
Citation: Gallardo, D.I.; Gómez, Y.M.;

Gómez, H.J.; Gallardo-Nelson, M.J.;

Bourguignon, M. The Slash

Half-Normal Distribution Applied to

a Cure Rate Model with Application

to Bone Marrow Transplantation.

Mathematics 2023, 11, 518. https://

doi.org/10.3390/math11030518

Academic Editor: Stelios Psarakis

Received: 19 December 2022

Revised: 10 January 2023

Accepted: 13 January 2023

Published: 18 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

The Slash Half-Normal Distribution Applied to a Cure Rate
Model with Application to Bone Marrow Transplantation
Diego I. Gallardo 1,* , Yolanda M. Gómez 1,2, Héctor J. Gómez 3, María José Gallardo-Nelson 2

and Marcelo Bourguignon 4

1 Mathematics Department, Faculty of Engineering, University of Atacama, Copiapó 1530000, Chile
2 Medicine Department, Faculty of Medicine, University of Atacama, Copiapó 1530000, Chile
3 Department of Mathematical and Physical Sciences, Faculty of Engineering, Catholic University of Temuco,

Temuco 4780000, Chile
4 Statistics Department, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
* Correspondence: diego.gallardo@uda.cl; Tel.: +56-52-2255565

Abstract: This paper proposes, for the first time, the use of an asymmetric positive and heavy-tailed
distribution in a cure rate model context. In particular, it introduces a cure-rate survival model by
assuming that the time-to-event of interest follows a slash half-normal distribution and that the
number of competing causes of the event of interest follows a power series distribution, which defines
six new cure rate models. Several properties of the model are derived and an alternative expression
for the cumulative distribution function of the model is presented, which is very useful for the
computational implementation of the model. A procedure based on the expectation–maximization
algorithm is proposed for the parameter estimation. Two simulation studies are performed to assess
some properties of the estimators, showing the good performance of the proposed estimators in finite
samples. Finally, an application to a bone marrow transplant data set is presented.
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1. Introduction and Motivation

Survival models that incorporate a proportion of cured subjects are becoming increas-
ingly popular in the analysis of data from clinical trials and other studies, mainly due to
advances in medicine. In a cure rate model context, specifically using a competitive risk
model framework, it is assumed that the event of interest is produced due to M ∈ N0
carcinogenic cells (a latent variable), each of them with an associated survival function
S(·; λ), where λ is a vector of unknown parameters from a distribution defined on the
positive line, and M = 0 represents the cure individuals. Different models are assumed
for the number of cells (M) and the survival function S(·; λ). Specifically for the latter, we
can mention Weibull, log-normal, generalized gamma, Birnbaum–Saunders distributions,
among others. In particular, we focus on the proposed extension in Olmos et al. [1]. This
model (parsimonious, since it only has two parameters) is called a slash half-normal (SHN)
distribution. This distribution with a heavy tail has not yet been used in a cure rate model
context. The objective of the proposed model is to increase the kurtosis with respect to its
half-normal basal distribution, being more useful for modeling data sets that may have
heavy tails. A version of the SHN reparameterized in terms of the mean with covariates
was presented in Gómez et al. [2].

On the other hand, bone marrow transplantation is an important treatment for more
than 50 fatal diseases such as leukemia, lymphoma, solid organ neoplasia, autoimmune
diseases, among others. Bone marrow transplantation has unique biological characteristics
and associated problems that markedly differ from solid organ transplantation, such as
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kidney, liver, or heart (Hardy et al. [3]). The problems are associated with the fact that
immunocompetent cells can reject each other, which can cause graft rejection and generate
graft-versus-host disease (GVHD). Furthermore, successful engraftment requires a strict
match with the major histocompatibility complex (MHC) class II antigen of the donor and
the recipient. Added to this is that patients must receive prior treatment with cytotoxic
and myeloablative agents to avoid graft rejection (Chinen and Buckley [4], Simpson and
Dazzi [5]). For these reasons, bone marrow transplantation is associated with considerable
morbidity and mortality.

From a biological point of view, it makes sense to assume a heavy-tailed distribution
when following patients over a period of time and following patient survival to assess
transplant efficacy. These models can describe in detail the progression of the disease and
allow us to make predictions for future clinical trials.

The motivation to introduce the SHN distribution in a cure rate model is given by a
real data set application from the European Society for Blood and Marrow Transplantation
(EBMT). The EBMT is a nonprofit medical, educational and scientific organization founded
more than forty years ago, focused in the field of hematopoietic stem cell transplantation.
The EBMT has more than 5000 members from 85 countries. This organization is focused on
innovation, research and the advancement in the field of hematopoietic stem cell transplan-
tation. The EBMT hosts a unique patient registry providing a pool of data to researchers all
over the world to perform studies and assess new improvements in the field (EBTM [6]).
Acute myeloid leukemia (AML) in children is rare in comparison with acute lymphoid
leukemia and has overall survival of almost 75% at five years. Patients with high-risk
characteristics need to achieve remission and undergo bone marrow transplantation with
an overall survival of 70% (de Rooij et al. [7]). Post-transplant relapse is common and in-
volves almost 80% of treated AML, of which 75% occur in the first year after transplantation
(Sander et al. [8]).

The data were presented in Fiocco et al. [9] and are available in the mstate R
package [10], labeled as ebmt4. The data set includes 2279 patients transplanted between
1985 and 1998. We considered the time in years from transplantation to relapse as the
response variable, which had 84% of censored times. Figure 1 shows the Kaplan–Meier
(KM) estimator for this data set and the histogram for the failure times.
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Figure 1. Kaplan–Meier estimator for the ebmt4 data set (left panel) and histogram for the failure
times (right panel).

Note that there is a plateau in the KM estimator, suggesting the presence of cure indi-
viduals for this problem. In addition, the histogram of failure times suggest a heavy-tailed
distribution for the noncured individuals. Some descriptive statistics for such failure times are
mean = 1.14, median = 0.52, standard deviation = 1.84 and kurtosis = 18.71. The high kurtosis
for these data, again, suggests the use of a heavy-tailed model for this problem.
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Allogeneic stem cell transplantation (allo-HSCT) is a therapeutic approach used for
a wide array of malignant and nonmalignant hematologic disorders. Its effectiveness is
related to mortality and morbidity. Several complications can occur, including hemorrhages,
infections, GVHD and endothelial-damage-related toxicities. There are new immunological
and genetic therapies to avoid these complications and reduce mortality (See Horio et al. [11],
Radujkovic et al. [12] and Tsai et al. [13]). Other immunodeficiency diseases such as ataxia-
telangiectasia can be treated by bone marrow transplantation as mentioned in Sabino Pinho
de Oliveira et al. [14]. Further studies with an increased cohort of patients and a longer period
of follow-ups are required to validate and monitor the associated risks of transplantation.
For this reason, it is important to use a heavy-tailed distribution such as the SHN distribution
to study the survival in this type of bone marrow transplant and therapies. We emphasize
that, up to this moment, this distribution has not been used in a cure rate model context. In
this context, we define the power series–SHN (PS–SHN) class of univariate cure rate models
obtained by compounding the SHN and power series distributions. The proposed model
defines six new cure rate models as special cases.

