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Abstract: The current flight delay not only affects the normal operation of the current flight, but also
spreads to the downstream flights through the flights schedule, resulting in a wide range of flight
delays. The analysis and prediction of flight delay propagation in advance can help civil aviation
departments control the flight delay rate and reduce the economic loss caused by flight delays. Due
to the small number of data samples that can constitute flight chains, it is difficult to construct flight
chain data. In recent years, the analysis of the flight delay propagation problem is generally based
on traditional machine learning methods with a small sample size. After obtaining a large amount
of raw data from the China Air Traffic Management Bureau, we have constructed 36,287 pieces of
three-level flight chain data. Based on these data, we tried to use a deep learning method to analyze
and forecast flight delays. In the field of deep learning, there are CNN models and RNN models
that deal with classification problems well. Based on these two classes of models, we modify and in-
novate the study of the problem of flight delay propagation and prediction. Firstly, the CNN-based
CondenseNet algorithm is used to predict the delay level of the three-level flight chain data. Based
on this, the CondenseNet network is improved by inserting CBAM modules and named CBAM-
CondenseNet. The experimental results show that the improved algorithm can effectively improve
the network performance, and the prediction accuracy can reach 89.8%. Compared with the tradi-
tional machine learning method, the average prediction accuracy increased by 8.7 percentage points.
On the basis of the CNN model, we also considered the superiority of the LSTM (Long Short-Term
Memory network) considering the processing time sequence information, and then constructed the
CNN-MLSTM network and injected the SimAM module to enhance the attention of flight chain data.
In the experiment of flight delay propagation prediction, the accuracy rate is 91.36%, which is a sig-
nificant improvement compared to using the CNN or LSTM alone.

Keywords: flight delay propagation; deep learning; CBAM-CondenseNet; CNN-MLSTM
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1. Introduction

As the same aircraft performs multiple flights in one day, there are close connections
between the upstream and downstream flights, so delays in upstream flights may affect
many other downstream flights, causing massive propagation of flight delays. It is nec-
essary to deeply study the propagation path of flight delays in the airline network and
predict the delay level of downstream flights. Therefore, it can provide a theoretical basis
and data support for civil aviation departments to prevent and control delay propagation.

Many studies have been conducted by scholars on the prediction of flight delay prop-
agation. Earlier, starting from the characteristics of delay propagation, they built flight de-
lay propagation models to analyze the delay propagation impact [1-7]. Some researchers
constructed a colored-time Petri net model for multiple flights at airports [1]. The model
predicts whether flight delay will also occur at the downstream airport when the initial air-
ports experience flight delays. Other researchers [2] proposed a flight delay propagation
prediction model based on a Bayesian network. From the aspect of complex air transport
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networks, the delay propagation phenomenon of hub airports in large-scale networks has
been studied. Based on the queuing theory mechanism, researchers [3] proposed an analyt-
ical queuing and network decomposition model, and constructed an approximate network
delay model to study the delay of 34 busy airports in the United States. The authors [4] pro-
posed the analysis and prediction method of flight delay propagation based on complex
network theory, and showed the specific classification of delay propagation. All the above
methods are used to study the development of flight delay propagation by analyzing and
modeling the existing historical data. Most of them use small sample data to study the
causes of flight delay propagation problems. Traditional flight delay propagation analysis
methods are easily influenced by model selection and subjective factors. As the volume
of data in the civil aviation industry accumulates, more and more machine learning meth-
ods [8,9] are used for civil aviation delay prediction. Researchers [8] have proposed the
use of machine learning to predict air traffic delay, and the use of shallow artificial neural
networks to predict flight delay. Based on the problem of controllable delay in air traf-
fic control, some researchers [9] used machine learning methods to predict the delay of
individual aircrafts, taking into account the influencing factors such as weather, aircraft
navigation, and control.

At present, the feature extraction ability of the CNN (Convolutional Neural Networks)
is obviously more excellent than the traditional methods, and the practical application ef-
fect is remarkable [10-12]. Compared with the general CNN, CondenseNet proposed pre-
viously [10] can effectively solve the phenomenon of gradient disappearance during deep
network training, with higher computational efficiency and less parameter storage. Re-
searchers [11] have proposed a new Convolutional Block Attention Mechanism Module
(CBAM) to improve the network accuracy by double feature weight calibration from spa-
tial dimension and feature dimension. In this essay, the deep learning methods are used to
study the flight delay propagation problem and prediction. The CBAM-CondenseNet al-
gorithm is proposed by combining CondenseNet and the design ideas of CBAM. It is able
to predict other flight departure delays caused by the spread of upstream flight delays.

In aviation networks, the data that make up the flight chain contain both rich spatial
information and rich temporal information [13,14]. Although we use the deep learning
method to build a model based on the convolutional neural network to predict the im-
pact of flight delays, this model only extracts the spatial features of flight data and lacks
the consideration of temporal information. Therefore, this paper combines the CNN net-
work and Mogrifier LSTM (Mogrifier Long Short-Term Memory) to predict the problem of
flight delay propagation. The Long Short-Term Memory (LSTM) network can remember
the previous temporal information more profoundly in the time dimension, but the input
x in the LSTM and the previous state e, are independent of each other before being in-
put into the cell. The MLSTM makes these two inputs from completely independent to
autonomic interaction, which greatly improves network performance. The SimAM pro-
posed in literature [15] is different from the existing channel spatial attention module. The
module deduces the 3D attention weight for the feature graph without additional param-
eters, which can better extract the feature of the flight chain data structure. Therefore, we
fuse the attention module SimAM on the basis of CNN-MLSTM to improve the prediction
accuracy. The final model is named SimAM-CNN-MLSTM.

