
Citation: Truică, C.-O.; Apostol, E.-S.

It’s All in the Embedding! Fake News

Detection Using Document

Embeddings. Mathematics 2023, 11,

508. https://doi.org/10.3390/

math11030508

Academic Editors: Nebojsa Bacanin

and Catalin Stoean

Received: 27 December 2022

Revised: 12 January 2023

Accepted: 16 January 2023

Published: 18 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

It’s All in the Embedding! Fake News Detection Using
Document Embeddings
Ciprian-Octavian Truică *,† and Elena-Simona Apostol *,†

Computer Science and Engineering Department, Faculty of Automatic Control and Computers,
University Politehnica of Bucharest, RO-060042 Bucharest, Romania
* Correspondence: ciprian.truica@upb.ro (C.-O.T.); elena.apostol@upb.ro (E.-S.A.)
† These authors contributed equally to this work.

Abstract: With the current shift in the mass media landscape from journalistic rigor to social media,
personalized social media is becoming the new norm. Although the digitalization progress of the
media brings many advantages, it also increases the risk of spreading disinformation, misinformation,
and malformation through the use of fake news. The emergence of this harmful phenomenon has
managed to polarize society and manipulate public opinion on particular topics, e.g., elections,
vaccinations, etc. Such information propagated on social media can distort public perceptions and
generate social unrest while lacking the rigor of traditional journalism. Natural Language Processing
and Machine Learning techniques are essential for developing efficient tools that can detect fake news.
Models that use the context of textual data are essential for resolving the fake news detection problem,
as they manage to encode linguistic features within the vector representation of words. In this paper,
we propose a new approach that uses document embeddings to build multiple models that accurately
label news articles as reliable or fake. We also present a benchmark on different architectures that
detect fake news using binary or multi-labeled classification. We evaluated the models on five
large news corpora using accuracy, precision, and recall. We obtained better results than more
complex state-of-the-art Deep Neural Network models. We observe that the most important factor
for obtaining high accuracy is the document encoding, not the classification model’s complexity.

Keywords: fake news detection; document embeddings; deep learning; machine learning; text
analysis; classification models

MSC: 68T50

1. Introduction

With the increase in the digitalization of mass media, new journalistic paradigms for
information distribution have emerged. These new paradigms have substantially changed
the way society consumes information. By trying to be ahead of the competition, sometimes
people who report on world events leave behind the rigors of classical journalism and
publish their content as soon as possible in order to “go viral” by obtaining as many
views, likes, comments, and shares as possible in a short amount of time [1]. This new
paradigm centers on the users, catering to their needs, behavior, and interests. Along
with the advantages the digitalization of mass media brings, it also increases the risk
of misinformation, with potentially detrimental consequences for society, by facilitating
the spread of misinformation [2,3] in the form of fake news (which influenced the Brexit
referendum [4], the 2016 US presidential election [5], COVID-19 vaccinations [6], etc.).

Fake news consists of news articles that are intentionally and verifiably false. This
type of information aims to mislead readers by presenting alleged, real-seeming facts about
social, economic, and political subjects of interest [7]. However, the current technological
trends make this type of content harmful, with potentially dire consequences to the com-
munity (e.g., public polarization regarding elections). This has become a major challenge

Mathematics 2023, 11, 508. https://doi.org/10.3390/math11030508 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11030508
https://doi.org/10.3390/math11030508
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7292-4462
https://orcid.org/0000-0001-6397-4951
https://doi.org/10.3390/math11030508
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11030508?type=check_update&version=3

Mathematics 2023, 11, 508 2 of 29

for democracy. Information propagated online may lack the rigor of classic journalism, and
can, therefore, distort public perceptions, cause false alarms, and generate social unrest.
Furthermore, the president of the EU, Ursula von der Leyen, has repeatedly condemned
and asked for immediate action to be taken against the spread of fake news that undermines
democracy and public health [8]. Thus, the ideological polarization of readers through the
spread of fake news is an important issue and requires scholarly attention. We believe that
designing and building tools and methods for accurately detecting fake news is of great
relevance, and thus, our results will have an overall positive impact.

In this paper, we propose a new approach that uses document embeddings (i.e., DO-
CEMB) for detecting fake news. We also present our benchmark on different architectures
that detect fake news using binary or multi-labeled classification. The document embed-
dings are constructed using several (1) word embeddings trained on each dataset selected
for experiments, and (2) pre-trained transformers. We employ TFIDF, word embeddings
(i.e., WORD2VEC, FASTTEXT, and GLOVE), and transformers (i.e., BERT, ROBERTA, and
BART) to create DOCEMB, our new document embedding approach. For classification, we
train both classical Machine Learning models (i.e., Naïve Bayes, Gradient Boosted Trees)
and Deep Learning models (i.e., Perceptron, Multi-Layer Perceptron, [Bi]LSTM, [Bi]GRU).

In our experiments, we analyze the performance of the DOCEMB based detection
solution on multiple datasets annotated with either binary or multi-class labels. We use 4
binary datasets, i.e., a sample of 20 000 manually annotated news articles from the Fake
News Corpus, Liar, Kaggle, and Buzz Feed News. Finally, we use 2 multi-labeled datasets,
i.e., Liar with 6 labels and TSHP-17 with 3 labels. As evaluation metrics, we use accuracy,
precision, and recall.

We compare our results with state-of-the-art Deep Neural Networks models. Our
method outperforms these models on each dataset. The most important takeaway from
our experiments is that we empirically show that:

(1) A simpler neural architecture offers better or at least similar results compared to
complex architectures that employ multiple layers, and

(2) The difference in performance lies in the embeddings used to vectorize the textual
data and how well these performs in encoding contextual and linguistic features.

The main contributions of this article are as follows:

(C1) We propose a new document embedding (DOCEMB) constructed using word embed-
dings and transformers. We specifically trained the proposed DOCEMB on the five
datasets used in the experiments.

(C2) We show empirically that simple Machine Leaning algorithms trained with our pro-
posed DOCEMB obtain similar results or better results than deep learning architectures
specifically developed for the task of binary and multi-class fake news detection. This
contribution is important in the machine learning literature because it changes the
focus from the classification architecture to the document encoding architecture.

(C3) We present a new manually filtered dataset. The original dataset is the widely used
Fake News Corpus that was annotated with an automatic process.

This paper is structured as follows. Section 2 discusses current research on the topic of
fake news detection. Section 3 introduces our approach and presents the different modules
and models employed. Section 4 presents the datasets and analyzes the results. In Section 5,
we summarize our key findings and discuss the major implications. Section 6 presents the
conclusions and outlines directions for future work.

2. Related Work

As views and clicks monetize online media, for some publishers, it is most important
to provide news that might interest their audience, to the detriment of the quality of the
facts reported [9]. Thus, proper journalistic rigor has come under threat through the online
spread of fake news.

Mathematics 2023, 11, 508 3 of 29

Wang [10] employed SVM (Support Vector Machine), LogReg (Logistic Regression),
BiLSTM (Bidirectional Long Short-Term Memory), and CNN (Convolutional Neural Net-
work), to detect the veracity of ∼13 K short statements. The preprocessing was done using
Google News’ pre-trained WORD2VEC embeddings. Conroy et al. [11] present analysis
methods based on linguistic and syntactic features for discovering fake news.

Many current approaches employ complex Deep Neural Network architectures, e.g.,
based on CNN (Convolutional Neural Network) [12–14], BiLSTM (Bidirectional Long
Short-Term Memory) [15], and others. Ilie et al. [16] used multiple deep neural networks
to determine how models that use pre-trained and specific trained word embeddings
perform in the task of fake news detection. Further, some solutions use advanced document
embeddings based on encoder architectures [17]. Kaliyar et al. [18] propose FakeBERT, an
extension of FNDNet that uses BERT instead of GLOVE embeddings. Kula et al. [19] used a
hybrid architecture for fake news detection that connects BERT with recurrent networks
while Mersinias et al. [20] introduced CLDF, a new vectorization technique for extracting
feature vectors. The results for CLDF, FNDNet, and FakeBERT were obtained using the
Kaggle dataset with ∼21 K news articles.

Different ensemble models have also been used for this task, with good results [21,22].
Mondal et al. [21] used a voting-based ensemble method that relies on the voting of the
collective majority. The authors employ only non-deep learning models and TF-IDF as the
vectorization technique. Aslam et al. [22] used an ensemble-based deep learning model that
combines two architectures, i.e., Bi-LSTM-GRU-Dense and Dense. Truică and Apostol [23]
propose MisRoBÆRTa, a BERT- and ROBERTA-based ensemble model for fake news
detection.

Sedik et al. [24] propose a deep learning approach that uses both sequential and
recurrent layers. The sequential models employ stacked CNNs (i.e., CNN model) or
concatenated CNN (i.e., C-CNN model), while the recurrent models use stacked CNN
with LSTM and Dense layers (i.e., CNN-LSTM model) or simple GRU with a Dense layer
(i.e., GRU model). The experimental results using the binary labeled Kaggle and Fake
News Challenge dataset show that C-CNN and CNN-LSTM have the best performance,
i.e., C-CNN obtains an accuracy of 99.90% on the Kaggle dataset, and CNN-LSTM obtains
an accuracy of 96% on the Fake News Challenge dataset.

Several current solutions are based on linguistic and syntactic features, e.g., WELFake [25],
which uses word embedding over linguistic features. In other current directions, multimodal
learning that integrates comments [26], images [27], and the social and network context has
been used [26,28,29]. Wang et al. [30] propose a knowledge-driven Multimodal Graph
Convolutional Network model for detecting fake news from textual and visual information.
This solution models posts from social media as graph data structures that combine textual
and visual data with knowledge concepts.

Le and Mikolov [31] propose Doc2Vec as an extension to Word2Vec. Doc2Vec com-
putes a feature vector for every document in the dataset, as opposed to Word2Vec, which
computes every word in the dataset. Several articles have discussed the use of Doc2Vec for
fake news detection, but it is used only as a baseline combined with traditional Machine
Learning solutions. Cui et al. [32] use as a baseline Doc2Vec with SVM and compare it
with graph-based Deep Learning solutions. Singh [33] presents several experiments on
LIAR and Kaggle datasets using different vector space representations, i.e., one-hot en-
coding, TFIDF, Word2Vec, and Doc2Vec. Truică et al. [7] propose a BiLSTM architecture
with Sentence Transformer for the fake news detection challenge at CheckThatLab! 2022.
The proposed architecture uses BART for a monolingual fake news detection task and
XML-RoBERTa for the multilingual task. For the multilingual task, the model relies on
transfer learning. Thus, the BiLSTM XML-RoBERTa model is trained on English and tested
on a German dataset. The proposed model managed to obtain an accuracy of 0.53 for the
first task and an accuracy of 0.28 for the second task.

Mathematics 2023, 11, 508 4 of 29

3. Methodology

Figure 1 presents the pipeline of our proposed solution. A labeled corpus of news
articles is first preprocessed to extract the tokens. Then, the tokens are transformed into a
vector model using term weighting schemes (TFIDF) and word/transformer embeddings.
These vectors are used to create document embeddings. We also use the raw corpus to
create document embeddings using transformers. The vectorized documents are then
passed to the classification module. Finally, the classification is evaluated using accuracy,
precision, and recall.

Figure 1. Proposed Pipeline.

3.1. Text Preprocessing

To prepare the text for vectorization, we use the following preprocessing steps to
minimize the vocabulary and remove terms that bring no information gain [34]: (1) removal
of punctuation and stopwords, and (2) word lemmatization. We chose to lemmatize the
words to minimize the vocabulary and remove any language inflections. We do not apply
these preprocessing steps when using the transformer embeddings.

3.2. Term Weighting

To vectorize the preprocessed documents, we employ the TFIDF (Equation (1)). To
compute this metric, we first need to compute the (1) term-frequency TF (Equation (2)) and
(2) the inverse document frequency (Equation (3)). For a set of n documents D = {di | i ∈
1, n}, we extract the set of m unique terms V = {tj | j ∈ 1, m}. This set of unique terms is
called a vocabulary. For each term, we compute the raw frequency (ftj ,di

), which counts the
number of occurrences of a term tj in a document di. The ftj ,di

does not store context and is
biased towards longer documents. Thus, to remove the bias, we normalize the frequency
with the length of the document (∑t′∈di

ft′ ,di
) and obtain TF [35]. Furthermore, to minimize

the importance of common terms that bring no information value, the IDF (Equation (3)) is
used to reduce the TF weight by a factor that grows with the collection frequency nj of a
term tj, i.e., nj is the number of documents where there is at least one occurrence of term tj.
Finally, to normalize TFIDF in the [0, 1] range, we use the `2-norm (Equation (4)).

TFIDF(tj, di, D) =
TF(tj, di) · IDF(tj, D)

`2(di)
(1)

TF(tj, di) =
ftj ,di

∑t′∈di
ft′ ,di

(2)

IDF(tj, D) = log
n
nj

(3)

`2(di) =

√
∑
t∈di

(TF(t, di) · IDF(t, D))2 (4)

Using TFIDF, we construct a n×m document-term matrix X = {xij | i = 1, n ∧ j =
1, m} (X ∈ Rn×m) where rows correspond to documents and columns to terms. The

Mathematics 2023, 11, 508 5 of 29

value xij = TFIDF(tj, di, D) represents the weight of term tj in document di. Thus, each
document di is represented by a vector xi = {xij | j ∈ 1, m}. For ease of notation, we use xi
for denoting lines in X.

3.3. Word Embeddings

Each word from the vocabulary is transformed into its vector representation. This
module employs WORD2VEC [36,37], FASTTEXT [38], and GLOVE [39]. For WORD2VEC

and FASTTEXT, we use both the CBOW (Continuous Bag-of-Words) and SG (Skip-gram)
models. By using these models, we obtain the embedding WordEmb(t) for each term t ∈ V.

3.3.1. WORD2VEC

The WORD2VEC [36,37] embedding model is used to create vectorized representations
of the words in a dataset within the same vector space. This representation measures the
distance between the corresponding vectors in this space to determine the context similarity.
For WORD2VEC, there are two models for representing the words in this vector space:
Continuous Bag-Of-Words (CBOW) or Skip-Gram.

CBOW Model

The CBOW model attempts to predict a word using the context given by its surround-
ing words. Each word ti ∈ V (i ∈ 1, m) is defined by two d-dimensional (with d ≥ 2 a
natural number, i.e., d ∈ N) vectors depending of its function in training: (1) vti ∈ Rd is
defined when ti is used as the center word, and (2) uti ∈ Rd is defined when ti is used
as a context word. The conditional probability of generating any center word tc given its
surrounding context words To = {t1, . . . , tc−1, tc+1, . . . , ts} within a context window of size
s can be modeled by a probability distribution p(tc | To) (Equation (5)) that considers the
average of the context vectors vo =

1
s (vt1 + . . . + vtc−1 + vtc+1 + . . . + vts).

p(tc | Tc) =
eu>c vo

∑m
i=1 eu>i vo

(5)

Skip-Gram Model

The Skip-Gram model starts with the context word tc as input and tries to generate
its context. As in the CBOW case, the two d-dimensional vectors (d ∈ N and d ≥ 2),
i.e., vti ∈ Rd and uti ∈ Rd, are defined for each word ti ∈ V (i ∈ 1, m). The conditional
probability of generating any context word to given the center word tc can be modeled by a
softmax operation (Equation (6)).

p(to | tc) =
eu>o vc

∑m
i=1 eu>i vc

(6)

3.3.2. FASTTEXT

FASTTEXT [38] is an extension to WORD2VEC and follows a similar approach to
construct word embeddings [40]. The main difference between FASTTEXT and WORD2VEC

is that FASTTEXT does not consider the word as the basic unit, but rather considers a bag of
character n-grams. Using such an approach, the accuracy is improved, and the training
time is decreased when compared to WORD2VEC. As in the case of WORD2VEC, FASTTEXT

employs both CBOW and Skip-Gram models.

