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Abstract: The Vehicular Ad-hoc Network (VANET) is an innovative technology that allows vehicles
to connect with neighboring roadside structures to deliver intelligent transportation applications.
To deliver safe communication among vehicles, a reliable routing approach is required. Due to the
excessive mobility and frequent variation in network topology, establishing a reliable routing for
VANETs takes a lot of work. In VANETs, transmission links are extremely susceptible to interruption;
as a result, the routing efficiency of these constantly evolving networks requires special attention.
To promote reliable routing in VANETs, we propose a novel context-aware reliable routing protocol
that integrates k-means clustering and support vector machine (SVM) in this paper. The k-means
clustering divides the routes into two clusters named GOOD and BAD. The cluster with high mean
square error (MSE) is labelled as BAD, and the cluster with low MSE is labelled as GOOD. After
training the routing data with SVM, the performance of each route from source to target is improved
in terms of Packet Delivery Ratio (PDR), throughput, and End to End Delay (E2E). The proposed
protocol will achieve improved routing efficiency with these changes.

Keywords: vehicular ad-hoc networks; mean square error; k-means clustering; support vector
machine; packet delivery ratio

MSC: 68M12

1. Introduction

In today’s era, Vehicular Ad-hoc Network (VANET) has contributed to making the
transportation system intelligent, which connects and interacts wirelessly with moving
vehicles to solve problems, including traffic congestion, information dissemination, and
accidents. In VANET, short-range wireless transceivers are mounted in vehicles and
roadside units (RSUs), such as roadside base stations or access points [1]. The vehicles
in VANET will serve as routing nodes; they are not indirectly linked to one another and
will have to communicate via several hops. Consequently, a multi-hop routing approach
is required to find a valid route between the sender and receiver that includes a list of
transitional vehicles [2]. In VANETs, many kinds of wireless connections can be used for
data routing. The vehicles can directly connect, called vehicle-to-vehicle (V2V), whereas
vehicles connected with infrastructure are considered V2I/I2V. For better connectivity
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and backbone network, infrastructure-based networks are also called infrastructure-to-
infrastructure (I2I). These connections are shown in Figure 1. V2V allows vehicles to share
data cooperatively. An additional wireless connection exists between the infrastructure
and neighboring cars that can be used both ways (e.g., V2I and I2V). In this structure, the
connection provides internet access and current data to vehicles [3].
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In the literature, routing schemes for VANET have been extensively studied [4–6].
Routing protocols are divided into five groups based on how constructive, reactive, hybrid,
adaptive, and context-aware they are. A route discovery request is sent to all the nodes
in the whole network with the help of a proactive routing protocol. It increases control
overhead, energy usage, and E2E delay. While in the reactive routing protocol, the discovery
process is initiated by the source node, and it reaches only the intended destination.

This method reduces control overhead but still requires the path discovery process to
find a route for each new node [4]. The constructive and reactive approaches are combined
in the hybrid routing protocol. Clusters are areas where the nodes in a hybrid network
are clustered together. The clustering architecture improves network scalability by using
constructive intra-cluster routing and reactive inter-cluster routing. As a result, VANET
environment scalability is improved, and overhead control messages are reduced. Although
clustering techniques reduce routing control overhead, regular cluster head (CH) elections
increase the re-election process’s control overhead [5]. Due to the interference and mobility,
the adaptive routing protocol can deal with varying network topologies, node mobility, and
complex wireless conditions. To address the problem of heavy congestion, context-aware
routing integrates external information resources such as maps, location facilities, or even
public transportation programs [6].

When developing a routing protocol, it is critical to consider the problems and char-
acteristics of the infrastructure on which it will be used. Some challenges are the high
mobility of nodes, dynamic changing topology, scalability, reliability, fault tolerance, energy
consumption, uneven traffic density, neighborhood discovery, delay constraints, and real-
time transmission [7]. In highly complex networks such as VANETs, reliability is the most
difficult problem to solve. A valid route can become invalid after a brief period because
vehicle communication breaks down frequently due to the high speed at which vehicles
travel. Using the shortest route for data communication between network nodes without
considering route reliability may be expensive. This occurred because these paths could
become unacceptable shortly, interrupting data transmission frequently [8]. In VANET,
there are two types of reliability, which are mentioned below:

• Link Reliability: The probability of a connection remaining uninterrupted for a definite
period of time is known as link reliability. Assumed a prediction time TP for constant
accessibility of a dedicated link l among the interconnection of the nodes at time t,
whereas r(l) is representing the link reliability.

r(l) = P{until t + TP|} (1)
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• Route Reliability: In VANETs, various possible paths could occur between the sender
node sr and the receiver nodes de, where each path is the connection between vari-
ous links in the dedicated route. For every provided path, the number of its estab-
lished links by Ω : l1 = (s1, n1), l2 = (n1, n2), . . . lΩ = (nΩ, de). The route reliability
R(P((sr, de)) for path P is described as follows:

R(P((sr, de)) = ∏Ω
ω=1 rt(lω) (2)

where rt(lω) is the link reliability as calculated in Equation (1).
In past years, with the rapid development of bio-inspired techniques and machine

learning techniques, routing protocols based on particle swarm optimization (PSO) [9],
artificial bee colony (ABC) [10], ant colony optimization (ACO) [11], genetic algorithm
(GA) [12], harmony search (HS) [13], support vector machine (SVM) [14], reinforcement
learning (RL) [15], and researchers have extensively adopted k-means [16] to recognize and
route packets among nodes in an improved way [17,18]. Machine learning is a collection of
predictive mathematical models that can be used to make predictions and decisions based
on a large amount of data. This ability to predict and make decisions may be critical in the
VANET [19,20]. However, in route selection, background details such as communication
type, E2E link dependency, and packet load size can boost the performance of the VANET
system. All these observations encourage the adoption of machine learning techniques to
mitigate the various challenges and issues in routing between vehicles. Thus, a context-
aware reliable routing protocol has been proposed that incorporates k-means and SVM
approaches in an attempt to provide a better quality of service (QoS) in VANET.

1.1. Research Contributions

The major impacts of the proposed protocol are as below:

• Introduces a context-aware method to distinguish the traffic flows with distinct context
information to minimize communication overheads.

• Design a machine learning techniques-based routing that considers k-means and SVM
approaches for optimal route selection to deliver reliability and robustness towards
network malfunction, dynamic topology, and variable mobility in VANET.

• Adopts packet delivery ratio (PDR) and E2E delay as routing metrics which guarantee
that the most reliable route is selected during transmission.

1.2. Organization

The section describes the structure of the rest of the paper: Section 2 represents the
background survey of various research related to this area. Section 3 discusses k-means
clustering and SVM techniques are discussed. In Section 4, the proposed context-aware
routing protocol is illustrated. The performance parameters to be measured are presented
in Section 5. Lastly, the conclusion is discussed in Section 6.

2. Background Survey

While going through the current literature, we reviewed that widespread research on
routing protocols has been proposed in VANET.

A cluster-based lifetime routing protocol called CBLTR [21] is proposed, aiming to
maximize the stability of routes and average throughput in a bidirectional sector situation.
The CHs are elected by considering the vehicle’s lifetime as one of the parameters inside
each cluster. The CHs select the optimal route according to its current location, destination
location, and average throughput. The proposed protocol also minimizes the control
overhead in the clusters among the cluster members and the CH. The simulation results
reveal that it outperforms in terms of E2E delay and throughput. Although, QoSBeeVanet
is proposed in [22], a QoS multi-path routing protocol. It is centered on a biological model
of bee transmission in the quest for food sources. It utilized a scout and forager to find the
network and transfer data to the destination. Every scout recorded its data in the routing
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table and assessed its quality using a weighting factor. The hybrid bee swarm routing
(HyBR) approach for VANET was introduced in [23]. HyBR is a multicast and unicast
routing that ensures road security by communicating packets with minimal latency and
large data delivery. During high network density, it utilizes Scout and Forager for network
findings which are motivated by bee communication. However, during less density, it
utilizes a geography-based approach, which uses a GA to determine the shortest route
between source and destination.