According to the spatial and temporal characteristics of flight chains, in this paper, the
method of flight delay propagation prediction based on deep learning [16-38] is proposed.
This method not only uses the advantages of the CNN in spatial feature extraction, but
also considers the advantages of the LSTM network in processing temporal information,
and uses the attention mechanism module to enhance the feature matrix with important
neurons. When the same aircraft performs multiple flight missions, it can predict the de-
lay level of subsequent flights according to the propagation pattern of flight delays, and
provide corresponding suggestions for the relevant civil aviation departments to control
the delay propagation.
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2. Flight Delay Propagation Prediction

The flight delay propagation prediction based on deep learning mainly includes the
following parts: data preprocessing and flight chain data set construction, feature extrac-
tion, and classification prediction. Feature extraction is mainly introduced in the third
and fourth parts of this paper. The following mainly introduces data preprocessing, flight
chain data set construction, classification, and prediction.

2.1. Data Preprocessing

The flight data used in this project are the flight data of China from March 2018 to
May 2019 provided by the Civil Aviation Administration of the China East China Regional
Administration (ECRA). Among them, the key sample attributes include flight number,
aircraft number, actual departure/arrival airport, flight path, planned departure/arrival
time, actual departure/arrival time, planned departure/arrival airport, planned aircraft
type, cruise altitude, cruise speed, military batch number, coverage type, and a total of
38 attributes. These characteristics are closely related to whether the flight is delayed or
not, which not only contains important spatial features but also contains abundant time
information. Since there are some abnormal values and null values in the flight data pro-
vided by the ECRA, the mainstream data analysis library Pandas is selected to clean the
original flight data set. The characteristic attributes required by the model are defined
as follows.

Definition 1. Flight data Fy, including 38 characteristic attributes such as flight number, aircraft
number, actual departure/arrival airport, flight path, planned departure/arrival time, actual depar-
turelarrival time, etc.

Definition 2. Flight chain data F., within a certain time range, the same aircraft respectively
performs different flight tasks from class 1 airport to class 2 airport and then to class 3 airport, and
the time sequence is related. This is a flight chain. Multiple flight chain data constitute the flight
chain data set.

2.2. Construction of the Flight Chain Data Set

Flight delay has the characteristics of temporal and spatial distribution. When the
same aircraft performs different flight missions in succession, it is common for subsequent
flights to be delayed due to the previous flight delay. After the delay of the previous flight
is passed along the flight plan step by step, it will lead to a large area of flight delays. The
airport where the same aircraft takes off for the first time within a certain time range is de-
fined as the class 1 airport. The airport where the aircraft arrives from the class 1 departure
airport for flight task 1 is called the class 2 airport, also known as the class 1 arrival airport
or the class 2 departure airport. By analogy, the same aircraft Z continuously performs
flight tasks between multiple airports, which are connected in chronological order to form
a flight chain relationship, as shown in Figure 1. Taking “Beijing-Tianjin-Shanghai” as an
example, Beijing is defined as a class 1 airport. The same aircraft performs flight task 1
from Beijing to Tianjin. Tianjin is the class 2 airport in the flight chain, also known as the
class 1 arrival airport or the class 2 departure airport. The plane starts from Tianjin and
performs flight task 2. It flies from Tianjin to Shanghai. Shanghai is the class 3 airport in
the flight chain, also known as the class 2 arrival airport or the class 3 departure airport.

Based on the above characteristic attributes, the flight chain data set is constructed.
Firstly, a hub airport is selected as the class 1 airport. The airports with the number of
flights from this class 1 airport are ranked from high to low, and the top 20 airports are
selected as class 2 airports. Then, we directly select the airport with flights from each
class 2 airport as class 3 airports. Thus, the air transport network is determined with the
class 1 airport as the center and radiating outward. Secondly, taking the time and the
flight tail number as key values, each flight chain is extracted from the aviation network to
form a flight chain data set. Thirdly, the discrete data and continuous data in the original
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data are encoded by different methods to avoid misleading the training process of the
network. Lastly, the processed data are converted into a suitable characteristic matrix that
feed into the network. In order to more clearly describe the flight chain data set, the i-th
flight chain data in Definition 2 are represented by f; = (i1, fio, fi3), where f;1, fio, and f;3,
respectively, represent the flight chain data f; containing the information of three single
flights that perform flight tasks before and after in the time dimension. The F. dataset can
be further represented by F. = {(f11, f12, f13), (21, f22, 23), - - - » (fu1, fu2, fu3)}- The flight chain
dataset description is shown in Figure 2.

Aircraft Z

Class 1 Class 2 Class 3
arrival airport arrival airport arrival airport

" » ™.
L Lad Lad
Class 2 Class 3 Class 4
Flight task 1 departure airport Flight task 2 departure airport Flight task 3 departure airport

Class 1
departure airport

Figure 1. Flight chain model.
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Figure 2. Flight chain data set description.

The flight data of three consecutive flights of the same aircraft within a certain time
range constitute the flight chain data. There are 1,048,576 pieces of data in the original
single flight. After data cleaning and construction of the flight chain data set, the data
volume of the flight chain data used in the flight delay propagation prediction experiment
are 36,287 pieces. The data set construction steps are as follows:

According to Definition 2, an aircraft performs continuous flight missions. In this
paper, a three-class flight chain data set is formed according to the change of the same
aircraft within 24 h. Firstly, select the four attributes of the aircraft number, flight execution
date, class 1 arrival airport, and class 2 departure airport as the key values of data fusion;
conduct the first data fusion on the cleaned flight data set; and remove the abnormal flight
chain whose departure time of the secondary airport is earlier than that of the primary
airport. At this time, in the flight chain data set, the aircraft performed two flight missions
and turned around three airports in space.

The generation of the delayed propagation phenomenon has the characteristic of pass-
ing from one class to another, so we continue to fuse the flight chain data set for the second
time. The aircraft number and flight execution date remain unchanged, and the class 2 ar-
rival airport and class 3 departure airport are selected for the second data fusion. The
abnormal flight chain whose departure time from the class 3 airport is earlier than the ar-
rival time at the class 2 airport is removed. The flight chain data set of two consecutive
flight tasks is obtained.