The contents in this paper are organized in the following manner. In Section 2, we
introduce the SHN distribution and derive some of its distributional properties. In Section 3,
we introduce a general cure rate model. In Section 4, we describe a parameter estimation
by the maximum likelihood method using the expectation–maximization (EM) algorithm.
In Section 5, we present two simulation studies, where the first one is related to assessing
the performance of the maximum likelihood estimation (MLE) using the EM algorithm
and the second one is the misspecification for the time-to-event for the concurrent causes.
In Section 6, we present a real data set on bone marrow transplantation. Finally, some
conclusions are included in Section 7.

2. The SHN Distribution

The SHN distribution [1] with parameters σ > 0 and α > 0 (denoted by SHN(σ, α)) is
a model with positive support. Its probability density function (pdf) is given by

fSHN(t; λ) = α

√
2α

π
σαt−(α+1)γ

(
t2

2σ2 ,
α + 1

2

)
, t > 0, (1)

where λ = (α, σ) and γ(x, a) =
∫ x

0 ua−1e−udu is the lower incomplete gamma function.
The cumulative distribution function (cdf) of the SHN model is given by

FSHN(t; λ) =
∫ t

0
fSHN(w; λ)dw = α

√
2α

π
σα
∫ t

0
w−(α+1)γ

(
w2

2σ2 ,
α + 1

2

)
dw.

In the next Proposition, we present an alternative expression for the cdf.

Proposition 1. The cdf of the SHN distribution is given by

FSHN(t; λ) = 2Φ
(

t
σ

)
− 1−

√
2α

π

(σ

t

)α
Γ
(

α + 1
2

)
G
(

w2

2σ2 ,
α + 1

2

)
, t > 0,

where Φ(·) denotes the cdf of the standard normal model and G(·, a) is the cdf of the gamma model
with shape and rate parameters equal to a and 1, respectively.

Proof. By definition

FSHN(t; λ) = α

√
2α

π
σα
∫ t

0
w−(α+1)Γ

(
α + 1

2

)
G
(

w2

2σ2 ,
α + 1

2

)
dw.

Using techniques of integration by parts, we have that
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u = G
(

w2

2σ2 ,
α + 1

2

)
⇒ du =

w
σ2 g

(
w2

2σ2 ,
α + 1

2

)
dw =

w

σ2Γ
(

α+1
2

)( w2

2σ2

) α+1
2 −1

exp
{
− w2

2σ2

}
dw

dv = w−(α+1) ⇒ v = −w−α

α
,

where g(·, ·) denotes the density function of the gamma distribution. Therefore,

FSHN(t; λ) = α

√
2α

π
σαΓ

(
α + 1

2

)

×

−G
(

t2

2σ2 ,
α + 1

2

)
t−α

α
+

1

Γ
(

α+1
2

)
ασα

√
π

2α

∫ t

0

1√
2πσ

exp
{
− w2

2σ2

}
dw

.

and the result follows after identifying the pdf for the normal distribution within the
integral.

Corollary 1. The survival function for the SHN model is given by

SSHN(t; λ) = 2Φ
(
− t

σ

)
+

√
2α

π

(σ

t

)α
Γ
(

α + 1
2

)
G
(

t2

2σ2 ,
α + 1

2

)
, t > 0. (2)

Note that Corollary 1 provides an alternative way to program the survival function,
especially from a computational point of view, because many software tools include the cdf
of the standard normal and gamma models and the lower incomplete gamma function.

The SHN distribution has a convenient stochastic representation. If X ∼ HN(σ) and
Y ∼ U(0, 1) are independent (i.e., the half-normal and uniform distributions, respectively),
then

T =
X

Y1/α
∼ SHN(σ, α). (3)

The mean, variance, asymmetry (
√

β1) and kurtosis (β2) coefficients from this distri-
bution are

• E(T) =
√

2
π

ασ
α−1 , α > 1.

• Var(T) = ασ2[(π−2)α(α−2)+π]
π(α−1)2(α−2) , α > 2.

•
√

β1 =
π
√

2(α−2)[ 4
π α2(α−2)(α−3)−(α−1)2(α−4)(α+1)]

√
α(α−3)[α(π−2)(α−2)+π]3/2 , α > 3.

• β2 =
3α(α−2)2(α−3)[π2(α−1)4−4α3(α−4)]−4πα2(α−1)2(α−2)(α−4)(α2−3α+8)

α2(α−3)(α−4)[α(π−2)(α−2)+π]2
, α > 4.

Note that σ is a scale parameter and α is related mainly with the kurtosis of the
model. In fact, as discussed in Olmos et al. [1], low values for α allow us to accommodate
distributions with greater kurtosis coefficients. On the other hand, when α→ ∞, the HN
distribution is recovered. Besides being a parsimonious model, an interesting property
from the SHN distribution is that its tails are heavier than common distributions with
positive support, as we enunciate in the following proposition.

Proposition 2. Suppose a distribution with positive support satisfying the following conditions:

(A1) Its density function can be written in the form f (t; λ) = Cta exp{−g(t; λ)}, t > 0, where
C does not depend on t, a ∈ R and g(t; λ) ≥ 0, ∀t > 0.

(A2) lim
t→∞

ta′ exp{−g(t; λ)} = 0, ∀a′ > a + 1.

Then, the SHN model has heavier tails than such a distribution.

Proof. To show that the SHN model has heavier tails than a model with a density function
given as in assumption A1, it is enough to prove that
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lim
t→+∞

f (t; λ)

fSHN(t; σ, α)
= 0.