A hybrid clustering mechanism is proposed in [24], which merges context- and
geographic-based clustering methods. During clustering, every node calculates a weight
based on specific parameters: velocity, distance, residual lifetime, point of interest, and
direction. The node with the maximum weight is chosen as CH. The proposed research
decreases the overhead in the network and the destination-aware inter-clustering routing,
which improves the overall PDR and reduces the E2E delay. A hybrid, multipath ACO-
based routing approach (MAZCORNET) is proposed in [25] to determine multiple paths
among vehicular nodes. In MAZCORNET, the network is split into numerous zones, a
proactive mechanism is utilized to determine a path within each zone. A reactive mecha-
nism is utilized to determine a route among zones by utilizing the local data accumulated
in each zone. This technique is scalable and fault-tolerant. CBQoS [26] is a new QoS-based
unicast routing for VANET. It considers two procedures: a clustering approach that es-
tablishes and enhances the transmission of routing information to meet QoS necessities,
and a routing information optimization algorithm, and an ABC algorithm that determines
the optimal paths among source and destination using QoS parameters such as usable
bandwidth, E2E delay, and connection expiration time.

An improved HS optimization (EHSO) algorithm [27] considers the optimized link
state routing (OLSR) parameters’ design by storing two common selection techniques
in memory: roulette wheel and tournament selection. The improved harmony search
optimization (EHSO) outperforms the OLSR in terms of PDR and routing overheads,
according to simulation findings applied to a highway scenario. A location-based geocast
routing protocol [28] that uses PSO with a next-vehicle approach and a fitness feature that
is built in such a way that it can quickly locate local and global maxima. The authors
created a PSO with a fitness feature that maximizes the distribution ratio and minimizes
delay, routing load, and packets drop when choosing an appropriate next-hop vehicle to
send information to the geocast region on time. Since the fitness feature utilized in PSO
minimizes delay and routing load, the proposed protocol performs better.

The literature also incorporates numerous studies [29–32] that have embraced machine
learning methods to resolve the routing issue in VANET. A greedy forwarding routing
algorithm [29] in VANET is based on the SVM technique. The SVM in the proposed
approach is used to manage the data and create routing metrics to improve the routing
performance. By applying a large amount of classified data (features including the distance
between the forwarding node and the next-hop node, the moving direction, the acceleration,
and the moving direction of the next-forwarding node), the model is obtained by training
such a dataset in SVM. The simulation results show better reliability and communication
efficiency are achieved. To estimate the required information for routing protocols, a unique
routing information scheme known as the machine learning-assisted route selection (MARS)
is proposed in [30]. Machine learning is utilized in MARS to keep track of road details
in roadside units. MARS may also assist in determining the forwarding path among two
RSUs according to the expected destination position and the approximate communication
delays in both directions. To keep track of roads, we utilize RSUs and machine learning.
MARS can forecast vehicle movement and choose appropriate routing paths with higher
communication capacity for packet transmission. MARS can also assist in determining the
forwarding direction between two RSUs.

For VANET architecture, HQVR, a heuristic Q-learning-based routing algorithm [31],
chooses a transitional hop based on the reliability of the connection. The learning protocol
for HQVR is based on the data collected by transmitting beacon packets and is a distributed
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algorithm. The rate of beacon messages affects the convergence of the Q-learning algorithm,
according to the authors, which makes convergence slower. The relation length ratio
determines the learning rate in HQVR. The learning rate defines the sum of convergence
according to the Q-learning procedure’s functionality. As a result, the need for exploration
decreases with a higher-quality link. As a result, the source can select the optimal path
from among the several options. Whereas a reinforcement learning (RL) based routing
protocol called RLRC [32] in VANET creates a cluster between the vehicles, the authors
utilize an enhanced form of K-Harmonic Means (KHM). Since RLRC creates clusters to
minimize the number of state spaces, the CH would be required to share a large number of
packets with the CMs of their cluster.

The graph-based deep learning model [33] in the communication network is discussed
in various aspects, where the problems and Graph Neural Networks (GNN) based solutions
are also listed. The construction method of wireless communication graph for different
wireless networks and to introduce of the progress of various classical paradigms of GNNs
are discussed [34]. GNNs-based deep reinforcement learning (DRL) architecture [35] can
generalize the unseen network topologies used for training. To fully utilize the network
resources deep graph reinforcement learning (DGRL) method [36] is effective, improving
the data delivery rate and reducing the delay.