By analogy, the data are fused three times in this paper to form the final flight chain
dataset. The aircraft in each data chain performed three consecutive flight missions, and
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the spatial dimension involved the transit situation in four airports. A total of four airports
including the first-class airport, second-class airport, third-class airport, and fourth-class
airport are affected by flight delays. The delay label of the flight chain is the delay level
of the class 3 flight mission. Most aircrafts fly one mission and do not fly another that
day. As more flights are performed on the same day, the available data in the flight chain
data set become smaller and smaller. Therefore, we focus on the delayed propagation
of flight chains consisting of three consecutive flight missions. Finally, the characteristic
attributes in the flight chain data set are divided into the numerical type and discrete type.
The numerical type features are coded by Min-Max normalization, and the discrete type
features are coded by CatBoost.

2.3. Classification and Prediction

Based on the relevant meaning of “flight delay” in the regulations on normal flight
management, the flight delay is subdivided into five delay levels, and the number of delay
levels is divided into different levels. The judging standard is shown in Table 1. Grade
labels are calculated based on the difference value between the flight planned arrival time
and the flight actual arrival time in the data set, and finally obtains the flight delay predic-
tion grade with the Softmax classifier.

Table 1. Classification of flight delays.

Delay Level Delay Time T/min Delay Level Classification
No delay T<15 0
Minor delay 15<T <60 1
Moderate delay 60<T <120 2
High delay 120<T < 240 3
Significant delay T >240 4

3. CBAM-CondenseNet

CondenseNet [10] is a densely connected network based on the convolutional neural
network. Based on the excellent feature extraction ability and higher computational effi-
ciency of the CondenseNet network, we insert the CBAM [11] module on the CondenseNet
network to improve the base network. The CBAM module adopts channel and spatial at-
tention mechanisms to enhance the information transfer of the deep network structure.
The CBAM-CondenseNet algorithm proposed in this paper combines the advantages of
CondenseNet and CBAM. The improved CBAM-CondenseNet algorithm is used to extract
features from the fused flight chain data to make it more adaptable to the task of flight de-
lay propagation prediction. The experimental results show that the improved algorithm
effectively improves the network performance.

3.1. Model Description

The traditional CondenseNet network structure is given in Figure 3a. Each network
layer in each structural block is linked to all the following layers in a dense connection,
and different structural blocks are also connected in a dense connection. The CBAM-
CondenseNet proposed in this paper is to add a CBAM block after the convolutional layers
(8 x 3) of each structural block, as shown in Figure 3b. After the integration of the Con-
denseNet and CBAM modules, the network can improve useful features and suppress
useless features according to the different importance of channels and spaces, owing to
which the model’s ability of feature expression has been enhanced.
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Figure 3. Network structure diagram. (a) CondenseNet network structure. (b) CBAM-CondenseNet
network structure.

3.2. CBAM Convolution Module

CBAM mainly consists of two steps: first, the information is compressed into a chan-
nel descriptor using global max pooling and global average pooling in the spatial dimen-
sion, and the weight array of the aggregation in the compression operation is calibrated.
Secondly, the importance degree between pixels is modeled based on the above operations.
Two different channel descriptors are obtained by using global max pooling and global av-
erage pooling in the channel dimension, and the two channel descriptions are combined
according to their channel dimension. Then, a hidden layer containing a single convolution
kernel is used to carry out the convolution operation on the feature mapping to generate
the final calibration of weights.

The CBAM module structure diagram is shown in Figure 4. For an input feature ar-
ray F€ R©*H*W of an intermediate layer (F represents the input characteristic array of the
CBAM, whose dimension is C x H x W. In general, C represents the number of channels,
H represents the height, and W represents the width), the CBAM first undergoes a com-
pression manipulation on a 1-dimensional channel. Then, the CBAM is multiplied with
the feature array of inputs to obtain F’. Finally, the spatial weight array of F'€RC*H*W jg
calculated by the 2-dimensional space compression operation to obtain F”, where © indi-
cates element-wise multiplication that the array elements in the corresponding positions
are multiplied one by one.

F' = M.(F)OF (1)

F' = Mg(F')OF @)
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Figure 4. CBAM structure diagram.

Among them, F € REXHXW gl e REXHXW and F” € RE*H*W jndjcate the feature array
of the input, the feature mapping via channel attention selection, and the feature mapping
via spatial attention selection, respectively. Feature mapping Mc € R©*1*! is the channel
compression weight array, and Mg € RT**W is the space compression weight array. M(F)
is used to represent the formula for calculating the channel attention characteristic array,
and M;(F') is the formula for calculating the spatial attention characteristic array [11].

3.3. CBAM-CondenseNet Single Building Block

The computational unit structure of a single structural block in the CBAM-CondenseNet
network is shown in Figure 5. Among them, Xj is the array eigenvalue of the input of the
corresponding layer, which means the nonlinear feature mapping after convolution trans-
formation, X, represents the output array of the current layer, and M’, H', C’, M, H, and C
in the figure represent three dimensions information of the array eigenvalue X, X».

ixl M 'xH 'xC")

1x1 L-Conv
3x3 G-Conv
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3x3 G-Conv

CBAM

~— — — F ———

v X2
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CBAM

N E— E—

T

v Xi

Xo(MxH*C)

Figure 5. Network structure diagram.

In the CBAM-CondenseNet network structure, the feature mapping U after the con-
volution transformation of the L-th layer network is shown in formula (3).

