A
0 K2 G
AT GT 0

 p1
p2
λ

 =

 R1
R2
0

, (6)



Mathematics 2023, 11, 523 5 of 27

in which

M1 = 1
c2

1

∫
Ω1

NT
f1
N f1dΩ, M2 = 1

c2
2

∫
Ω2

NT
f2
N f2dΩ

K1 =
∫

Ω1

(
∇N f1

)T
∇N f1dΩ, K2 =

∫
Ω2

(
∇N f2

)T
∇N f2dΩ

A = −
∫

Γ

(
∇N f1

)T
n1Nλ

1
ρ1
dΓ, G = −

∫
Γ

(
∇N f2

)T
n2Nλ

1
ρ2
dΓ

R1 =
∫

ΓN
NT

f1
(∇p1 · n1)dΓ, R2 =

∫
ΓN

NT
f2
(∇p2 · n2)dΓ

, (7)

3. A Brief Review of the Meshfree RPIM
In the meshfree RPIM framework, the constructed numerical approximation for the

considered field function is obtained by using a series of scattered field points in the prob‑
lem domain (see Figure 2). In addition, the numerical approximation is also enforced to
pass through the function values at the involved field points. In the classical and well‑
developed RPIM, the radial basis functions (RBFs) are combined with the frequently used
polynomial basis functions (PBFs) to create the required numerical approximation.
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using the typical meshfree RPIM.

For an involvedproblemdomain that is represented by a series of field nodes, suppose
that a scalar function u(x) is defined on it, and the corresponding field function approxi‑
mation using RPIM for u(x) can be expressed by [20]

uh(x) =
n

∑
i=1

Ri(x)ai +
m

∑
j=1

pj(x)bj = RT(x)a+ pT(x)b, (8)

in which Ri(x) is the employed RBF in creating the numerical approximation for node i,
and ai is the corresponding interpolation coefficient; pj(x) is the employed PBF, and bj is
the corresponding interpolation coefficient; and n andm are the numbers of the employed
RBFs and PBFs, respectively.

In this work, we only use the linear PBF. For the numerical approximation in two‑
dimensional space, m = 3. On the contrary, the number of the used RBF for numerical
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approximation is determined by the size of the employed local support domain. In general,
the vector of RBF in Equation (8) can be written by

RT(x) =
[
R1(x) R2(x) R3(x) · · · Rn(x)

]
, (9)

In practice, the required RBF can be constructed in different ways, and different types
of RBF usually have different numerical features [20,63]. In this work, the classical multi‑
quadric (MQ) basis, which is frequently used in surface fitting, is employed to construct
the RBF. The explicit expression of MQ is given by

Ri(x) =
[
r2

i + (αcdc)
2
]q

, (10)

in which ri is the distance from the field node xi to the interest point x, dc is the defined
characteristic length of the used field node distribution pattern, and αc and q are two re‑
lated parameters to control the shape of the MQ. Here, q = 1.03 and αc = 1 are directly
used due to the fact that very good numerical performance can be obtained with these
parameters by a large number of numerical experiments in computational solid and fluid
mechanics [20,64,65].

For the linear PBF in Equation (8), the vector of PBF is
pT(x) =

[
1 x

]
, for 1D space

pT(x) =
[

1 x y
]
, for 2D space

pT(x) =
[

1 x y z
]
, for 3D space

, (11)

Suppose that the numerical approximation in Equation (8) is satisfied at n involved
field nodes in the local support domain, namely

ui(x) =
n

∑
i=1

Ri(x)ai +
m

∑
j=1

pj(x)bj, i = 1, 2, · · · , n, (12)

In order to make the interpolation coefficients ai and bj unique, the following con‑
straints are also required:

n

∑
i=1

pj(xi)ai = 0, j = 1, 2, · · · , m, (13)

By combining Equations (12) and (13), we can have[
u
0

]
=

[
RQ Pm
PT

m 0

]
G

[
a
b

]
a0

= Ga0, (14)

in which

RQ =


R1(r1) R2(r1) · · · Rn(r1)
R1(r2) R2(r2) · · · Rn(r2)

...
...

. . .
...

