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Abstract: Supervised training has traditionally been the cornerstone of hate speech detection models, but
it often falls short when faced with unseen scenarios. Zero and few-shot learning offers an interesting
alternative to traditional supervised approaches. In this paper, we explore the advantages of zero and few-
shot learning over supervised training, with a particular focus on hate speech detection datasets covering
different domains and levels of complexity. We evaluate the generalization capabilities of generative
models such as T5, BLOOM, and Llama-2. These models have shown promise in text generation and have
demonstrated the ability to learn from limited labeled data. Moreover, by evaluating their performance
on both Spanish and English datasets, we gain insight into their cross-lingual applicability and versatility,
thus contributing to a broader understanding of generative models in natural language processing. Our
results highlight the potential of generative models to bridge the gap between data scarcity and model
performance across languages and domains.

Keywords: hate speech detection; zero-shot learning; few-shot learning; fine-tuning; large language
models; natural language processing
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1. Introduction

Online social networks have evolved into vast interconnected communities that func-
tion as communication platforms, facilitating the exchange of information and social dis-
course. While these virtual spaces undoubtedly enhance global connectivity, they also raise
a troubling concern: the spread of hate speech. Hate speech encompasses a range of dis-
criminatory and biased behaviors, including homophobia, misogyny, racism, transphobia,
and other forms of intolerance, which affect individuals as well as online communities and
platforms that strive to create inclusive and safe environments. Identifying and mitigating
instances of hate speech on social media platforms is critical to protecting the digital sphere
from the harmful effects of prejudice, hostility, and harassment.

In the ongoing fight against hate speech in online spaces, the field of Natural Language
Processing (NLP) has evolved significantly in recent years. Traditional methods of hate
speech detection, often based on statistical approaches and conventional machine learning
classifiers, have been outpaced by advances in deep learning. In particular, Automatic
Document Classification (ADC) using Transformers has emerged as the new frontier in
the fight against online hate. These powerful models, with their ability to learn complex
patterns in language and context, have achieved unprecedented accuracy and efficiency in
distinguishing hate speech from benign content. Their success has led to a paradigm shift
in how we approach this multifaceted problem.

While Transformers have undoubtedly demonstrated exceptional performance in
controlled and simulated environments, their effectiveness has faced notable challenges
when applied to the unpredictable and dynamic landscape of real-world online social
networks. The discrepancy between idealized laboratory conditions and the complexity of
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the online ecosystem has raised concerns about the generalizability of the models. These
discrepancies call for a deeper examination of their adaptability to diverse and evolving
hate speech contexts. However, the latest approaches in NLP, such as Large Language
Models (LLMs), have the ability to directly handle a wide range of NLP tasks and domains,
and they possess Zero-Shot Learning (ZSL) and Few-Shot Learning (FSL) capabilities.
Thus, the central motivation of this research is to evaluate the potential of ZSL and FSL
approaches, which are specifically designed to address the very issue of generalization
and adaptability. By subjecting generative models such as BLOOM [1] or LLAMA [2]
to a battery of real-world Spanish and English hate speech datasets, we seek to uncover
whether these models exhibit improved generalization and robustness in the fight against
hate speech compared to traditional fine-tuning approaches.

In this case, the evaluation of the datasets for English and Spanish was chosen because
English is the most spoken language and Spanish is the fourth [3], even though both are
typologically different languages, one belonging to the Germanic languages and the other
to the Romance languages [4].

To evaluate the performance of ZSL and FSL capabilities compared to fine-tuning
strategies, we defined the following research questions:

• RQ1. Do ZSL and FSL strategies improve the performance of fine-tuning an LLM for
hate speech detection?

• RQ2. Are current ZSL and FSL models equally good at detecting hate speech in
English and Spanish?

• RQ3. What are the best generative LLMs for performing ZSL and FSL classification in
hate speech detection?

• RQ4. Are the same models equally valid for ZSL and FSL in hate speech detection?

The rest of the manuscript is organized as follows. First, in Section 2 the reader will
find the state-of-the-art in hate speech detection and different strategies for performing
ZSL and FSL experiments. Next, Section 3 describes the evaluated dataset and the pipeline
for performing the comparisons between ZSL and FSL in comparison with fine-tuning
approaches. Next, Section 4 presents the results which are evaluated in Section 5. Finally,
the conclusions of the paper as well as and promising lines of research can be found in
Section 6.

