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Abstract: This paper provides a useful supplement note for implementing the Kalman filters. The ma-
terial presented in this work points out several significant highlights with emphasis on performance
evaluation and consistency validation between the discrete Kalman filter (DKF) and the continuous
Kalman filter (CKF). Several important issues are delivered through comprehensive exposition accom-
panied by supporting examples, both qualitatively and quantitatively for implementing the Kalman
filter algorithms. The lesson learned assists the readers to capture the basic principles of the topic and
enables the readers to better interpret the theory, understand the algorithms, and correctly implement
the computer codes for further study on the theory and applications of the topic. A wide spectrum
of content is covered from theoretical to implementation aspects, where the DKF and CKF along
with the theoretical error covariance check based on Riccati and Lyapunov equations are involved.
Consistency check of performance between discrete and continuous Kalman filters enables readers
to assure correctness on implementing and coding for the algorithm. The tutorial-based exposition
presented in this article involves the materials from a practical usage perspective that can provide
profound insights into the topic with an appropriate understanding of the stochastic process and
system theory.

Keywords: discrete Kalman filter; continuous Kalman filter; consistency; theoretical; stochastic process
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1. Introduction

The Kalman filter (KF) [1–7] describes a recursive solution to the linear filtering
problem and has been one of the most common estimation techniques widely used today.
It is a standard method used in control engineering for measuring the mean-square error
between the output signal of a linear plant subject to a stochastic disturbance and the
estimated output signal. The Kalman filter is a set of mathematical equations that provides
an efficient computational means to estimate the state of a process in a way that minimizes
the mean squared error. As an optimal recursive data processing algorithm, the Kalman
filter combines all available measurement data plus prior knowledge about the system
and measuring devices to produce an estimate of the desired variables in such a manner
that error is minimized statistically. It processes all available measurements regardless of
their precision to estimate the current value of the variables of interest. In addition, it does
not require all previous data to be stored and reprocessed every time a new measurement
is taken.

The Kalman filter algorithm is one of the most common estimation techniques currently
used. Due to advances in digital computing, the Kalman filter has been a useful tool for a
variety of various applications [8,9]. Although the Kalman filter was originally developed
for the case of discrete observations that enter into the estimation of the state variables at discrete
times, the observations could be continuous as with analog measuring devices [10–14]. They
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might on some occasions be considered nearly continuous if the data rate is very high.
The continuous Kalman filter (CKF), sometimes termed the Kalman-Bucy filter, provides
the optimal solution for the state estimation problem of the systems modeled by a linear
stochastic differential equation. As a continuous-time counterpart to the discrete-time
Kalman filter, the distinction between the prediction and update steps of the discrete
Kalman filter (DKF) does not exist in the continuous-time case. Further, the majority of
Kalman filter applications are implemented in digital computers, however, a thorough
study of optimal estimation should include the CKF from which some intuition can be
yielded for designing DKF. It is still valuable to investigate the CKF as a baseline system
design and as an evaluation tool for DKF, even though the implementation of CKF is not as
practical as the DKF. Furthermore, in some cases, the statistical behavior of the system can
be determined in a closed, analytical form if formulated as a continuous process.

Some existing works of literature intend to serve as tutorials [15–19], and the purpose
of this paper is to provide a practical introduction with implementation practice to the
topic. While there are some valuable references detailing the derivation and theory behind
the Kalman filter, discrete and continuous, the KF technique is sometimes not easily
accessible to some readers from the existing publications. Implementation of the algorithms
sometimes bothers or confuses the readers. Generally, engineers do not encounter it until
they have begun their graduate or professional careers. It is reasonable to expect working
engineers to be capable of making use of this computational tool for different applications.
However, it may not be practical to expect working engineers to obtain a deep and thorough
understanding of the stochastic theory behind Kalman filter techniques.