U=wte f(BNWED @ F(BN([XoX; ... X1 1)) ®)

The outputs of all previous layers are first densely concatenated, and the outputs are
obtained after batch normalization and activation function and then convolution opera-
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tion with the weight array. Among them, [Xo, Xi, ..., X;_1] indicates that the feature
mappings of all previous layers are took as input of the next layer network in the way of
dense connection [10]; W=D and WE denote the 1 x 1, 3 x 3 convolutional weight matrix
in turn; BN(:) represents batch normalization of the output data for each hidden layer; f(-)
is the ReLU activation function; And ® represents the convolution operation.

3.4. Back Propagation

The CBAM-CondenseNet model training process is mainly implemented by the Back
Propagation (BP) algorithm. BP passes the error messages of the training samples back to
the hidden layers to realize the continuous iterative update of the weight array between the
hidden layers until the network converges. According to the BP algorithm, taking the first
two network structure blocks of CBAM-CondenseNet as an example, the gradient value
between each hidden layer is deduced. It is assumed that each structural block contains
two groups of nonlinear transformations, and each group of transformations of the first
structural block has one convolution layer and one CBAM. The second structure block
has two convolution layers and one CBAM for each set of transformations, as shown in
Figure 6.

I
2
LA W
Wnl
1 1 8
v Uk 1 / Uld 1 l]ksu Uk6 UI:I‘ l]k o
X Y
— = 5 > T > U > v v
wX! we we W WkJ L AT o 75l
D o St e o T el = B s e e
SSSS=IToooTTT T TTeee I -7

Figure 6. CBAM backpropagation.

Then, the calculation of the error term of each hidden layer in the structure block is
shown in formulas (4)—(13).

10 — 37 /017k10 4)
O = K0 4 WO & ¢ (1) ®)
5 = 59« WK & £ (L") ©)
557 — 5k8 5 W8 @)
546 = 57 « WK & £1(UI¥9) ®)
S5 = §k6 L WKS & £ (L) )

5K — §K5 L WS (10)
K3 — gk 4 KE gk S o kS pymd (11)
§2 = 6%« Wh & Fr(U?) (12)
S = 62 s WR & Fr(UF) (13)

Among them, &, 6%, ..., sK10 are the error terms corresponding to each layer in
the two structural blocks, respectively. U, U2, ..., U0 represent the output feature
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mappings of each layer. W' represents the weight array between the k3 and the k5 lay-
ers. 9]J/0U0 represents the derivative of loss function J with respect to the last layer of
network output characteristic mapping. * indicates flipping the convolution kernel in the
convolution operation ®. The error terms of the remaining structural blocks can also be
derived from Equations (4)—(13). The gradient value of the 1st hidden layer of the CBAM-
CondenseNet network can be expressed as shown in formula (14).

a]/awl — ((5k1 « WK1 + ok3 e pnl +5k5 * W21
k8 W3 + k5 W4 + k8 « WnS) ® AY (14)

Among them, W, W2, and W represent the weight array between the k3 layer,
the k5 layer, the k8 layer, and the first layer, respectively, and A’ represents the feature
array of the input. From the above equation, the gradient information of the 1st hidden
layer contains not only the gradient weights of the backpropagation of the next layer, but
also the gradient information of each set of nonlinear transformations in the 1st structural
block and the 2nd structural block. As a result, the gradient value of the hidden layer has
been maintained in a stable range. Therefore, the CBAM-CondenseNet network can not
only make efficient use of information features through dual attention mechanism strategy,
but also reduce the decay of the error term in each hidden layer by its own backward
conduction mechanism. It can also enhance the ability of learning and expression in deep
networks, and improve the robustness of the network.

4. SimAM-CNN-MLSTM

Considering the temporal and spatial characteristics of flight delay propagation, we
introduce the Mogrifier LSTM method on the basis of the CNN. The CNN has significant
advantages in feature extraction, while the Mogrifier LSTM network is better at processing
time sequence information. The SImMAM-CNN-MLSTM integrating attention mechanism
SimAM not only considers the spatial characteristics of flight tasks but also pays attention
to the temporal relationship between flight chain data. The model also uses the attention
mechanism module to enhance important neurons in the feature matrix. The improved
model has great advantages in dealing with the task of flight delay and prediction.

4.1. Model Description

The CNN network model has achieved great success in the field of feature extraction.
The key to feature extraction is the use of convolution kernel. It makes the network model
have local receptive field, which can avoid the defect that the traditional feature extraction
model is difficult to correlate the whole data. Therefore, the CNN convolutional layer is
first used to extract the spatial features of the flight chain data set. However, the CNN
has difficulty in learning the correlation between time-series data in prediction. Due to the
time-series character of flight chain data, the prediction of the flight chain delay propaga-
tion problem requires the enhancement of recurrent neural network series methods. The
traditional CNN-LSTM network structure diagram is shown in Figure 7a.

The key features enhanced by the attention mechanism make the prediction results
more accurate. The proposed SimAM fusion convolutional layer in this paper adopts the
addition of the SimAM attention module after each convolutional layer to carry out chan-
nel and space synchronization weighting for the extracted key feature information. The
Mogrifier LSTM model is selected in the extraction part of time sequence features to better
enable the interaction between the previous state and the input data before the cell input.
The CNN-Mogrifier LSTM network model of the fusion attention mechanism SimAM pro-
posed in this paper is shown in Figure 7b.
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Figure 7. Network structure diagram. (a) CNN-LSTM network structure. (b) SimAM-CNN-MLSTM
network structure.

4.2. SimAM Attention Mechanism Module

At present, the commonly used attention mechanism CBAM usually carries out chan-
nel attention first and then spatial attention. It is impossible to pay attention to space and
channel at the same time. Channel attention is shown in Figure 8a, and spatial attention is
shown in Figure 8b.