2. State-of-the-Art

Hate speech can be defined as the use of language that promotes discrimination,
hostility, or violence against individuals or groups based on their race, ethnicity, religion,
gender, sexual orientation, disability, or other protected characteristic [5]. Hate speech can
take many forms and is often targeted at specific groups, resulting in types such as racism,
xenophobia, homophobia, misogyny, transphobia, and more. These types of hate speech
are characterized by their specific prejudices and discriminatory attitudes, highlighting
the diversity of groups that may be targeted or marginalized by such expressions. Hate
speech is an important social and ethical concern because it can contribute to real harm,
perpetuate stereotypes, and undermine inclusivity and tolerance in society.

Hate speech detection has undergone a paradigm shift, driven by the evolution of
NLP. Transformer-based models, which are the building blocks of Large Language Models
(LLMS), exemplified by BERT, RoBERTa, and their multilingual counterparts, have become
the focus of modern hate speech detection systems. Their ability to capture contextual
linguistic information has revolutionized the field. In contrast, earlier methods relied on
statistical features such as TF–IDF or non-contextual word embeddings such as GloVe [6]
or fastText [7].

In a survey published in 2018 in [5], the authors highlighted the lack of hate speech de-
tection systems for non-English languages. Since then, a few datasets have been published
on this topic, especially those published in shared tasks in workshops. However, in recent
surveys, such as the one published in [8], in which the authors evaluate the most important
datasets published in recent years on the topic of hate speech, the authors conclude that
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several datasets in the bibliography do not have sufficient examples and are therefore not
reliable for hate speech detection. In Spanish, the authors of [9] evaluated which features
and which feature integration techniques are most effective for hate speech detection. They
focus mainly on transformers and linguistic features, and two strategies for combining the
features: knowledge integration and ensemble learning. The evaluation was carried out on
four Spanish datasets on different types of hate speech. Two of them were published in
workshops as shared tasks. They were the shared tasks (1) AMI 2018 [10], held at IberEval
2018 and which focused on the detection of misogyny; and (2) HatEval 2019 [11], held
at SemEval 2019 and which focused on the detection of hate speech against immigrants
and women. The other two datasets are (3) the full Spanish MisoCorpus 2020 [12], which
focused on misogyny; and (4) HaterNET [13], a binary dataset compiled from Twitter. The
authors concluded that the integration of linguistic features with the transformers using the
knowledge integration strategy outperformed other approaches in identifying hate speech
in Spanish.

Zero and Few-Shot Learning

In recent years, many studies have addressed the problem of so-called low-resource
languages and the possibilities of using multilingual approaches based on LLMs. In [14],
evidence was found that Multilingual BERT (mBERT), a multilingual masked language model
based on transformers, is capable of zero-shot cross-lingual transfer. Furthermore, in [15], the
ability of this model to transfer syntactic knowledge between languages was investigated by
examining whether and to what extent syntactic dependencies learned in one language are
maintained in others. In [16,17], the compressibility of the BERT model was verified, specifically
its ability to capture linguistic knowledge in word representations.

In particular, some have focused on the transfer of specific knowledge or phenomena
into phylogenetically different languages by ZSL and FSL of LLMs. For example, the
authors of [18] explored the problem of multilingual transfer in unseen languages where
no unlabeled data are available for pre-training a model. A sentiment analysis task in
12 languages, including 8 unseen languages, was used to analyze the effectiveness of
different few-shot learning strategies. Another similar paper [19], where the ability of the
pre-trained BERT neural model in Italian to embed syntactic dependency relations in its
layers by approximating a dependency parse tree was investigated. For this purpose, a
structural probe, a supervised model capable of extracting linguistic structures from a
language model, was trained using the contextual embeddings of BERT layers.

Regarding the evaluation of novel ZSL and FSL strategies in deep learning, the work
described in [20] measures the reliability of using state-of-the-art generative LLMs to build
knowledge graphs. In this sense, the authors propose a novel strategy for asking different
LLMs to extract the data to build the knowledge graph. This strategy is based on ZSL,
since no requirements are needed to guide the prompts. Another work evaluating ZSL
capabilities is [21], in which the authors propose ChatIE, which combines ZSL strategies
and ChatGPT for a question-answering task. The evaluated task is divided into several
subtasks, including the extraction and recognition of entities and their relations. The
authors evaluate a total of six datasets written in two languages. Their proposed model
outperforms models trained in the traditional way (i.e., full-shot models).

The paper published in [22] comes closest to our proposal. Among other research
objectives, the authors evaluate the ZSL performance of different LLMs and hate speech
using the HatEval 2019 dataset [11]. Five LLMs posing as different human annotators are
evaluated. While the results are promising, the authors conclude that human annotation is
still needed. The main differences with our work are that no few-shot learning capabilities
are evaluated and that hate speech is only evaluated in one dataset.