The steady-state Kalman filter is considered a type of suboptimal filter, which has a
constant gain matrix during the estimation process. It is applicable in some applications
with some limitations and can be realized through the analog circuit, which is particularly
attractive in real-time applications at the cost of some performance degradation. However,
under the conditions of a time-varying environment, where the process and measurement
models change with time, the adaptive Kalman filter (AKF) is popular through tuning the
covariance parameters Qk and Rk. In such a case, the steady-state Kalman filter may not
be able to comply with the desired flexibility. Furthermore, when compared to the other
filters, the Suboptimal Kalman filter (SKF) has identical tracking accuracy and is highly
scalable. The SKFs are designed in a feedback-controlled system to obtain the estimation
of the root-mean-square error. It simply requires the filtering calculation and foregoes the
reasonably priced enhanced high-dimension computation and the challenging smoothing
computation, resulting in a less computational load [20–23].

This article aims to take a more tutorial-based exposition to present the topics that
can provide profound insights into the topic with an appropriate understanding of the
stochastic process and system theory involved from a practical usage perspective. Several
important issues are delivered through introductory exposition accompanied by support-
ing examples qualitatively and quantitatively for better clarification of the Kalman filter
estimation algorithm.

The remainder of this paper is organized as follows. A brief review of the discrete
Kalman filter and continuous Kalman filter is reviewed in Section 2. In Section 3, dis-
cretization of the continuous Kalman filter to the discrete-time formulation is revisited. In
Section 4, illustrative examples and discussion are presented. Conclusions are given in
Section 5.

2. The Kalman Filters and Suboptimal Filters

In this section, preliminary background on discrete and continuous Kalman filters is
reviewed. The optimal Kalman gain and general arbitrary gain, respectively, are introduced.
The covariance matrices that describe error propagations of the dynamical system with and
without measurement, respectively, are presented.



Mathematics 2023, 11, 521 3 of 19

2.1. Discrete Kalman Filter

Consider a dynamical system whose state is described by a linear, vector differential
equation. The process model and measurement model are represented as the following:

xk+1 = Φkxk + wk , wk ∼ N(0,Qk), (1a)

xk+1 = Φkxk + Γkwk , Γkwk ∼ N(0,ΓkQkΓT
k ), (1b)

zk = Hkxk + vk , vk ∼ N(0,Rk) (2)

The discrete Kalman filter equations are summarized in Table 1.

Table 1. Implementation algorithm for the discrete Kalman filter (DKF) equations.

Initialization: Initialize State Vector x̂0 and State Covariance Matrix P0

Time update

(1) State propagation
x̂−k+1 = Φkx̂k
(2) Error covariance propagation
P−k+1 = ΦkPkΦT

k + Qk
or
P−k+1 = ΦkPkΦT

k + ΓkQkΓT
k

Measurement update

(3) Kalman gain matrix evaluation
Kk = P−k HT

k [HkP−k HT
k + Rk]

−1

(4) State estimate update
x̂k = x̂−k + Kk[zk −Hkx̂−k ]
(5) Error covariance update
Pk = [I−KkHk]P

−
k

2.2. Continuous Kalman Filter

Consider a dynamical system whose state is described by a linear, vector differential
equation. The process model and measurement model are represented as the following:

Process model:
.
x = Fx + Gw (3)

Measurement model:
z = Hx + v (4)

where the vectors u(t) and v(t) are both white noise sequences with zero means and
mutually independent:

E[w(t)wT(τ)] = Qδ(t− τ); E[v(t)vT(τ)] = Rδ(t− τ); E[w(t)vT(τ)] = 0

where δ(t− τ) is the Dirac delta function, E[·] represents expectation, and superscript “T”
denotes matrix transpose. The CKF equations are summarized in Table 2.

Table 2. The continuous Kalman filter (CKF) equations.

Initialization: Initialize State Vector x̂(0) and State Covariance Matrix P(0)

(1) Solve the error covariance propagation by the matrix Riccati equation for P, which is
symmetric positive-definite.
.
P = FP + PFT + GQGT − PHTR−1HP
(2) Calculation of Kalman gain matrix
K = PHTR−1

(3) State estimate update
.
x̂ = Fx + K(z−Hx̂)
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The discrete filter gain and continuous filter gain are related by the following:

K =
Kk
∆t

(5)

where ∆t = tk+1 − tk represents the sampling period.