Therefore,

lim
t→+∞

f (t; λ)

fSHN(t; σ, α)
= lim

t→+∞

Cta exp{−g(t; λ)}

ασα
√

2α

π t−(α+1)γ
(

t2

2σ2 , α+1
2

)
=

C

ασα
√

2α

π

lim
t→+∞

ta+α+1 exp{−g(t; λ)}
γ
(

t2

2σ2 , α+1
2

) .

As limt→+∞ γ(t, c′) = Γ(c′), ∀c′ > 0, α > 0, by assumption A2 and by the continuity
of the limit, we have the result.

Corollary 2. If X1 and X2 are two random variables with density functions satisfying conditions
A1 and A2 in Proposition 2 and Y = pX1 + (1− p)X2, p ∈ (0, 1), then the SHN model also has
heavier tails than the distribution related to Y.

Remark 1. Common distributions used in a cure rate model context satisfy the conditions A1 and
A2 in Proposition 2. For instance:

(a) If C = α/σα, a = α− 1 and g(t; λ) = (t/σ)α, the Weibull model is recovered (Chen et al. [15],
Rodrigues et al. [16], Pal and Balakrishnan [17]).

(b) If C = [Γ(α)σα]−1, a = α − 1 and g(t; λ) = t/σ, the gamma distribution is recovered
(Balakrishnan and Pal [18], Wiangnak and Pal. [19], Ortega et al. [20]).

(c) If C = [σ
√

2π]−1, a = −1 and g(t; λ) = (log t− α)2/(2σ2), we obtain the log-normal
model (Balakrishnan and Pal [21], Gallardo et al. [22]).

(d) If C =
√

σ/(2π) exp(σ/α), a = −3/2 and g(t; λ) = (σ/2)
[
t/α2 + 1/t

]
, the inverse

Gaussian model is recovered. We denote it as IG(α, σ).
(e) If C =

√
σ/(2π) exp(σα), a = −1/2 and g(t; λ) = (σ/2)

[
t/α2 + 1/t

]
, the density

function of the reciprocal of an inverse Gaussian random variable is recovered. Up to this
moment, this model has not been used in a cure rate model context. We denote it as RIG(α, σ).

(f) If C = [B(α, σ)]−1, a = α− 1 and g(t; λ) = (α + σ) log(1 + t), the density of the beta
prime distribution is recovered (Leao et al. [23]).

Remark 2. The Birnbaum–Saunders (BS, Birnbaum and Saunders [24,25]) model with density
function given by

f (t; α, σ) =
1√
2π

exp
(
− 1

2α2

[
t
σ
+

σ

t
− 2
])

(t + σ)

2α
√

σt3
, t > 0,

can be written as a mixture between IG(β, β/α2) and RIG(β, 1/(βα2)) with equal probabilities
(see Desmond [26] for details). Therefore, by Corollary 2, the SHN distribution has heavier tails
than the BS distribution.

In the next Section, we discuss the use of the SHN model in the presence of long-term
survivors.

3. A General Cure Rate Model and the SHN Distribution

To exemplify the use of the SHN distribution in a cure rate model context, we consider
a general class of models based on a competitive risk scheme. The reader is referred to
Chen et al. [15] for more details. Let M be a random variable denoting the initial number of
carcinogenic cells of an individual. Several models have been considered for this scheme,
among others, Bernoulli [27], Poisson [15] and negative binomial [16].

Let Wa, a = 1, . . . , M be the random variable representing the time at which the ath
concurrent cause produces the event of interest. For instance, in a cancer context, Wa
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represents the progressive time for the ath tumor cell. As shown in the Appendix A, a
general class of model is produced when it is assumed that M follows a power series
distribution (PS, Cancho et al. [28]). As is common in this context, it is also assumed
that, conditional on M, the Wa’s are independent identically distributed with a common
cumulative distribution function F(·; λ) and survival function S(·; λ) = 1− F(·; λ), where
λ is a vector of unknown parameters. Moreover, it is assumed that the sequence W1, W2, . . . ,
is independent of M. Assuming that only one concurrent cause can produce the of interest,
the observable time of the occurrence of the event of interest is given by

T =

{
+∞ , if M = 0,
min(W1, . . . , WM) , if M > 0.

Under this setting, the population survival function is given by

Spop(t; θ, λ) =
A(θS(t; λ))

A(θ)
, (4)

where A(·) is related to the PS distribution. Details about the function A(·) for different
particular models are presented in Appendix A. From Equation (4), it is immediate that
the cure rate of the model is given by q0 = a0/A(θ) and the survival function for the
susceptible individuals is

Ssus(t; θ, λ) =
a0 − A(θS(t; λ))

a0 − A(θ)
. (5)

For heterogeneous populations, we consider a set of covariates of dimension r + 1
for the ith individual, say xi = (1, xi1, xi2, . . . , xir)

> (i.e., considering the intercept term),
related to the cure rate term of the model. For the Poisson, binomial and COM-Poisson,
such covariates can be introduced as

θi = exp
(

x>i β
)

, i = 1, . . . , n, (6)

where n is the sample size and β = (β0, β1, . . . , βr) is the vector of unknown regression
coefficients. For the rest of the discrete models, the covariates can be included as

θi =
exp

(
x>i β

)
1 + exp

(
x>i β

) , i = 1, . . . , n. (7)

In the literature, many models have been considered for S(·; λ). As discussed in
Remark 1, Weibull, gamma and log-normal models are common alternatives, to name a few.
However, we remark that, up to this moment, no distribution with heavy tails has been used
in this context and in particular, the SHN distribution has not been considered to model the
survival function for the concurrent causes. Henceforth, we refer this model as PS–SHN. It is
interesting to explore the use of the SHN distribution in a cure rate model context because it
is usual that most failures occur until a certain time and from that moment mainly censoring
times are observed. However, in diseases, from a certain time, it is considered that the
patient is “cured”. In practice, and especially in clinical trials with large sample sizes, it may
occur that failure times are observed in unusual times, higher than expected.

4. Estimation

In order to estimate the model parameters, we utilize the maximum likelihood (ML)
method. Let us consider the situation when the time-to-event is not completely observed
and is subject to right-censoring. Let ci denote the censoring time for the ith individual. We
observe yi = min(ti, ci) and δi = I(ti ≤ ci), where δi = 1 if ti is a time-to-event and δi = 0
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if right-censored, i = 1, . . . , n. From n observed vectors (y1, δ1, x>1 ), . . . , (yn, δn, x>n ), the
corresponding likelihood function, under noninformative censoring, can be expressed as

`(ψ) =
n

∑
i=1

{
δi log[ fpop(yi; θi, λ)] + (1− δi) log[Spop(yi; θi, λ)]

}
=

n

∑
i=1

{
(1− δi) log[A(θiSSHN(yi; λ))]− log[A(θi)]

+ δi

(
log(θi) + log[ fSHN(yi; λ)] + log[A′(θiSSHN(yi; λ))]

)}
, (8)

where ψ = (β>, λ>)>, and fSHN(·; ·) and SSHN(·; ·) are defined in (1) and (2). Details for
the construction of Equation (8) can be seen in Cancho et al. [28] and Gallardo et al. [29].