3. Materials and Methods

This section describes the experiments conducted to answer the proposed research
questions regarding the performance of ZSL and FSL in detecting hate speech. Therefore,
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this section is divided into two parts. The first, Section 3.1, describes the datasets evaluated
in our proposal. These datasets are in Spanish and English. Next, Section 3.2 describes
the pipeline for carrying out the experiments. This pipeline includes three strategies: fine
tuning of an LLS, defined as baseline, and ZSL and FSL.

3.1. Datasets

This section describes the datasets used to evaluate the performance of the ZSL and
FSL features. In order to select the datasets that help us answer the RQs defined in this work,
we focus on hate speech datasets in two languages: Spanish and English. Another goal is
to cover different subtopics of hate speech, such as the detection of sexist or misogynistic
content, or racism, transphobia, and homophobia.

In order to make the results comparable across datasets, we focused on a unique task:
binary hate speech detection. That is, we select datasets that allow us to identify which
texts contain hate speech and which do not. It is worth noting that most of the selected
datasets come from shared tasks in workshops that defined a binary classification task.
However, there are a few datasets that we have adapted to meet this requirement. Another
important point is that not all datasets published in the workshops had the gold labels
published. In these cases, we reorganized the dataset to create a new test set from the
training split. Therefore, the results in these cases are not comparable to those published in
the official task rankings.

The selected datasets are described below, but a summary can be found in Table 1,
which includes their publication year, language, hate speech subdomain, and size.

• EXIST (EXIST 2021-es, EXIST 2022-es, EXIST 2022-es, EXIST 2022-en): These are a
series of shared tasks focused on identifying sexism in Spanish and English. There
are editions of EXIST in 2021 [23], 2022 [24], and 2023 [25] in different international
workshops such as CLEF or IberLEF. The challenges proposed to the participants
usually consist of a binary classification of sexist comments and multi-classification
problems to explain why the comments are sexist. In this work, we focus on the
binary classification task of 2021 and 2022, with the datasets of Spanish and English
separately. The golden labels are not published for these datasets, so we have chosen
a custom split for testing in this work.

• HaterNet 2019 (HaterNet). The HaterNet 2019 dataset [13] contains 6k documents an-
notated as hateful and non-hateful. The dataset can be accessed at 8 November 2023
(https://zenodo.org/record/2592149#.YNBqJGj7SUl). This dataset is unbalanced, since
only about 1.5k documents are annotated as hateful. The original evaluation of the dataset
focuses on the F1 score of the hateful class. This dataset has the gold labels of the test split.

• HatEval 2019 (HatEval). The HatEval [11] shared task took place in SemEval 2019,
and is about detecting hate speech against immigrants and women. The dataset is in
two languages: Spanish and English, and it was collected from Twitter. In our work,
we focus on the first subtask of the competition, which is about binary classification to
detect hate speech. This dataset has the gold labels of the test split.

• Spanish hate speech detection in football (Football) [26]. In this paper, the au-
thors published a dataset for hate speech detection in Spanish, consisting of almost
7.5k football-related tweets. These tweets were manually categorized as aggressive,
racist, misogynist, and safe. In the work, the authors proposed a multi-label approach,
and achieved a macro F1 score of 88.713% with the combination of LLM features
within the same neural network. This dataset has the gold labels of the test split.

• Spanish MisoCorpus 2020 (MisoCorpus). The Spanish MisoCorpus 2020 dataset [12]
focuses on the binary identification of misogyny. This dataset is almost balanced. It
can be downloaded in the full version or divided into three splits regarding different
categories. The first one focuses on the violence against relevant women; the second
one is about the messages from Spain and Latin America to understand cultural and
background differences; and the last one is about general characteristics related to
misogyny. This dataset has the gold labels of the test split.

https://zenodo.org/record/2592149#.YNBqJGj7SUl
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• Explainable Detection of Online Sexism [27] (EDOS). This shared task was conducted
in SemEval 2023 and focused on detecting and explaining sexism in English. The
dataset was collected from Gab and Reddit. In this paper, we focus on the first subtask,
binary sexism detection. This dataset has the gold labels of the test split.

• Hate Speech and Offensive Content Identification in Indo-European Languages,
2020 (HASOC). The HASOC shared task was conducted in FIRE 2020, and it contains
documents in English, German, and Hindi for the identification of hateful, offensive
and profane content. This dataset has the gold labels of the test split.

It is worth noting that these datasets were selected based on their relation to hate
speech, rather than other common datasets for understanding assessment such as GLUE [28].
Furthermore, the selected datasets have been used in international workshops such as
IberLEF or CLEF.

Table 1. Year, language, hate speech subdomain, and size of the datasets.