3.3.3. GLOVE

GLOVE (Global Vectors) [39] is another model used for creating word embeddings.
To create the vector representation of words, GLOVE uses the word co-occurrences matrix.
This matrix manages to encapsulate local and global corpus statistics regarding word–
word co-occurrences. Thus, GLOVE for each word stores the frequency of its appearance
in the same context as another word by employing a term co-occurrence matrix. Using

Mathematics 2023, 11, 508 6 of 29

the ratio of co-occurrence probability, GLOVE captures the relationship between words.
Furthermore, GLOVE identifies word analogies and synonyms within the same contexts
using this probability ratio.

3.4. Transformers Embeddings

To create transformer embeddings, we use BERT [41], ROBERTA [42], and BART [43].
By using these models, we obtain the word embedding by transformer WordEmb(t) for
each term t ∈ V.

3.4.1. BERT

BERT (bidirectional encoder representations from transformers) [41] is a deep bidi-
rectional transformer architecture used for natural language understanding. Thus, in
contrast to classic language models that treat textual data as unidirectional or bidirectional
sequences of words, BERT learns contextual relations between the words by employing this
deep bidirectional transformer architecture. Using the surrounding words of a given word,
the model learns and creates a vector representation for each word that also encapsulates
its context. Thus, BERT reads the entire sequence of words at once using the transformer
encoder to create contextual word embeddings. By employing transfer learning, BERT can
directly be used for various natural language processing operations, understanding, and
generation. Furthermore, it can be fine-tuned by using new datasets to adapt to specific
tasks. Experimental results on various tasks [41] show that the language models built with
BERT manage to improve language context detection more than the models that use static
word embeddings, which only see textual data as sequences of words.

3.4.2. ROBERTA

ROBERTA (a Robustly optimized BERT pre-training Approach) [42] is a training
optimizing method for BERT. This model improves the language masking strategy of BERT
by modifying the following key training aspects: (1) more data are used for training, (2)
dynamic masking patterns instead of static masking patterns are employed, (3) the next-
sentence pre-training objective is removed and replaced with full sentences without NSP
(Next Sentence Prediction), (4) training is performed on longer sequences, (5) the mini-
batches are improved, and (6) the learning rates are improved. Thus, all these modifications
lead to improving ROBERTA’s downstream task performance and mitigate some of the
shortcomings encountered by the significantly undertrained BERT model.

3.4.3. BART

BART (bidirectional and autoregressive transformer) [43] is a transformer model that
employs the standard transformer-based neural machine translation architecture, i.e., a
generalized BERT architecture. The pre-training process of BART uses an arbitrary noising
function to corrupt the textual data within the dataset in order to make the transformer
learn how to recreate the original text during training. During the pre-training of BART, two
key techniques are used to improve the words’ contextual representations. Firstly, the order
of original sentences is randomly shuffled. Secondly, using a novel in-filling scheme, a
single mask token is used to replace the spans of text. Experimental results [43] show that a
fine-tuned BART works better than BERT for both text generation and comprehension tasks.

3.5. Document Embeddings

We create a vector for each document by averaging all the word or transformer
embeddings for the words appearing in the document. Thus, if we have mi terms in
a document di, we obtain the document embedding (DOCEMB) xi by summing all the
embeddings w(t) of the terms t that are present in document di as well as in the vocabulary
V, and dividing the sum by mi (Equation (7)). Each document embedding creates a context
for words in a document and becomes an extension of the presented word embeddings.

Mathematics 2023, 11, 508 7 of 29

xi =
∑t∈di

w(t)
mi

(7)

Similarly to TFIDF, we construct a document-embedding matrix X = {xi | i = 1, n}
where each row corresponds to the document embedding xi. For this matrix, the columns
are not associated to terms in the vocabulary V, and the number of columns is different
from the total number of terms in V. In this case, m is the size of the embedding vector.
For ease of notation, we use m as the number of columns, although it is different than
the number of terms in the vocabulary, as in the case of the document-term matrix. Thus,
X ∈ Rn×m is a n×m matrix.

3.6. Fake News Detection

Classification is used to determine the veracity of a news article, i.e, fake news de-
tection. Given a set of documents D represented by the matrix X ∈ Rn×m (either the
document-terms or the document embedding matrix), a set of classes Y = {y1, . . . , yn}
with values in a discrete domain C = {ck | k = 1, κ} (Y ⊆ C) of size κ (i.e., the number
of classes is κ), and an implication xi → yi (i ∈ 1, n), the objective of classification is to
predict ŷi = f (xi) (ŷi ∈ Ŷ ⊆ C) that best approximates yi. For the fake news detection
task, we employ the following algorithms to construct models: Naïve Bayes (NB), Gradient
Boosted Trees (XGBTrees), Perceptron, Multi-Layer Perceptron (MLP), Long Short-Term
Memory Network (LSTM), Bidirectional LSTM (BiLSTM), Gated Recurrent Units (GRU),
and Bidirectional GRU (BiGRU). For comparison, we use MisRoBÆRTa [23]. In the original
article that presents MisRoBÆRTa, the authors fine-tune both BART and ROBERTA. In this
work, we use the pre-trained BART (facebook/bart-large) and ROBERTA (roberta-base) from
HuggingFace [44].

3.6.1. Naïve Bayes

The Naïve Bayes (NB) model is a probabilistic classification algorithm that computes
the probability of xi given a class ck (Equation (8)), where p(xi) and p(ck) are the probability
of a document and a class, respectively, and p(xi | ck) is the probability of class ck given xi.
Expending xi by its components {xi1, . . . , xim}, we can rewrite Equation (8) as Equation (9).

p(ck | xi) =
p(ck)p(xi | ck)

p(xi)
(8)

p(ck | xi1, . . . , xim) =
p(ck)p(xi1, . . . , xim | ck)

p(xi)
(9)

The denominator p(xi) is constant, while p(xi1, . . . , xim | ck) is equivalent to the joint
probability p(ck, xi1, . . . , xim). Furthermore, all the terms are conditionally independent
given a class ck. Thus, p(ck, xi1, . . . , xim) = ∏m

j=1 p(xij | ck). Using these assumptions, the
Naïve Bayes classifier tries to estimate the class ŷi using Equation (10).

ŷi = argmax
ck∈C

p(ck)
m

∏
j=1

p(xij | ck) (10)

There are various types of Naïve Bayes classifiers; the most common ones are Multino-
mial Naïve Bayes and Gaussian Naïve Bayes.

Multinomial Naïve Bayes

Multinomial Naïve Bayes (MNB) models the distribution of words in a document by
using a multinomial representation for the distribution of probabilities that a word appears
for a certain class (Equation (11)). The assumption for this model is that a document is
handled as a sequence of words. Also, it is assumed that each word position is generated
independently of every other [45].

Mathematics 2023, 11, 508 8 of 29

p(xi | ck) =
(∑m

j=1 xij)!

∏m
j=1 xij!

m

∏
j=1

p(xij | ck)
xij (11)

Equation (12) presents the Multinomial Naïve Bayes classification model.

ŷi = argmax
ck∈C

p(ck)
(∑m

j=1 xij)!

∏m
j=1 xij!

m

∏
j=1

p(xij | ck)
xij (12)

Gaussian Naïve Bayes

The Gaussian Naïve Bayes (GNB) model is used when dealing with continuous data.
The model is based on the assumption that continuous values correlated with each class
are distributed according to a Gaussian distribution. Thus, given column j ∈ 1, m from X
and a class ck, we employ the following steps:

• Segment the data by class ck.
• Compute the associated means µj and variances σj of dimension j using the values xij

(i ∈ 1, n), only for the lines xi ∈ X labeled with class ck.
• Compute the probability p(xij | ck) (Equation (13)).

p(xij | ck) =
1√

2πσ2
j

e
−

xij−µ2
j

2σ2
j (13)

Equation (14) presents the Gaussian Naïve Bayes classifier.

ŷi = argmax
ck∈C

p(ck)
m

∏
j=1

1√
2πσ2

j

e
−

xij−µ2
j

2σ2
j (14)

3.6.2. Gradient Boosted Trees

Gradient boosting is an ensemble method that uses multiple weak predictions learners.
In the case of Gradient Boosted Trees, the weak learners are Decision Trees. Similar to
other classification methods, the method tries to predict ŷi = f (xi) = w · xi + b that best
approximates the true class yi of xi by minimizing an objective function L(Ŷi, Yi) that repre-
sents the training loss, e.g., the mean score L(yi, ŷi) =

1
n ∑n

i=1(ŷi − yi)
2 = 1

n ∑n
i=1 l(ŷi, yi).

As the model builds T weak learners f (t)(xi) (t ∈ 1, T), at each stage t ∈ T the model tries
to determine ŷ(t)i = ŷ(t−1)

i + f (t)(xi) using the previously estimated value ŷ(t−1)
i and the

function f (t)(xi) determined by the current weak learner that best fits the residuals, i.e.,
f (t)(xi) = yi − ŷ(t)i . As the objective is to minimize training loss and to obtain the specific
objective at step t,we can take the Taylor expansion of the loss function up to the second
order for each learner and remove all the constants to obtain L(t)(Ŷ(t)

i , Yi) (Equation (15)).

L(t)(Ŷ(t)
i , Yi) =

n

∑
i=1

[gi f (t)(xi) +
1
2

hi(f (t)(xi))
2]

gi = ∂
ŷ(t−1)

i
l(yi, ŷ(t−1)

i)

hi = ∂2
ŷ(t−1)

i
l(yi, ŷ(t−1)

i)

(15)

3.6.3. Perceptron

The Perceptron model (Equation (16)) is a simple non-linear processing unit that tries
to predict the label ŷi for a given input xi by adjusting a weight vector w ∈ Rm using the
sigmoid activation δs(z) = 1

1+e−z ∈ [0, 1]. The objective for a good prediction is to minimize

Mathematics 2023, 11, 508 9 of 29

the average cross-entropy loss function between the set of prediction Ŷ and the set of true
labels Y (Equation (17)).

ŷi = δs(w · xi + b) (16)

L(Ŷ, Y) = − 1
n

n

∑
i=1

(yi log ŷi + (1− yi) log(1− ŷi)) (17)

3.6.4. Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) model is a Deep Learning architecture that stacks
multiple layers j ∈ 1, l of fully-connected Perceptron units. The MLP architecture can be
divided into three components: (1) the input i layer (j = 1), (2) the hidden layers j ∈ 2, l − 1,
and (3) the output layer o = ŷ (j = l). Each node in layer j connects to every node in the
following layer j + 1 with a certain weight Wj. Because the connections between the layers
are directed from the input i to the output o by passing information through the hidden
layers hj, the MLP model is a feed-forward architecture. Equation (18) presents the MLP
classification model at a given iteration t.

i(t) = δs(W1 · x
(t)
i + b1)

h(t)j = δs(Wj · h
(t)
j−1 + bj)

o(t) = δs(Wl · h
(t)
l−1 + bl)

(18)

3.6.5. Long Short-Term Memory

Long Short-Term Memory (LSTM) [46] is a Recurrent Artificial Neural Network that
uses two state components for classification. The first component, represented by a hidden
state, is the short-term memory that learns the short-term dependencies between the
previous and current states. The second component, represented by an internal cell state, is
the long-term memory which stores long-term dependencies between the previous and
current states. The model uses three gates to preserve the long-term memory within the
state: (1) input gate (i ∈ Rn), (2) forget gate (f ∈ Rn), and (3) output gate (o ∈ Rn).
Equation (19) presents the compact forms for the state updates of the LSTM unit for a given
iteration t, where:

• x(t)i ∈ Rm is the input vector of dimension m at step t, with x(0)i = xi ∈ X;
• h(t) ∈ Rn is the hidden state vector as well as the unit’s output vector of dimension n,

where the initial value is h(0) = 0;
• c̃(t) ∈ Rn is the input activation vector;
• c(t) ∈ Rn is the cell state vector, with the initial value c(0) = 0;
• Wi, W f , Wo, Wc ∈ Rn×m are the weight matrices corresponding to the current input of

the input gate, output gate, forget gate, and the cell state;
• Vi, Vf , Vo, Vc ∈ Rn×n are the weight matrices corresponding to the hidden output of

the previous state for the current input of the input gate, output gate, forget gate, and
the cell state;

• bi, b f , bo, bc ∈ Rn are the bias vectors corresponding to the current input of the input
gate, output gate, forget gate, and the cell state;

• δh(z) = ez−e−z

ez+e−z ∈ [−1, 1] is the hyperbolic tangent activation function;
• � is the Hadamard Product, i.e., element wise product.

Mathematics 2023, 11, 508 10 of 29

i(t) = δs(Wix
(t)
i + Vih(t−1) + bi)

f (t) = δs(W f x(t)i + Vf h(t−1) + b f)

o(t) = δs(Wox(t)i + Voh(t−1) + bo)

c̃(t) = δh(Wcx(t)i + Vch(t−1) + bc)

c(t) = i(t) � c̃(t) + f (t) � c(t−1)

h(t) = o(t) � δh(c(t))

(19)

We chose LSTM because it manages to avoid the vanishing and the exploding gradient
issues by regulating the way the recurrent weights are learned.

3.6.6. Bidirectional LSTM

As the LSTM model processes sequence data, it is able to capture past information. To
take into consideration future information as well, we use the Bidirectional LSTM (BiLSTM).
The BiLSTM encapsulates past and future information through the use of two hidden states
(Equation (20)), where (1)

−→
h (t) processes the input in a forward manner using the past

information provided by the forward LSTM (
−−−→
LSTMF), and (2)

←−
h (t) processes the input in a

backward manner using the future information provided by the backward LSTM (
←−−−
LSTMB).

−→
h (t) =

−−−→
LSTMF(x

(t)
i)

←−
h (t) =

←−−−
LSTMB(x

(t)
i)

(20)

At every time-step, the hidden states, i.e.,
−→
h (t) and

←−
h (t), are concatenated into one

hidden state h′(t) (Equation (21)). This approach enables the encoding of information from
both past and future contexts in the hidden state h′(t).

h′(t) = [
−→
h (t) ||

←−
h (t)] (21)

3.6.7. Gated Recurrent Unit

The Gated Recurrent Unit (GRU) [47] is a Recurrent Artificial Neural Network that
simplifies the LSTM unit and improves performance considerably. Instead of three gates as
in the case of LSTM, the GRU has only two gating mechanisms. The first gating mechanism
is the update gate (u ∈ Rn). This gate encodes both the forget gate and the input gate
that are present in the LSTM cell. The second gating mechanism is the reset gate (r ∈ Rn).
This gate determines the percentage of information from the previous hidden state that
contributes to the candidate state of the new step [48] Furthermore, the GRU uses the
hidden state as the only state component. Equation (22) presents the compact forms for the
state updates of the GRU unit at a given iteration step t, where:

• x(t)i ∈ Rm is the input vector of dimension m at step t, with x(0)i = xi ∈ X;
• i(t) ∈ Rn is the input and output of the cell at step t;
• h̃(t) ∈ Rn is the candidate hidden state with a cell dimension of n;
• h(t) ∈ Rn is the current hidden state with a cell dimension of n;
• Wu, Wr, Wh ∈ Rn×m are the weight matrices corresponding to the current input of the

update gate, reset gate, and the hidden state;
• Vu, Vr, Vh ∈ Rn×m are the weight matrices corresponding to the hidden output of the

previous state for the current input of the update gate, reset gate, and the hidden state;
• bu, br, bh ∈ Rn are the bias vectors corresponding to the current input of the update

gate, reset gate, and the hidden state;
• � is the Hadamard Product.