R1(rn) R2(rn) · · · Rn(rn)


n×n

, (15)

Pm =


P1(x1) P2(x1) · · · Pm(x1)
P1(x2) P2(x2) · · · Pm(x2)

...
...

. . .
...

P1(xn) P2(xn) · · · Pm(xn)


n×m

, (16)

aT
0 =

[
a1 a2 · · · an b1 b2 · · · bm

]
, (17)
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Following the standard formulation of the RPIM, the following matrix equation can
be obtained [20,64]:

uh(x) = RT(x)a+ pT(x)b =
[
RT(x)Sa + pT(x)Sb

]
us = Φ(x)u

Sa =
(
R−1

Q −R−1
Q PmSb

)
Sb =

[
PT

mR−1
Q Pm

]
PT

mR−1
Q

, (18)

in which Φ(x) is the constructed nodal interpolation function matrix in the classical RPIM
framework.

4. Numerical Error Evaluation in Transient Wave Analysis
In engineering practice, the governing equation for transient wave propagation is con‑

tinuous both in the space and time domains. To effectively handle this problem by means
of the numerical approaches, both the discretization schemes in the space and time do‑
mains are needed. Unfortunately, not only the discretization in the space domain but also
the discretization in the time domain are able to cause a considerable amount of numerical
errors in the computed numerical solutions. In this section, the resultant numerical errors
in transient wave analysis will be systemically investigated. Owing to the excellent numer‑
ical properties which have been demonstrated in previously published papers [20,64,65],
the classicalmeshfreeRPIMand the two‑stage time steppingBathemethod are respectively
responsible for the required discretization in space and time domain.

For the linear theory of acoustics, the governing equation of transient acoustic wave
propagation in an ideal acoustic fluid can be easily obtained by

∇2 p − 1
c2

∂2 p
∂t2 = 0, (19)

As usual, when the considered acoustic pressure variable p is time‑harmonic, the follow‑
ing reduced governing equation for wave propagation can be obtained from Equation (19):

∇2P + k2P = 0, (20)

inwhichP is the spatial distribution of acoustic pressure, and k stands for thewave number.
It should be noted that Equation (20) is actually the well‑known Helmholtz equation

in state steady wave analysis, and it is clear that Equation (20) is time‑independent. To
solve Equation (20) numerically, only the related discretization in the space domain is re‑
quired. Here, we first investigate the numerical error properties when different spatial
discretization techniques are exploited to handle Equation (20). The evenly placed node
distribution shown in Figure 3 is employed for numerical error evaluation in this section.
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Using the classical Galerkin weighted residual numerical techniques, the following
matrix equation can be obtained from Equation (20) [60,66–69]:

KP− k2MP = 0, (21)

in which P is the nodal unknowns for the acoustic pressure, andK andM are the resultant
matrices corresponding to the system stiffness and mass, respectively [60].

It is clear that Equation (21) has the following fundamental numerical solutions:

P = Aejkhx·n, (22)

Inwhich x is a position vector of the point of interest,A is the amplitude of the acoustic
pressure distribution vector, and kh denotes the wave number of numerical solutions.

Since no boundary conditions are involved here, the amplitude of acoustic pressure
distribution for all nodes should hence be identical.

Taking Equation (22) into Equation (21), the following characteristic equation can be
arrived at [60]: (

Dstiffness − k2Dmass
)
A = 0, (23)

in which Dstiffness and Dmass are two characteristic parameters that are closely related to
the system stiffness and mass, respectively. Dstiffness and Dmass can be directly computed
using the related formulations in Refs. [60,66].

For the non‑trivial solutions of Equation (23), we have

k =

√
Dstiffness

Dmass
, (24)

From Refs. [60,66], it is known that both Dstiffness and Dmass are functions of the nu‑
merical wave number kh. Therefore, the relationship between the exact wave number k
and the numerical wave number kh can be successfully built via Equation (24).

In this work, the following error indicator is employed to perform the numerical error
evaluation from the discretization in space domain:

ε =
k
kh

. (25)

To compare the numerical performance of the different spatial discretization schemes
in tackling the Helmholtz equation, the meshfree RPIM with different support domain
sizes of the quadrature points and the traditional bilinear quadrilateral elements (FEM‑
Q4) are mainly considered in this work. For simplicity, in all numerical experiments, the
standard four‑node quadrilateral mesh patterns for the FEM‑Q4 are directly employed as
the background numerical integration cells for the RPIM.