2.3. Suboptimal Filters: Estimators with a General Gain

The error covariance Pk for a discrete filter with the same structure as the Kalman filter,
but with a general (namely an arbitrary) gain matrix is given by the following:

Pk = (I−KkHk)P
−
k (I−KkHk)

T + KkRkKT
k (6)

The error covariance described in a differential equation:

.
P = (F−KH)P + P(F−KH)T + GQGT + KRKT (7)

defines the error covariance for the filter with a general filter gain matrix K, which can be
solved for the covariance of a general gain model. Taking the partial derivative of P∞ with
respect to K and setting:

∂P∞

∂K
= 0

for a minimum leads to the same result as the matrix Riccati equation in continuous form:
.
P = FP+PFT +GQGT −PHTR−1HP, which becomes an Algebraic Riccati Equation (ARE)
and can be solved for the steady-state minimum covariance matrix when the system reaches
steady-state,

.
P = 0.

The Riccati equation deteriorates to the Lyapunov equation given by the following:

.
P = FP + PFT + GQGT (8)

for the case that no measurement is available. Equation (8) can be considered as either of
the following two cases:

(1)
.
P = FP + PFT + GQGT − PHTR−1HP with H = 0 or R−1 = 0

(2)
.
P = (F−KH)P + P(F−KH)T + GQGT + KRKT with K = 0 or H = 0

If the general gain matrix K has been designed for particular values of Q and R, the
steady-state error covariance will vary linearly with the actual spectral densities of either
process or measurement noises. Any deviation of the design variances, and consequently,
K, from the correct values will cause an increase in the filter error variance. Further
information on sensitivity analysis can be referred to Gelb [3] and Jwo [10].

For the discrete Kalman filter, there are two stages where five equations are involved
to complete an estimation cycle: two at the time update for the a priori estimation and three
at the measurement update for the a posteriori estimation. For the continuous Kalman
filter, only three equations are involved since, there is no distinguishment between the a
priori and a posteriori versions of covariance and estimate, more specifically, P−k+1 → Pk

and x̂−k+1 → x̂k . For the steady-state Kalman filter as the suboptimal filter, the gain matrix
is fixed as constant. Since the constant gain matrix can be calculated offline, the algorithm
now involves four equations, including two for state estimates (a priori and a posteriori,
respectively) and the other two for the calculation of covariance matrices (a priori and a
posteriori, respectively). For the case that the theoretical covariance matrix is not required,
only two equations, i.e., x̂−k+1 and x̂k are involved.
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3. Discrete Kalman Filter from Discretization of Continuous Kalman Filter

Expressing Equation (1a) in discrete-time equivalent form via discretisation of a con-
tinuous time system leads to the following:

x(tk+1) = Φ(tk+1, tk)x(tk) +
∫ tk+1

tk

Φ(tk+1, τ)G(τ)w(τ)dτ (9)

In the subsequent discussion, derivation of the key parameters from the continuous
form for implementing the DKF will be revisited. Two types of process models for the DKF
are involved.

(1) Realization based on Equation (1a): xk+1 = Φkxk + wk, wk ∼ N(0,Qk)
The state transition matrix can be represented as the following:

Φk =
[
£−1[(SI− F)−1]

]
t=∆t

= eF∆t =
∞

∑
i=0

Fi∆ti

i!
= I + F∆t +

F2∆t2

2!
+

F3∆t3

3!
+ · · · (10)

using the Taylor’s series expansion. For the process model given by Equation (1a), the noise
input is given by the following:

wk =
∫ tk+1

tk

Φ(tk+1, τ)G(τ)w(τ)dτ (11)

where tk ≡ k∆t, tk+1 ≡ (k + 1)∆t, and the process noise covariance can be calculated via
the following:

Qk = E[wkwT
i ] =

∫ tk+1

tk

Φ(tk+1, η)GQGTΦT(tk+1, η)dηQk =
∫ ∆t

0
eFτGQGTeFTτdτ (12)

Using Taylor’s series expansion, we have the following:

Qk = GQGT∆t +
(FGQGT + GQGTFT)∆t2

2!
+ · · · (13)

The first-order approximation is obtained by setting Φk ≈ I (which is equivalently to
F = 0), as the following:

Qk ≈ GQGT∆t (14)

It should be mentioned that even Q is diagonal, and Qk need not be due to discretiza-
tion of the system. Sampling can destroy independence among the components of the
process noise.