Mathematics 2023, 11, 508 11 of 29

u(t) = δs(Wux(t)i + Vuh(t−1) + bu)

r(t) = δs(Wrx(t)i + Vrh(t−1) + br)

h̃(t) = δh(Whx(t)i + Vhh(t−1) + bh)

h(t) = u(t) � h̃(t) + (1− u(t))� h(t−1)

(22)

3.6.8. Bidirectional GRU

Similar to the BiLSTM, the Bidirectional GRU (BiGRU) considers both past and future
information by employing a forward and backward GRU, i.e.,

−−→
GRUF and

←−−
GRUB, respec-

tively. The
−−→
GRUF and

←−−
GRUB are associated to two hidden states (Equation (23)): (1)

−→
h (t)

which processes the input in a forward manner using
−−→
GRUF, and (2)

←−
h (t) which processes

the input in a backwards manner using
←−−
GRUB. As for BiLSTM, the hidden states

−→
h (t) and

←−
h (t) are concatenated at every time-step to encode the information from both past and

future contexts into one hidden state h′(t) = [
−→
h (t) ||

←−
h (t)].

−→
h (t) =

−−→
GRUF(xi)

←−
h (t) =

←−−
GRUB(xi)

(23)

3.7. Evaluation Module

We use accuracy, precision, and recall [49] to evaluate the models. For binary classifi-
cation with the classes positive and negative, the following information is used to construct
a confusion matrix that is afterward used to compute the evaluation metrics:

• tp (True Positive) is the number of positive observations that are correctly classified;
• f n (False Negative) is the number of positive observations that are incorrectly classified

as negative;
• f p (False Positive) is the number of false observations that are incorrectly classified as

positive;
• tn (True Negative) is the number of false observations that are correctly classified.

Accuracy (Equation (24)) measures the overall effectiveness of a classifier. Precision
(Equation (25)) measures the class agreement of the data labels within the positive labels.
Recall (Equation (26)) measures the effectiveness of a classifier in identifying positive labels.

A =
tp + tn

tp + tn + f p + f n
(24)

P =
tp

tp + f p
(25)

R =
tp

tp + f n
(26)

4. Experimental Results

In this section, we present the experimental results obtained using our methodology.
Firstly, we introduce a human-verified sample from the Fake News Corpus [50] and present
the results of the exploratory data analysis performed on it. Secondly, we present the
experimental setup for our experiments as well as the hyperparameters and implementation
packages for the models. Thirdly, we present the experimental results using the different
sentence embeddings and classification methods on the Fake News Corpus sample. Lastly,
we show the generalization of our observation by performing additional experiments on
5 additional datasets: LIAR multiclass [10], LIAR binary [51], Kaggle [12,18], Buzz Feed
News [52], and TSHP-17 [53,54].

Mathematics 2023, 11, 508 12 of 29

4.1. Dataset Details

For the experiments, we used a set of 20K English language news articles (10K reliable
and 10K fake) selected from the Fake News Corpus [50] as it is widely used in current
research [16,23,55–57]. Some of the labels might not be correct because the original dataset
is not manually annotated. However, this shortcoming should not pose a practical issue for
classification models, as ML/DL models generalize better when noise is added [58]. Instead,
this should help the models to better generalize and remove overfitting. Additionally, we
made sure that URL for the selected article point to the correct article by matching the titles
and authors.

Before performing the experiments, we verified the label correctness for the sampled
news articles using computer science students as annotators. In total, there were 40 student
annotators to annotate 25K articles (12.5K reliable and 12.5K fake). We sampled more
articles to mitigate any inconsistencies between two annotators as well as between the final
annotation and the original label. For their annotation work, the students obtained credits
for different courses.

Before annotating the articles, the students received an instruction list that explains
the annotation task. The annotation task included the following steps:

(1) Verify that the title matches the title from the URL;
(2) Verify that the content matches the content from the URL;
(3) Verify that the authors match the authors from the URL;
(4) Verify that the source matches the source from the URL;
(5) Verify if the information is false or reliable;

Each article was manually verified by two annotators. If there was no consensus
between the two, a third annotator was used to break the tie. In 99% of the cases, there
was no requirement for adding a third annotator. In the experiments, we removed all the
articles where no consensus was found as well as where a difference between the human
annotation and the original label was found. In the end, we scaled down the sample to 20K
news articles.

Table 1 presents the corpus statistics and information before and after preprocessing.
We observe that, although there is a small imbalance in the number of tokens between
the classes, this imbalance is small enough not to add bias to the classification task. We
also extracted the top 10 unigrams and the top topic using the NMF algorithm for topic
modeling [59]. We used the NLTK [60] for extracting unigrams and scikit-learn [61] for
NMF. We computed the average similarity with PolyFuzz [62] by employing the pre-trained
FASTTEXT embedding on news articles (sim(FT)) and the base-case BERT (sim(BERT)).
Analyzing both similarities, we conclude that the documents discuss the same topics
(Table 1). For the neural networks (i.e., Perceptron, MLP, LSTM, BiLSTM, GRU, BiGRU),
we use one-hot encoders to represent the labels.

Table 1. Dataset description, statistics, and information.

Statistics before Preprocessing #Tokens per Document #Tokens per Class

Class Encoding Description Mean Min Max StdDev Unique All

Fake News 1 Fabricated or
distorted information 517.83 6 8 812 883.35 119 283 5 178 300

Reliable 0 Reliable information 575.66 7 10 541 602.16 82 203 5 756 643

Entire Dataset Statistics 546.75 6 10 541 618.63 159 113 10 934 943

Textual Information after Preprocessing Sim (FT) Sim (BERT)

Top-10
Unigrams

Fake News people time government world year story market American God day
0.83 0.93

Reliable people God Christian government American time world war America political

Top-1
Topic

Fake News people Trump year day government time state world market war
0.84 0.94

Reliable church Trump people God president war state year Bush government

Mathematics 2023, 11, 508 13 of 29

4.2. Experimental Setup

In our experiments, we analyzed how well we can predict if an article is fake or reliable
using multiple vectorizations: (1) the TFIDF vector space model, and (2) eight document
embeddings (DOCEMB) constructed using five word embeddings (WORD2VEC CBOW,
WORD2VEC SG, FASTTEXT CBOW, FASTTEXT SG, and GLOVE), and three transformers
embeddings (BERT, ROBERTA, and BART). We trained our own word embeddings and
TFIDF vectorizer. We trained each word embedding for 100 epochs using a window
size of 10, a learning rate of 0.05, and a size of 128. For TFIDF, we ignored words that
appeared in less than 4 documents and kept the top 5K relevant features. We used SpaCy
for preprocessing, scikit-learn for implementing TFIDF, gensim [63] for the WORD2VEC

and FASTTEXT models, and the python-glove [64] package for GLOVE. For the transformer
embeddings, we used the pre-trained uncased large versions from HuggingFace [44] together
with SimpleTransformers [65] and SentenceTransformers [66].

For the experiments, we used the following algorithms for classification: Naïve Bayes
(NB), Perceptron, Multi-layer Perceptron (MLP), LSTM, Bidirectional LSTM (BiLSTM), GRU,
and Bidirectional GRU (BiGRU). We used scikit-learn for implementing NB. We applied the
Multinomial NB for the TFIDF experiments as documents can get sparse, and the Gaussian
NB for the transformer and word embeddings experiments as the embeddings can have
negative values. For the Gradient Boosted Trees, we used the XGBoost Python library [67].

The neural-based fake news detection module used Multi-layer Perceptron, LSTM,
Bidirectional LSTM, GRU, and Bidirectional GRU. Each layer consists of 100 cells. The
LSTM was configured as in [46], while the GRU was configured as presented in [47]. A
Dense layer with 2 units and a sigmoid function as activation was used as the output.

For the LSTM, BiLSTM, GRU, and BiGRU models, we used the ADAM optimizer
and a 64-batch size. All the neural network models were trained for 100 epochs with an
Early-Stopping mechanism to mitigate overfitting. We employed Keras for implementing
the neural models. For comparison, we used the free implementation of MisRoBÆRTa [23],
made available by the authors on GitHub.

The code is publicly available on GitHub at https://github.com/DS4AI-UPB/It-s-all-
in-the-Embedding.

4.3. Fake News Detection

For the experiments, we used an NVIDIA® DGX Station™. Table 2 presents the
results for the fake news detection task. We tested the models in 10 rounds and used a
70%–10%–20% train–validation–test split ratio. Each split shuffles the dataset and extracts
a stratified sample initialized with different random seeds. We report the average and
standard deviation for each metric.

Table 2. Fake news detection results on the sample extracted from the Fake News Corpus.

Naïve Bayes Gradient Boosted Trees

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 92.69 ± 0.25 91.72 ± 0.39 93.86 ± 0.41 98.76 ± 0.21 99.79 ± 0.08 97.72 ± 0.43

DOCEMB WORD2VEC CBOW 66.29 ± 0.53 60.78 ± 0.42 91.85 ± 0.27 95.67 ± 0.18 96.17 ± 0.37 95.13 ± 0.34

DOCEMB WORD2VEC SG 53.10 ± 0.37 51.74 ± 0.20 92.46 ± 0.77 97.10 ± 0.21 97.61 ± 0.31 96.56 ± 0.16

DOCEMB FASTTEXT CBOW 56.13 ± 0.53 53.59 ± 0.33 91.45 ± 0.58 94.90 ± 0.24 95.49 ± 0.39 94.24 ± 0.46

DOCEMB FASTTEXT SG 54.00 ± 0.69 52.23 ± 0.38 93.66 ± 0.98 97.05 ± 0.26 97.45 ± 0.32 96.64 ± 0.49

DOCEMB GLOVE 53.43 ± 0.42 51.98 ± 0.24 89.94 ± 0.78 96.02 ± 0.30 96.73 ± 0.35 95.26 ± 0.43

DOCEMB BERT 80.90 ± 0.64 74.94 ± 0.67 92.87 ± 0.58 97.43 ± 0.21 97.75 ± 0.29 97.10 ± 0.30

DOCEMB ROBERTA 91.98 ± 0.31 94.05 ± 0.44 89.63 ± 0.60 97.38 ± 0.22 98.72 ± 0.31 96.02 ± 0.42

DOCEMB BART 89.13 ± 0.32 83.71 ± 0.46 97.19 ± 0.37 98.26 ± 0.19 98.18 ± 0.31 98.35 ± 0.21

https://github.com/DS4AI-UPB/It-s-all-in-the-Embedding
https://github.com/DS4AI-UPB/It-s-all-in-the-Embedding

Mathematics 2023, 11, 508 14 of 29

Table 2. Cont.

Perceptron Multi-Layer Perceptron

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 95.79 ± 0.33 96.55 ± 0.46 94.98 ± 0.42 98.04 ± 0.19 98.37 ± 0.28 97.70 ± 0.33

DOCEMB WORD2VEC CBOW 93.61 ± 0.27 94.22 ± 0.53 92.93 ± 0.49 94.96 ± 0.31 95.26 ± 0.36 94.63 ± 0.64

DOCEMB WORD2VEC SG 92.04 ± 0.34 94.65 ± 0.49 89.12 ± 0.91 95.88 ± 0.30 96.34 ± 0.65 95.40 ± 1.09

DOCEMB FASTTEXT CBOW 93.46 ± 0.30 94.48 ± 0.64 92.33 ± 0.67 94.92 ± 0.23 95.12 ± 0.72 94.71 ± 0.67

DOCEMB FASTTEXT SG 91.60 ± 0.49 94.06 ± 0.54 88.81 ± 0.76 96.00 ± 0.30 96.48 ± 0.35 95.48 ± 0.74

DOCEMB GLOVE 89.57 ± 0.50 92.57 ± 0.60 86.04 ± 1.18 94.05 ± 0.38 94.29 ± 0.89 93.79 ± 0.60

DOCEMB BERT 97.09 ± 0.21 97.50 ± 0.62 96.66 ± 0.62 98.34 ± 0.19 98.56 ± 0.62 98.11 ± 0.56

DOCEMB ROBERTA 96.19 ± 0.50 96.89 ± 1.62 95.49 ± 0.99 97.28 ± 0.55 98.51 ± 1.32 96.04 ± 0.47

DOCEMB BART 98.57 ± 0.15 98.71 ± 0.29 98.43 ± 0.33 98.93 ± 0.16 99.07 ± 0.55 98.80 ± 0.39

LSTM Bidirectional LSTM

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 97.88 ± 0.23 98.20 ± 0.19 97.55 ± 0.40 97.84 ± 0.24 98.21 ± 0.30 97.46 ± 0.49

DOCEMB WORD2VEC CBOW 96.59 ± 0.36 96.38 ± 1.05 96.84 ± 1.17 96.89 ± 0.26 96.89 ± 0.53 96.89 ± 0.38

DOCEMB WORD2VEC SG 96.23 ± 0.31 96.70 ± 0.97 95.76 ± 1.32 96.39 ± 0.37 96.81 ± 1.30 95.98 ± 1.32

DOCEMB FASTTEXT CBOW 96.16 ± 0.26 96.22 ± 0.55 96.11 ± 0.85 96.30 ± 0.32 96.63 ± 1.19 95.98 ± 1.14

DOCEMB FASTTEXT SG 96.61 ± 0.27 96.52 ± 0.91 96.72 ± 0.90 96.79 ± 0.22 96.78 ± 0.91 96.82 ± 0.88

DOCEMB GLOVE 94.66 ± 0.48 94.92 ± 2.02 94.45 ± 1.72 94.86 ± 0.37 95.24 ± 1.67 94.51 ± 1.63

DOCEMB BERT 98.57 ± 0.34 98.59 ± 0.76 98.57 ± 1.10 98.72 ± 0.40 98.90 ± 0.81 98.55 ± 0.87

DOCEMB ROBERTA 96.88 ± 1.57 98.02 ± 2.95 95.80 ± 1.56 96.97 ± 1.33 97.78 ± 2.85 96.22 ± 0.74

DOCEMB BART 99.29 ± 0.10 99.46 ± 0.13 99.13 ± 0.14 99.34 ± 0.08 99.48 ± 0.12 99.20 ± 0.11

GRU Bidirectional GRU

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 97.88 ± 0.24 98.28 ± 0.27 97.47 ± 0.45 97.84 ± 0.30 98.04 ± 0.60 97.64 ± 0.58

DOCEMB WORD2VEC CBOW 96.56 ± 0.29 96.43 ± 0.75 96.71 ± 1.01 96.57 ± 0.23 96.37 ± 0.90 96.81 ± 0.69

DOCEMB WORD2VEC SG 96.21 ± 0.44 95.91 ± 1.44 96.58 ± 0.97 96.35 ± 0.38 96.45 ± 1.09 96.26 ± 1.47

DOCEMB FASTTEXT CBOW 96.12 ± 0.16 96.54 ± 1.04 95.70 ± 1.00 96.20 ± 0.33 96.47 ± 0.88 95.91 ± 1.00

DOCEMB FASTTEXT SG 96.40 ± 0.35 96.11 ± 1.22 96.74 ± 1.32 96.76 ± 0.22 96.76 ± 0.59 96.77 ± 0.50

DOCEMB GLOVE 94.62 ± 0.64 95.60 ± 2.30 93.66 ± 1.81 94.84 ± 0.60 95.80 ± 1.74 93.86 ± 2.01

DOCEMB BERT 98.82 ± 0.11 98.71 ± 0.52 98.92 ± 0.48 98.61 ± 0.41 99.17 ± 0.47 98.05 ± 1.14

DOCEMB ROBERTA 97.37 ± 0.60 99.17 ± 0.43 95.56 ± 1.47 97.31 ± 0.44 98.34 ± 1.24 96.26 ± 0.72

DOCEMB BART 99.31 ± 0.10 99.39 ± 0.23 99.22 ± 0.14 99.36 ± 0.08 99.50 ± 0.09 99.22 ± 0.09

Accuracy Precision Recall

MisRoBÆRTa [23] 99.34 ± 0.03 99.34 ± 0.03 99.34 ± 0.02

The overall best performance (i.e., an accuracy of 99.36%) was obtained with the
BiGRU model when employing the document embeddings obtained with BART. The
BiLSTM model obtained similar accuracy as when using BART, i.e., 99.36%. We observe
that, regardless of the model, the best results are obtained when employing the document
embeddings created with BART.