Dataset Year Language Domain Size

EXIST-2021-es [23] 2021 Spanish Sexism 3436
EXIST-2022-es [24] 2022 Spanish Sexism 6233
HaterNet [13] 2019 Spanish Hate 6000
HatEval [11] 2019 Spanish Hate 6599
Football [26] 2023 Spanish Hate 8026
MisoCorpus [12] 2020 Spanish Misogyny 8390

EXIST-2021-en [23] 2021 English Sexism 3106
EXIST-2022-en [24] 2022 English Sexism 6170
HatEval [11] 2019 English Hate 13,000
EDOS [27] 2022 English Hate 20,000
HASOC 2020 English Hate 5124

3.2. Pipeline
3.2.1. Baseline: Fine-Tuning Models

For a fair comparison of the ZSL and FSL capabilities of generative models with
fine-tuning LLMs, we established a strong baseline by fine-tuning several popular LLMs
based on different architectures (BERT, RoBERTa) and different optimization strategies
(distillation) and focusing on a specific dataset or multilingual.

Fine-tuning an LLM for an ADC task involves the process of adapting a model, such
as BERT, to a specific classification objective. This is achieved by taking a well-trained
LLM and further training it on a labeled dataset containing documents annotated with
labels. During this fine-tuning process, the parameters of the LLM are adjusted to learn
the patterns and features relevant to the classification task. The goal is to optimize the
model’s performance in accurately categorizing new documents into predefined labels.
Fine-tuning LLMs is a powerful approach that leverages the model’s pre-trained language
understanding capabilities for ADC tasks such as sentiment analysis, topic categorization,
spam detection, and more.

Below is a comparison of the LLMs evaluated.

• Mono-lingual Transformers. The two most popular monolingual transformer archi-
tectures are BERT (Bidirectional Encoder Representations from Transformers) [29] and
RoBERTa (a Robustly Optimized BERT Pre-training Approach) [30]. These models
were trained on English data.
BERT is pre-trained on large amounts of text data to understand the contextual nu-
ances of language. BERT’s bidirectional architecture allows it to capture relationships
between words and their environment, making it highly effective for various NLP
tasks, from sentiment analysis to question answering and more. RoBERTa is an evo-
lution of the original BERT model. It has been trained on a larger and more diverse
dataset, using a longer training period and a dynamic masking strategy. Unlike BERT,
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RoBERTa does not use the Next Sentence Prediction (NSP) task during pre-training.
It also uses a larger vocabulary and incorporates additional training techniques, all
of which contribute to its superior performance and robustness in various natural
language understanding tasks. Both general-purpose models can be adapted to solve
other tasks through a form of transfer learning called fine-tuning. In this process, a pre-
trained model is retrained on specific datasets and tasks, and the model’s parameters
are adjusted to perform well on these new tasks.
There are two LLMs in Spanish, MarIA and BETO. MarIA [31], on the one hand, is
trained with the RoBERTa architecture and BETO [32], on the other hand, is trained
with the BERT architecture.
We are also evaluating lightweight models: ALBERT [33] and DistilBERT [34]. AL-
BERT (A Lite BERT) is an optimized variant of the BERT model designed to improve
computational efficiency without sacrificing performance by significantly reducing
the number of parameters. DistilBERT, on the other hand, is a distilled version of
the BERT model. It achieves compactness and computational efficiency by using
distillation. Distilling involves compressing and simplifying its architecture to create a
lighter version while retaining its essential knowledge. The process typically involves
training a smaller model (known as the student) to mimic the behavior of the larger,
pre-existing model (the teacher). These models have also been adapted to Spanish [35].

• Multi-lingual Transformers. Multilingual LLMs are models that have been trained
on text from multiple languages, giving them the ability to understand and generate
text in different linguistic contexts. Some advantages are that these models facilitate
cross-lingual knowledge transfer because they can apply their understanding from
one language to another, reducing the need for language-specific models. Second, they
are resource efficient, allowing multiple languages to be handled by a single model,
thereby reducing computational overhead. In some scenarios, multilingual LLMs
require less labeled data to achieve competitive performance on some tasks. However,
dedicated monolingual models typically outperform multilingual models.
In this paper, we evaluate multilingual BERT, one of the first multilingual models,
but also two newer models: DeBERTa [36], and TwHIN [37]. DeBERTa stands for
Decoding-enhanced BERT with Disentangled Attention. It is a model that improves
BERT by enhancing its decoding capabilities and disentangling attention mechanisms,
resulting in better performance on various natural language processing tasks. TwHIN
is trained on 7 billion microblogging posts from Twitter, making it suitable for short,
noisy, and user-generated text often found in hate speech.