(2) Realization based on Equation (1b): xk+1 = Φkxk + Γkwk, Γkwk ∼ N(0,ΓkQkΓT
k )

On the other hand, for the process model given by Equation (1b), the total noise input
is now represented as the following:

Γkwk =
∫ tk+1

tk

Φ(tk+1, τ)G(τ)w(τ)dτ (15)

and, consequently, the process noise covariance is now the following:

ΓkQkΓT
k = E[(Γkwk)(Γkwk)

T ] =
∫ tk+1

tk

Φ(tk+1, η)GQGTΦT(tk+1, η)dη (16)

which, by Taylor’s series, gives the following expression:

ΓkQkΓT
k = GQGT∆t +

(FGQGT + GQGTFT)∆t2

2!
+ · · · (17)
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The corresponding first-order approximation is given by the following:

ΓkQkΓT
k ≈ GQGT∆t (18)

Equation (14) can be regarded as a special case of Equation (18) with the noise gain set
as an identity matrix: Γk = I.

An alternative approach is based on the piecewise white noise or discrete white noise
approximation. Assuming that the forcing function w(τ) remains constant w(t) = wk
over the integration interval, i.e., for t ∈ [tk, tk+1] for all k = 0, 1, 2, . . ., then the noise gain
the following:

Γk =
∫ tk+1

tk

Φk(tk+1, τ)G(τ)dτ (19)

Equation (19) can be written as the following series expansion:

Γk = G∆t +
FG∆t2

2!
+ · · · (20)

For the first-order approximation when Φk ≈ I, we have Γk ≈ G∆t, and the following:

ΓkQkΓT
k ≈ (G∆t)Qk(G∆t)T (21)

Equating Equations (18) and (21) gives the following:

Qk ≈
Q
∆t

(22)

It should be noticed that the Qk’s in Equations (14) and (22) are different. The Qk
itself in Equation (14) represents the total amount of noise covariance, differing from
Equation (22), where ΓkQkΓT

k is the total amount of noise covariance due to two differ-
ent representations.

Furthermore, a continuous system model involving deterministic control input is
described by the following:

.
x = Fx + Mu + Gw (23)

It can be discretized by either of the following two forms:

xk+1 = Φkxk + Nkuk + wk (24a)

or
xk+1 = Φkxk + Nkuk + Γkwk (24b)

depending on the representation of process model. The gain matrix of the deterministic
control input is given by the following:

Nk =
∫ ∆t

0
eFτMdτ = M∆t +

FM∆t2

2!
+ · · · (25)

4. Illustrative Examples and Discussion

In this section, various important issues will be delivered, along with some supporting
examples. Four supporting examples are involved for discussion, including the scalar
Gauss-Markov process, two examples of the extensions of the process, and the integrated
Gauss-Markov process. Table 3 summarizes the objectives and highlights important issues
to be delivered from the supporting examples. The reader can utilize the illustrative
examples in this paper as step-by-step exercises. Beginning with a standard scalar Gauss-
Markov process, and extending to the case of larger deterministic control input introduced,
larger random input introduced and then integrated Gauss-Markov process.



Mathematics 2023, 11, 521 7 of 19

Table 3. Objectives and highlights of important issues to be delivered from the examples.

Examples System Models Highlights of Important Issues

1 A standard scalar Gauss-Markov process

- Connection and verification of results by theoretical and
numerical approaches based on DKF and CKF.

- Parameter uncertainties on performance degradation.
Performance degradation due to deviation of Kalman gain K,
and other three parameters, including β, q and r, respectively.

- Numerical implementation for state estimation with various
values of r, including r → ∞ .

2
Larger deterministic control input: an
additional deterministic control input
is introduced.

- Influence on the estimation due to an additional control input
introduced to the system.

- Consistence check of results for DKF and CKF, including mean
value, mean-square value, Kalman gain, and
theoretical covariance.

3 Larger random input: a larger gain is applied
to the scalar Gauss-Markov process

- Influence on the estimation result due to a larger gain applied
to the system.

4 Integrated Gauss-Markov process

- Unbounded errors due to measurement unavailable.
- Bounded errors due to available measurement update.
- Consistence check of results for DKF and CKF, including,

mean-square value, Kalman gain, and theoretical covariance.