The MLE of ψ, denoted by ψ̂, can be obtained by maximizing Equation (8) in relation to
ψ. However, this procedure can be computationally expensive and it would not necessarily
provide a global maximum, especially when the dimension of β is high. To facilitate the
obtainment of the MLE for ψ, we can use the EM algorithm developed in Gallardo et al. [29]
for this class of models. The kth iteration of such procedure consists of the following steps:

• E-step: For i = 1, . . . , n, compute

M̃(k)
i = (1− δi)E

(
Mi; θ

(k−1)
i S(k−1)

i

)
+ δi

E
(

M2
i ; θ

(k−1)
i S(k−1)

i

)
E
(

Mi; θ
(k−1)
i S(k−1)

i

) ,

where E(Mi; µi) and E
(

M2
i ; µi

)
denote the two first moments of the PS distribution

with parameter µi given by

E(Mi; µi) = µi
∂ log A(µi)

∂µi
and E

(
M2

i ; µi

)
= µi

∂E(Mi; µi)

∂µi
+E2(Mi; µi).

• M1-step: Given M(k) = (M̃(k)
1 , . . . , M̃(k)

n ), find β that maximizes Q1(β | ψ(k)) in
relation to β(k), where

Q1(β | ψ(k)) =
n

∑
i=1

{
M̃(k)

i log(θi)− log[A(θi)]

}
.

• M2-step: Given M(k), find λ(k) that maximizes Q2(λ | ψ(k)) in relation to λ, where

Q2(λ | ψ(k)) =
n

∑
i=1

{
(M̃(k)

i − δi) log

[
2Φ
(
−yi

σ

)
+

√
2α

π

(
σ

yi

)α

Γ
(

α + 1
2

)
G

(
y2

i
2σ2 ,

α + 1
2

)]

+ δi

[
log(α) +

α

2
log(2) + α log(σ)− (α + 1) log(yi)

+ log

[
γ

(
y2

i
2σ2 ,

α + 1
2

)]]}
.

The E-, M1- and M2-steps are repeatedly alternated until a suitable convergence rule is
satisfied, e.g., the difference in successive values of the estimates is less than a prespecified
tolerance. Note that this procedure requires two independent maximization procedures in
relation to β and λ of dimensions r+ 1 and 2, respectively, instead of a unique maximization
procedure in relation to ψ, which has a dimension (r + 3). Standard errors for ψ̂ can be
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computed based on the Hessian matrix, i.e., H(ψ̂) = ∂2`(ψ)/∂ψ>∂ψ
∣∣
ψ=ψ> . This matrix

can be estimated numerically using, for instance, the package pracma [30] of R [31]. As the
estimators obtained via the EM algorithm are MLE, they satisfy the asymptotic distribution

√
n
(
ψ̂−ψ

) D→ N
(

0,
[
H(ψ̂)

]−1
)

, as n→ +∞, (9)

where D→ denotes convergence in distribution. This result allows us to compute an approxi-
mated confidence interval for the parameters. Moreover, based on the delta method (see
Sen et al. [32] for details), we can also build a confidence interval for any scalar function of
ψ, say g(ψ), using

√
n
[
g
(
ψ̂
)
− g(ψ)

] D→ N
(

0, [∇g(ψ)]>
[
H(ψ̂)

]−1∇g(ψ)
)

, as n→ +∞, (10)

where∇g(ψ) = ∂g(ψ)/∂ψ denotes the gradient of g(ψ). In particular, a very useful case is
g(ψ) = a0/A(θi), i.e., the cure rate of the corresponding model. The described estimation
procedure was incorporated in the package PScr [33] of R [31].

5. Simulation Studies

In this Section, we present two simulation studies. The first one is related to assessing
the performance of the MLE using the EM algorithm discussed in Section 3. The second
study is devoted to assessing the performance of the PS–SHN compared with the PS–
Weibull model when data are drawn from the PS–Weibull model with some modified
scheme. The software tool used for this study was R [31].

5.1. Assessing the Performance of MLE in a Finite Sample Size

In this subsection, we present a simulation study to evaluate the performance of the
MLE estimators of the PS–SHN in a finite sample size. We considered three particular
distributions belonging to the PS model for the number of concurrent causes: Poisson,
logarithmic and geometric. We also considered three sample sizes: 100, 200 and 400.
For each individual, we drew two covariates, say x1 and x2, where x1 was drawn from
the Bernoulli distribution with a success probability of 0.5 and x2 from the standard
normal model. For this reason, β = (β0, β1, β2) had dimension three. For each particular
distribution for the concurrent causes, we considered two scenarios, named high and low
cure rates. For the high cure rate, we considered that for β2 fixed at zero, the values of the
two levels for x1 for the cure rate were 0.7 and 0.45. With such information, the values of
β0 and β1 could be determined from the equations

exp(− exp(β0)) = 0.7 and exp(− exp(β0 + β1)) = 0.45

for the Poisson case and

1

A
(

exp(β0)
1+exp(β0)

) = 0.7 and
1

A
(

exp(β0+β1)
1+exp(β0+β1)

) = 0.45,

for the logarithmic and geometric cases. A similar procedure could be applied for the
low cure rate case, where we considered that, for β2 fixed at zero, the values of the two
levels for x1 for the cure rate were 0.5 and 0.25. Summarizing, for the Poisson model, we
had β0 = −1.031, β1 = 0.806 and β2 = 0 for the high cure rate case and β0 = −0.367,
β1 = 0.693 and β2 = 0 for the lower cure rate case; for the logarithmic distribution we had
β0 = 0.132, β1 = 1.588 and β2 = 0 for the high cure rate case and β0 = 1.366, β1 = 2.534
and β2 = 0 for the lower cure rate case; and for the geometric model, we had β0 = −0.847,
β1 = 1.048 and β2 = 0 for the high cure rate case and β0 = 0, β1 = 1.099 and β2 = 0 for
the lower cure rate case. Finally, we also considered two values for α, 0.75 and 2.5 and two
values for σ, 1 and 3. The combinations of distributions for the concurrent causes, sample
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size, type of cure rate (high or low), α and σ produced 72 different scenarios. However,
we only present the cases for the Poisson and geometric models, although conclusions
are similar for the logarithmic distribution. For each, we considered 1000 replicates and
computed the MLE based on the EM algorithm described in Section 3. Such results are
summarized in Tables 1 and 2 through the average of the estimated bias (bias), the average
of the estimated standard error (s.e.) based on the Hessian matrix numerically evaluated
at ψ = ψ̂, the root of the estimated mean squared error (RMSE) and the 95% coverage
probability (CP). As expected, the bias of the estimators was reduced and the terms s.e.
and RMSE were closer when the sample size was increased, suggesting the asymptotic
consistency of the estimators. Additionally, the terms CP were closer to the nominal values
used for their construction when n increased.