To obtain the best result for each dataset and language model, we perform a hyper-
parameter tuning step to perform the fine-tuning process. For this, we use the RayTune
library [38]. This step is as follows. For each dataset and language model, we train a total
of 10 models. Each model has different parameters to be evaluated. The hyperparameters
are as follows: (1) the training batch size, where 8 or 16 are the only alternatives; (2) the
weight decay, with values between 0.0 and 0.3 following a uniform distribution; (3) the
warm-up steps, with step values of 0, 250, 500, or 1000; (4) the number of epochs (between
1 and 5); and (5) the learning rate, with values between 1 × 10−5 and 5 × 10−5 following a
uniform distribution. The algorithm for selecting the next pair of hyperparameters is based
on HyperOptSearch, with the Tree of Parzen Estimators (TPE) and the ASHA scheduler.
The goal is to maximize the macro-weighted F1 score.

3.2.2. Generative Models

In terms of text generation models, we have conducted experiments with five state-
of-the-art fine-tuned instruction LLMs based mainly on three architectures: (1) T5 with an
encoder-–decoder, (2) Llama-2, and (3) BLOOMZ. We specifically chose these five models be-
cause they have extensive fine-tuning across a wide range of instructions, making them the
most representative of each architecture category. The selected models are described below.
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• Flan-T5. It is the instruction fine-tuned version of T5 [39] that has achieved strong
few-shot performance, even compared to much larger models like PaLM 62B. It has
been fine-tuned on over 1000 tasks and covers 60 languages. For this study, we used
the XL version of Flan-T5, which contains a total of 3 billion parameters [40].

• Flan-alpaca. It is an encoder-–decoder model based on T5 [39] and has been fine-tuned
with the Alpaca instruction dataset and GPT4ALL [41].

• mT0. It is a model belonging to the BLOOMZ and mT0 family, a group of models
capable of understanding human instructions in dozens of languages through zero-
shot learning [42]. Specifically, these are fine-tuned models derived from BLOOM and
mT5 over a mixture of multilingual tasks. For this paper, we used the large version,
which has a total of 1.3 billion parameters.

• Llama v2. It is a family of pre-trained LLMs, fine-tuned over a range of 7B to 70B
parameters, capable of generating text and summarizing or rewriting existing text [2].
In this case, we used the Stable Beluga 7B and Stable Beluga 13B models, based on
Llama-2 with 7B and 13B parameters, fine-tuned with the Orca-style dataset [43]. Note
that due to hardware limitations, the Llama-2 13B is loaded with a 4-bit quantization
and this fact usually reduces the performance of the model.

3.2.3. ZSL and FSL Prompting

A prompt is a type of input or instruction that is inserted into an LLM to generate a
desired response. It can be a sentence, a phrase, or even an entire paragraph, and serves
as a starting point or guide for the language model to generate text. Therefore, the proper
design and customization of prompts can have a significant impact on the performance of
LLMs in specific tasks, such as sentiment analysis.

For ZSL in T5-based models (Flan-T5 and Flan-alpaca), we have defined a prompt
in the form of a paragraph consisting mainly of two parts: an instruction to the LLM and
the text to be analyzed. In the LLM instruction, to ensure that the models always return
one of the classification classes, we introduced a kind of control sequence, as shown in
Figure 1. We considered the classification of the aforementioned datasets from a binary
perspective. Thus, for the mT0 model, the best performance was achieved with a prompt
like “Is this a sexist tweet?” and the answer will always be yes or no. Instructed models
of Llama-2 require prompts to be constructed with specific fields: “system”, “user”, and
“assistant”. The “system” field is used to specify the instruction or guidance to the system,
“user” contains the instance to be classified, and “assistant” is the output indicator.

For the FSL approach, we randomly selected five examples of each label and included
them in the prompt using the Stormtrooper (https://github.com/centre-for-humanities-
computing/stormtrooper/tree/main/stormtrooper(accessed at 8 November 2023)) tool
approach, which consists of including the examples in the instruction part of the LLM with
the following format: “Please respond with a single label that you think fits the document
best. Here are some examples of labels given by experts: examples”. The “examples” part
is where the randomly extracted examples from the dataset are inserted.

Despite the inclusion of a control sequence in the model, there are still a few cases
where the model returns an unrelated response. In these cases, we replaced the response
with the most common label in the dataset.

https://github.com/centre-for-humanities-computing/stormtrooper/tree/main/stormtrooper
https://github.com/centre-for-humanities-computing/stormtrooper/tree/main/stormtrooper


Mathematics 2023, 11, 5004 8 of 19

Figure 1. Instructions formulated for ZSL in our study of LLMs for each classification task. The
“classes” part indicates the possible labels of the dataset and the “text” part is where the text to be
parsed is inserted.