As a result, when choosing a CH, RLRC counts the vehicle’s energy parameter. The
bandwidth parameter is chosen as the second parameter for selecting the CH to ensure
smooth connectivity. The least distant node is chosen as the CH according to the relative
distance. The SARSA model is used to optimize the RLRC procedure’s routing mechanism,
which reduces learning time. RLRC decreases the amount of state space and speeds
up convergence by creating clusters. Table 1 demonstrates the comparative analysis of
surveyed protocols in VANETs.

Table 1. Evaluation of surveyed protocols in VANET.

Ref. ID. Proposed Approach Issues Addressed Performance Parameters

[21] Threshold-based clustering Network instability to maximize the
network efficiency E2E delay and throughput

[22] Artificial bee colony Quality-of-service in VANET routing E2E delay and PDR

[23] Hybrid bee swarm Timely dissemination of messages to improve
road safety Average E2E delay and PDR.

[24] Weight-based Delay constraints in VANET Average E2E delay and PDR.

[25] Ant colony Optimization Effective bandwidth utilization, scalability,
and robustness E2E delay and PDR

[26] Artificial bee colony Find optimal routes based on QoS requirements PDR, E2E delays, and the network overhead

[27] Harmony search algorithm Flexible routing due to the dynamic nature
of VANET PDR and network overhead

[28] Particle swarm optimization Scalability and overhead for routing Delay, the routing load, dropped packets,
throughput, and PDR

[29] Support vector machine Generate routing metrics to enhance reliability Packet loss and network delay

[30] Machine Learning Reduce communication delays and enhance the
stability of communications PDRs and transmission delays.

[31] Q-learning Unreliability of the link due to vehicle movement Package delivery rate and E2E delay

[32] K-Harmonic Means Multi-hop
reliability and efficiency Packet delivery rate

3. Approaches behind the Proposed Protocol

This section discusses the two machine learning techniques, k-means and SVM, which
are used in the proposed protocol.

3.1. K-Means

This approach focuses on the centroid, where all the clusters are connected. The
major goal is to minimize the data point distances and their consequent clusters. It takes
the simple dataset as input, separates it into k-number of clusters, and reiterations the
procedure until it does not determine the optimal clusters as presented in Figure 2. The
k-means clustering primarily executes two tasks:

• Find the optimal value for K by an iterative procedure.
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• Allocates each data input to its nearby k-center and generates a cluster.
• A k-means algorithm recognizes influential nodes from each cluster with the probabil-

ity of achieving energy-efficient transmission. In various modifications, the k-means
groups the vehicles and selects any nodes in some rounds as CHs. It can decrease the
amount of communicated messages from one node to another, saving the network
more resources. A k-means clustering algorithm in which dynamic grouping by k-
implies is performed that fits well with the vehicular network’s dynamic topology
characteristics. The suggested clustering reduces overhead and traffic management.
Therefore, every cluster contains data points with unities that do not belong to other
clusters. So, the k-means clustering methods [37–39] have been utilized effectively
to resolve various VANET issues. Firstly, k-means algorithm is presented for the
clustering of nodes and then a dynamic routing protocol is implemented to obtain
results of proposed routing protocols, which are compared with the results of existing
techniques as represented in Section 4.
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3.2. SVM

SVM is a vector-oriented method that can perform pattern recognition and regression
based on the principle of statistical study and the structural risk minimization principle.
SVM provides several training examples, each designated as one of the various categories;
an SVM training algorithm constructs a model that forecasts the category of the new
examples. It separates two groups by a wide margin to keep them as far apart as possible,
as shown in Figure 3. It is performed by transforming small input space into significant
inputs, which turns non-distinguishable classes into discrete classes [40,41].
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Kernelized SVM is a standard method for addressing classification problems. The use
of the SVM classifier in applications like clustering, multi-class grouping, and ranking, on
the other hand, adds to the computational load. The SVM approach can also manage vehicle
information and produce routing parameters to improve routing efficiency. By applying
a large number of classified data features, including the distance among forwarding and
next-hop nodes, moving direction of next-hop nodes, and acceleration of next-hop and
forwarding nodes, the model is obtained by training such dataset in SVM. SVM works
well for many practical problems, including linear and nonlinear problems. The approach
works by separating the data into classes through a line or hyperplane. The hyperplane
that maximizes the margin between the two classes is represented in Figure 4.
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4. Mathematical Analysis for Proposed Protocol