Regardless of the model, TFIDF obtained very good results. For some models, it
even outperformed the document embeddings obtained from the word or transformer

Mathematics 2023, 11, 508 15 of 29

embeddings, e.g., Naïve Bayes with TFIDF obtained an accuracy of 92.69% while Naïve
Bayes with ROBERTA obtained an accuracy of 91.98%, Gradient Boosted Trees with TFIDF
obtained an accuracy of 98.76% while Gradient Boosted Trees with ROBERTA obtained
an accuracy of 98.72%. It is worth noting that the worst results were obtained with Naïve
Bayes when employing the document embeddings created using the word embeddings.

Taking a closer look at the neural networks, we observe that the model ranking when
considering accuracy is as follows: (1) BiGRU, (2) BiLSTM, (3) GRU, (4) LSTM, (5) Multi-
Layer Perceptron, and (6) Perceptron. We note that LSTM and GRU obtained similar results
with regard to document embedding, i.e., the results obtained by LSTM with the document
embedding employing WORD2VEC CBOW are very similar to the results obtained by GRU
with the same document embedding model. The same observation holds when comparing
BiLSTM and BiGRU. Moreover, the neural models that use document embeddings created
using word embeddings were outperformed by the ones using transformer embeddings
and TFIDF. The highest accuracy (99.36%) was obtained by BiGRU with the document
embeddings created using BART.

The TFIDF approach proves that the relevance of calculating the importance of each
word from a document is an important factor for the fake news detection problem. This
result is a direct consequence of the size of the document-term matrix used as the input.
Moreover, the transformer embeddings obtained the best results among the document
embeddings experiments as they manage to encode and preserve the context within the
vector representation. When compared to the state-of-the-art model MisRoBÆRTa [23],
the BiLSTM with BART obtained similar results, while the BiGRU with BART marginally
outperformed the model with a 0.02% difference in accuracy. We hypothesize that this
difference in performance is due to the use of pre-trained transformers instead of fine-tuned
versions.

The recall metric is the most relevant one for the fake news detection task because
it calculates the documents correctly classified as fake relative to all the actual fake docu-
ments, regardless of the predicted label. No clear pattern emerges among the document
embeddings to determine which has the overall best performance. For example, when
using LSTM, the best performance was obtained with document embedding DOCEMB

WORD2VEC CBOW (96.84%), followed closely by DOCEMB FASTTEXT SG (96.72%), while,
when using Multi-Layer Perceptron, the best performance was obtained by DOCEMB

FASTTEXT SG (95.48%), followed closely by DOCEMB WORD2VEC SG (95.40%).
Finally, by analyzing the results, we observed the following:

(1) A simpler neural architecture offers similar or better results compared to complex deep
learning architectures that employ multiple layers, i.e., in our comparison, we obtained
similar results as the complex MisRoBÆRTa [23] architecture without fine-tuning the
transformers;

(2) The embeddings used to vectorize the textual data make all the difference in perfor-
mance, i.e., the right embedding must be selected to obtain good results with a given
model;

(3) We need a data-driven approach to select the best model and the best embedding for
our dataset.

4.4. Additional Experiments

In this section, we present more experiments using four additional datasets that are
analyzed in detail in [68]. For this set of experiments, we compared our results with existing
results from the current literature. Furthermore, we trained our own model for each dataset
using MisRoBÆRTa [23], but we did not fine-tune the transformers. We used the pre-trained
BART (facebook/bart-large) and ROBERTA (roberta-base) versions from HuggingFace [44]. We
hypothesize that this is the reason we obtained similar results to the ones obtained with the
models that use document embeddings with this state-of-the-art architecture.

Tables 3 and 4 present experimental results obtained on the LIAR dataset [10]. For our
experiments, we used the dataset as it was initially released, with 6 labels [10] (Table 3),

Mathematics 2023, 11, 508 16 of 29

and by balancing the dataset’s labels (Table 4) as proposed in [51]. To balance the labels,
we created binary labels, i.e., all the texts that are not labeled with true are considered
false. Using the same experimental configurations as presented in Section 4.2, we obtained
results that are aligned with our original observations on the proposed dataset. Further, we
obtained results similar to state-of-the-art results for the multi-label dataset, e.g., Wang [10]
and Alhindi et al. [69] obtained an accuracy of ∼20%. For the binary classification, we
obtained results that go beyond the the state of the art, e.g.,Upadhayay and Behzadan [51]
obtains an accuracy of 70% while we obtain an accuracy of 83.99% with the LSTM model
that employs the document embeddings constructed with GLOVE.

Table 3. Fake news detection results on Liar dataset with 6 labels as presented in Wang [10].

Naïve Bayes Gradient Boosted Trees

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 23.07 ± 0.70 24.16 ± 2.03 23.07 ± 0.70 23.00 ± 0.93 22.86 ± 0.89 23.00 ± 0.93

DOCEMB WORD2VEC CBOW 18.32 ± 1.01 21.62 ± 1.42 18.32 ± 1.01 22.40 ± 0.59 22.37 ± 0.68 22.40 ± 0.59

DOCEMB WORD2VEC SG 20.42 ± 0.96 21.74 ± 0.84 20.42 ± 0.96 23.12 ± 0.69 23.29 ± 0.69 23.12 ± 0.69

DOCEMB FASTTEXT CBOW 17.19 ± 0.63 21.89 ± 1.45 17.19 ± 0.63 22.68 ± 0.55 22.63 ± 0.71 22.68 ± 0.55

DOCEMB FASTTEXT SG 19.85 ± 1.10 21.57 ± 1.22 19.85 ± 1.10 22.93 ± 0.83 23.00 ± 0.80 22.93 ± 0.83

DOCEMB GLOVE 17.60 ± 0.77 21.31 ± 1.18 17.60 ± 0.77 21.99 ± 0.63 21.72 ± 0.71 21.99 ± 0.63

DOCEMB BERT 20.58 ± 0.71 22.40 ± 1.17 20.58 ± 0.71 23.78 ± 0.82 24.03 ± 0.97 23.78 ± 0.82

DOCEMB ROBERTA 15.91 ± 1.02 20.31 ± 1.38 15.91 ± 1.02 21.09 ± 1.08 20.51 ± 0.85 21.09 ± 1.08

DOCEMB BART 21.79 ± 0.90 24.07 ± 1.09 21.79 ± 0.90 24.93 ± 0.74 25.26 ± 0.83 24.93 ± 0.74

Perceptron Multi-Layer Perceptron

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 23.71 ± 0.68 24.79 ± 1.26 23.71 ± 0.68 23.04 ± 0.66 23.08 ± 0.77 23.04 ± 0.66

DOCEMB WORD2VEC CBOW 22.83 ± 0.65 22.37 ± 0.66 22.83 ± 0.65 22.70 ± 0.91 22.56 ± 0.87 22.70 ± 0.91

DOCEMB WORD2VEC SG 23.46 ± 0.73 23.19 ± 0.68 23.46 ± 0.73 23.26 ± 0.65 23.15 ± 1.09 23.26 ± 0.65

DOCEMB FASTTEXT CBOW 22.34 ± 0.49 21.63 ± 0.81 22.34 ± 0.49 22.72 ± 0.89 22.16 ± 1.19 22.72 ± 0.89

DOCEMB FASTTEXT SG 23.62 ± 0.82 23.29 ± 1.08 23.62 ± 0.82 23.48 ± 0.92 23.47 ± 1.13 23.48 ± 0.92

DOCEMB GLOVE 23.64 ± 0.55 22.54 ± 0.97 23.64 ± 0.55 23.24 ± 0.71 21.94 ± 1.31 23.24 ± 0.71

DOCEMB BERT 24.06 ± 1.03 24.33 ± 1.00 24.06 ± 1.03 23.58 ± 0.66 23.88 ± 0.84 23.58 ± 0.66

DOCEMB ROBERTA 21.66 ± 1.59 21.01 ± 1.60 21.66 ± 1.59 22.82 ± 0.61 20.83 ± 1.22 22.82 ± 0.61

DOCEMB BART 25.60 ± 0.41 25.84 ± 0.18 25.60 ± 0.41 25.89 ± 0.75 26.15 ± 0.72 25.89 ± 0.75

LSTM Bidirectional LSTM

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 21.77 ± 0.50 21.77 ± 0.48 21.77 ± 0.50 21.62 ± 0.49 21.60 ± 0.48 21.62 ± 0.49

DOCEMB WORD2VEC CBOW 22.70 ± 0.95 22.53 ± 0.94 22.70 ± 0.95 22.65 ± 0.60 22.57 ± 0.62 22.65 ± 0.60

DOCEMB WORD2VEC SG 23.66 ± 0.99 23.46 ± 1.02 23.66 ± 0.99 23.51 ± 0.69 23.14 ± 0.84 23.51 ± 0.69

DOCEMB FASTTEXT CBOW 22.40 ± 1.06 22.23 ± 1.07 22.40 ± 1.06 22.53 ± 0.85 22.49 ± 0.86 22.53 ± 0.85

DOCEMB FASTTEXT SG 23.50 ± 0.76 23.24 ± 0.90 23.50 ± 0.76 23.45 ± 0.61 23.41 ± 0.89 23.45 ± 0.61

DOCEMB GLOVE 23.59 ± 0.46 22.90 ± 1.40 23.59 ± 0.46 23.08 ± 0.42 22.77 ± 0.88 23.08 ± 0.42

DOCEMB BERT 23.21 ± 0.55 23.37 ± 0.52 23.21 ± 0.55 23.31 ± 0.70 23.25 ± 0.76 23.31 ± 0.70

DOCEMB ROBERTA 22.94 ± 1.00 21.65 ± 1.08 22.94 ± 1.00 22.96 ± 0.61 19.77 ± 1.66 22.96 ± 0.61

DOCEMB BART 25.02 ± 0.57 25.08 ± 0.59 25.02 ± 0.57 25.75 ± 0.61 25.78 ± 0.62 25.75 ± 0.61

Mathematics 2023, 11, 508 17 of 29

Table 3. Cont.

GRU Bidirectional GRU

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 21.62 ± 0.50 21.63 ± 0.47 21.62 ± 0.50 21.43 ± 0.44 21.44 ± 0.46 21.43 ± 0.44

DOCEMB WORD2VEC CBOW 22.36 ± 1.00 22.14 ± 0.94 22.36 ± 1.00 22.51 ± 0.76 22.46 ± 0.79 22.51 ± 0.76

DOCEMB WORD2VEC SG 23.47 ± 0.53 23.02 ± 0.72 23.47 ± 0.53 23.47 ± 0.71 23.16 ± 0.66 23.47 ± 0.71

DOCEMB FASTTEXT CBOW 22.62 ± 0.77 22.48 ± 0.72 22.62 ± 0.77 22.51 ± 0.53 22.42 ± 0.44 22.51 ± 0.53

DOCEMB FASTTEXT SG 23.34 ± 0.55 23.08 ± 0.76 23.34 ± 0.55 23.54 ± 0.71 23.28 ± 0.58 23.54 ± 0.71

DOCEMB GLOVE 23.47 ± 0.64 22.84 ± 1.76 23.47 ± 0.64 23.21 ± 0.56 22.93 ± 1.27 23.21 ± 0.56

DOCEMB BERT 23.64 ± 0.36 23.90 ± 0.53 23.64 ± 0.36 23.00 ± 0.72 23.21 ± 0.88 23.00 ± 0.72

DOCEMB ROBERTA 22.69 ± 0.68 19.84 ± 1.95 22.69 ± 0.68 22.73 ± 0.72 21.55 ± 2.26 22.73 ± 0.72

DOCEMB BART 24.99 ± 0.66 25.00 ± 0.69 24.99 ± 0.66 25.20 ± 0.88 25.26 ± 0.86 25.20 ± 0.88

Accuracy Precision Recall

MisRoBÆRTa [23] 24.62 ± 0.39 25.87 ± 0.67 24.61 ± 0.39

F1-Score

Hybrid CNNs [10] 27.70

BiLSTM [69] 26.00

Table 4. Fake news detection results on Liar dataset with 2 labels as presented in Upadhayay and
Behzadan [51].

Naïve Bayes Gradient Boosted Trees

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 83.92 ± 0.04 83.96 ± 0.01 99.94 ± 0.04 83.64 ± 0.20 84.09 ± 0.08 99.31 ± 0.19

DOCEMB WORD2VEC CBOW 67.02 ± 1.21 86.09 ± 0.43 72.43 ± 1.76 83.28 ± 0.19 84.15 ± 0.07 98.68 ± 0.25

DOCEMB WORD2VEC SG 64.57 ± 3.54 86.07 ± 0.31 68.96 ± 5.01 83.30 ± 0.33 84.15 ± 0.11 98.70 ± 0.35

DOCEMB FASTTEXT CBOW 67.89 ± 2.19 85.60 ± 0.32 74.26 ± 3.20 83.25 ± 0.28 84.16 ± 0.12 98.61 ± 0.29

DOCEMB FASTTEXT SG 65.19 ± 4.32 86.17 ± 0.43 69.75 ± 6.17 83.28 ± 0.23 84.16 ± 0.10 98.65 ± 0.32

DOCEMB GLOVE 59.71 ± 1.80 85.89 ± 0.52 62.24 ± 2.54 83.05 ± 0.26 84.10 ± 0.08 98.42 ± 0.29

DOCEMB BERT 61.21 ± 0.91 86.76 ± 0.58 63.49 ± 1.14 83.38 ± 0.19 84.16 ± 0.09 98.80 ± 0.19

DOCEMB ROBERTA 60.04 ± 3.98 85.30 ± 0.53 63.35 ± 6.07 83.36 ± 0.20 84.02 ± 0.08 99.01 ± 0.25

DOCEMB BART 62.11 ± 1.03 87.65 ± 0.52 63.87 ± 1.25 83.46 ± 0.19 84.36 ± 0.12 98.58 ± 0.32

Perceptron Multi-Layer Perceptron

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 83.97 ± 0.01 83.97 ± 0.01 99.99 ± 0.01 80.87 ± 0.69 84.50 ± 0.15 94.58 ± 1.13

DOCEMB WORD2VEC CBOW 83.88 ± 0.06 83.96 ± 0.02 99.88 ± 0.06 83.96 ± 0.04 83.98 ± 0.02 99.97 ± 0.03

DOCEMB WORD2VEC SG 83.94 ± 0.04 83.97 ± 0.01 99.95 ± 0.06 83.90 ± 0.10 83.99 ± 0.04 99.86 ± 0.10

DOCEMB FASTTEXT CBOW 83.87 ± 0.06 83.98 ± 0.03 99.82 ± 0.08 83.95 ± 0.06 83.99 ± 0.03 99.94 ± 0.07

DOCEMB FASTTEXT SG 83.97 ± 0.02 83.97 ± 0.01 99.99 ± 0.01 83.93 ± 0.08 83.99 ± 0.02 99.91 ± 0.10

DOCEMB GLOVE 83.97 ± 0.01 83.97 ± 0.01 99.99 ± 0.01 83.96 ± 0.01 83.97 ± 0.01 99.99 ± 0.01

DOCEMB BERT 83.81 ± 0.11 83.98 ± 0.05 99.74 ± 0.14 83.18 ± 0.52 84.25 ± 0.25 98.37 ± 1.11

DOCEMB ROBERTA 83.96 ± 0.03 83.97 ± 0.01 99.99 ± 0.03 83.97 ± 0.01 83.97 ± 0.01 99.99 ± 0.01

DOCEMB BART 83.44 ± 0.55 84.37 ± 0.28 98.53 ± 1.17 81.63 ± 1.01 84.97 ± 0.33 94.91 ± 1.52

Mathematics 2023, 11, 508 18 of 29

Table 4. Cont.