4. Results

In this section, we present the results obtained for the comparison between the fine-
tuning and generative models. The results are divided into Spanish (see Section 4.1) and
English (see Section 4.2) datasets.

Since we only consider hate speech classification from a binary perspective, the com-
parison of all models is based only on the hate speech class, including precision, recall, and
F1 score. In this sense, we ignore the relevance of the class imbalance between the datasets
in our benchmark.

In terms of hardware resources, all experiments are performed on a GeForce RTX 4090
(24 GB). As mentioned earlier, the Llama-2 13B model is evaluated with 4-bit precision due
to hardware limitations.
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4.1. Spanish Datasets

First, we report the results obtained with the Spanish split of the EXIST dataset in
Table 2 for 2021 (left) and 2022 (right) for the positive class (i.e., a document annotated
as sexist). Note that this evaluation is performed with a custom validation split, as the
gold labels were not released for this shared task. Looking at the results obtained with the
fine-tuning strategy, we can see that the two multilingual models, DeBERTa and TwHIN,
achieved very good performance on the 2021 dataset. On the other hand, these models
obtained more limited results in 2022, where DistilBETO obtained the best F1 score for the
sexist label (2022). In this sense, multilingual DeBERTa obtained an almost perfect recall
but very limited precision in 2022, which in binary classification indicates that the model
is not reliable, as it always predicts that all documents are sexist. It is worth noting that
EXIST 2022 is almost twice the size of EXIST 2021. However, monolingual LLMs such as
BETO and MarIA give consistent results in both 2021 and 2022, with MarIA slightly better
in both cases.

In terms of ZSL, the 7B version of the Llama-2 model achieved the best results in both
EXIST 2021 and EXIST 2022 datasets, with F1 scores of 69.883% and 69.872%, respectively.
Contrary to the zero-shot scenario, the FSL inference (five shots in our experiments) shows
that the performance of Flan-Alpaca, Flan-T5, and 13B Llama-2 did not improve in EXIST
2021 and even worsened due to the introduced examples being poorly correlated with
the training data of these models. In the FSL of EXIST 2022, we can see that the five
examples selected for each label have improved the performance of Flan-T5, Flan-Alpaca,
and Llama-2 13B. The largest absolute gains are obtained with mT0, with an improvement
of about 28%.

Table 2. Benchmark of the fine-tuning, zero, and few-shot learning of Spanish datasets of EXIST 2021
(left) and 2022 (right) with the positive class. The results are calculated with a custom validation split.
The best results for each metric are shown in bold.

2021 2022

LLM Precision Recall F1 Score Precision Recall F1 Score

Fi
ne

-t
un

in
g

ALBETO 78.4530 80.2260 79.3296 79.0484 75.3927 77.1773
BETO 80.5882 77.4011 78.9625 77.7597 83.5951 80.5719
DistilBETO 80.3815 83.3333 81.8308 78.0309 83.6823 80.7579
MarIA 80.5479 83.0508 81.7802 78.0130 83.5951 80.7077
mBERT 73.2240 75.7062 74.4444 73.4459 83.5078 78.1543
mDeBERTa 81.9718 82.2033 82.0874 50.2413 99.9127 66.8613
TwHIN 78.4615 86.4406 82.2581 50.0323 67.5393 57.4824

Z
er

o-
sh

ot

Flan-T5 67.1598 64.1243 65.6069 64.0981 63.8743 63.9860
Flan-alpaca 61.8943 79.3785 69.5545 60.8696 79.4066 68.9133
mT0 63.2653 8.75671 15.3846 58.6538 10.6457 18.0207
Llama-2 64.8910 75.7062 69.8827 55.2178 95.1134 69.8718
Llama-2 13B 72.3684 62.1469 66.8693 70.0397 61.6056 65.5525

Fe
w

-s
ho

t Flan-T5 69.8305 58.1912 63.4823 67.7686 64.3979 66.0403
Flan-alpaca 51.3828 99.7175 67.8194 53.6176 97.6440 69.2236
mT0 51.8868 77.6836 62.2172 52.2752 41.0995 46.0186
Llama-2 69.2547 62.9944 65.9763 64.1658 56.7190 60.2131
Llama-2 13B 71.2871 61.0169 65.7534 65.1969 72.2513 68.5430

Next, we evaluate the Spanish split of the HatEval 2019 shared task for discriminating
between documents labeled as hateful to immigrants and hateful to women. The results are
shown in Table 3. In this case, the performance is obtained with the test set, as the gold labels
were released. For the fine-tuning strategy, the best performance for the hateful comments
is achieved with DistilBETO, with an F1 score of 76.237%. Looking at the result of the other
lightweight model, ALBETO, its performance is also very competitive for detecting hateful
comments, with a performance of 75.334%. In general, all the fine-tuned LLMs achieve
a similar range of values. The most limited result is obtained with multilingual BERT
(70.240%). Nevertheless, the performance of the other multilingual models, mDeBERTA and
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TwHIN, is very promising, as they both outperform the monolingual model BETO, although
the result of MarIA is slightly better (75.912%). Finally, to compare the performance with
the official results of the shared task [11], the overall macro averaged F1 score is 73% and
our best macro averaged F1 score (not shown in the table) is 78.45%, also with DistilBETO.