The operation of the proposed protocol is defined below:

1. The likelihood that a direct connection among two vehicles will remain uninterrupt-
edly accessible over a definite time duration is known as link reliability. Assumed a
prediction time TP for constant accessibility of a particular link l among two vehicles
at t, the link reliability r(l) is specified as below:

r(l) = P{to continue to be available until t + TP|available at t}

2. For the proposed work, evaluation for the Euclidean distances among the data points
and centroids are calculated to allocate points to the closest centroid. The xi dataset is
generated based on the following parameters such as the location of the vehicle, the
direction, the velocity of the vehicle, and the Point of Interest (POI).

3. A process for clustering N data inputs x1, x2, . . . . . . xN into k clusters Ci, i = 1, . . . k,
each comprising n i data points, 0 < ni < N, reduces the subsequent mean-square-

error (MSE) value:

JMSE =
k

∑
i=1

∑
xt∈Ci

‖x(j)
i − cj‖

2
(3)

where xt is a vector signifying the tth input and cj signifies the geometric centroid of
the cluster Ci. To minimize an objective value, a squared error function is used, which
represents the distance between data point xt and the cluster center cj.

I(xi, j) =

{
1 if i = arg min(‖xi − cj‖2)j = 1, . . . . . . k
0 otherwise

}
(4)

Here, c1, c2, cj, . . . . . . ck are known as cluster centers which are acquired by the subse-
quent steps:

4. Set k cluster centers c1, c2, cj, . . . . . . ck. For each input xt and k cluster, perform stages 2
and 3 until all clusters congregate.

5. Evaluate cluster membership value using Equation (4) and determine the membership
of each input in every k cluster whose cluster center is nearest to that centroid.

6. For each k cluster, establish cj to be the center of all data inputs in cluster Ci.
7. Consequently, the k-means clustering divides the routes into two clusters named

GOOD and BAD. The cluster with high mean square error (MSE) is labeled as BAD,
and the cluster with low MSE is labeled as GOOD. Machine learning techniques are
implemented to train the data accumulated from produced simulations and train
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SVM in every iteration with random inputs until the best results are achieved. The
pseudo-code has been explained in Algorithm 1.

8. In this step, Radial Basis Function (RBF) is used for transforming the given input
vector into n-dimensional data. Gaussian RBF mathematical expression is represented
as follows:

K(c1, c2) = exp
(
−γ‖c1 − c2‖2

)
(5)

where, K(c1, c2) represents the kernel function for two classes c1 and c2, γ > 0 and repre-
sented γ = 1

2a2 .
For this, we gather data from the produced simulations and train SVM with arbitrary

inputs in every iteration until the optimal result is attained. However, the input data is
firstly normalized before utilizing for training. The SVM recognizes the malicious activity
of the vehicle in the network and transmits the results to the response unit, which has its
own set of regulations to produce an outcome.

9. After training the routing data with SVM, during the execution, we evaluate the
following parameters of each route from source to target:

a. PDR: It signifies the ratio of all packets effectively received at the receiver to all
the data packets transmitted by the source vehicle.

b. Average E2E delay: It signifies the average time that the packets take to reach
the destination.

c. Throughput: It signifies the total packets that are transferred from the sender to
the receiver node in a given amount of time.

Determine the routes with low PDR, high E2E delay, and low throughput, and also
determine the corresponding nodes which occur frequently in these routes.

10. After determining the nodes which occur frequently in the non-optimal routes, the
proposed approach eliminates the routes which consist of nodes from the BAD cluster
and shifts the load of the malicious nodes to its nearby node to maintain reliability.