Table 1. Simulation study to assess the performance of MLE in the Poisson–SHN model.

Cure n = 100 n = 200 n = 400
Rate σ α Parameter bias s.e. RMSE CP bias s.e. RMSE CP bias s.e. RMSE CP

High

1

0.75

β̂0 0.023 0.370 0.255 0.978 0.012 0.248 0.200 0.974 0.010 0.177 0.147 0.965
β̂1 −0.019 0.335 0.302 0.961 −0.006 0.234 0.210 0.953 −0.001 0.164 0.145 0.952
β̂2 0.005 0.165 0.144 0.963 0.003 0.116 0.104 0.958 −0.002 0.081 0.074 0.949
α̂ 0.294 0.979 0.751 0.975 0.172 0.600 0.505 0.960 0.055 0.376 0.335 0.951
σ̂ 0.082 0.452 0.372 0.965 0.052 0.321 0.276 0.955 0.015 0.227 0.206 0.952

2.5

β̂0 0.002 0.208 0.180 0.962 0.002 0.145 0.124 0.959 0.001 0.102 0.089 0.956
β̂1 −0.014 0.316 0.281 0.959 −0.013 0.221 0.192 0.958 −0.008 0.155 0.140 0.953
β̂2 −0.011 0.155 0.140 0.942 −0.005 0.109 0.103 0.943 −0.003 0.077 0.071 0.951
α̂ 0.287 1.637 1.416 0.929 0.140 1.342 1.091 0.937 0.127 0.995 0.854 0.946
σ̂ −0.039 0.302 0.229 0.933 −0.011 0.211 0.171 0.941 −0.010 0.146 0.131 0.943

3

0.75

β̂0 −0.140 0.922 0.307 0.962 −0.125 0.738 0.250 0.952 −0.101 0.614 0.212 0.950
β̂1 0.013 0.371 0.327 0.960 0.009 0.258 0.226 0.954 0.003 0.181 0.170 0.953
β̂2 0.006 0.183 0.164 0.948 0.002 0.127 0.111 0.948 0.000 0.089 0.080 0.950
α̂ 0.687 1.658 1.304 0.972 0.657 1.389 1.269 0.961 0.584 1.193 1.169 0.955
σ̂ −0.269 1.073 0.846 0.957 −0.088 0.892 0.719 0.956 −0.040 0.652 0.602 0.953

2.5

β̂0 0.100 0.505 0.263 0.969 0.085 0.339 0.201 0.963 0.078 0.223 0.160 0.958
β̂1 −0.011 0.325 0.295 0.958 −0.009 0.226 0.201 0.952 −0.008 0.159 0.144 0.951
β̂2 0.005 0.161 0.151 0.939 0.005 0.112 0.097 0.942 0.003 0.078 0.068 0.949
α̂ −0.791 1.976 1.583 0.938 −0.549 1.797 1.496 0.941 −0.409 1.490 1.442 0.949
σ̂ −0.641 1.428 0.893 0.919 −0.409 1.237 0.691 0.928 −0.319 0.939 0.592 0.930

Low

1

0.75

β̂0 0.013 0.441 0.296 0.977 0.009 0.285 0.226 0.960 0.005 0.206 0.172 0.954
β̂1 −0.015 0.413 0.369 0.960 −0.013 0.289 0.270 0.952 −0.001 0.202 0.181 0.951
β̂2 0.013 0.198 0.180 0.951 0.008 0.138 0.125 0.950 0.003 0.096 0.088 0.950
α̂ 0.293 1.127 0.747 0.972 0.262 0.778 0.632 0.965 0.094 0.459 0.391 0.959
σ̂ 0.084 0.531 0.385 0.944 0.063 0.392 0.324 0.947 0.037 0.272 0.243 0.949

2.5

β̂0 0.004 0.238 0.210 0.961 0.002 0.163 0.144 0.953 0.001 0.114 0.104 0.951
β̂1 −0.010 0.384 0.329 0.965 −0.009 0.270 0.239 0.957 −0.004 0.189 0.178 0.953
β̂2 0.012 0.185 0.166 0.960 0.008 0.129 0.118 0.959 0.004 0.091 0.081 0.951
α̂ 0.175 1.975 1.271 0.924 0.134 1.722 1.144 0.938 0.087 1.198 0.968 0.944
σ̂ −0.057 0.353 0.258 0.912 −0.016 0.244 0.190 0.940 −0.002 0.170 0.146 0.943

3

0.75

β̂0 −0.151 0.999 0.346 0.941 −0.139 0.805 0.282 0.948 −0.105 0.679 0.227 0.950
β̂1 −0.012 0.464 0.402 0.969 −0.010 0.323 0.279 0.962 −0.007 0.225 0.202 0.958
β̂2 0.012 0.221 0.206 0.943 0.010 0.153 0.140 0.946 0.004 0.107 0.098 0.950
α̂ 0.526 1.660 1.336 0.971 0.371 1.378 1.251 0.965 0.294 1.276 1.154 0.959
σ̂ −0.467 1.285 0.938 0.929 −0.176 2.077 0.719 0.936 −0.025 1.785 0.619 0.940

2.5

β̂0 0.107 0.586 0.295 0.973 0.093 0.405 0.225 0.962 0.086 0.261 0.177 0.959
β̂1 0.013 0.398 0.365 0.955 0.008 0.276 0.239 0.954 0.000 0.194 0.179 0.951
β̂2 −0.017 0.192 0.173 0.965 −0.002 0.133 0.119 0.961 0.000 0.093 0.081 0.959
α̂ −0.912 4.181 1.545 0.934 −0.682 3.910 1.489 0.936 −0.493 3.601 1.462 0.942
σ̂ −0.743 1.490 0.969 0.961 −0.526 1.287 0.764 0.960 −0.379 1.038 0.647 0.958
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Table 2. Simulation study to assess the performance of MLE in the geometric–SHN model.