LSTM Bidirectional LSTM

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 77.05 ± 0.89 84.75 ± 0.20 88.62 ± 1.13 76.96 ± 0.86 84.75 ± 0.17 88.49 ± 1.08

DOCEMB WORD2VEC CBOW 81.43 ± 0.57 84.44 ± 0.13 95.47 ± 0.88 80.51 ± 1.02 84.63 ± 0.18 93.83 ± 1.65

DOCEMB WORD2VEC SG 83.86 ± 0.13 84.04 ± 0.05 99.72 ± 0.13 83.79 ± 0.16 84.07 ± 0.05 99.57 ± 0.17

DOCEMB FASTTEXT CBOW 81.20 ± 0.74 84.45 ± 0.23 95.13 ± 1.03 80.77 ± 1.12 84.49 ± 0.34 94.44 ± 1.63

DOCEMB FASTTEXT SG 83.88 ± 0.14 84.01 ± 0.04 99.79 ± 0.16 83.78 ± 0.19 84.00 ± 0.06 99.66 ± 0.19

DOCEMB GLOVE 83.99 ± 0.02 83.98 ± 0.02 99.99 ± 0.01 83.98 ± 0.04 83.98 ± 0.02 99.99 ± 0.01

DOCEMB BERT 80.37 ± 1.53 84.84 ± 0.49 93.31 ± 2.74 79.69 ± 1.76 85.05 ± 0.35 92.00 ± 2.95

DOCEMB ROBERTA 83.97 ± 0.01 83.97 ± 0.01 99.99 ± 0.01 83.97 ± 0.01 83.97 ± 0.01 99.99 ± 0.01

DOCEMB BART 81.41 ± 0.85 84.93 ± 0.22 94.66 ± 1.21 81.43 ± 0.94 85.14 ± 0.22 94.34 ± 1.35

GRU Bidirectional GRU

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 76.99 ± 0.59 84.71 ± 0.19 88.58 ± 0.65 76.87 ± 0.66 84.72 ± 0.22 88.39 ± 0.94

DOCEMB WORD2VEC CBOW 81.52 ± 0.67 84.49 ± 0.24 95.54 ± 0.95 80.52 ± 1.01 84.58 ± 0.15 93.92 ± 1.53

DOCEMB WORD2VEC SG 83.91 ± 0.13 84.04 ± 0.04 99.80 ± 0.14 83.81 ± 0.16 84.06 ± 0.05 99.60 ± 0.18

DOCEMB FASTTEXT CBOW 80.93 ± 1.14 84.44 ± 0.24 94.74 ± 1.93 80.20 ± 0.96 84.67 ± 0.27 93.31 ± 1.55

DOCEMB FASTTEXT SG 83.89 ± 0.12 84.01 ± 0.04 99.80 ± 0.13 83.82 ± 0.16 84.02 ± 0.05 99.70 ± 0.16

DOCEMB GLOVE 83.98 ± 0.03 83.98 ± 0.02 99.99 ± 0.01 83.98 ± 0.03 83.99 ± 0.02 99.99 ± 0.01

DOCEMB BERT 79.86 ± 2.30 84.73 ± 0.40 92.75 ± 3.83 79.94 ± 1.25 84.93 ± 0.36 92.54 ± 2.08

DOCEMB ROBERTA 83.97 ± 0.01 83.97 ± 0.01 99.99 ± 0.01 83.97 ± 0.01 83.97 ± 0.01 99.99 ± 0.01

DOCEMB BART 81.22 ± 0.75 85.13 ± 0.27 94.06 ± 1.19 80.60 ± 0.90 85.24 ± 0.22 93.01 ± 1.34

Accuracy Precision Recall

MisRoBÆRTa [23] 81.15 ± 0.07 81.15 ± 0.07 81.16 ± 0.07

Accuracy

CNN with BERT-base embeddings [51] 70.00

UFD [29] 75.90

Table 3 presents the results obtained by the different machine and deep learning
algorithms on the LIAR dataset [10]. The dataset contains approximately 12.8K human
annotated short statements collected using POLITIFACT.COM’s API. In this set of experi-
ments, we used all the 6 labels of LIAR, i.e., pants-fire, false, barely-true, half-true, mostly-true,
and true, to build our classification models. The dataset is highly imbalanced, as there are
more news articles labeled with true than news articles labeled with the other five classes
combined. Due to this high degree of imbalance, the models performed poorly. We ob-
serve that the best-performing models employ document embedding constructed with
BART. The overall best performance model was Multi-Layer Perceptron with BART-built
document embedding, with an accuracy of 25.89%. The overall difference between the
worst- and best-performing models is approximately 7%. We note that for Naïve Bayes, the
model trained with TFIDF obtained better scores than the models trained with document
embedding. We observed no real difference in performance among the models trained with
the document embeddings using word embeddings. This low performance is also present
in the current literature [10,69], with accuracy scores very similar to the ones obtained by
the models we trained.

https://www.politifact.com/

Mathematics 2023, 11, 508 19 of 29

To mitigate the poor performance obtained using all 6 labels of the LIAR dataset and to
minimize the imbalance between the classes, we employed a binarization approach to the
dataset. This approach is also used in the current literature. For example, Upadhayay and
Behzadan [51] and Yang et al. [29] also use the LIAR dataset with 2 labels, i.e., true and false,
to train their models. On this dataset, we observed that the performance of all the models
improved. Naïve Bayes trained on document embeddings obtained the worst results. The
overall best results were obtained by LSTM with the document embedding constructed
with GLOVE, with an accuracy score of 83.99%. Furthermore, Naïve Bayes, Gradient
Boosted Trees, and Perceptron obtained better results with the TFIDF vectorization. The
performance of these models is directly impacted by TFIDF’s features. The proposed
approach outperforms more complex models proposed in the current literature, e.g., CNN
with BERT-base embeddings [51] obtained an accuracy of 70% and UFD [29] obtained an
accuracy of 75.90%.

Tables 5–7 present the experimental results obtained on the Kaggle [12,18], Buzz Feed
News [52], and TSHP-17 datasets as presented in [53,54]. Both Kaggle and Buzz Feed
News are binary datasets, i.e., with the levels reliable and false. To emphasize that the
embedding makes the main difference and that the models can generalize when we move
from binary to multi-class classification, we used the multilabel dataset TSHP-17, which
has the following 3 classes: satire, hoax, and propaganda. For this set of experiments, we
used the same experimental setup and algorithm configurations as presented above. Again,
we obtained results that are aligned with our original observations, reinforcing our claims.

Table 5. Fake news detection results on the Kaggle dataset as presented in Kaliyar et al. [12,18].

Naïve Bayes Gradient Boosted Trees

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 89.54 ± 0.20 92.94 ± 0.33 84.93 ± 0.67 96.74 ± 0.15 96.22 ± 0.36 97.10 ± 0.29

DOCEMB WORD2VEC CBOW 71.14 ± 0.41 78.89 ± 0.63 55.41 ± 0.62 91.90 ± 0.23 92.01 ± 0.46 91.24 ± 0.40

DOCEMB WORD2VEC SG 60.91 ± 0.53 85.19 ± 1.69 23.66 ± 1.16 93.31 ± 0.37 93.81 ± 0.32 92.33 ± 0.55

DOCEMB FASTTEXT CBOW 67.45 ± 0.67 77.26 ± 1.05 46.75 ± 1.06 91.45 ± 0.29 91.32 ± 0.68 91.06 ± 0.49

DOCEMB FASTTEXT SG 60.22 ± 0.22 88.13 ± 1.08 20.93 ± 0.41 93.41 ± 0.31 94.05 ± 0.34 92.28 ± 0.58

DOCEMB GLOVE 62.22 ± 0.49 81.02 ± 1.27 29.04 ± 0.91 90.63 ± 0.30 89.98 ± 0.48 90.83 ± 0.36

DOCEMB BERT 70.52 ± 0.47 82.03 ± 0.70 50.34 ± 1.06 92.91 ± 0.34 93.58 ± 0.22 91.69 ± 0.65

DOCEMB ROBERTA 81.86 ± 0.56 87.45 ± 0.78 73.18 ± 1.27 92.42 ± 0.22 92.51 ± 0.33 91.82 ± 0.45

DOCEMB BART 90.14 ± 0.42 91.69 ± 0.63 87.64 ± 0.52 99.06 ± 0.11 98.82 ± 0.24 99.24 ± 0.19

Perceptron Multi-Layer Perceptron

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 93.76 ± 0.27 94.45 ± 0.51 92.59 ± 0.56 95.36 ± 0.23 95.24 ± 0.42 95.20 ± 0.44

DOCEMB WORD2VEC CBOW 90.15 ± 0.35 90.84 ± 0.63 88.67 ± 0.71 91.54 ± 0.40 91.67 ± 1.42 90.89 ± 1.45

DOCEMB WORD2VEC SG 88.98 ± 0.46 90.48 ± 0.51 86.41 ± 0.86 92.45 ± 0.32 92.59 ± 1.19 91.83 ± 1.29

DOCEMB FASTTEXT CBOW 90.10 ± 0.44 90.23 ± 0.95 89.30 ± 0.62 92.00 ± 0.44 91.99 ± 1.03 91.54 ± 1.68

DOCEMB FASTTEXT SG 88.45 ± 0.59 90.65 ± 0.82 84.99 ± 1.07 92.15 ± 0.43 92.78 ± 1.03 90.94 ± 0.81

DOCEMB GLOVE 83.90 ± 0.52 85.26 ± 1.15 80.89 ± 1.97 87.57 ± 0.57 88.79 ± 2.16 85.29 ± 2.64

DOCEMB BERT 92.09 ± 0.50 92.84 ± 1.01 90.74 ± 1.36 94.80 ± 0.47 94.51 ± 1.95 94.89 ± 1.73

DOCEMB ROBERTA 91.62 ± 0.40 91.02 ± 2.03 91.92 ± 1.94 92.74 ± 0.96 93.03 ± 3.76 92.31 ± 4.31

DOCEMB BART 99.73 ± 0.09 99.66 ± 0.11 99.78 ± 0.13 99.77 ± 0.07 99.70 ± 0.14 99.82 ± 0.08

Mathematics 2023, 11, 508 20 of 29

Table 5. Cont.

LSTM Bidirectional LSTM

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 95.05 ± 0.25 94.83 ± 0.44 95.00 ± 0.50 95.01 ± 0.25 94.75 ± 0.39 95.00 ± 0.34

DOCEMB WORD2VEC CBOW 93.70 ± 0.32 94.11 ± 1.11 92.87 ± 1.50 93.81 ± 0.39 93.60 ± 0.82 93.68 ± 0.87

DOCEMB WORD2VEC SG 93.03 ± 0.32 93.22 ± 1.35 92.40 ± 1.24 93.14 ± 0.50 94.08 ± 1.74 91.71 ± 1.80

DOCEMB FASTTEXT CBOW 93.25 ± 0.65 92.83 ± 2.21 93.44 ± 2.16 93.52 ± 0.30 93.04 ± 1.66 93.73 ± 2.08

DOCEMB FASTTEXT SG 92.90 ± 0.41 93.13 ± 1.17 92.21 ± 1.15 92.67 ± 0.56 94.61 ± 1.65 90.12 ± 2.34

DOCEMB GLOVE 88.84 ± 0.82 88.36 ± 2.96 88.98 ± 2.98 88.83 ± 0.79 89.23 ± 3.27 87.93 ± 4.70

DOCEMB BERT 96.31 ± 0.72 96.15 ± 2.41 96.36 ± 1.84 96.36 ± 1.32 96.08 ± 3.10 96.59 ± 1.13

DOCEMB ROBERTA 93.52 ± 0.78 94.41 ± 2.02 92.24 ± 2.94 93.12 ± 1.29 94.87 ± 2.53 90.93 ± 4.62

DOCEMB BART 99.79 ± 0.06 99.74 ± 0.11 99.84 ± 0.08 99.80 ± 0.12 99.72 ± 0.18 99.87 ± 0.11

GRU Bidirectional GRU

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 94.99 ± 0.22 94.64 ± 0.34 95.08 ± 0.45 94.98 ± 0.27 94.71 ± 0.38 94.98 ± 0.38

DOCEMB WORD2VEC CBOW 93.67 ± 0.41 93.66 ± 1.02 93.32 ± 1.19 93.68 ± 0.30 93.48 ± 0.67 93.54 ± 1.20

DOCEMB WORD2VEC SG 93.05 ± 0.36 93.28 ± 1.48 92.40 ± 1.35 92.91 ± 0.77 93.55 ± 2.49 91.87 ± 2.32

DOCEMB FASTTEXT CBOW 93.18 ± 0.54 92.94 ± 2.21 93.14 ± 1.85 93.34 ± 0.59 92.43 ± 1.26 94.02 ± 1.01

DOCEMB FASTTEXT SG 92.73 ± 0.76 92.94 ± 2.54 92.16 ± 2.16 92.86 ± 0.45 94.07 ± 1.14 91.09 ± 2.10

DOCEMB GLOVE 88.83 ± 0.76 89.73 ± 3.25 87.26 ± 3.54 89.19 ± 0.64 90.81 ± 1.47 86.59 ± 2.85

DOCEMB BERT 96.25 ± 0.52 96.81 ± 1.95 95.50 ± 1.87 96.37 ± 0.81 97.71 ± 0.90 94.77 ± 2.28

DOCEMB ROBERTA 92.32 ± 1.93 92.10 ± 5.31 92.80 ± 5.35 92.93 ± 1.27 95.36 ± 2.48 90.01 ± 4.51

DOCEMB BART 99.77 ± 0.07 99.72 ± 0.14 99.82 ± 0.09 99.78 ± 0.07 99.72 ± 0.12 99.83 ± 0.09

Accuracy Precision Recall

MisRoBÆRTa [23] 97.57 ± 0.29 97.58 ± 0.28 97.57 ± 0.31

C-CNN [24] 99.90 99.90 99.90

Accuracy

FNDNet [12] 98.36

FakeBERT [18] 98.90

Table 6. Fake news detection results on the Buzz Feed News dataset as presented in Horne and Adali [52].