In the ZSL of the hate speech detection models, we can see that Llama-2 from the 7B
version achieved the best result with an F1 score of 65.369%, followed by Llama-2 from the
13B version with an F1 score of 64.100%. Regarding the FSL, the examples included in the
prompt did not improve the performance of the models. We suspect that this is because
the examples have little correlation with the test set, introducing noise into the hate speech
prediction. Nevertheless, the 13B version of the Llama-2 model improved its performance
by about 2%, achieving an F1 score of 66.283%, surpassing the best ZSL result.

Table 3. Benchmark of the fine-tuning, zero, and few-shot learning of Spanish datasets of HatEval
2019 with the positive class. The results are calculated with the test split. The best results for each
metric are shown in bold.

LLM Precision Recall F1 Score

Fi
ne

-t
un

in
g

ALBETO 70.2490 81.2121 75.3338
BETO 66.4216 82.1212 73.4417
DistilBETO 70.5806 82.8787 76.2369
MarIA 71.2766 81.2121 75.9207
mBERT 65.6992 75.4545 70.2398
mDeBERTa 67.2393 83.0303 74.3051
TwHIN 72.8324 76.3636 74.5562

Z
er

o-
sh

ot

Flan-T5 65.8228 55.1515 60.0165
Flan-alpaca 50.8961 86.0606 63.9640
mT0 46.3177 79.0909 58.4219
Llama-2 53.5266 83.9394 65.3687
Llama-2 13B 47.8358 97.1212 64.1000

Fe
w

-s
ho

t Flan-T5 74.8428 36.0606 48.6708
Flan-alpaca 47.7702 95.7576 63.7418
mT0 41.2874 96.2121 57.7798
Llama-2 58.3110 65.9091 61.8777
Llama-2 13B 53.4323 87.2727 66.2831

The next evaluated dataset is the Spanish MisoCorpus 2020, the results of which are
shown in the Table 4. This dataset is about misogyny detection with tweets containing
hatred towards women with responsibility charges, tweets from different Spanish speaking
countries and tweets with different misogynistic characteristics. The strategy of fine-tuning
LLMs for the binary classification task yields very high results in terms of precision, recall,
and F1 score for the positive label, regardless of the language model. In fact, the difference
between the best (mDeBERTa) and the worst (multilingual BERT) is only 1.808% of the F1
score. Regarding ZSL in text generation models for the classification of misogyny texts,
we can see that the best result is obtained with the 13B version of Llama-2, with an F1
score of 69.60%. Furthermore, inference with few shots (five shots in our experiments)
shows an improvement in all models except mT0. This draws our attention to the large
performance loss compared to fine-tuning with ZSL and FSL. Especially in models such as
Flan-T5 in ZSL and FSL, or mT0 in FSL, with very limited recall, there is a suggestion that
these models give random predictions.

Table 5 shows the results obtained for the detection of hate speech in the football dataset.
In this sense, if we observe the results of the fine-tuning strategy, we can see that the best
precision and F1 score is obtained with the monolingual model MarIA (87.535% of precision,
85.175% of F1 score), while the multilingual DeBERTa achieved the best recall (85.302%).
Multilingual BERT achieved the lowest F1 score (80.926%), but this result is surpassed by
another multilingual model, TwHIN, with an F1 score of 83.974%). The lightweight models
ALBETO and DistilBETO also achieved very good results, with F1 scores of 84.888% and
84.375%, respectively. This table also shows the performance of different text generation
models in a ZSL and FSL scenario. The best result was achieved with the 13B version of
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Llama-2, with an F1 score of 72.326% in ZSL. However, we can see that the examples selected
for FSL did not improve the performance of the models due to their quality, since FSL models
depend heavily on the composition and quality of the test set.

Table 4. Benchmark of the fine-tuning, zero, and few-shot learning of Spanish datasets of Spanish
MisoCorpus 2020 with the positive class. The results are calculated with the test split. The best results
for each metric are shown in bold.