Cure n = 100 n = 200 n = 400
Rate σ α Estimator bias s.e. MSE CP bias s.e. MSE CP bias s.e. MSE CP

High

1

0.75

β̂0 0.025 0.556 0.391 0.970 0.008 0.374 0.278 0.983 0.006 0.259 0.219 0.966
β̂1 0.023 0.469 0.424 0.955 0.021 0.328 0.289 0.956 0.001 0.230 0.204 0.955
β̂2 0.004 0.234 0.213 0.954 0.003 0.162 0.150 0.942 0.001 0.114 0.106 0.936
α̂ 0.284 1.203 0.741 0.996 0.218 0.796 0.627 0.982 0.109 0.495 0.431 0.961
σ̂ 0.078 0.546 0.379 0.949 0.070 0.394 0.342 0.950 0.033 0.280 0.251 0.948

2.5

β̂0 −0.014 0.353 0.302 0.959 −0.003 0.241 0.218 0.947 0.003 0.168 0.152 0.949
β̂1 0.016 0.453 0.403 0.959 0.012 0.315 0.294 0.956 0.008 0.221 0.199 0.941
β̂2 0.006 0.225 0.200 0.959 0.004 0.156 0.143 0.944 0.002 0.109 0.100 0.943
α̂ 0.242 1.871 1.434 0.854 0.163 1.752 1.270 0.910 0.081 1.332 1.018 0.946
σ̂ −0.078 0.375 0.272 0.911 −0.017 0.266 0.206 0.944 −0.014 0.184 0.153 0.964

3

0.75

β̂0 −0.153 0.609 0.417 0.989 −0.135 0.488 0.329 0.960 −0.111 0.323 0.262 0.964
β̂1 −0.012 0.510 0.448 0.959 −0.003 0.353 0.310 0.961 −0.001 0.247 0.225 0.946
β̂2 −0.006 0.253 0.226 0.948 −0.004 0.174 0.155 0.959 −0.003 0.121 0.105 0.961
α̂ 0.534 1.577 1.389 1.000 0.381 1.402 1.313 1.000 0.194 1.356 1.309 1.000
σ̂ −0.490 1.302 0.974 0.910 −0.197 1.153 0.747 0.972 −0.029 0.825 0.638 0.987

2.5

β̂0 0.121 0.505 0.385 0.989 0.095 0.380 0.289 0.990 0.083 0.232 0.215 0.985
β̂1 −0.005 0.460 0.427 0.961 −0.003 0.321 0.279 0.961 −0.002 0.225 0.199 0.957
β̂2 0.012 0.228 0.196 0.960 0.002 0.159 0.137 0.955 −0.001 0.111 0.099 0.949
α̂ −0.921 2.029 1.755 0.841 −0.709 1.903 1.570 0.835 −0.569 1.661 1.535 0.819
σ̂ −0.788 1.333 1.004 0.851 −0.555 1.052 0.825 0.886 −0.407 0.899 0.672 0.914

Low

1

0.75

β̂0 0.008 0.477 0.344 0.981 0.003 0.338 0.254 0.969 0.001 0.226 0.194 0.971
β̂1 0.004 0.422 0.384 0.954 0.003 0.294 0.256 0.957 0.003 0.207 0.189 0.951
β̂2 −0.011 0.212 0.197 0.940 −0.006 0.147 0.133 0.953 −0.003 0.103 0.095 0.948
α̂ 0.280 1.043 0.702 0.998 0.190 0.693 0.583 0.981 0.097 0.441 0.387 0.957
σ̂ 0.071 0.480 0.349 0.960 0.059 0.352 0.300 0.960 0.037 0.251 0.217 0.952

2.5

β̂0 0.012 0.309 0.274 0.954 0.010 0.213 0.186 0.956 0.004 0.149 0.136 0.953
β̂1 0.010 0.409 0.360 0.957 0.007 0.286 0.247 0.964 0.003 0.201 0.180 0.942
β̂2 −0.007 0.206 0.190 0.961 −0.005 0.143 0.125 0.957 −0.002 0.100 0.084 0.962
α̂ 0.353 1.622 1.301 0.868 0.274 1.438 1.258 0.932 0.269 1.025 0.968 0.939
σ̂ −0.078 0.340 0.260 0.900 −0.040 0.244 0.184 0.956 −0.015 0.167 0.144 0.952

3

0.75

β̂0 −0.155 0.524 0.379 0.970 −0.128 0.415 0.284 0.973 −0.109 0.266 0.240 0.961
β̂1 0.009 0.448 0.399 0.963 0.005 0.311 0.271 0.962 0.003 0.219 0.187 0.956
β̂2 −0.016 0.223 0.196 0.965 −0.006 0.155 0.136 0.959 −0.003 0.109 0.099 0.950
α̂ 0.605 1.893 1.506 1.000 0.481 1.501 1.388 1.000 0.276 1.372 1.292 1.000
σ̂ −0.340 1.372 0.894 0.929 −0.089 1.116 0.703 0.966 −0.053 0.773 0.612 0.993

2.5

β̂0 0.090 0.607 0.347 0.987 0.074 0.439 0.268 0.990 0.051 0.282 0.201 0.982
β̂1 0.011 0.415 0.378 0.954 0.005 0.289 0.270 0.946 0.001 0.203 0.180 0.949
β̂2 −0.005 0.208 0.187 0.952 −0.001 0.145 0.135 0.937 −0.001 0.101 0.094 0.944
α̂ −0.865 1.780 1.612 0.852 −0.630 1.708 1.517 0.837 −0.449 1.629 1.462 0.838
σ̂ −0.695 1.283 0.927 0.887 −0.492 1.097 0.762 0.905 −0.341 0.732 0.605 0.924

5.2. Misspecification for the Time-to-Event for the Concurrent Causes

In this subsection, we assessed the performance of the MLE for the Poisson–SHN and
geometric–SHN models when data were drawn from an artificial model with heavy tails
based on the Weibull distribution.