Figure 4 compares the numerical spatial discretization error results along different
angles of wave travel (θ = 0◦, θ = 15◦, θ = 30◦, and θ = 45◦) as the functions of the
non‑dimensional wave numbers khh (h stands for the characteristic length of the nodal
space) from the above‑mentioned spatial discretization methods. Looking at Figure 4d,
it is apparent that the calculated numerical errors from the FEM‑Q4 grow quickly when
the considered non‑dimensional wave numbers get larger. This means that the traditional
FEM‑Q4 is not able to behave sufficiently well in suppressing the numerical errors from
the discretization in the space domain. Figure 4 also displays the computed numerical er‑
rors from the RPIM when different support domain sizes (αs = h, αs = 2h, and αs = 3h)
of quadrature points are employed; here, αs stands for the characteristic length of the em‑
ployed local square support domain.

The numerical results in Figure 4 illustrate that the RPIM is able to produce much
smaller numerical errors than the conventional FEM‑Q4.This is because the high‑order
numerical approximation can be reached in formulating the RPIM. In addition, one clear
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trend can also be observed from Figure 4 that the abilities of the RPIM in suppressing the
numerical will become stronger when the used local support domain size gets larger. In
particular, the computed numerical errors along all angles are very close to zero when the
local support domain size αs = 3h. Due to this observation, in the following numerical
tests, we only consider the local support domain size αs = 3h.

As stated in previous texts, in addition to the discretization in the space domain, the
discretization in the time domain also can lead to numerical errors in transient wave analy‑
sis. From the related research in Ref. [60], it is known that the total numerical errors (both
the numerical errors from the spatial and temporal discretizations are contained) can be
explicitly expressed by the following equation:

ch
c

=
k
kh

T
Th

, (26)

in which c is the acoustic wave speed, and T represents the period of the considered wave
mode; the subscript “h” means that the corresponding field variables are from the numer‑
ical solutions.

In the right hand of Equation (26), the first term k/kh stands for the numerical errors
from the discretization in the space domain, and the second term T/Th is mainly caused by
the temporal discretization. In this work, the Bathe method, which is a typical two‑stage
time‑stepping implicit temporal discretization numerical technique [1], is employed for
the required temporal discretization. It has been demonstrated mathematically that the
temporal discretization errors T/Th from the Bathe method are actually a monotonically
decreasing function of the non‑dimensional temporal discretization interval CFL [60] (CFL
= c∆t/h, ∆t is the time increment for time integration). When the used CFL trends to zero,
the resultant temporal discretization error will also trend to zero, i.e., T/Th → 1 . With
this numerical property, the total numerical error in transient wave analysis can also be
roughly regarded as amonotonically decreasing function of the non‑dimensional temporal
discretization interval CFL when the numerical errors from the discretization in the space
domain are sufficiently small (in particular, k/kh → 1 is required).
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From the previous analysis and discussion, it is clearly displayed that the meshfree
RPIM is able to generate close‑to‑zero spatial discretization errorswhen the employed local
support domain size αs = 3h. Therefore, it is very reasonable to expect that the computed
numerical solutions can become more accurate when the employed temporal discretiza‑
tion interval CFL becomes smaller. In other words, the present meshfree RPIM with the
Bathe method has the so‑called monotonic convergence property in handling the transient
wave propagation dynamics [59,60]. However, the traditional numerical approach in tran‑
sient wave analysis does not have this interesting and important numerical feature. Due
to this good numerical feature, the wave propagation property of different wave compo‑
nents at different wave speeds can be simulated very accurately. Therefore, the numerical
approach presented in this work is particularly suitable for solving very complex wave
propagations. In the next section, the numerical feature of the present approach will be
examined carefully by solving three typical numerical experiments in which the transient
wave propagations in non‑homogeneous media are considered.