However, the two types of attention in the human brain tend to work together. In
neuroscience, information-rich neurons usually show different firing patterns from those
of the surrounding neurons. Moreover, activating neurons usually suppresses surround-
ing neurons, i.e., spatial inhibition. Furthermore, neurons with spatial inhibition effects
should be assigned higher importance. In order to better realize the attention, SimAM
realizes an attention module with unified weights based on the neuroscience theory, and
the structure diagram of SimAM is shown in Figure 8c. Taking the first feature extraction
module in Figure 7b as an example, the single structural block of the CNN convolutional
layer fused with SimAM is shown in Figure 9.
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Figure 8. Attention comparison diagram. (a) Channel attention structure. (b) Spatial attention struc-
ture. (c¢) SimAM attention structure.
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Figure 9. Integration of SimAM individual building blocks.
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In order to evaluate the importance of each neuron, the easiest way is to distinguish
the target neuron from other neurons. The energy function of SimAM [15] is defined as
shown in formula (15).

. 1 M1 X
er(wr, by, xi) = (g =+ 57— 1 (0o — %)’ (15)
i=1

where f and x; represent the target neurons and other neurons of the input three-dimensional
eigenvector x, and F=wit+by, £ = wix; + by, i represent the index in the spatial dimen-
sion, M denotes the number of all neurons in a channel, w; and b;, respectively, refer to
the weight and paranoia of neurons during transformation. To facilitate the computation
of the minimization of the energy formula, the binary label method is adopted. Lety; =1,

yo = —1, and add regular items. A is a super parameter. The energy function is shown in
Equation (16).
1 A 2 2 2
et(Zl)t,bt,y,Xi) == m (—1_ (wtxl+bt)> +(1— (wtt+bt)) +)\wt (16)

Each channel has M = H x W energy functions. We then find the analytical solution
to formula (16). w; and b; are represented by formulas (17) and (18), respectively.

2(t—u
wy = — (2 t)2 (17)
(t—u)” +207 +2A
1
by = *E(f+1/lt)Y/Ut (18)
where u; = ﬁx?ﬁll xj, 07 = %Zi:;l(xi - ut)z. Therefore, the energy formula is
simplified to Equation (19).
52
o = 4(0°+A) (19)

(t—02)* +262 +2A

Equation (19) indicates that the greater the distinction between t neurons and periph-
eral neurons, the higher the importance, and the neuron importance can be calculated
through 1/¢*. Finally, after judging the importance of neurons according to formula (19),
the feature matrix is enhanced according to the definition of the attention mechanism, as
shown in formula (20).

X = sigmoid(%) ®X (20)

4.3. Mogrifier LSTM Module

Since the increasing use of deep learning, the LSTM has been widely used in various
time-series related tasks. The LSTM is a kind of RNN. The LSTM can relieve the gradient
disappearance and information forgetting issues. However, in the LSTM, the current input
is independent of the previous hidden layer state hyye;, and they only interact in the gate.
The lack of previous interaction may lead to missing context information. The Mogrifier
LSTM [14] allows the input and state to interact first without changing the structure of the
LSTM itself, hoping to enhance the context modeling ability.

The unit structure of the Mogrifier LSTM is shown in Figure 10. The main approach
of the Mogrifier LSTM is to alternately let x and k., interact for QR decomposition before
ordinary LSTM computation. Let the input x and state hyy,, first conduct multiple rounds
of interaction, and then send them into the LSTM to participate in calculation. This simple
modification achieves remarkable results, and its formula is shown in (7).

Mogrify (x/ Cprev/ hprev) = Lstm (xTr Cprev/ h;rev) (21)
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where Cpyep represents the previous Mogrifier LSTM unit cell state and /., represents the
hidden layer state. x" and h;m are defined as the value with the largest superscript in x’

and h;rev, as shown in formulas (22) and (23). The number of alternating rounds r in the
formula is a hyperparameter; if r = 0, then this is an ordinary LSTM.

x = 20(Q' hydy ) 0x' 2 0ddii € [1...1] (22)

h;rev =20 (Ri xi_1> @h;rezv, eveni € [1...7] (23)

Cprev Memory cells ¢

\4

=

QR decomposition
interaction

Figure 10. The Mogrifier LSTM cell structure.
The SImAM-CNN-Mogrifier LSTM model in this paper integrating the attention mech-

anism is compared and tested, and the number of alternating rounds r =6 has the best effect.
When r = 6, the interaction process of the Mogrifier LSTM is further shown in Figure 11.

LSTM

Figure 11. The Mogrifier LSTM interaction process.

The interaction between x and .y in this paper before entering the LSTM network
is shown in formulas (24)-(29), where x ! = x, hgm = hpreo-

prev =20(R°x° Qh?)rev (24)

(25)

Ox! (27)

Woveo = 20 ( R?x") O H), (28)

(x2)
=20 (Qn) o
[ 20(R4x3)© 2 o (26)
=20(@)
(1)
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! = ZU(thO) Ox! (29)

The final result after the interaction is input into LSTM cells, and its unit structure
formula is expressed as formulas (30)—(35).

f = (W 4+ W, + ) (30)
i= a(wixx5 + WS, + bl’) (31)

j = tanh (W2 + WS, + ) (32)
0 = o (Wos® + Wohh,, +b°) (33)
c=fOcprer +10]j (34)

h = 0Otanh(c) (35)

where f is the forget gate, it is set to manage how much the previous memory cell Cpyey
retains. i is the input gate used to manage how much the current information should be
input. O is the output gate to manage how much the current memory cell should output.

4.4. Backpropagation

The backpropagation process of the network is iterated layer by layer through a gra-
dient descent algorithm, and parameters are updated according to the error term until the
network converges. The CNN-MLSTM fused with the attention mechanism SimAM is di-
vided into the Mogrifier LSTM module and the CNN module fused with SImAM in the
process of backpropagation. The backpropagation process is shown in Figure 12.

S8k --5%--5%- -0 e 58

Figure 12. Network reverse propagation map.