The generation of the data was very similar to that in the last subsection, considering
the following changes:

• The times related to the concurrent causes were drawn from the Weibull model with
mean E(W) = µ and variance 1. We considered three values for µ: 2.5, 5.0 and 7.5.
For the parameterization considered in part a) from Remark 1, this corresponded
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to α = 2.70 and σ = 7.90, α = 5.80 and σ = 29.16 and α = 8.97 and σ = 62.75,
respectively.

• A determined number of failure times (2% of the sample size, i.e., two observations
for n = 100, four observations for n = 200 and eight observations for n = 400), were
imputed as max

(
t f ail

)
+ Uσ

f ail
t , where max

(
t f ail

)
and σ

f ail
t denote the maximum

and the standard error of the failure times and U ∼ U(1, 2). This scheme artificially
simulated a distribution for the time-to-event of the concurrent causes with a heavier
tail than the Weibull distribution, but not corresponding to the SHN.

The main goal of this study was to compare the coefficients related to the cure (i.e.,
the components of the vector β) obtained with the Poisson–SHN and Poisson–Weibull
models (when the true model for M is the Poisson distribution) and geometric–SHN
and geometric–Weibull models (when the true model is the geometric distribution). All
the considered combinations of E(W), sample size, type of cure (high/low) and model
for M (Poisson/geometric), totalizing 36 cases. Each was replicated 1000 times. Table 3
summarizes the bias and RMSE for each combination. Note that, in all the considered cases,
the bias and RMSE were lower (or at least the same) for the models considering the SHN
rather than the Weibull model. Such differences in favor of the SHN were minimized when
the sample size was increased.

Table 3. Misspecification simulation study for Poisson–SHN and geometric–SHN models.

n = 100 n = 200 n = 400

Poisson Case

Cure bias RMSE bias RMSE bias RMSE
Rate E(W) Estimator SHN Weibull SHN Weibull SHN Weibull SHN Weibull SHN Weibull SHN Weibull

High

2.5
β̂0 0.059 0.089 0.394 0.431 0.053 0.084 0.248 0.309 0.051 0.073 0.168 0.221
β̂1 −0.018 −0.066 0.356 0.430 −0.006 −0.049 0.248 0.316 −0.003 −0.048 0.175 0.227
β̂2 −0.002 −0.003 0.176 0.255 −0.002 −0.003 0.122 0.187 −0.001 −0.002 0.086 0.131

5.0
β̂0 −0.109 −0.159 0.344 0.347 −0.077 −0.126 0.225 0.239 −0.058 −0.123 0.134 0.169
β̂1 −0.014 −0.020 0.402 0.773 −0.007 −0.018 0.280 0.601 −0.005 −0.017 0.197 0.451
β̂2 −0.005 −0.006 0.197 0.288 −0.003 −0.004 0.138 0.209 0.000 0.000 0.097 0.146

7.5
β̂0 −0.307 −0.359 0.246 0.297 −0.276 −0.355 0.201 0.210 −0.251 −0.322 0.107 0.159
β̂1 −0.017 −0.025 0.443 0.933 −0.012 −0.015 0.311 0.773 −0.011 −0.013 0.219 0.650
β̂2 0.011 0.012 0.218 0.317 −0.003 −0.003 0.152 0.230 0.001 0.001 0.107 0.160

Low

2.5
β̂0 0.087 0.097 0.287 0.314 0.070 0.079 0.181 0.211 0.058 0.063 0.139 0.144
β̂1 −0.014 −0.069 0.437 0.448 −0.012 −0.061 0.306 0.334 −0.007 −0.052 0.215 0.228
β̂2 −0.001 0.000 0.207 0.297 0.000 0.000 0.146 0.215 −0.001 −0.001 0.102 0.155

5.0
β̂0 −0.093 −0.100 0.234 0.255 −0.071 −0.092 0.165 0.176 −0.052 −0.078 0.110 0.121
β̂1 −0.029 −0.048 0.489 0.809 −0.022 −0.025 0.344 0.656 −0.008 −0.012 0.244 0.487
β̂2 −0.003 −0.004 0.231 0.336 −0.001 −0.001 0.164 0.241 −0.001 −0.001 0.116 0.172

7.5
β̂0 −0.204 −0.285 0.197 0.217 −0.194 −0.282 0.133 0.155 −0.192 −0.279 0.102 0.111
β̂1 −0.012 −0.018 0.533 0.893 −0.003 −0.014 0.379 0.742 −0.002 −0.004 0.267 0.583
β̂2 −0.008 −0.008 0.252 0.372 −0.005 −0.006 0.179 0.265 −0.003 −0.003 0.127 0.187
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Table 3. Cont.

n = 100 n = 200 n = 400

Geometric Case

High

2.5
β̂0 0.071 0.092 0.196 0.244 0.053 0.082 0.163 0.190 0.031 0.048 0.124 0.139
β̂1 −0.105 −0.127 0.209 0.281 −0.083 −0.094 0.153 0.218 −0.054 −0.056 0.148 0.164
β̂2 −0.003 −0.005 0.254 0.435 0.001 0.002 0.176 0.299 0.001 0.001 0.123 0.207

5.0
β̂0 −0.091 −0.129 0.135 0.154 −0.088 −0.119 0.098 0.103 −0.071 −0.106 0.042 0.071
β̂1 −0.089 −0.130 0.352 0.427 −0.080 −0.120 0.287 0.329 −0.057 −0.092 0.172 0.243
β̂2 0.001 0.000 0.274 0.478 −0.001 −0.001 0.192 0.330 0.001 0.001 0.135 0.229

7.5
β̂0 −0.288 −0.333 0.094 0.125 −0.251 −0.311 0.067 0.082 −0.242 −0.271 0.049 0.059
β̂1 −0.055 −0.099 0.493 0.512 −0.054 −0.096 0.314 0.389 −0.042 −0.053 0.290 0.301
β̂2 0.009 −0.010 0.293 0.524 0.005 −0.008 0.204 0.362 0.001 0.001 0.143 0.248

Low

2.5
β̂0 −0.075 −0.109 0.245 0.298 −0.062 −0.081 0.219 0.234 −0.046 −0.069 0.147 0.165
β̂1 −0.094 −0.130 0.217 0.245 −0.074 −0.083 0.133 0.192 −0.050 −0.061 0.128 0.138
β̂2 0.012 0.016 0.235 0.397 0.011 0.012 0.163 0.270 0.002 0.003 0.114 0.187