5. Numerical Results
5.1. One Two‑Dimensional Tube Filled with Different Media

As shown in Figure 5, one two‑dimensional tube, which is filled with two different
types of acoustic fluid media, is first considered here. This two‑dimensional tube has a
length of L = 1 m and a width of b = 0.1 m. The left and right halves of this tube are filled
with different media with fluid density ρ and acoustic wave speed c. The related material
constants are ρ1 = ρ2, c1 = 1 m/s, and c2 = 0.5 m/s. The required spatial discretization of
the involved problem domain for this numerical example is first achieved by using the
evenly placed node distributions with the nodal interval h = 0.0125 m. The corresponding
spatial discretization patterns for different methods are given in Figure 6. Suppose that a
sinusoidal acoustic wave, p = sin 16πt Pa with t ∈ [0, 0.0625]s, is traveling along this tube
from the left end. In this numerical example, the non‑dimensional time integration step
size used is measured by CFL = c1∆t/h.
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Figure 7 compares the computed numerical solutions of the acoustic pressure distri‑
butions from the standard FEM‑Q4 and the presentmeshfree RPIMwith the identical node
distribution schemes (see Figure 6) when the considered time point t = 0.4 s and the em‑
ployed non‑dimensional time integration step size CFL = 0.1. With the aim to compare the
numerical performance of different numerical approaches in terms of computation accu‑
racy, the exact solutions are also provided in the figures here. One important finding from
Figure 7 is that the FEM‑Q4 solutions are not sufficiently accurate because the obvious
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spurious oscillations can be clearly seen behind the wave front. In contrast to the FEM‑Q4
solutions, the present meshfree RPIM is able to generate much more accurate solutions
which are quite consistent with the exact solutions. Additionally, when the time point t =
0.8 s, the corresponding numerical solutions of acoustic pressure distributions from differ‑
ent numerical approaches are also computed and displayed in Figure 8. In this situation,
both the reflected and transmitted acoustic waves can be induced by the interface of the
two different fluid media. Figure 8 indicates that the outcome for this case is quite similar
to that when the time point t = 0.4 s because the FEM‑Q4 solutions exhibit clear spurious os‑
cillations in both the reflected and transmitted acoustic waves, while the meshfree RPIM
solutions are very close to the exact solutions and the resultant spurious oscillations are
much smaller compared to those from the FEM‑Q4 solutions. A possible explanation for
these observations might be that the present meshfree RPIM is able to yield much smaller
numerical dispersion errors from spatial discretization than the standard FEM‑Q4, which
has been reported in Figure 4.
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Additionally, the acoustic pressure distribution results from different numerical ap‑
proaches are also computed when the varying non‑dimensional time integration steps are
employed (CFL = 1, CFL = 0.5, CFL = 0.25, and CFL = 0.1). For the time points t = 0.4 s and
t = 0.8 s, the corresponding numerical solutions are displayed in Figures 9 and 10, respec‑
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tively. The results in these figures show that the quality of the numerical results from the
standard FEM‑Q4 does not become better when the smaller non‑dimensional time integra‑
tion step is used. In particular, more unwanted spurious oscillations can be observed in the
FEM‑Q4 solutionswhen the non‑dimensional time integration stepCFL = 0.1. In contrast to
the observations which can be seen in the FEM‑Q4 solutions, it is quite surprising that the
presentmeshfree RPIM is able to generatemore accurate and reliable acoustic pressure dis‑
tribution results when we use smaller non‑dimensional time integration steps. Therefore,
we can reach one important conclusion that in transient wave analysis, the present mesh‑
free RPIM with the Bathe temporal discretization scheme possesses the ability to achieve
better numerical solutions by decreasing the employed non‑dimensional time integration
steps, namely the so‑called monotonic convergence property in transient wave analysis
can be broadly reached. Owing to this valuable numerical feature, the present meshfree
RPIM is able to stand out clearly from the existing conventional numerical approaches in
transient wave analysis. The above findings from Figures 9 and 10may be explained by the
fact that the present meshfree RPIM is able to generate almost no dispersion errors, which
is related to the discretization in the space domain, while the corresponding dispersion
errors from FEM‑Q4 are relatively large. Meanwhile, the additional numerical errors from
the Bathe temporal discretization scheme are actually amonotonically decreasing function
of the employed non‑dimensional time integration step. As a result, themonotonic conver‑
gence property in transient wave analysis can be broadly reached by the meshfree RPIM
and cannot be reached by the traditional FEM‑Q4.
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Note that the regular node distributions are employed in a previous analysis. This
numerical example is further studied by using the irregular node distributions with an av‑
erage nodal interval of h = 0.0125 m (see Figure 11). Here the employed non‑dimensional
temporal interval for time integration is CFL = 0.1 m, and the considered time point is
t = 0.8 s. The comparisons of the acoustic pressure distribution results for different meshes
and different numerical approaches are exhibited in Figure 12. It is quite apparent from
these figures that the FEM‑Q4 solutions will become worse when the used regular mesh is
replaced by the irregular mesh. The main factor for this is that the performance of the tra‑
ditional FEM‑Q4 in numerical analysis is usually sensitive to mesh distortions, and more
numerical errors will arise when the distorted mesh patterns are employed. Unlike the tra‑
ditional FEM‑Q4, the presentmeshfree RPIM showsmore powerful abilities in tackling the
mesh distortions because the corresponding acoustic pressure distribution results almost
cannot be affected when the irregular node distributions are employed for numerical com‑
putation. These results may be broadly explained by the fact that the used field function
approximation in the meshfree RPIM is usually constructed regardless of the node distri‑