Naïve Bayes Gradient Boosted Trees

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 77.88 ± 0.01 60.66 ± 0.01 77.88 ± 0.01 78.29 ± 0.99 70.70 ± 2.62 78.29 ± 0.99

DOCEMB WORD2VEC CBOW 55.26 ± 1.52 72.29 ± 2.16 55.26 ± 1.52 78.72 ± 0.88 72.97 ± 2.71 78.72 ± 0.88

DOCEMB WORD2VEC SG 54.42 ± 2.99 72.24 ± 2.05 54.42 ± 2.99 78.97 ± 0.91 73.30 ± 2.66 78.97 ± 0.91

DOCEMB FASTTEXT CBOW 49.13 ± 2.26 71.76 ± 1.86 49.13 ± 2.26 78.54 ± 0.57 72.26 ± 1.50 78.54 ± 0.57

DOCEMB FASTTEXT SG 55.58 ± 2.35 73.95 ± 1.76 55.58 ± 2.35 78.94 ± 0.66 73.46 ± 2.97 78.94 ± 0.66

DOCEMB GLOVE 48.63 ± 8.40 69.79 ± 3.13 48.63 ± 8.40 78.16 ± 1.35 71.89 ± 4.01 78.16 ± 1.35

DOCEMB BERT 59.91 ± 1.79 76.22 ± 0.85 59.91 ± 1.79 78.44 ± 0.73 71.31 ± 1.95 78.44 ± 0.73

DOCEMB ROBERTA 62.02 ± 7.65 70.54 ± 1.52 62.02 ± 7.65 77.98 ± 0.70 69.83 ± 4.17 77.98 ± 0.70

DOCEMB BART 61.56 ± 1.29 80.57 ± 1.17 61.56 ± 1.29 79.28 ± 1.18 73.92 ± 2.50 79.28 ± 1.18

Mathematics 2023, 11, 508 21 of 29

Table 6. Cont.

Perceptron Multi-Layer Perceptron

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 77.88 ± 0.01 60.66 ± 0.01 77.88 ± 0.01 78.29 ± 0.50 70.91 ± 6.32 78.29 ± 0.50

DOCEMB WORD2VEC CBOW 77.98 ± 0.31 63.63 ± 3.26 77.98 ± 0.31 78.10 ± 0.50 65.94 ± 5.52 78.10 ± 0.50

DOCEMB WORD2VEC SG 77.88 ± 0.01 60.66 ± 0.01 77.88 ± 0.01 77.88 ± 0.01 60.66 ± 0.01 77.88 ± 0.01

DOCEMB FASTTEXT CBOW 77.79 ± 0.62 66.38 ± 5.91 77.79 ± 0.62 77.91 ± 0.65 66.63 ± 3.36 77.91 ± 0.65

DOCEMB FASTTEXT SG 77.88 ± 0.01 60.66 ± 0.01 77.88 ± 0.01 77.88 ± 0.01 60.66 ± 0.01 77.88 ± 0.01

DOCEMB GLOVE 77.88 ± 0.01 60.66 ± 0.01 77.88 ± 0.01 77.88 ± 0.01 60.66 ± 0.01 77.88 ± 0.01

DOCEMB BERT 77.76 ± 1.02 68.20 ± 3.39 77.76 ± 1.02 77.60 ± 1.65 70.76 ± 3.70 77.60 ± 1.65

DOCEMB ROBERTA 77.85 ± 0.33 63.79 ± 5.23 77.85 ± 0.33 77.88 ± 0.01 60.66 ± 0.01 77.88 ± 0.01

DOCEMB BART 79.78 ± 0.84 75.84 ± 1.30 79.78 ± 0.84 79.75 ± 1.75 75.40 ± 2.30 79.75 ± 1.75

LSTM Bidirectional LSTM

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 78.91 ± 0.98 73.90 ± 1.40 78.91 ± 0.98 78.63 ± 0.80 73.77 ± 1.63 78.63 ± 0.80

DOCEMB WORD2VEC CBOW 77.88 ± 1.40 70.88 ± 3.53 77.88 ± 1.40 77.23 ± 1.55 70.58 ± 2.30 77.23 ± 1.55

DOCEMB WORD2VEC SG 78.04 ± 0.16 63.35 ± 1.97 78.04 ± 0.16 77.88 ± 0.59 67.35 ± 2.43 77.88 ± 0.59

DOCEMB FASTTEXT CBOW 78.07 ± 0.59 71.74 ± 2.23 78.07 ± 0.59 78.10 ± 0.79 73.05 ± 1.58 78.10 ± 0.79

DOCEMB FASTTEXT SG 77.98 ± 0.20 61.64 ± 1.69 77.98 ± 0.20 77.85 ± 0.74 67.51 ± 5.94 77.85 ± 0.74

DOCEMB GLOVE 77.88 ± 0.01 60.66 ± 0.01 77.88 ± 0.01 77.85 ± 0.17 62.74 ± 3.44 77.85 ± 0.17

DOCEMB BERT 77.57 ± 2.95 73.20 ± 2.13 77.57 ± 2.95 77.51 ± 2.22 74.46 ± 2.19 77.51 ± 2.22

DOCEMB ROBERTA 77.88 ± 0.01 60.66 ± 0.01 77.88 ± 0.01 77.88 ± 0.01 60.66 ± 0.01 77.88 ± 0.01

DOCEMB BART 78.07 ± 2.16 76.31 ± 3.01 78.07 ± 2.16 77.35 ± 2.39 75.97 ± 1.89 77.35 ± 2.39

GRU Bidirectional GRU

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 78.94 ± 1.21 73.99 ± 2.19 78.94 ± 1.21 78.60 ± 1.13 73.69 ± 1.40 78.60 ± 1.13

DOCEMB WORD2VEC CBOW 77.57 ± 1.26 70.72 ± 2.80 77.57 ± 1.26 77.32 ± 1.31 71.04 ± 2.30 77.32 ± 1.31

DOCEMB WORD2VEC SG 78.29 ± 0.37 66.63 ± 2.52 78.29 ± 0.37 78.22 ± 1.00 68.24 ± 2.56 78.22 ± 1.00

DOCEMB FASTTEXT CBOW 78.19 ± 0.78 72.06 ± 2.37 78.19 ± 0.78 77.73 ± 1.51 74.22 ± 1.06 77.73 ± 1.51

DOCEMB FASTTEXT SG 77.88 ± 0.37 64.47 ± 3.68 77.88 ± 0.37 77.76 ± 0.79 67.54 ± 2.82 77.76 ± 0.79

DOCEMB GLOVE 77.82 ± 0.31 61.81 ± 2.43 77.82 ± 0.31 77.66 ± 0.52 64.45 ± 3.17 77.66 ± 0.52

DOCEMB BERT 78.54 ± 1.39 72.23 ± 3.39 78.54 ± 1.39 74.86 ± 4.28 72.99 ± 2.21 74.86 ± 4.28

DOCEMB ROBERTA 77.88 ± 0.01 60.66 ± 0.01 77.88 ± 0.01 77.88 ± 0.01 60.66 ± 0.01 77.88 ± 0.01

DOCEMB BART 77.48 ± 2.08 75.96 ± 2.38 77.48 ± 2.08 76.45 ± 4.56 77.31 ± 3.14 76.45 ± 4.56

Accuracy Precision Recall

MisRoBÆRTa [23] 77.39 ± 0.83 77.39 ± 0.83 77.39 ± 0.83

Accuracy

SVM [52] 78.00

UFD [29] 67.90

Mathematics 2023, 11, 508 22 of 29

Table 7. Fake news detection results on TSHP-17 dataset as presented in Rashkin et al. [53] and Barrón-
Cedeño et al. [54].

Naïve Bayes Gradient Boosted Trees

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 92.08 ± 0.15 92.11 ± 0.15 92.08 ± 0.15 98.05 ± 0.12 98.05 ± 0.12 98.05 ± 0.12

DOCEMB WORD2VEC CBOW 70.06 ± 0.50 73.01 ± 0.36 70.06 ± 0.50 95.64 ± 0.26 95.63 ± 0.26 95.64 ± 0.26

DOCEMB WORD2VEC SG 55.33 ± 0.63 68.18 ± 0.33 55.33 ± 0.63 95.76 ± 0.21 95.75 ± 0.21 95.76 ± 0.21

DOCEMB FASTTEXT CBOW 62.83 ± 0.47 70.17 ± 0.66 62.83 ± 0.47 94.36 ± 0.27 94.34 ± 0.27 94.36 ± 0.27

DOCEMB FASTTEXT SG 59.72 ± 0.52 69.49 ± 0.63 59.72 ± 0.52 95.66 ± 0.28 95.65 ± 0.28 95.66 ± 0.28

DOCEMB GLOVE 52.99 ± 0.56 65.84 ± 0.43 52.99 ± 0.56 96.19 ± 0.28 96.19 ± 0.28 96.19 ± 0.28

DOCEMB BERT 84.65 ± 0.63 87.60 ± 0.42 84.65 ± 0.63 98.18 ± 0.10 98.18 ± 0.10 98.18 ± 0.10

DOCEMB ROBERTA 52.15 ± 0.33 65.77 ± 0.64 52.15 ± 0.33 79.15 ± 0.36 79.11 ± 0.38 79.15 ± 0.36

DOCEMB BART 94.08 ± 0.28 94.66 ± 0.26 94.08 ± 0.28 99.01 ± 0.10 99.01 ± 0.10 99.01 ± 0.10

Perceptron Multi-Layer Perceptron

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 97.64 ± 0.13 97.64 ± 0.13 97.64 ± 0.13 97.54 ± 0.16 97.54 ± 0.16 97.54 ± 0.16

DOCEMB WORD2VEC CBOW 94.24 ± 0.23 94.22 ± 0.24 94.24 ± 0.23 96.11 ± 0.22 96.11 ± 0.22 96.11 ± 0.22

DOCEMB WORD2VEC SG 90.14 ± 0.29 90.09 ± 0.29 90.14 ± 0.29 93.91 ± 0.24 93.89 ± 0.24 93.91 ± 0.24

DOCEMB FASTTEXT CBOW 93.14 ± 0.30 93.14 ± 0.30 93.14 ± 0.30 95.63 ± 0.24 95.64 ± 0.24 95.63 ± 0.24

DOCEMB FASTTEXT SG 90.00 ± 0.20 89.94 ± 0.21 90.00 ± 0.20 93.64 ± 0.30 93.64 ± 0.29 93.64 ± 0.30

DOCEMB GLOVE 90.97 ± 0.27 90.95 ± 0.27 90.97 ± 0.27 94.04 ± 0.30 94.05 ± 0.29 94.04 ± 0.30

DOCEMB BERT 98.44 ± 0.15 98.44 ± 0.15 98.44 ± 0.15 98.78 ± 0.14 98.78 ± 0.13 98.78 ± 0.14

DOCEMB ROBERTA 77.79 ± 1.85 78.89 ± 0.65 77.79 ± 1.85 80.30 ± 1.55 81.29 ± 0.61 80.30 ± 1.55

DOCEMB BART 99.54 ± 0.05 99.54 ± 0.05 99.54 ± 0.05 99.55 ± 0.06 99.55 ± 0.06 99.55 ± 0.06

LSTM Bidirectional LSTM

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 97.10 ± 0.17 97.10 ± 0.17 97.10 ± 0.17 97.03 ± 0.22 97.03 ± 0.22 97.03 ± 0.22

DOCEMB WORD2VEC CBOW 96.93 ± 0.16 96.94 ± 0.15 96.93 ± 0.16 96.88 ± 0.09 96.88 ± 0.09 96.88 ± 0.09

DOCEMB WORD2VEC SG 95.37 ± 0.17 95.40 ± 0.17 95.37 ± 0.17 95.55 ± 0.32 95.56 ± 0.30 95.55 ± 0.32

DOCEMB FASTTEXT CBOW 96.24 ± 0.30 96.26 ± 0.29 96.24 ± 0.30 96.37 ± 0.23 96.38 ± 0.23 96.37 ± 0.23

DOCEMB FASTTEXT SG 95.06 ± 0.13 95.07 ± 0.13 95.06 ± 0.13 95.10 ± 0.37 95.11 ± 0.32 95.10 ± 0.37

DOCEMB GLOVE 95.17 ± 0.34 95.22 ± 0.28 95.17 ± 0.34 95.31 ± 0.42 95.35 ± 0.36 95.31 ± 0.42

DOCEMB BERT 98.86 ± 0.24 98.87 ± 0.22 98.86 ± 0.24 98.89 ± 0.17 98.89 ± 0.16 98.89 ± 0.17

DOCEMB ROBERTA 80.25 ± 1.38 81.31 ± 0.73 80.25 ± 1.38 80.17 ± 1.66 81.30 ± 0.86 80.17 ± 1.66

DOCEMB BART 99.62 ± 0.05 99.62 ± 0.05 99.62 ± 0.05 99.65 ± 0.05 99.65 ± 0.05 99.65 ± 0.05

GRU Bidirectional GRU

Vectorization Accuracy Precision Recall Accuracy Precision Recall

TFIDF 97.00 ± 0.13 97.00 ± 0.13 97.00 ± 0.13 96.85 ± 0.20 96.86 ± 0.20 96.85 ± 0.20

DOCEMB WORD2VEC CBOW 96.85 ± 0.16 96.86 ± 0.16 96.85 ± 0.16 96.86 ± 0.14 96.87 ± 0.14 96.86 ± 0.14

DOCEMB WORD2VEC SG 95.29 ± 0.28 95.31 ± 0.26 95.29 ± 0.28 95.53 ± 0.14 95.56 ± 0.14 95.53 ± 0.14

DOCEMB FASTTEXT CBOW 96.28 ± 0.17 96.29 ± 0.17 96.28 ± 0.17 96.25 ± 0.28 96.26 ± 0.26 96.25 ± 0.28

DOCEMB FASTTEXT SG 94.72 ± 0.31 94.75 ± 0.28 94.72 ± 0.31 94.77 ± 0.52 94.85 ± 0.44 94.77 ± 0.52

DOCEMB GLOVE 95.06 ± 0.34 95.10 ± 0.31 95.06 ± 0.34 95.09 ± 0.29 95.15 ± 0.25 95.09 ± 0.29

DOCEMB BERT 98.91 ± 0.27 98.92 ± 0.25 98.91 ± 0.27 98.99 ± 0.10 98.99 ± 0.10 98.99 ± 0.10

DOCEMB ROBERTA 80.44 ± 1.26 81.44 ± 0.55 80.44 ± 1.26 80.04 ± 1.69 81.36 ± 0.76 80.04 ± 1.69

DOCEMB BART 99.62 ± 0.09 99.62 ± 0.09 99.62 ± 0.09 99.64 ± 0.07 99.64 ± 0.07 99.64 ± 0.07

Accuracy Precision Recall

MisRoBÆRTa [23] 99.52 ± 0.12 99.52 ± 0.12 99.52 ± 0.12

Accuracy

Proppy [70] 98.36

Mathematics 2023, 11, 508 23 of 29

Table 5 presents the results obtained on the Kaggle dataset [12,18]. We observed that
only for the Gradient Boosted Trees and Multi-Layer Perceptron models, the document
embeddings obtained with WORD2VEC SG and FASTTEXT SG outperformed their CBOW
counterparts. When analyzing the same document embedding, i.e., DOCEMB, we observed
very little difference in performance among the neural models. As we used early stopping
mechanisms, the neural network models did not overfit. Among the document embed-
dings employing transformers, the ones that use BART obtained the best results across
all experiments. With an accuracy of 99.80%, the overall best-performing model is the
Bidirectional LSTM with document embeddings constructed with BART, i.e., DOCEMB

BART. The results show that our approach outperforms more complex models proposed
in the current literature, e.g., FNDNet [12] obtained an accuracy of 98.36%, FakeBERT [18]
obtained an accuracy of 98.90%, and C-CNN [24] obtained an accuracy of 99.90%. We
observe that C-CNN, a large neural model with multiple layers that also concatenates the
results of three CNN models, outperforms the Bidirectional LSTM in terms of average
accuracy on the Kaggle dataset by only 0.10%. We also want to emphasize that the results in
Table 5 present the mean over 10 runs for each metric per model and embedding pair. Thus,
if we only take the best-performing model as in the case of the C-CNN results presented
by Sedik et al. [24], then the Bidirectional LSTM model manages to obtain an accuracy of
99.92%(= 99.80% (mean accuracy) +0.12% (standard deviation)).