Algorithm 1: K-means Clustering-based VANET Routing

Input Parameters:
(a) Set of Routes R = {r1, r2, r3, . . . . . . rN}
(b) Initial number of clusters K
(c) Direction, Velocity, and Location of each Vehicle node
Output Parameters:
(a) Optimal clusters: GOOD and BAD

1. Randomly initialize K centroids in space
2. For i = 1 to N do
3. Calculate the cluster membership function I(xi , j)
4. Assign routes to convenient clusters according to I(xi , j)
5. End for
6. If all routes are assigned to a cluster, then
7. End of the algorithm
8. Else
9. K = K + 1
10. End if
11. If MSE of Cluster = Low, then
12. Cluster = GOOD
13. Else
14. Cluster = BAD
15. End if

5. Simulation Analysis

For testing the efficiency of the proposed protocol, a 1000 × 1000 area has been
considered for simulation. The performance of the proposed protocol is contrasted to the
CBLTR [21] and Aravindhan et al. [24] regarding the parameters such as Throughput, PDR,
and E2E delay. Table 2 represents the Simulation parameters.
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Table 2. Simulation Parameters.

Simulation Parameter Simulation Value

Simulation Time 1000–5000 s
Area 1000 × 1000

Quantity of Vehicles 50–100
Transmission Range 250 units

Vehicle velocity range 10–60 kmph
Data packet 1024

MAC 802.11 p

To evaluate the proposed protocol, initially, 100 nodes are disseminated on the network
area, and each vehicle is given continuous velocity from the range as follows: 50–70 km/h
and 0–100 km/h. The major reason for considering the varying speed and density param-
eters in the simulation was to exclude the transmission and link failure among vehicles
due to instability in speed and density among vehicles. Moreover, these two parameters
perform a crucial role in the lifetime of the transmission connection and the superiority of
routes established among the vehicles.

PDR specifies the percentage of data packets arriving at the destination concerning the
total number of packets transmitted to the destination. Table 3 shows the PDR variation by
the vehicle’s varying speed.

Table 3. PDR versus mobility.

Maximum Speed
PDR

PDR Proposed Aravindhan et al. [24] CBLTR [21]

1 0.956 0.921147 0.881252

2 0.94114 0.91254 0.830825

3 0.89547 0.83254 0.776322

4 0.88471 0.85541 0.831066

5 0.831148 0.82146 0.731932

6 0.82114 0.80189 0.743047

With simulation results, the PDR decreases by increasing the velocity of vehicles. This
is because, at high speed, the position of nodes varies more frequently, and hence more
packets drop. By utilizing the weighting mechanism to select the next forwarding node
in CBLTR [21], the node nearest to the destination is chosen. However, such nodes are
generally near the boundary of the transmission region and leave it very quickly. In the
proposed approach, the reliability of the route increases by considering various parameters
and hence reduces the failure probability at higher speeds. Figure 5 shows the percentage
improvement in PDR in the proposed protocol compared to Aravindhan et al. [24] and
CBLTR [21] protocols with varying mobility. It is noted that in protocols Aravindhan
et al. [24] and CBLTR [21], the packet delivery rate starts to decrease with an increase in
vehicle velocity. However, in the proposed approach, the most reliable connection was
chosen to utilize k-means, and the minimum cost node was elected (suitable velocity, nearer
distance, and same direction as the existing node) and hence reducing the probability of
route failure.
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Tables 4–6 compare PDR with various vehicular nodes for the Proposed, Aravindhan
et al. [24], and CBLTR [21] protocols in network areas 1000 × 1000, 1200 × 1200, and
1500 × 1500, respectively. It demonstrates that the delivery rate initially increases with
vehicular node density. This is because, with few vehicles on the roads, it is difficult to deter-
mine the nearby vehicles; hence, packets drop once the waiting time is over. CBLTR [21] has
the least PDR compared to all other protocols. Moreover, CBLTR [21] requires discovering
the route before transmitting the basic information. Due to the frequent variations in clus-
ters in CBLTR [21], the created route must be preserved. Unlike CBLTR [21], Aravindhan
et al. [24] only identify the next available forwarding node, and hence it adjusts much better
than CBLTR [21] in the varying network topology of VANET.

Table 4. PDR versus vehicular nodes in Area (1000 × 1000).

Total Number of Vehicles
PDR

PDR Proposed Aravindhan et al. [24] CBLTR [21]

50 0.92114 0.901458 0.84759

60 0.92847 0.89554 0.853078

70 0.93145 0.882145 0.861486

80 0.93259 0.87452 0.871304

90 0.942234 0.86325 0.872346

100 0.95112 0.923541 0.876269

Table 5. PDR versus vehicular nodes in Area (1200 × 1200).