Mathematics 2023, 11, 523 15 of 27

butions. This is also one main advantage of the meshfree RPIM compared to the FEM.
This numerical feature can further strengthen the abilities of the present meshfree RPIM
in transient wave analysis.
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5.2. The Two‑Dimensional Acoustic Wave Scattering Problem by Circular Objects
Another numerical experiment considered here is the two‑dimensional acoustic wave

scattering problem. Figure 13 displays the geometry configuration of this problem. As
shown in Figure 13, several totally identical circular regions are evenly placed in the in‑
volved square problem region. The different problem regions are occupied with differ‑
ent acoustic fluid media. The material constants of the involved acoustic fluid media
are ρ1 = ρ2, c1 = 2 m/s, and c2 = 1 m/s. The external excitation, F = 8π sin(20πt) with
t ∈ [0, 0.05] s, is imposed at the center of the problem domain. In the numerical computa‑
tion process, only one quadrant problem domain needs to be modeled due to the fact that
this transient acoustic wave scattering problem has the symmetry feature (see Figure 13).
The standard four‑node quadrilateral mesh with an average mesh size of h = 0.01 m is
used to perform the required spatial discretization for this numerical experiment. Note
that as the exact solution to this problem is not easy to derive, the corresponding numeri‑
cal solutions from the high‑order finite elements using very refinedmesh are also provided
here as the reference solutions for comparison. In this numerical example, the used non‑
dimensional time integration step size is measured by CFL = c2∆t/h.
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Figure 13. The geometry description of the two‑dimensional acoustic wave scattering problem.

For the wave travel angle of θ = 45◦ and the non‑dimensional time integration size
CFL = 0.1, the transient responses of the acoustic pressure distributions at two different
time points (t = 0.4 s and t = 0.7 s) are first computed by using different numerical ap‑
proaches, and the corresponding results are plotted in Figures 14 and 15. In Figure 15,
both reflected and transmitted acoustic waves are induced by the interface of different
acoustic fluid media; the positions of the interface are also given in Figure 15 using pink
lines. The results provided by these figures show that the FEM‑Q4 solutions are obviously
worse than the meshfree RPIM ones, which match very well with the reference solutions,
while the FEM‑Q4 solutions obviously deviate quite substantially from the reference solu‑
tions. Additionally, the related numerical computations are further performed by consid‑
ering the different wave travel angles (θ = 0◦, θ = 22.5◦, and θ = 45◦). Figure 16 gives
the obtained acoustic pressure distribution results from different numerical approaches.
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Figure 16a reveals that the wave travel angle can severely affect the quality of the FEM‑Q4
solutions; notably, the numerical anisotropy issue can be clearly observed. While one inter‑
esting point that can be seen from Figure 16b is that the above numerical anisotropy issue
can be relieved quite substantially by the present meshfree RPIM because the numerical
solutions with very similar accuracy can be yielded when the different wave travel angles
are considered.
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Figure 16. The transient responses of the acoustic pressure distributions from different methods for
the two‑dimensional scattering problem by considering the different wave travel angles: (a) FEM‑Q4;
(b) RPIM.