Both the scalar and vector Kalman filters are involved. For the scalar Kalman filter,
it is easier for a beginner to understand the mathematical equations and implement the
computer coding. It is more practical in engineering applications for the vector Kalman filter,
where matrix calculation, such as inversion and decomposition of matrices, is involved
and makes the realization more challenging. The numerical data accompanied by the
illustrative examples can be carefully checked with the analytical ones to assuring the
correct implementation of algorithms and provide an efficient way for troubleshooting.
The examples also provide a connection to the probability and stochastic process, and
system theory.

4.1. Example 1: The Scalar Gauss-Markov Process

The Gauss-Markov process is a stochastic process that satisfies the requirements for
both Gaussian processes and Markov processes. The scalar Gauss-Markov process is
described by the stochastic differential equation:

dx(t)
dt

= −βx(t) + w(t) , w(t) ∼ N(0, q) (26)

It can be represented by the transfer function based on the following Laplace transform:

H(s) =
X(s)
W(s)

=
1

s + β

It can also be based on the Fourier transform:

H(jω) =
1

jω + β

which has the impulse response h(t) = e−βtu(t). The process can be represented using the
system block diagram shown as in Figure 1.
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Firstly, the theoretical result is presented. The mean-square value of the output x(t)
can be calculated through the following:

E[x2(t)] =
∫ t

0

∫ t

0
h(ξ)h(η)E[w(ξ)wT(η)]dξdη =

∫ t

0
qe−2βηdη =

q
2β

(1− e−2βt) (27)

As t→ ∞ , the value approaches q
2β .

Furthermore, since in this given model is the following:

|H(jω)|2 =
1

ω2 + β2

and the spectral amplitude of the input S f (jω) = q. Based on the relation for the wise-
sense stationary (WSS) random process applied to a linear time-invariant (LTI) system, the
spectral function of the output can be calculated through the following:

Sx(jω) =
∣∣∣H(jω)

∣∣∣2S f (jω) (28)

where the spectral function of input in this example is given by the following:

Sx(jω) =
q

ω2 + β2 =
q

2β

2β

ω2 + β2

Taking the inverse Fourier transform of Sx(jω) yields the autocorrelation function:

Rx(τ) = F−1[Sx(jω)] =
1

2π

∫ ∞

−∞
Sx(jω)ejωτdω

which provides another means of computing the mean-square value of a stationary process
given its spectral function:

E[x2(t)] = Rx(0) =
1

2π

∫ ∞

−∞
Sx(jω)dω (29)

Since the autocorrelation function in this example is the following:

Rx(τ) = F−1[Sx(jω)] =
q

2β
e−2β|τ| (30)

the mean-square value obtained based on Equation (29) has the same result as that based
on Equation (27):

E[x2(t)] = Rx(0) =
q

2β
(31)

Alternatively, the propagation of error covariance based on the Lyapunov equation for
this Gauss-Markov process leads to the following:

.
P = −2βP + q
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from which the following steady-state result can also be obtained:

P∞ =
q

2β
(32)

When the linear measurement is available in the following continuous form:

z(t) = x(t) + v(t) , v(t) ∼ N(0, r)

the differential equation for error covariance of the CKF (Riccati equation) yields the following:

.
P = −2βP + q− P2/r (33)

Note that for this Gauss-Markov process, F = −β, G = 1, H = 1. When the system
reaches steady state, we have the ARE:

0 =
.
P∞ = −2βP∞ + q− P2

∞
r

which can be solved to obtain the steady-state covariance:

P∞ = −βr +
√

β2r2 + qr (34)

and, consequently, the associated steady-state Kalman gain can be calculated to be the following:

K∞ = P∞HTR−1 = −β +
√

β2 + q/r (35)

Alternatively, the error covariance differential equation for a filter with the structure
of a CKF with a general gain shown as in Equation (7) is given by the following:

.
P = 2(−β− K)P + q + K2r

When the system reaches steady state, we have the following:

0 =
.
P∞ = −2(β + K)P + q + K2r

and thus the following:

P∞ =
q + K2r

2(β + K)
(36)

The same result can be obtained by taking the partial derivative of P∞ with respect to
K and setting it to zero to find the optimal gain:

∂P∞

∂K
= 0

Figure 2 illustrates performance deterioration due to increase in r, where r = 1 and
0.01 are shown. The result based on Riccati equation with r → ∞ results in the same
result as that based on Lyapunov equation. It can be seen from the Kalman gain equation
K = PHTR−1 that when the measurement noise r increases to a very large value, K becomes
very small and P approaches 1 in this example. Figure 3 shows the variations of covariance
and Kalman gain as r increases. For two selected values of r, the corresponding covariance
and Kalman gain are given by: (1) r = 0.01: P∞ = 0.1318 and K∞ = 13.1774; (2) r = 1:
P∞ = 0.7321 and K∞ = 0.7321, as indicated by the circle symbols in the figure.
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result based on Riccati equation with r → ∞ results in that based on Lyapunov equation.
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Figure 3. Variations of (a) covariance and (b) Kalman gain as r increases.

The discrete Kalman filter is performed for performance comparison and consistency check
between DKF and CKF. The continuous-time equation can be discretized as the following:

xk+1 = e−β∆txk + uk , uk ∼ N(0, Qk) (37)

where the covariance is the following:

Qk = E[x2
k ] =

∫ ∆t

0

∫ ∆t

0
h(ξ)h(η)E[u(ξ)u(η)]dξdη =

q
2β

(1− e−2β∆t) (38)

Figures 4–6 provide the state estimation results for the first-order Gauss-Markov
process with various values of r. The state estimation in the case of a very large measurement
noise r ( r → ∞ ) is shown in Figure 4. In this case, the Kalman filter gain approaches 0,
and the correction capability on state vector is no longer available, meaning that only time
update is implemented. Figures 5 and 6 present the estimation results in the case of larger
(r = 1) and smaller (r = 0.01) measurement noises, respectively are involved. The plot on
the right provides a closer look at the time interval 50–60 s for better observation. To collect
the data for calculating the error variance from the estimation results, a recursive loop for
evaluating estimation errors is employed based on Figure 7.
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Figure 4. State estimation for the first-order Gauss-Markov process in the case of very large measure-
ment noise r ( r → ∞ ).
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Figure 5. State estimation for the first–order Gauss–Markov process in the case of larger measurement
noise (r = 1) involved: (a) state estimation; (b) a closer look.
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Figure 6. State estimation for the first–order Gauss–Markov process in the case of smaller measure-
ment noise (r = 0.01) involved: (a) state estimation; (b) a closer look.
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Figure 7. Recursive loop for evaluating estimation errors.

Performance degradation due to deviation of Kalman gain K, and three other parame-
ters, including β, q, and r, respectively, is examined in Figure 8. In each of the four plots,
two sets of results are shown for observation of the effect by deviation of the parameters
from the appropriate points and also for consistency check of DKF and CKF results. The
solid lines represent the theoretical values while the circles are based on the DKF, respec-
tively. Figure 9 provides a three-dimensional surface and contour of the covariance due to
deviation of q and r from the optimal point. In this case q = 2 and r = 1, as indicated by a
circle symbol on the figure.
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Figure 9. Three–dimensional surface and contour of the covariance due to deviation of q and r from
the optimal point (in this case q and r, as indicated by a circle symbol on the figure) (a) surface plot;
(b) contour plot.

4.2. Example 2: An Additional Deterministic Control Input Is Introduced

An additional deterministic control input is introduced to the system, shown as in
Figure 10. Two extensions of the scalar Gauss-Markov system are presented. Propagation of
mean value estimate in continuous-time systems is involved is the discussion. An additional
deterministic control input is introduced into the Gauss-Markov process, leading to the
system described by the following stochastic differential equation:

dx(t)
dt

+ x(t) = 6u(t) + w(t) , w(t) ∼ N(0, q) (i.e., β = 1) (39)

with initial condition y(0) = 0, where u(t) is the unit step function and w(t) is the unity
Gaussian white noise. Since the impulse response is h(t) = 6e−βtu(t), and therefore the
transfer function is given by the following:

H(jω) = 6 · 1
jω + β
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Figure 10. Block diagram of Example 2: the scalar Gauss-Markov process with a deterministic con-
trol input. 
Figure 10. Block diagram of Example 2: the scalar Gauss-Markov process with a deterministic control input.