Total Number of Vehicles
PDR

PDR Proposed Aravindhan et al. [24] CBLTR [21]

50 0.92181 0.90114 0.847996

60 0.927007 0.910982 0.856946

70 0.932966 0.882145 0.857473

80 0.940004 0.87452 0.860932

90 0.943054 0.86325 0.868258

100 0.951186 0.923541 0.871627
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Table 6. PDR versus vehicular nodes in Area (1500 × 1500).

Total Number of Vehicles
PDR

PDR Proposed Aravindhan et al. [24] CBLTR [21]

50 0.92114 0.901458 0.850015

60 0.92847 0.89554 0.850314

70 0.93145 0.882145 0.857059

80 0.93259 0.87452 0.860566

90 0.942234 0.86325 0.868399

100 0.95112 0.923541 0.876087

Figures 6–8 show the improvement in PDR with varying vehicular node density in
the network areas 1000 × 1000, 1200 × 1200, and 1500 × 1500, respectively. The proposed
protocol shows improvement in PDR compared to CBLTR [21] and Aravindhan et al. [24]
because of effective route selection using the k-means and SVM approach. The average
PDR in the proposed protocol is improved by 2.5% as compared to Aravindhan et al. [24]
protocol and by 8.2% compared to CBLTR [21] protocol considering the 50 vehicular nodes
for the simulation work, as shown in Figure 6.
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Average E2E delay is the average duration taken by a data packet to communicate
between the source and destination. Tables 7 and 8 show the delay comparison with varying
vehicle nodes for the proposed Aravindhan et al. [24] and CBLTR [21] protocols in network
areas 1000 × 1000 and 1500 × 1500, respectively. In VANETs, the probability of connection
and data packet delay also increases with an increase in the node’s distance. However,
constant paths have been chosen for the proposed protocol, and very few connections break
during data broadcasting; this results in E2E delay reduction.

Table 7. Delay versus vehicular nodes in area (1000 × 1000).

Total Number of Vehicles
Delay

Proposed Aravindhan et al. [24] CBLTR [21]

50 55.74125 61.7025 68.9633

60 53.65745 61.62673 66.95025

70 52.68301 59.20148 64.20894

80 50.44252 57.73666 63.06623

90 50.27617 53.77705 61.147

100 48.32444 50.89118 58.76468

Table 8. Delay versus vehicular nodes in area (1500 × 1500).

Total Number of Vehicles
Delay

Proposed Aravindhan et al. [24] CBLTR [21]

50 54.221 61.047 66.235

60 51.7447 60.74139 64.15697

70 51.63957 59.68256 62.36491

80 51.44708 57.30921 60.98239

90 50.36123 56.52751 58.08472

100 49.92715 54.16984 55.1998

Figures 9 and 10 show the improvement in delay with varying vehicular node density
in the network areas 1000 × 1000 and 1500 × 1500, respectively. It is noted that when
vehicular node traffic increases, E2E delay also rises. In CBLTR [21], the E2E delay is
maximum. The primary cause for maximum delay in the CBLTR [21] is that it considers a
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single parameter for neighboring nodes, which will always be its nearest neighbor. The
proposed protocol addressed this issue by utilizing k-means and considering various
parameters for route selection. As revealed in Figure 9, the average E2E delay of diverse
densities of vehicles reduced at a static rate.
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6. Conclusions

In VANETs, transmission links are extremely susceptible to interruption; as a result,
the routing efficiency of these constantly evolving networks requires special attention. To
promote reliable routing in VANETs, we propose a novel context-aware reliable routing
protocol that integrates k-means and support vector machine (SVM) in this paper. The
performance of each route from source to target is evaluated by considering PDR, average
E2E delay, and throughput. The simulation results of the proposed results reveal that it is
more effective compared to CBLTR [21] and Aravindhan et al. [24] protocols. Comparative
analysis indicates that the proposed protocol has up to 2.5% and 8.4% more PDR and up to
10.5% and 17.1% less E2E delay in comparison to CBLTR [21] and Aravindhan et al. [24] for
a varying number of simulations in the network. In future scope, MSE-based analysis is to
be continued for a dynamic vehicular scenario in a clustered environment for better insight.
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