5.0
β̂0 −0.224 −0.259 0.197 0.209 −0.216 −0.237 0.101 0.144 −0.153 −0.203 0.061 0.089
β̂1 −0.108 −0.126 0.303 0.385 −0.097 −0.106 0.251 0.283 −0.084 −0.099 0.146 0.207
β̂2 0.002 0.002 0.253 0.426 0.002 0.002 0.176 0.292 0.001 0.001 0.123 0.201

7.5
β̂0 −0.260 −0.459 0.116 0.150 −0.256 −0.424 0.096 0.106 −0.202 −0.392 0.042 0.073
β̂1 −0.050 −0.112 0.337 0.471 −0.049 −0.104 0.274 0.359 −0.035 −0.091 0.202 0.268
β̂2 −0.002 −0.004 0.269 0.456 −0.001 −0.002 0.187 0.315 −0.001 −0.001 0.131 0.216

6. Application to Bone Marrow Transplantation

In this section, we present a real data set application from the EBMT presented in the
introduction section. Additionally, the prophylaxis covariate (dichotomous, 1730 patients
with “no” and 549 patients with “yes”) was available.

For the analysis, we considered some existent models in the literature, all of them
belonging to the power-series cure rate model, such as the Poisson, logarithmic, negative
binomial, Bernoulli, COM-Poisson and polylogarithm models. Additionally, we considered
three commons models used for the concurrent causes such as the Weibull, gamma and
BS models. Table 4 shows the Akaike information criterion (AIC) [34] and Bayesian
information criterion (BIC) criteria [35] for those models in the ebmt4 data. Note that both
criteria favored models where the SHN for concurrent causes was used.

Table 4. AIC and BIC criteria for some cure rate models in the literature based on a competing risk
scheme for the ebmt4 data set.

Model for M Weibull Gamma BS SHN

Po 4650.0/4672.9 4683.0/4706.0 4580.8/4603.8 4537.9/4560.8
Lo 4628.7/4651.6 4639.6/4662.6 4628.1/4651.0 4547.3/4570.3
NB 4561.4/4590.1 4547.4/4576.1 4583.0/4611.7 4540.2/4568.8

Bern 4665.1/4688.0 4712.8/4735.8 4577.0/4599.9 4535.8/4558.8
COM-Po 4639.3/4667.9 4659.5/4688.1 4578.9/4607.6 4537.8/4566.5

PL 4612.1/4658.0 4615.9/4661.8 4585.1/4630.9 4545.3/4591.2

Table 5 shows the estimated parameters for the Bern/SHN cure rate model and its
standard errors. Note that both parameters related to the cure were significant with 5% of
significance. We also considered a residuals analysis in the selected model based on the Cox–
Snell residuals [36,37] and the randomized quantile residuals [38]. The first residual was
compared with its Nelson–Aalen estimator and the second with the quantile of the standard
normal distribution. In both cases, if the model was correct, we expected to observe the
identity function for the respective graphs. According to Figure 2, such residuals suggested
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that the choice model was correct. Finally, we also computed the Kaplan–Meier (K–M)
estimator for patients with and without prophylaxis and the respective point estimation
and 95% confidence interval for the survival function for each time. Such confidence
interval was based on the delta method discussed in Equation (10). Figure 3 shows those
results. Note the closeness of the estimation for the survival function and that provided
by the K–M estimator. As expected, patients without prophylaxis had a lower survival
function than patients with prophylaxis.

Table 5. Estimates and standard errors (s.e.) for the Bern/SHN cure rate model in the ebmt4 data set.

Parameter β0 β1 α σ

Estimate −0.4912 −0.2224 0.3844 0.3120
s.e. 0.0907 0.1030 0.0753 0.0310
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Figure 2. Cox–Snell residuals versus their Nelson–Aalen estimator (left panel) and the randomized
quantile residuals versus the N(0,1) quantiles and its p-values for the Kolmogorov–Smirnov test
(right panel).
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Figure 3. Kaplan–Meier (K–M) estimator for patients with and without prophylaxis and the respective
point estimation and 95% confidence interval for the survival function for each time.

7. Conclusions

In this work, we introduced the PS–SHN cure rate model. We provided a mathematical
treatment of the new distribution including an alternative expression for the cumulative
distribution function. An EM algorithm to compute maximum likelihood estimation
procedures in finite samples was discussed. Two simulation studies were performed to
assess some properties of the estimators, showing the good performance of the proposed
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estimation procedure in finite samples. In the analysis of the bone marrow transplant data,
the SHN cure rate model yielded a better fit when compared to other well-known models
in the literature, according to the AIC and BIC criteria. We developed an R package to
perform inference in the power-series cure rate models. As part of future research, we
plan to explore other estimation methods for the proposed cure rate model, for instance, a
Bayesian approach. A second line of a future research will be a bias-reduction methodology
to estimate the parameters of the proposed regression model.
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Funding: This research received no external funding.

Data Availability Statement: The data set used in Section 5 was duly referenced.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Parametrization Used for Some Discrete Models

The power series distribution has a probability mass function (p.m.f.) given by

P(M = m; θ) =
amθm

A(θ)
, m = 0, 1, 2, . . . ,

where A(θ) = ∑∞
m=0 amθm and θ ∈ Θ, with Θ the parameter space for θ.

Table A1. Some particular cases of the power series distribution.

Negative
Poisson Binomial Binomial Logarithmic Polylogarithm COM-Poisson

am (m!)−1 (m+q−1
m ) ( q

m) (m + 1)−1 (m + 1)q (m!)−q

A(θ) eθ (1− θ)−q (1 + θ)q − log(1−θ)
θ

Liq(θ)
θ

1
Z(θ,q)

Θ (0, ∞) (0, 1) (0, ∞) (0, 1) (0, 1) (0, ∞)

Notation Po(θ) NB(q, θ) Bin(q, θ) Lo(θ) PL(q, θ) COM-Po(q, θ)

NOTE: Li denotes the polylogarithm defined as Liq(θ) = ∑∞
m=1 m−qθm and Z(θ, q) = ∑∞

m=0(m!)−qθm. In the NB,
Bin, PL and COM-Po distributions, q is considered known.

Observations:

• NB(1, θ) = Geo(θ), i.e., the geometric distribution.
• Bin(1, θ) = Bern(θ), i.e., the Bernoulli distribution.
• NB(q, θ) = Bin(q, θ), if −q−1 ∈ N and 0 < θ/q < 1.
• limq→∞COM-Po(q, θ) = Bern((1 + θ)−1).
• limq→0COM-Po(q, θ) = Geo(1− θ), if θ < 1.
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