According to the gradient descent algorithm, the error term in the backpropagation
process of the Mogrifier LSTM network is first deduced. According to the principle of
error backpropagation, it is derived that the backpropagation process of the error along
the number of network layers is shown in formula (36).

o = oL, W 4 5L WSt 4 (517 twfx + b W (36)

1 sl L sl : :
where §; ;, 6 17z (SZt, d, ¢ respectively, represent the error terms of each gate in each memory

cell as shown in Equations (37)-(40). It represents the weight matrix of the input gate,
forget gate, and output gate in turn.

ol = dtolf (ji )it (1—11) (37)

%, = dtolf ()il fi (1= £1) (38)
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oL, = ol (jg)ig(1 - (7;)2) (39)
8y = oif (ct)ob (1 - o) (40)

where f(-) is the activation function and f(-) is the derivative of the activation function.
The superscript [ represents the current layer, and the subscript ¢ represents the current
moment. The error calculation of each hidden layer in the convolution module is shown
in Equations (41)—(47).

& = 68 *f(u6) (41)
86 57*w6®f(u5) (42)
=0 Wie f(ut) (43)
o= Whe f(U) (44)
B =Wl f(uz) (45)
P = sWrer(ul) (46)
ot =ats Wl f(ul) (47)

Among them, 61, 6%... 67 represent the error term of the corresponding layer, respec-
tively; U, U?, ...U° is the output feature mapping of each layer; and W represents the
mapping matrix between each layer.

5. The Discussion about Simulation Results

In this paper, the improved CBAM-CondenseNet network based on the CNN, and
the improved SimAM-CNN-MLSTM network, are constructed respectively. The predic-
tion experiments are conducted separately for the departure flight delay levels of class 3
airports affected by the propagation of preceding flight delay. The experiment shows the
result of predicting the departure delay level of class 3 airports affected by the departure
delay of class 1 and class 2 airports. Therefore, flight delay levels of class 3 airports are used
as labels for training on the training set, and flight delay level predictions are performed
on the test set. Next, the data, experimental environment, and parameter configuration
are introduced, and then, the performance of the model before and after improvement is
compared using various indicators.

5.1. Dataset Description

The dataset used for the experiments in this paper is the national flight data from
March 2018 to May 2019 provided by the ECRA. Flight chain data are formed by the flight
data of an aircraft flying three times in a certain time range. The original flight data used in
the experiments are 1,048,576 items. In the original data, five levels of delay are divided ac-
cording to the delay time, among which the proportion of no delay, minor delay, moderate
delay, high delay, and significant delay is 65:20:8:4:3. After data cleaning and flight chain
dataset construction, the final flight chain dataset used in the flight delay propagation in-
cludes 36,287 data items. Subsequent experiments are conducted and verified on this flight
chain dataset. The training set and validation set are divided in a ratio of 5:1. The experi-
mental environment is a Dell PoweredgeR370 rackmount server with 16G video memory,
double Intel XeonE5-2630 CPUs with 2.20 GHz CPU frequency, and NVIDIA P100 GPU
accelerated graphics card. The model is run on the Pytorch deep learning framework built
on the Ubuntu 16.04 operating system.
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5.2. Parameters Selection

After several experiments and parameter adjustments, the parameter selection infor-
mation for the CBAM-CondenseNet network and the SimAM-CNN-MLSTM network is
shown in Table 2. The CBAM-CondenseNet network is initialized with weight orthogo-
nality. The optimizer introduces the Momentum'’s Stochastic Gradient Descent method,
where the momentum factor is set to 0.9. The coalescence factor in the grouped convolu-
tion is set to 4. The learning rate is set to 0.1, and the learning rate is adjusted by cosine
annealing. The number of batches during training is 128, and the maximum number of
iterations is 69,000.

Table 2. Experimental environment parameters.

Parameter Name CBAM-CondenseNet SimAM-CNN-MLSTM
Loss function Cross entropy loss function Cross entropy loss function
Learning rate 0.1 0.001

Optimizer SGD Adam
Regular term A - 1x107°
Alternate rounds r - 6
Dropout 0 0.2
Number of training rounds 100 100

The CNN-MLSTM fused with SimAM uses four-layer convolution in the convolution
layer. The convolution layer is configured as (3 x 3, 64), indicating that the size of the
convolution kernel is set to 3 x 3, the number of convolution filters is set to 64, and the step
size is the default value of 1. At the same time, padding 0 is performed on the boundary to
ensure that the output size does not change after the input of the convolution layer. The
pooling layer is averaged pooling with a pooling dimension of 2 x 2, and the step size
is also set to 1. Then, the next layer is the Mogrifier LSTM network with hidden layer
dimension 256.

5.3. Evaluation Metrics

The experiment in this paper is a typical multi-classification task. The main common
evaluation metrics are accuracy, precision, recall, and F1 value. Each evaluation metric is
explained below using a confusion matrix, as shown in Figure 13.

True Value
Confusion Matrix
Positive Negative
Predicted Positive TP FP
Value Negative EN TN

Figure 13. Confusion matrix.

TP: True Positive, indicates that the prediction value is a positive case and the true
value is a positive case.

TN: True Negative, indicates that the prediction value is a negative case and the true
value is a negative case.

FP: False Positive, indicates that the prediction value is a positive case and the true
value is a negative case.

FN: False Negative, indicates that the prediction value is a negative case and the true
value is a positive case.

The accuracy rate represents the proportion of the number of samples with correct
classification to the total number of samples, which reflects the overall performance of
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the model. However, when the number of positive samples and negative samples are ex-
tremely unbalanced, the accuracy rate is not a good evaluation of the model’s performance.
The calculation formula is shown in Equation (48)

Ncorrect

Accuracy = N

(48)
The precision rate is the proportion of true positive classes among all results predicted
to be positive classes. The accuracy rate is calculated as shown in Equation (49).