Next, the varying non‑dimensional time integration steps (CFL = 1, CFL = 0.5, CFL = 0.25,
and CFL = 0.1) are exploited in the numerical analysis to check whether the monotonic
convergence property can be reached in transient wave analysis. For two different time
points(t = 0.4 s and t = 0.7 s) and two different angles of wave travel (θ = 22.5◦ and θ = 45◦),
the computed acoustic pressure distributions from different numerical techniques are pre‑
sented in Figures 17 and 18. The relevant observations from these figures are quite simi‑
lar to those found in a previous numerical experiment; in particular, the monotonic con‑
vergence numerical feature can broadly be reached by the meshfree RPIM and cannot be
reached by the conventional FEM‑Q4.
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Figure 18. The transient responses of the acoustic pressure distributions at different time points
from RPIM for the two‑dimensional scattering problem by using the varying non‑dimensional time
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All of the above numerical solutions suggest that the proposed RPIM with the Bathe
time integration method shows stronger abilities and is more suitable for solving transient
wave propagations than the conventional FEM‑Q4with totally identical node distributions.

5.3. The Two‑Dimensional Acoustic Wave Scattering Problem by Irregular Objects
In the third numerical example, the acoustic wave scattering by irregular objects in

twodimensions is considered in testing the numerical performance of the above‑mentioned
methods in handling irregular problem domains. The details of this numerical experiment
are given in Figure 19. The physical constants of acoustic media in different problems are
acoustic wave speed c1 = 2 m/s and c2 = 1 m/s, acoustic media mass density ρ1 = ρ2. For
this numerical example, the conventional four‑node quadrilateral mesh is again employed
as the background mesh, and the mean node interval is h = 0.01 m. In this numerical ex‑
periment, the employed non‑dimensional time interval for time integration is defined as
CFL = c2∆t/h(∆t is the used time step), and the point excitation at the corner of the prob‑
lem domain (see Figure 19) is of the following Ricker wavelet form [60]:

F = 0.4
[
1 − 2π2 f 2

p(t − ts)
2
]

exp
(
−π2 f 2

p(t − ts)
2
)

, (27)

in which ts = 0.1 s and fp = 10Hz are the defined characteristic parameters.
For the non‑dimensional time step CFL = 0.1 and several observation time points

(t = 0.7 s, t = 0.8 s, t = 0.9 s and t = 1 s), the computed numerical results of this numericalwave
propagation problem in thewhole problemdomain are displayed in Figures 20 and 21. For
comparison purposes, both the standard FEM‑Q4 and the present RPIM (αh = 3h) results
are furnished here. From the results, it is obvious that considerable numerical errors can
be seen in the standard FEM‑Q4 solutions. On the contrary, the solutions from the present
RPIM are much smoother and show higher computation precision than those from the
FEM‑Q4. This numerical experiment again demonstrates that the present meshfree RPIM
hasmore excellent numerical performance than the FEM‑Q4 in transientwave propagation
analysis, even if the irregular problem domains are considered.
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5.4. Study on the Computational Cost and Computation Efficiency
In previous numerical analysis, wemainly examine the numerical performance of dif‑

ferent spatial discretization techniques (FEM‑Q4 and RPIM) in treating the transient wave
propagation in non‑homogeneous media when the varying non‑dimensional time integra‑
tion step CFL numbers are employed. The important finding is that the present RPIM
with adequately large support domains has the valuable monotonic convergence property
in transient wave analysis when the Bathe time integration scheme is employed for tempo‑
ral discretization, while the standard FEM‑Q4 does not have this ideal numerical property.
Nevertheless, so far, the computational cost and computation efficiency of different spa‑
tial discretization methods has not been systemically studied. To examine the abilities of
different methods in depth, these issues are studied in this sub‑section in great detail. To
measure the solution accuracy of the obtained numerical results, the following L2 relative
error norm is employed [70]:

er =

√√√√∫V (u − uh)
2dV∫

V u2dV
, (28)

in which uh is the numerical solutions, and u represents the corresponding exact solutions
or reference solutions.