The discrete model discretized from the continuous model can be represented as the following:

xk+1 = e−β∆txk + ∆t · 6 + uk , uk ∼ N(0, Qk) (40)

where the covariance Qk remains the same as Example 1.
The mean values of the output can be evaluated based on the relation µx(t) =

µ f (t)H(0):

µx(t) = 6 · 1
β
= 6
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and the error covariance are thus given by the following:

P∞ = −βr +
√

β2r2 + qr =
√

3− 1 ≈ 0.7321

Figure 11 provides the estimation result in the case of additional deterministic control
input. The plot on the right provides a close look at the time interval 0–10 s. The curve
in black indicates the response due to the deterministic control input. The results are
consistent with the theoretical result shown as in Figure 2 in Example 1.
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Figure 11. Estimation results for Example 2. The plot on the right provides a closer look at the time
interval 0–10 s: (a) estimation results; (b) a closer look.

4.3. Example 3: A Larger Gain Is Applied to the System

A larger gain is applied to the system, shown as in Figure 12. A larger gain applied to
the system leads to the system described by the following stochastic differential equation:

dx(t)
dt

+ x(t) =
√

2(6u(t) + w(t)) , w(t) ∼ N(0, q) (41)

with initial condition y(0) = 0, where u(t) is the unit step function and w(t) is the unity
Gaussian white noise.
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Figure 12. Block diagram of Example 3: the scalar Gauss–Markov process with a larger gain.

The discrete model from the continuous model can be represented as the following:

xk+1 = e−β∆txk + ∆t · 6
√

2 + uk , uk ∼ N(0, 2Qk) (42)

where the covariance is two times larger than the previous two examples.
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The transfer function as follows:

H(jω) = 6 ·
√

2
jω + β

Accordingly, the output mean values based on the relation µx(t) = µ f (t)H(0) and the
error covariance, respectively, are given by the following:

µx(t) = 6

√
2

β
= 6
√

2 ≈ 8.485; P∞ =
√

5− 1 ≈ 1.2361

Figure 13 provides the estimation result in the case of a larger gain involved. As a
check of consistency, the result based on the DKF Pk = 1.2353 matches very well with the
result based on CKF.
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4.4. Example 4: The Integrated Gauss-Markov Process

The integrated Gauss-Markov process shown in Figure 14 is frequently in engineering
applications. By defining two state variables, x1 = x and x2 =

.
x, the corresponding

continuous model is as follows:

d
dt

[
x1
x2

]
=

[
0 1
0 −β

][
x1
x2

]
+

[
0
1

]
w(t) , w(t) ∼ N(0, q) (43)
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The mean-square values for this integrated Gauss-Markov process can be shown to be
the following:

E[x2
1] =

q
β2

[
t− 2

β
(1− e−βt) +

1
2β

(1− e−2βt)

]
E[x1x2] =

q
β2

[
(1− e−βt)− 1

2
(1− e−2βt)

]
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E[x2
2] =

q
2β

(1− e−2βt)

and as t→ ∞ , the error covariance matrix is approaching the following:

P∞ =

[
E[x2

1] E[x1x2]
E[x1x2] E[x2

2]

]
→
[

∞ 1
1 1

]
.

The mean-square value of x1, namely the error covariance P11 = E[x2
1] grows unbounded.

The time history of covariances can be obtained using numerical integration for solving
the Riccati equation:

.
P11 = 2P12 − 1

r P2
11.

P12 = P22 − βP12 − 1
r P11P12.

P22 = q− 2βP22 − 1
r P2

12

(44)

Figure 15 shows the propagation of the error covariance when no measurement is
available for the integrated Gauss-Markov process, using the Lyapunov equation, which
can be regarded as the Riccati equation by setting r → ∞ . When the measurement is
available, Figure 16 presents the propagation of the error covariance and Kalman gains for
the integrated Gauss-Markov process using the Riccati equation of KF. The steady-state
error covariance and Kalman gain matrices for the integrated Gauss-Markov process by
CKF are the following:

P∞ =

[
0.9566 0.4576
0.4576 0.8953

]
; K∞ =

[
0.9566
0.4576

]
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Figure 15. Propagation of the error covariance for the integrated Gauss–Markov process when no
measurement is available using the Lyapunov equation.