TP

P=_——
TP+ FP

(49)
Recall indicates the proportion of the number of correctly predicted positive samples
to the total number of true positive samples. The recall’s calculation method is shown

as follows:
TP

R=—"—
TP+ FN

The F1 value is the result of a combination of considerations, and is the summed
average of the precision and recall rates. Since P and R can easily go up and down, the
numerator of F1 is P * R. This makes that blindly increasing either P or R will not improve
the F1 index. F1 will only be high when both are high. Equation (51) following the sec-
ond equal sign also suggests that the F1 index is designed to lower both FP and FN (false
positives and false negatives).

(50)

Pl_Z*P*R_ TP
~ P+R TP+ (FP+FN)/2

(51)

5.4. Analysis of Experimental Results

Before training the neural network, the data set needs to be divided into two cate-
gories: the training set and test set. The training set data are used for neural network
learning. The generalization ability of the trained model is examined by using the test
set. Table 3 shows the loss values, accuracy, precision, recall, and F1 value of the CBAM-
CondenseNet and SimAM-CNN-MLSTM models in the data set.

Table 3. Experimental indicators.

Indicators CBAM-CondenseNet SimAM-CNN-MLSTM
Loss value 0.3 0.2
Accuracy 0.898 0.9136
Precision 0.913 0.825
Recall 0.892 0.874
F1 0.904 0.849

The performance of model prediction is measured by the loss value of the training set.
The smaller the loss value, the more the model converges. It also means that the prediction
result is closer to the true value and the robustness of the model is better. With the same
training dataset, the faster the model converges, the better the learning ability of the model
is. Figure 14 shows the changes of the loss values of the CBAM-CondenseNet and SimAM-
CNN-MLSTM with the number of iterations. The SImMAM-CNN-MLSTM model converges
after 20 rounds of training, and the CBAM-CondenseNet model converges after 40 rounds
of training. The SimAM-CNN-MLSTM network performs better in terms of the model
learning capability.
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Figure 14. Variations of loss values of the CBAM-CondenseNet and SimAM-CNN-MLSTM with the
number of iterations.

The accuracy rate represents the overall performance of the model and evaluates the
generalization capability of the model classification. The CBAM-CondenseNet is able to
achieve an accuracy of 89.8%, while the SimAM-CNN-MLSTM performs even better, with
an accuracy that is 1.56 percentage points higher than that of the CBAM-CondenseNet
network. The flight delay prediction in this paper is a typical multiple classification task.
However, the number of flights of each delay level in the flight data set is not evenly dis-
tributed. Therefore, accuracy is not the only indicator of the overall performance of the
model. Precision represents the degree of accuracy in predicting the positive sample re-
sults. Recall indicates how many of the positive cases in the sample are predicted cor-
rectly. Precision and recall reflect the assessment of the classification ability for each cate-
gory in a multiclassification problem. The F1 value is the summed average of the precision
and recall. From Table 3, the SimAM-CNN-MLSTM outperforms CBAM-CondenseNet in
the evaluation of model accuracy, but the CBAM-CondenseNet network performs better
in terms of precision and recall, which represented classification capabilities of each cate-
gory. This means that CBAM-CondenseNet has a more balanced prediction performance
in multiple categories.

5.5. Effect of Network Layers on CBAM-CondenseNet

In order to compare the effect of model improvement before and after, the influence
of different number of network layers on the accuracy of the model is explored. Table 4
shows the accuracy of the improved CBAM-CondenseNet and CondenseNet models with
different number of layers on the dataset. The experimental results show that the improved
CBAM-CondenseNet model has a higher model accuracy than the CondenseNet model
for the same number of layers. When the network reaches 44 layers, the accuracy rate is
89.81%. To further verify the stability of the improved model and the trainable depth, the
network is tested with deeper training. When the number of layers of the network is 70,
102, and 126, the experimental results show that the CBAM-CondenseNet network could
maintain good stability, and the accuracy rate is maintained stable at about 89.8% as the
network deepened.
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Table 4. Comparison of classification accuracy (%).

Number of Network Layers CondenseNet CBAM-CondenseNet
18 83.13 87.52
28 85.72 89.36
36 86.66 89.75
44 86.68 89.81
70 85.56 89.82
102 86.66 89.82
126 86.65 89.82

To verify that the CBAM-CondenseNet model is more advantageous in terms of data
processing and prediction accuracy, the accuracy of the CBAM-CondenseNet and Con-
denseNet algorithms with different layers is analyzed and compared with the algorithm
model proposed previously [39] on the flights chain dataset, as shown in Table 5. When the
network has 18, 36, and 44 layers, the accuracy of the CondenseNet algorithm is higher than
that of the DenseNet, SE-DenseNet, and CBAM-CondenseNet algorithm models. When
the network reaches 44 layers, the CBAM-CondenseNet model is 4.25% more accurate than
the CondenseNet model. It indicates that the CBAM-CondenseNet network has better per-
formance and higher classification accuracy.

Table 5. Comparison of classification accuracy of different models (%).

Number of CBAM-
Network Layers DenseNet SE-DenseNet CondenseNet CondenseNet
18 80.81 82.03 83.93 89.19
36 81.28 82.37 86.52 91.31
44 82.57 83.28 87.11 91.36

5.6. Effect of Alternate Rounds on SimAM-CNN-MLSTM

The number of alternating rounds r value is an important hyperparameter in the Mo-
grifier LSTM network. The larger the r value, the more fully the input x of the LSTM
network interacts with the state of the previous cells, and the better the network can ex-
plore the correlation between the temporal information. However, when r value increases
by 1, each update of the LSTM cell state requires one more QR matrix decomposition, and
the amount of network calculation and training time will greatly increase. Due to the lim-
ited arithmetic power of the experimental hardware facilities, the experimental r is set to
6 at most. Table 6 shows the experimental results of the prediction accuracy of flight de-
lay propagation and the training time per round when the number of alternating rounds
r increases. The experiments in this paper are not very demanding in terms of time con-
sumption, and priority is given to the impact on accuracy, so the r value is set to 6.