For the numerical experiments performed in Sections 5.1 and 5.2, the numerical re‑
sults of computational cost and computational efficiency are detailed and provided in
Tables 1 and 2. With the aim to further evaluate the numerical performance of the present
meshfree RPIM, the results of another well‑developed meshfree technique, which is called
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the element‑free Galerkin method (EFGM), are also given for comparison here. All the in‑
volved numerical computation processes are performed in a laptopwith a single‑core Intel
2.1 GHz CPU and 8Gb RAM. From these two tables, the following valuable remarks can
be summarized:

Table 1. The detailed computational cost of different numerical methods in solving the numerical
experiment in Section 5.1.

Methods Number of
DOFs

Non‑Zero
Entities in the

System
Matrices

CPU Time for
Spatial

Discretization (s)

Non‑
Dimensional
Time Steps

CPU Time for
Temporal

Discretization (s)

Total CPU
Time (s)

Time
Points (s)

Total
Numerical
Error(%)

FEM‑Q4 729 6025 0.78

CFL = 1 3.11 3.89 t = 0.4 3.8
t = 0.8 14.1

CFL = 0.5 5.87 6.65 t = 0.4 6.04
t = 0.8 27.34

CFL = 0.25 10.09 10.87 t = 0.4 8.78
t = 0.8 33.89

CFL = 0.1 14.58 15.36 t = 0.4 9.69
t = 0.8 36.17

RPIM
(αs = 3h) 729

58,029
1.03

CFL = 1 3.56 4.59 t = 0.4 5.88
t = 0.8 20.14

CFL = 0.5 6.61 7.64 t = 0.4 1.59
t = 0.8 7.28

CFL = 0.25 12.21 13.51 t = 0.4 0.89
t = 0.8 5.65

CFL = 0.1 19.09 20.12 t = 0.4 0.59
t = 0.8 1.58

EFGM
(αs = 3h) 729 58,029 1.02

CFL = 1 4.12 5.14 t = 0.4 5.13
t = 0.8 18.13

CFL = 0.5 7.23 8.25 t = 0.4 1.14
t = 0.8 6.17

CFL = 0.25 13.19 14.21 t = 0.4 0.77
t = 0.8 4.89

CFL = 0.1 20.01 21.03 t = 0.4 0.37
t = 0.8 1.12

(1) For different spatial discretization schemes, the required number of DOFs is totally
identical, while the non‑zero entities in the obtained system matrices are clearly different.
This is because the required number of nodes to assemble the elementmatrices in themesh‑
free methods is usually larger than that in the standard FEM.

(2) In performing transient wave propagation analysis, the required total computa‑
tional timemainly comes from two parts, namely the computing time for spatial discretiza‑
tion and temporal discretization, respectively. Compared to the standard FEM‑Q4, more
computing time is needed to perform the spatial discretization when the meshfree tech‑
niques (RPIM and EFGM) are employed. The reason for this is that in the meshfree ap‑
proaches, more complex numerical approximation andmore expensive numerical integra‑
tion are always needed.

(3) For all the considered spatial discretization schemes (FEM‑Q4, RPIM, and EFGM).
The required computing time for temporal discretization ismuchmore than that for spatial
discretization. This means that in transient wave propagation analysis, the main required
computational cost is from the time integration.

(4) Among the three disparate considered spatial discretization schemes, the standard
FEM‑Q4 has the highest computational efficiency, while the computation efficiency of the
RPIM is the lowest. Though the EFGM is numerically cheaper than the present RPIM,
the EFGM always possesses other disadvantages compared to the present RPIM in the
numerical process; the related detailed discussion and comparison of RPIM and EFGM
can be seen in Ref. [20].

(5) For the RPIM and EFGM, the obtained total relative error can basically become
smaller when the smaller non‑dimensional time integration step CFL number is employed,
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namely the monotonic convergence numerical property can be basically achieved, while
the standard FEM‑Q4 obviously does not possess this important numerical property.