Table 6 presents the results obtained on the Buzz Feed News dataset [52]. On this
dataset, we observed that all the models obtained good results with TFIDF, such that some
models that employ the TFIDF vectorization outperformed the document embeddings
constructed with word and transformer embeddings, see, e.g., the results for LSTM, Bidi-
rectional LSTM, GRU, and Bidirectional GRU. With an accuracy of 79.78%, the overall
best-performing model is Perceptron with BART document embeddings. For all the mod-
els, there is very little difference between the document embeddings that employ CBOW
and their Skip-Gram counterparts. The results show that our approach outperforms more
complex models proposed in the current literature, e.g., SVM [52] obtained an accuracy of
78.00% and UFD [29] obtained an accuracy of 67.90%.

Table 7 presents our final experiments, on the TSHP-17 dataset [53,54]. We observed
that the document embeddings (DOCEMBs) obtained with WORD2VEC SG and FASTTEXT

SG outperformed their CBOW counterparts only for the Gradient Boosted Trees model. All
the models that employ TFIDF outperformed their counterparts that employ document
embedding built with word embeddings. Among the document embeddings employing a
transformer, the ones built with BART obtained the best results with regards to the model,
while the ones that employ ROBERTA obtained the worst results. With an accuracy of
99.65%, the overall best-performing model is the Bidirectional LSTM with BART document
embeddings. For the same DOCEMB, we observed very little difference in performance
among the neural models. The results show that our approach outperforms more complex
models proposed in the current literature, e.g., Proppy’s [70] accuracy is 98.36%.

Thus, in conclusion, we show, on five additional datasets, that:

(1) A simpler neural architecture offers at least similar or better results as complex archi-
tectures that employ multiple layers, and

(2) The difference in performance lies in the embeddings used to vectorize the textual
data.

Furthermore, we generally obtained better results than in other current state-of-the-art
work:

(1) On the LIAR dataset with 6 labels, Wang [10] obtained an F1-Score of 27.7% using
Hybrid CNNs and Alhindi et al. [69] obtained an F1-Score of 26% using BiLSTM, while
we obtained an accuracy of 25.89% using Multi-Layer Perceptron with the document
embeddings employing BART;

(2) On the LIAR dataset with 2 labels, Upadhayay and Behzadan [51] obtained an accuracy
of 70% using CNN with BERT-base embeddings, while we obtained an accuracy of
83.99% using LSTM with the document embeddings employing GLOVE;

Mathematics 2023, 11, 508 24 of 29

(3) On the Kaggle dataset, the large deep learning model FakeBERT [18] obtained an accu-
racy of 98.90% and C-CNN [24] obtained an accuracy of 99.90%, while we obtained an
accuracy of 99.80% using a simple Bidirectional LSTM with the document embeddings
employing BART;

(4) On the Buzz Feed News dataset, Horne and Adali [52] obtained an accuracy of 78%
using a linear SVM, while we obtained an accuracy of 79.78% using Perceptron with
the document embeddings employing BART;

(5) On the TSHP-17 dataset, Barrón-Cedeño et al. [54] obtained an accuracy of 97.58%
using Proppy [70], while we obtained 99.65% using Bidirectional LSTM with the
document embeddings employing BART;

To sum up, this set of experiments again enforces our observations that the embedding
is more important than the complexity of the classification architecture. Furthermore, there
is no generic model that offers the best performance regardless of the dataset. Thus, a
data-driven approach together with hyper-parameter tuning and ablation testing should
be considered when the goal is to determine the best-performing model for a given dataset.

5. Discussion

Word embeddings manage to capture both local and global contexts as defined in Tru-
ică et al. [71]. These help the machine learning algorithms to model and learn the text
context, syntax, and semantics, but fail to differentiate among the words’ grammatical
functions, i.e., the same word embedding is computed for a word regardless of its part-
of-speech. On the other hand, transformer embeddings manage to learn the linguistic
meaning of words, as they manage to preserve context by design. Thus, the same word has
a different embedding depending on its lexical sense and concept as well as part-of-speech.
Based on this, we can observe that the experiments that use document embeddings that
employ transformers perform better than those that employ word embedding on average.
The most interesting results, however, are those obtained with the document representation
obtained with TFIDF. We observed that only the frequency-based importance of a word to
a document within a textual corpus has a high impact on the models’ performance. As a
general observation, we observed very little difference in performance among the neural
models when using the same document embedding.

The experimental results show that the DOCEMBs that use WORD2VEC and FASTTEXT

obtain very similar results, with a difference of∼±2% when using Perceptron, and∼±0.5%
when using LSTM. GLOVE based DOCEMB obtains the best results together with the LSTM
model on the LIAR dataset when using 2 labels. For the sample extracted from the Fake
News Corpus as well as the LIAR with 6 labels, Kaggle, and TSHP-17 datasets, the BART
DOCEMB obtains the best results with different classification algorithms. We can conclude
that there is no clear result for a classification model that generalizes well regardless of the
dataset.

From the experimental results, we could not determine a clear winner with regards
to document embedding and classification model. We observed empirically that the best-
performing classification model changes with the dataset and the document embedding
employed.

Our DOCEMB solutions were compared to the results we obtained when employing
MisRoBÆRTa [23], a more complex state-of-the-art model that employs fine-tune BART
and ROBERTA embeddings. We note that we did not use fine-tuning for our dataset as the
authors did in the original work [23]. Thus, we used the pre-trained BART (facebook/bart-
large) and ROBERTA (roberta-base) from HuggingFage [44]. Furthermore, we also compared
the results we obtained on each dataset with the results obtained with other state-of-the-art
models presented in the current literature.

In our experiments, we obtained results that lead to the following observation: feature
selection is more important than the Deep Learning Architecture used for classification.
To put it bluntly, the need to stack layers upon layers of neural cells, just to claim a novel
architecture, does not solve real-world problems, it just exacerbates out of proportion our

Mathematics 2023, 11, 508 25 of 29

understanding of how to use Machine Learning/Deep Learning for Natural Language
Processing tasks.

To conclude our findings:

(1) A simpler neural architecture offers similar if not better results as complex deep
learning architectures that employ multiple layers, i.e., in our comparison, we obtained
similar results as the complex MisRoBÆRTa [23] architecture, better than state-of-the-
art results, i.e., FakeBERT [18], and Poppy [70];

(2) The embeddings used to vectorize the textual data makes all the difference in perfor-
mance, i.e., the right embedding must be selected to obtain good results with a given
model;

(3) We need a data-driven approach to select the best model and the best embedding for
our dataset;

(4) The way the word embedding manages to encapsulate the semantic, syntactic, and
context features improves the performance of the classification models.

6. Conclusions

In this article, we presented a new approach for fake news detection using document
embeddings (DOCEMBs). We also proposed a benchmark to establish the most efficient
ways for finding misleading information. To detect fake news, we used multiple machine
learning algorithms together with DOCEMBs built using either TFIDF, or word and trans-
former embeddings: WORD2VEC SG and CBOW, FASTTEXT SG and CBOW, GLOVE, BERT,
ROBERTA, and BART.

Our approach emphasizes the importance of an overall document representation
when dealing with the task of fake news detection and shows state-of-the-art performance
results. Depending on the dataset, the results show that BIGRU/BILSTM with DOCEMB

BART outperform the other models. In the experiments, we obtained better results than
state-of-the-art Deep Neural Network models, even though we used a simpler Deep Neural
Network Architecture. Additionally, we obtained similar results as MisRoBÆRTa [23] when
using pre-trained BART (facebook/bart-large) and ROBERTA (roberta-base) from Hugging-
Face [44]. These are significant results, not because of the evaluation scores but because
of the complexity of the models. The main takeaway of this work is that a simpler neu-
ral architecture offers similar if not better results as complex architectures that employ
multiple layers. We observe that the most relevant factor is the embedding employed for
classification, as it can really make a difference.

In future research, we plan to use sentiment analysis with fake news detection to
determine if there is a correlation between polarity and veracity. We also aim to use
ensemble models that combine our proposed method with existing methods to determine
if the performance of fake news detection is improved.

Author Contributions: Conceptualization, C.-O.T. and E.-S.A.; methodology, C.-O.T. and E.-S.A.;
software, C.-O.T. and E.-S.A.; validation, C.-O.T. and E.-S.A.; formal analysis, C.-O.T. and E.-S.A.;
investigation, C.-O.T. and E.-S.A.; resources, C.-O.T. and E.-S.A.; data curation, C.-O.T. and E.-S.A.;
writing—original draft preparation, C.-O.T. and E.-S.A.; writing—review and editing, C.-O.T. and
E.-S.A.; visualization, C.-O.T. and E.-S.A.; supervision, C.-O.T. and E.-S.A.; project administration,
C.-O.T. and E.-S.A.; funding acquisition, C.-O.T. and E.-S.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is partially funded by the “AI-based conversational agent for misinforma-
tion fact-checking” project financed through the OPTIM Research framework (POCU grant no.
62461/03.06.2022, SMIS code 153735) and partially funded by the University Politehnica of Bucharest
through the PubArt program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Mathematics 2023, 11, 508 26 of 29

Data Availability Statement: The original dataset used in this study is publicly available at https:
//github.com/several27/FakeNewsCorpus (accessed on 27 December 2022).

Acknowledgments: This work was done within the “AI-based conversational agent for misinfor-
mation fact-checking” project financed through the OPTIM Research framework (POCU grant no.
62461/03.06.2022, SMIS code 153735) and partially funded by the University Politehnica of Bucharest
through the PubArt program.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

TF Term Frequency
IDF Inverse Document Frequency
TFIDF Term Frequency-Inverse Document Frequency
CLDF Class Label Frequency Distance
SG Skip-Gram
CBOW Common Bag Of Words
GLOVE Global Vectors
DOCEMB Document Embedding
BERT Bidirectional Encoder Representations from Transformers
ROBERTA Robustly Optimized BERT pre-training Approach
XLM-RoBERTa Cross-Lingual RoBERTa
BART Bidirectional and Auto-Regressive Transformers
NB Naïve Bayes
MNB Multinomial Naïve Bayes
GNB Gaussian Naïve Bayes
SVM Support Vector Machine
LogReg Logistic Regression
UFD Unsupervised Fake News Detection Framework
MLP Multi-layer Perceptron
RNN Recurrent Neural Network
CNN Convolutional Neural Networks
C-CNN Concatenated CNN
LSTM Long Short-Term Memory
BiLSTM Bidirectional Long Short-Term Memory
GRU Gated Recurrent Unit
BiGRU Bidirectional Gated Recurrent Unit

References
1. Truică, C.O.; Apostol, E.S.; S, tefu, T.; Karras, P. A Deep Learning Architecture for Audience Interest Prediction of News Topic on

Social Media. In Proceedings of the International Conference on Extending Database Technology (EDBT2021), Nicosia, Cyprus,
23–26 March 2021; pp. 588–599. [CrossRef]

2. Mustafaraj, E.; Metaxas, P.T. The Fake News Spreading Plague. In Proceedings of the ACM on Web Science Conference, Troy, NY,
USA, 25–28 June 2017; pp. 235–239. [CrossRef]

3. Ruths, D. The misinformation machine. Science 2019, 363, 348. [CrossRef] [PubMed]
4. Bastos, M.T.; Mercea, D. The Brexit Botnet and User-Generated Hyperpartisan News. Soc. Sci. Comput. Rev. 2017, 37, 38–54.

[CrossRef]
5. Bovet, A.; Makse, H.A. Influence of fake news in Twitter during the 2016 US presidential election. Nat. Commun. 2019, 10, 7.

[CrossRef] [PubMed]
6. Rzymski, P.; Borkowski, L.; Drąg, M.; Flisiak, R.; Jemielity, J.; Krajewski, J.; Mastalerz-Migas, A.; Matyja, A.; Pyrć, K.; Simon, K.;

et al. The Strategies to Support the COVID-19 Vaccination with Evidence-Based Communication and Tackling Misinformation.
Vaccines 2021, 9, 109. [CrossRef]

7. Truică, C.O.; Apostol, E.S.; Paschke, A. Awakened at CheckThat! 2022: Fake news detection using BiLSTM and sentence
transformer. In Proceedings of the Working Notes of the Conference and Labs of the Evaluation Forum (CLEF2022), Bologna,
Italy, 5–8 September 2022; pp. 749–757.

8. European Commission. Fighting Disinformation; European Commission: Brussels, Belgium, 2020.

https://github.com/several27/FakeNewsCorpus
https://github.com/several27/FakeNewsCorpus
http://doi.org/10.5441/002/EDBT.2021.69
http://dx.doi.org/10.1145/3091478.3091523
http://dx.doi.org/10.1126/science.aaw1315
http://www.ncbi.nlm.nih.gov/pubmed/30679361
http://dx.doi.org/10.1177/0894439317734157
http://dx.doi.org/10.1038/s41467-018-07761-2
http://www.ncbi.nlm.nih.gov/pubmed/30602729
http://dx.doi.org/10.3390/vaccines9020109

Mathematics 2023, 11, 508 27 of 29

9. Chen, Y.; Conroy, N.K.; Rubin, V.L. News in an online world: The need for an “automatic crap detector”. Proc. Assoc. Inf. Sci.
Technol. 2015, 52, 1–4. [CrossRef]

10. Wang, W.Y. “Liar, Liar Pants on Fire”: A New Benchmark Dataset for Fake News Detection. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics, Vancouver, BC, Canada, 30 July–4 August 2017; pp. 422–426. [CrossRef]

11. Conroy, N.K.; Rubin, V.L.; Chen, Y. Automatic deception detection: Methods for finding fake news. Proc. Assoc. Inf. Sci. Technol.
2015, 52, 1–4. [CrossRef]

12. Kaliyar, R.K.; Goswami, A.; Narang, P.; Sinha, S. FNDNet—A deep convolutional neural network for fake news detection. Cogn.
Syst. Res. 2020, 61, 32–44. [CrossRef]

13. Goldani, M.H.; Safabakhsh, R.; Momtazi, S. Convolutional neural network with margin loss for fake news detection. Inf. Process.
Manag. 2021, 58, 102418. [CrossRef]

14. Saleh, H.; Alharbi, A.; Alsamhi, S.H. OPCNN-FAKE: Optimized convolutional neural network for fake news detection. IEEE
Access 2021, 9, 129471–129489. [CrossRef]

15. Samantaray, S.; Kumar, A. Bi-directional Long Short-Term Memory Network for Fake News Detection from Social Media. In
Intelligent and Cloud Computing; Springer: Berlin/Heidelberg, Germany, 2022; pp. 463–470. [CrossRef]

16. Ilie, V.I.; Truică, C.O.; Apostol, E.S.; Paschke, A. Context-Aware Misinformation Detection: A Benchmark of Deep Learning
Architectures Using Word Embeddings. IEEE Access 2021, 9, 162122–162146. [CrossRef]

17. Jwa, H.; Oh, D.; Park, K.; Kang, J.; Lim, H. exBAKE: Automatic Fake News Detection Model Based on Bidirectional Encoder
Representations from Transformers (BERT). Appl. Sci. 2019, 9, 4062. [CrossRef]

18. Kaliyar, R.K.; Goswami, A.; Narang, P. FakeBERT: Fake news detection in social media with a BERT-based deep learning approach.
Multimed. Tools Appl. 2021, 80, 11765–11788. [CrossRef] [PubMed]

19. Kula, S.; Choraś, M.; Kozik, R. Application of the BERT-Based Architecture in Fake News Detection. In Conference on Complex,
Intelligent, and Software Intensive Systems; Springer: Berlin/Heidelberg, Germany, 2020; pp. 239–249. [CrossRef]

20. Mersinias, M.; Afantenos, S.; Chalkiadakis, G. CLFD: A Novel Vectorization Technique and Its Application in Fake News Detection.
In Proceedings of the Language Resources and Evaluation Conference, Marseille, France, 11–16 May 2020; pp. 3475–3483.