Table 6. Comparison of alternating rounds r accuracy and training time.

Alternate Rounds Accuracy Training Time per Round
1 88.45% 26.22's
2 88.91% 28.41s
3 90.42% 32.47s
4 90.28% 40.86 s
5 90.97% 56.53 s
6 91.31% 7134 s

5.7. Comparison of Model Complexity

Space complexity and time complexity are two important metrics to indicate the com-
plexity of an algorithm. Space complexity is used to calculate the degree of resource con-
sumption. The model parameters are measured by Params, and the more complex the
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algorithm is, the more parameters are involved. The time complexity is measured by the
number of floating-point operations (FLOPs), and the higher the complexity of the model,
the longer the model training and prediction time will be. To test the performance of the
improved model, Table 7 shows the complexity of the model in this paper compared with
several other models, where Mogrifier LSTM is abbreviated as MLSTM.

Table 7. Comparison of model complexity of different network models.

Model FLOPs (M) Params (M)
CNN 3.23 0.32
LSTM 1.56 0.64
MLSTM 1.57 0.68
CNN-LSTM 4.80 0.98
CNN-MLSTM 4.82 1.05
SimAM-CNN-MLSTM 4.82 1.05
CondenseNet 20.55 1.39
CBAM-CondenseNet 20.77 1.46

The comparison shows that, with the same amount of data input, the computation
amount of the CBAM-CondenseNet network increased slightly compared with the model
before the improvement. The growth of the improved network model parameters is not
significant compared to the improved network model. Therefore, the embedding of CBAM
brings about a negligible growth in the overall parameters and computation of the model,
and the algorithm complexity is basically the same as before the improvement.

As can be seen in Table 7, the MLSTM does not have a great increase in complexity
compared to the LSTM algorithm. The parametric increase basically does not change af-
ter incorporating the attention mechanism SimAM module in the CNN-MLSTM, which
further verifies the parametric-free property of the SimAM module.

5.8. Comparison with Traditional Models

To test the performance of the CBAM-CondenseNet network and SimAM-CNN-MLSTM
network, this section uses CNN, LSTM, MLSTM, CNN-LSTM, CNN-MLSTM, and CBAM-
CondenseNet network models on the flight chain dataset to conduct accuracy and loss
value comparison experiments. For the same flight chain data set, the comparative ex-
perimental results of different models are shown in Figures 15 and 16. Figure 15 is the
comparison of loss values, and Figure 16 is the comparison of accuracy.

2.00
—— CNN
1.75 — LSTM
—— MLSTM
1.50 - —— CNN-LSTM
CNN-MLSTM

—— SimAM-CNN-MLSTM
CBAM-CondenseNet

Loss
>
(=]

0.50 A

Epoch

Figure 15. Comparison of the loss values of different network models.
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Figure 16. Comparison of the accuracy of different network models.

From the experimental results, we can see that the CNN-MLSTM network with the ad-
dition of the convolutional idea has a significant improvement in the accuracy on the flight
chain dataset compared to the CNN network alone or the LSTM network, with an improve-
ment of 16.46% and 3.16%, respectively. In this paper, the addition of the SimAM attention
mechanism module to CNN-MLSTM improves 1.56% to 91.36% on the flight chain dataset,
which is significantly higher than the accuracy of other networks and has the lowest loss
function value.

It is comprehensively shown that when performing flight delay propagation predic-
tion, the SimAM-CNN-MLSTM network with fused attention mechanism proposed in this
paper predicts the closest flight delay propagation classification results to the actual ones,
and the network performance is the best in terms of accuracy prediction.

In order to further verify that the accuracy prediction of flight delay propagation
based on big data using the deep learning methods is greatly enhanced compared with
the traditional algorithms, this experiment uses several different flight delay propagation
prediction models [8,40,41] to compare with the models in this paper on the same flight
chain data set. The experimental results are shown in Table 8. The experimental results
demonstrate that the deep learning models have better performance in handling the task
of flight delay propagation prediction compared with the traditional models. In particular,
the improved CBAM-CondenseNet network and SimAM-CNN-MLSTM network achieve
the best prediction performance.

Table 8. Comparison of accuracy of traditional models.

Network Model Accuracy (%)
C4.5 Decision tree 78.05
Support vector machine 80.00
ATD Bayesian network 80.00
Artificial Neural Network 86.30
CBAM-CondenseNet 89.80

SimAM-CNN-MLSTM 91.36
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6. Conclusions

In this paper, the chain spread model of flight delay propagation is established by
analyzing the characteristics of chain spread. Two models of flight delay propagation pre-
diction based on deep learning methods are presented. Many experiments have verified
the effectiveness of the models, and the conclusions are as follows:

(1) Based on the study of flight delay propagation characteristics, a chain model of
flight delay propagation effect is established. It can predict the delay level of subsequent
departing flights affected by the delay of previous departing flights.

(2) The improved CBAM-CondenseNet overcomes the problem of gradient disap-
pearance in deep network. It also combines spatial and channel attention mechanisms
to achieve adaptive weight calibration. After several experiments, the prediction accuracy
of the improved network is improved.

(3) According to the space-time characteristics of the flight chain data set, a SimAM-
CNN-MLSTM network model integrating attention mechanisms is proposed. The CNN
network layer is used to extract spatial information for the first time. Then, the impor-
tant features are enhanced by the simultaneous attention of space and channel through
the SimAM attention mechanism module. Finally, the Mogrifier LSTM is input to further
extract the temporal characteristics in flight delay propagation, which effectively improves
the accuracy of flight delay propagation prediction.

In summary, two methods of flight delay propagation prediction based on deep learn-
ing are presented to realize the prediction of flight delay propagation. In the next stage,
we will consider how to use regression models to make predictions on the specific dura-
tion of flight delays, and also add more influencing factors to the analysis of flight delay
propagation when the data allows.
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