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 20 
 

 

 
Figure 15. Propagation of the error covariance for the integrated Gauss–Markov process when no 
measurement is available using the Lyapunov equation. 

  
(a) (b) 

Figure 16. Propagation of the error covariance and Kalman gains for the integrated Gauss–Markov 
process using the Riccati equation of KF: (a) error covariance; (b) Kalman gains. 

  
(a) (b) 

Figure 17. Propagation of the two states using KF for the integrated Gauss–Markov process KF: (a) 
first state; (b) second state. 

 

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

10

Time (sec)

P
(t)

 

 
P11
P12
P22

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

P
(t)

 

 

P11
P12
P22

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

K
(t)

 

 

K1
K2

0 50 100 150 200 250 300
-15

-10

-5

0

5

10

15

20

25

30

Time (sec)

x1

Integrated Gauss-Markov process

 

 
Actual process
Estimated result

0 50 100 150 200 250 300
-4

-3

-2

-1

0

1

2

3

4

Time (sec)

x2

Scalar Gauss-Markov process

 

 
Actual process
Estimated result

Figure 16. Propagation of the error covariance and Kalman gains for the integrated Gauss–Markov
process using the Riccati equation of KF: (a) error covariance; (b) Kalman gains.
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To implement the DKF, the parameters Φk and Qk are found to be the following:

Φk =
[
£−1[(SI− F)−1]

]
t=∆t

=

[
1 1

β (1− e−β∆t)

0 e−β∆t

]
; Qk =

[
E[x2

1] E[x1x2]
E[x1x2] E[x2

2]

]
where

F =

[
0 1
0 −β

]
E[x2

1] =
q
β2

[
∆t− 2

β
(1− e−β∆t) +

1
2β

(1− e−2β∆t)

]
E[x1x2] =

q
β2

[
(1− e−β∆t)− 1

2
(1− e−2β∆t)

]
E[x2

2] =
q

2β
(1− e−2β∆t)

Figure 17 shows the time histories of trajectories for the two states based on the KF
compared to the actual process, for the integrated Gauss-Markov process. The results from
DKF are given as Pk = P∞, and the following:

Kk =

[
0.9562
0.4574

]
· 10−3

which is very close to the following result based on the CKF:

Kk ≈ K∞∆t = 0.001 ·
[

0.9566
0.4576

]
.
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Figure 17. Propagation of the two states using KF for the integrated Gauss–Markov process KF: (a)
first state; (b) second state.

The results form the DKF are shown to be consistent with those from CKF very well.

5. Conclusions

This paper can be served to the readers as a supplement note for the Kalman filter for
a better understanding of the topic without requiring a deep theoretical understanding
of probability and stochastic process, as well as system theory. The illustrative examples
are employed to provide further insights into understanding the analysis and design of
the Kalman filter both qualitatively and quantitatively, enabling the readers to correctly
interpret the theory, practice the algorithms, and design the computer codes. This article



Mathematics 2023, 11, 521 18 of 19

provides a good explanation of the Kalman filter with illustrative examples so the reader
can have a grasp of some of the basic principles. A detailed description is accompanied by
several examples offered for clear illustration to provide readers a better understanding of
this topic.

The supporting examples employed in this work include the scalar Gauss-Markov
process, followed by two extensions of the process, including an additional deterministic
control input introduced, a larger gain applied, and finally an integrated Gauss-Markov
process. The main issues covered are the connection between the two types of Kalman
filters based on DKF and CKF and the verification of results by theoretical and numerical
approaches. A consistence check of results for DKF and CKF, including mean value,
mean-square value, Kalman gain, and theoretical covariance is provided. Performance
degradation caused by the deviation from the optimal point due to parameter uncertainties
as presented were also involved are unbounded errors caused by unavailable measurement
and bounded errors due to available measurement updates. Besides, the influence on the
estimation results when an additional control input is introduced as well as a larger gain
applied to the dynamical system selected for illustration.

This presented material is especially helpful for those with less experience or back-
ground on the optimal estimation theory to build up a solid foundation for further study
on the theory and applications of the topic.
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