21. Mondal, S.K.; Sahoo, J.P.; Wang, J.; Mondal, K.; Rahman, M.M. Fake News Detection Exploiting TF-IDF Vectorization with
Ensemble Learning Models. In Advances in Distributed Computing and Machine Learning; Springer: Berlin/Heidelberg, Germany,
2022; pp. 261–270. [CrossRef]

22. Aslam, N.; Khan, I.U.; Alotaibi, F.S.; Aldaej, L.A.; Aldubaikil, A.K. Fake Detect: A Deep Learning Ensemble Model for Fake News
Detection. Complexity 2021, 2021, 5557784. [CrossRef]

23. Truică, C.O.; Apostol, E.S. MisRoBÆRTa: Transformers versus Misinformation. Mathematics 2022, 10, 569. [CrossRef]
24. Sedik, A.; Abohany, A.A.; Sallam, K.M.; Munasinghe, K.; Medhat, T. Deep fake news detection system based on concatenated and

recurrent modalities. Expert Syst. Appl. 2022, 208, 117953. [CrossRef]
25. Verma, P.K.; Agrawal, P.; Amorim, I.; Prodan, R. WELFake: Word Embedding Over Linguistic Features for Fake News Detection.

IEEE Trans. Comput. Soc. Syst. 2021, 8, 881–893. [CrossRef]
26. Shu, K.; Cui, L.; Wang, S.; Lee, D.; Liu, H. dEFEND: Explainable Fake News Detection. In Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 395–405.
[CrossRef]

27. Khattar, D.; Goud, J.S.; Gupta, M.; Varma, V. MVAE: Multimodal Variational Autoencoder for Fake News Detection. In
Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 2915–2921. [CrossRef]

28. Zhang, J.; Dong, B.; Yu, P.S. FakeDetector: Effective Fake News Detection with Deep Diffusive Neural Network. In Proceedings
of the 2020 IEEE 36th International Conference on Data Engineering (ICDE), Dallas, TX, USA, 20–24 April 2020; pp. 1826–1829.
[CrossRef]

29. Yang, S.; Shu, K.; Wang, S.; Gu, R.; Wu, F.; Liu, H. Unsupervised Fake News Detection on Social Media: A Generative Approach.
In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33,
pp. 5644–5651. [CrossRef]

30. Wang, Y.; Qian, S.; Hu, J.; Fang, Q.; Xu, C. Fake News Detection via Knowledge-driven Multimodal Graph Convolutional
Networks. In Proceedings of the 2020 International Conference on Multimedia Retrieval, Dublin, Ireland, 8–11 June 2020;
pp. 540–547. [CrossRef]

31. Le, Q.; Mikolov, T. Distributed representations of sentences and documents. In Proceedings of the International Conference on
Machine Learning PMLR, Bejing, China, 22–24 June 2014; pp. 1188–1196.

32. Cui, J.; Kim, K.; Na, S.H.; Shin, S. Meta-Path-based Fake News Detection Leveraging Multi-level Social Context Information. In
Proceedings of the Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta,
GA, USA, 17–21 October 2022; pp. 325–334.

33. Singh, L. Fake news detection: A comparison between available Deep Learning techniques in vector space. In Proceedings of the
2020 IEEE 4th Conference on Information & Communication Technology (CICT), Chennai, India, 3–5 December 2020; pp. 1–4.

34. Truică, C.O.; Apostol, E.S.; Darmont, J.; Assent, I. TextBenDS: A Generic Textual Data Benchmark for Distributed Systems. Inf.
Syst. Front. 2021, 23, 81–100. [CrossRef]

35. Paltoglou, G.; Thelwall, M. A Study of Information Retrieval Weighting Schemes for Sentiment Analysis. In Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics, Stroudsburg, PA, USA, 11–16 July 2010; pp. 1386–1395.

http://dx.doi.org/10.1002/pra2.2015.145052010081
http://dx.doi.org/10.18653/v1/P17-2067
http://dx.doi.org/10.1002/pra2.2015.145052010082
http://dx.doi.org/10.1016/j.cogsys.2019.12.005
http://dx.doi.org/10.1016/j.ipm.2020.102418
http://dx.doi.org/10.1109/ACCESS.2021.3112806
http://dx.doi.org/10.1007/978-981-16-9873-6_42
http://dx.doi.org/10.1109/ACCESS.2021.3132502
http://dx.doi.org/10.3390/app9194062
http://dx.doi.org/10.1007/s11042-020-10183-2
http://www.ncbi.nlm.nih.gov/pubmed/33432264
http://dx.doi.org/10.1007/978-3-030-57805-3_23
http://dx.doi.org/10.1007/978-981-16-4807-6_25
http://dx.doi.org/10.1155/2021/5557784
http://dx.doi.org/10.3390/math10040569
http://dx.doi.org/10.1016/j.eswa.2022.117953
http://dx.doi.org/10.1109/TCSS.2021.3068519
http://dx.doi.org/10.1145/3292500.3330935
http://dx.doi.org/10.1145/3308558.3313552
http://dx.doi.org/10.1109/icde48307.2020.00180
http://dx.doi.org/10.1609/aaai.v33i01.33015644
http://dx.doi.org/10.1145/3372278.3390713
http://dx.doi.org/10.1007/s10796-020-09999-y

Mathematics 2023, 11, 508 28 of 29

36. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. In Proceedings of the
Workshop Proceedings of the International Conference on Learning Representations 2013, Scottsdale, AZ, USA, 2–4 May 2013;
pp. 1–12.

37. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed Representations of Words and Phrases and their
Compositionality. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10
December 2013; Volume 26, pp. 1–9.

38. Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching word vectors with subword information. Trans. Assoc. Comput.
Linguist. 2017, 5, 135–146. [CrossRef]

39. Pennington, J.; Socher, R.; Manning, C.D. GloVe: Global vectors for word representation. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, Doha, Qatar, 25–29 October 2014; pp. 1532–1543. [CrossRef]

40. Mikolov, T.; Grave, E.; Bojanowski, P.; Puhrsch, C.; Joulin, A. Advances in Pre-Training Distributed Word Representations. In
Proceedings of the International Conference on Language Resources and Evaluation, Miyazaki, Japan, 7–12 May 2018; pp. 52–55.

41. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the Conference of the North Association for Computational Linguistics, Minneapolis, MN, USA, 2–7 June
2019; pp. 4171–4186. [CrossRef]

42. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692.

43. Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; Zettlemoyer, L. BART: Denoising
Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 7871–7880. [CrossRef]

44. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers:
State-of-the-Art Natural Language Processing. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, Honolulu, HI, USA, 16–20 November 2020; pp. 38–45. [CrossRef]

45. Rennie, J.D.M.; Shih, L.; Teevan, J.; Karger, D.R. Tackling the Poor Assumptions of Naive Bayes Text Classifiers. In Proceedings
of the International Conference on International Conference on Machine Learning, Los Angeles, CA, USA, 23–24 June 2003;
pp. 616–623.

46. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
47. Cho, K.; van Merrienboer, B.; Bahdanau, D.; Bengio, Y. On the Properties of Neural Machine Translation: Encoder–Decoder

Approaches. In Proceedings of the SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha,
Qatar, 25 October 2014; pp. 103–111. [CrossRef]

48. Hewamalage, H.; Bergmeir, C.; Bandara, K. Recurrent Neural Networks for Time Series Forecasting: Current status and future
directions. Int. J. Forecast. 2021, 37, 388–427. [CrossRef]

49. Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009,
45, 427–437. [CrossRef]

50. Szpakowski, M. FakeNewsCorpus. 2020. Available online: https://github.com/several27/FakeNewsCorpus (accessed on 27
December 2022).

51. Upadhayay, B.; Behzadan, V. Sentimental LIAR: Extended Corpus and Deep Learning Models for Fake Claim Classification.
In Proceedings of the 2020 IEEE International Conference on Intelligence and Security Informatics (ISI), Virtual Event, 9–10
November 2020; pp. 1–6. [CrossRef]

52. Horne, B.; Adali, S. This Just In: Fake News Packs A Lot In Title, Uses Simpler, Repetitive Content in Text Body, More Similar to
Satire Than Real News. In Proceedings of the International AAAI Conference on Web and Social Media, Montreal, QC, Canada,
15–18 May 2017; pp. 759–766.

53. Rashkin, H.; Choi, E.; Jang, J.Y.; Volkova, S.; Choi, Y. Truth of Varying Shades: Analyzing Language in Fake News and Political
Fact-Checking. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen,
Denmark, 7–11 September 2017; pp. 2931–2937. [CrossRef]

54. Barrón-Cedeño, A.; Jaradat, I.; Da San Martino, G.; Nakov, P. Proppy: Organizing the news based on their propagandistic content.
Inf. Process. Manag. 2019, 56, 1849–1864. [CrossRef]

55. Kurasinski, L.; Mihailescu, R.C. Towards Machine Learning Explainability in Text Classification for Fake News Detection. In
Proceedings of the 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA,
14–17 December 2020; pp. 775–781. [CrossRef]

56. Nørregaard, J.; Horne, B.D.; Adalı, S. NELA-GT-2018: A Large Multi-Labelled News Dataset for the Study of Misinformation in
News Articles. In Proceedings of the International AAAI Conference on Web and Social Media, Münich, Germany, 11–14 June
2019; pp. 630–638.

57. Kwak, H.; An, J.; Ahn, Y.Y. A Systematic Media Frame Analysis of 1.5 Million New York Times Articles from 2000 to 2017. In
Proceedings of the ACM Conference on Web Science, Southampton, UK, 6–10 July 2020; pp. 305–314. [CrossRef]

58. Reed, R.D.; Marks II, R.J. Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks; MIT Press: Cambridge,
MA, USA, 1999.

59. Arora, S.; Ge, R.; Moitra, A. Learning Topic Models – Going beyond SVD. In Proceedings of the Annual Symposium on
Foundations of Computer Science, Washington, DC, USA, 20–23 October 2012; pp. 1–10. [CrossRef]

http://dx.doi.org/10.1162/tacl_a_00051
http://dx.doi.org/10.3115/v1/D14-1162
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.18653/v1/2020.acl-main.703
http://dx.doi.org/10.18653/v1/2020.emnlp-demos.6
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.3115/v1/w14-4012
http://dx.doi.org/10.1016/j.ijforecast.2020.06.008
http://dx.doi.org/10.1016/j.ipm.2009.03.002
https://github.com/several27/FakeNewsCorpus
http://dx.doi.org/10.1109/isi49825.2020.9280528
http://dx.doi.org/10.18653/v1/D17-1317
http://dx.doi.org/10.1016/j.ipm.2019.03.005
http://dx.doi.org/10.1109/ICMLA51294.2020.00127
http://dx.doi.org/10.1145/3394231.3397921
http://dx.doi.org/10.1109/FOCS.2012.49

Mathematics 2023, 11, 508 29 of 29

60. Bird, S.; Loper, E.; Klein, E. Natural Language Processing with Python; O’Reilly: Sebastopol, CA, USA, 2009.
61. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
62. Grootendorst, M. PolyFuzz. 2020. Available online: https://maartengr.github.io/PolyFuzz/ (accessed on 27 December 2022).
63. Řehůřek, R.; Sojka, P. Software Framework for Topic Modelling with Large Corpora. In Proceedings of the Workshop on New

Challenges for NLP Frameworks, Valletta, Malta, 22 May 2010; pp. 45–50.
64. Kula, M. Python-Glove. 2020. Available online: https://github.com/maciejkula/glove-python (accessed on 27 December 2022).
65. Rajapakse, T. SimpleTransformers. 2021. Available online: https://simpletransformers.ai/ (accessed on 27 December 2022).
66. Reimers, N.; Gurevych, I. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In Proceedings of the 2019

Conference on Empirical Methods in Natural Language Processing, Hong Kong, China, 3–7 November 2019; pp. 3982–3992.
[CrossRef]

67. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [CrossRef]

68. D’Ulizia, A.; Caschera, M.C.; Ferri, F.; Grifoni, P. Fake news detection: A survey of evaluation datasets. PeerJ Comput. Sci. 2021,
7, e518. [CrossRef]

69. Alhindi, T.; Petridis, S.; Muresan, S. Where is Your Evidence: Improving Fact-checking by Justification Modeling. In Proceedings
of the First Workshop on Fact Extraction and VERification (FEVER), Brussels, Belgium, 24 July 2018; pp. 85–90. [CrossRef]

70. Barrón-Cedeño, A.; Martino, G.D.S.; Jaradat, I.; Nakov, P. Proppy: A System to Unmask Propaganda in Online News. In
Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 9847–9848.
[CrossRef]

71. Truică, C.O.; Apostol, E.S.; S, erban, M.L.; Paschke, A. Topic-Based Document-Level Sentiment Analysis Using Contextual Cues.
Mathematics 2021, 9, 2722. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://maartengr.github.io/PolyFuzz/
https://github.com/maciejkula/glove-python
https://simpletransformers.ai/
http://dx.doi.org/10.18653/v1/D19-1410
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.7717/peerj-cs.518
http://dx.doi.org/10.18653/v1/W18-5513
http://dx.doi.org/10.1609/aaai.v33i01.33019847
http://dx.doi.org/10.3390/math9212722

	Introduction
	Related Work
	Methodology
	Text Preprocessing
	Term Weighting
	Word Embeddings
	Word2Vec
	FastText
	GloVe

	Transformers Embeddings
	BERT
	RoBERTa
	BART

	Document Embeddings
	Fake News Detection
	Naïve Bayes
	Gradient Boosted Trees
	Perceptron
	Multi-Layer Perceptron
	Long Short-Term Memory
	Bidirectional LSTM
	Gated Recurrent Unit
	Bidirectional GRU

	Evaluation Module

	Experimental Results
	Dataset Details
	Experimental Setup
	Fake News Detection
	Additional Experiments

	Discussion
	Conclusions
	References