(6) Although the standard FEM‑Q4 is usually numerically cheaper than the meshfree
RPIM in solving the transient wave propagation problems, the ideal monotonic conver‑
gence property usually can be achieved. This is because the standard FEM‑Q4 can al‑
ways furnish relatively large numerical dispersion errors from the spatial discretization
(see Figure 4d). On the contrary, the present RPIM has this ideal numerical property be‑
cause the meshfree RPIM can generate adequately small spatial discretization errors (see
Figure 4c). It is this important numerical property that makes the present RPIM more
suitable than the FEM‑Q4 in solving the relatively complex transient wave propagation
problems (such as wave propagation in non‑homogeneous media). This is also the core
and main contribution of the present work.

Table 2. The detailed computational cost of different numerical methods in solving the numerical
experiment in Section 5.2.

Methods Number of
DOFs

Non‑Zero
Entities in the

System
Matrices

CPU Time for
Spatial

Discretization (s)

Non‑
Dimensional
Time Steps

CPU Time for
Temporal

Discretization (s)

Total CPU
Time (s)

Time
Points (s)

Total
Numerical
Error(%)

FEM‑Q4 11,023 97,995 10.89

CFL = 1 54.83 65.72 t = 0.4 1.39
t = 0.7 10.12

CFL = 0.5 107.42 118.31 t = 0.4 4.09
t = 0.7 24.21

CFL = 0.25 206.83 217.72 t = 0.4 7.19
t = 0.7 36.84

CFL = 0.1 419.23 430.12 t = 0.4 9.9
t = 0.7 46.01

RPIM
(αs = 3h)

11,023 1,626,915 17.71

CFL = 1 63.12 80.83 t = 0.4 4.12
t = 0.7 13.71

CFL = 0.5 129.53 147.24 t = 0.4 3.14
t = 0.7 7.63

CFL = 0.25 264.73 282.44 t = 0.4 2.08
t = 0.7 3.08

CFL = 0.1 548.93 466.64 t = 0.4 0.51
t = 0.7 1.26

EFGM
(αs = 3h)

11,023 1,626,915 17.46

CFL = 1 64.18 81.64 t = 0.4 3.76
t = 0.7 11.23

CFL = 0.5 132.75 150.21 t = 0.4 2.87
t = 0.7 6.13

CFL = 0.25 268.35 285.81 t = 0.4 1.64
t = 0.7 2.46

CFL = 0.1 554.27 571.73 t = 0.4 0.38
t = 0.7 0.76

6. Concluding Remarks
The present work sets out to examine the numerical performance of the meshfree

RPIM with the Bathe implicit temporal discretization technique in the transient analysis
of wave propagations in non‑homogeneous media. The evaluation of the numerical errors
is investigated in great detail, and the effects of the required discretizations in the space
and time domains on the numerical errors in transient wave analysis are separately ana‑
lyzed. The results of the dispersion analysis show that themeshfree RPIMhas the ability to
yield close‑to‑zero spatial discretization errors as long as the support domain size used for
quadrature points is sufficiently large, while this kind of dispersion errors from the stan‑
dard FEM‑Q4 are generally very large. Additionally, it is also shown that the resultant
temporal discretization error from the Bathe method is actually a monotonically decreas‑
ing function of the non‑dimensional time integration steps. Owing to these two factors,
the present meshfree RPIM shows distinct advantages over the conventional FEM‑Q4 in
transient wave analysis.
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The strengths of the meshfree RPIM in solving transient wave propagations are con‑
firmed by considering three typical numerical experiments in which the acoustic wave
propagations in non‑homogeneous media are considered. Since the important monotonic
convergence numerical feature with respect to the non‑dimensional time integration step
can be broadly reached by the present RPIM, the different waves with different travel
speeds can be simulated simultaneously with very high computation accuracy. However,
the conventional FEM‑Q4 generally cannot provide similar numerical solutions. The find‑
ings in this research provide further insights into the abilities of different numerical ap‑
proaches in the analysis of transient wave propagations and also demonstrate that the
present meshfree RPIM with the Bathe method can be regarded as a quite competitive
alternative to the existing numerical approaches in solving very complex transient wave
propagation problems in the practical engineering applications.
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