LLM Precision Recall F1 Score

Fi
ne

-t
un

in
g

ALBETO 90.1389 88.5402 89.3324
BETO 90.3581 89.4952 89.9246
DistilBETO 89.9587 89.2224 89.5890
MarIA 89.8649 90.7230 90.2919
mBERT 89.1185 88.2673 88.6909
mDeBERTa 90.6849 90.3138 90.4990
TwHIN 90.6207 89.6316 90.1235

Z
er

o-
sh

ot

Flan-T5 68.0581 51.1596 58.4112
Flan-alpaca 51.6817 85.9482 64.5492
mT0 51.1530 33.2879 40.3306
Llama-2 51.8270 94.8158 67.0203
Llama-2 13B 57.3959 88.4038 69.6026

Fe
w

-s
ho

t Flan-T5 72.0247 63.5744 67.5362
Flan-alpaca 46.5176 99.3179 63.3594
mT0 42.6172 83.0832 56.3367
Llama-2 64.2005 73.3970 68.4914
Llama-2 13B 62.0619 82.1282 70.6988

Table 5. Benchmark of the fine-tuning, zero, and few-shot learning of Spanish datasets of Hate
Football Corpus 2023 with the racist class. The results are calculated with the test split. The best
results for each metric are shown in bold.

LLM Precision Recall F1 Score

Fi
ne

-t
un

in
g

ALBETO 85.0 84.7769 84.8883
BETO 85.2632 85.0394 85.1511
DistilBETO 83.7209 85.0394 84.3750
MarIA 87.5346 82.9396 85.1752
mBERT 84.1360 77.9528 80.9264
mDeBERTa 80.0493 85.3018 82.5921
TwHIN 84.7594 83.2021 83.9735

Z
er

o-
sh

ot

Flan-T5 80.2548 33.0709 46.8401
Flan-alpaca 57.8829 67.4541 62.3030
mT0 48.1061 66.6667 55.8856
Llama-2 50.9874 74.5407 60.5544
Llama-2 13B 64.3892 82.4934 72.3256

Fe
w

-s
ho

t Flan-T5 87.3016 14.4357 24.7748
Flan-alpaca 54.9729 79.7900 65.0964
mT0 26.3636 15.2231 19.3012
Llama-2 88.3041 39.6325 54.7101
Llama-2 13B 65.5629 78.7798 71.5663

Finally, for the Spanish datasets, we report the results of HaterNET 2019 in Table 6.
Regarding the fine-tuning strategy, the multilingual model DeBERTa achieved the best
performance with an F1 score of 68.858% with the positive (hateful) class. These results
outperform the experiments carried out when the dataset was compiled, which had an
F1 score of 61.1% [13] based on a neural network combining Long–Short Term Memory
(LSTM) and MultiLayer Perceptron (MLP) architectures with features related to words,
emoticons, and embeddings enriched with TF–IDF. Similar to other Spanish experiments
(see Tables 2 and 3), the most limited results are obtained with multilingual BERT, with
an F1 score of 58.519%. In these experiments, we also observed that most models achieve
better precision than recall, with the multilingual models DeBERTa and TwHIN being the
most notable exceptions. For ZSL on the HaterNET dataset, we can see that the best model
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is Llama-2 from the 13B version, which achieved an F1 score of 50.741%. Regarding FSL,
we can see that it did not improve the performance of the Flan-T5 and mT0 models due
to the fact that the example set is poorly correlated with the training set of these models.
However, with the same examples, it improved the performance of Flan-Alpaca and both
the 7B and 13B versions of Llama-2, obtaining the best results in FSL with an F1 score of
56.350%, surpassing the best results in ZSL.

Table 6. Benchmark of the fine-tuning, zero, and few-shot learning of Spanish datasets of Spanish
HaterNET 2019 with the positive class. The results are calculated with the test split. The best results
for each metric are shown in bold.

LLM Precision Recall F1 Score

Fi
ne

-t
un

in
g

ALBETO 64.8649 54.3689 59.1549
BETO 72.7612 63.1068 67.5910
DistilBETO 67.4193 67.6375 67.5283
MarIA 67.9054 65.0485 66.4463
mBERT 68.3983 51.1329 58.5185
mDeBERTa 66.6666 71.1974 68.8576
TwHIN 66.0436 68.6084 67.3016

Z
er

o-
sh

ot

Flan-T5 42.0245 44.3366 43.1496
Flan-alpaca 33.5535 82.2006 47.6548
mT0 36.7925 50.4854 42.5648
Llama-2 30.5328 96.4401 46.3813
Llama-2 13B 35.5383 88.6731 50.7407

Fe
w

-s
ho

t Flan-T5 54.0541 6.4725 11.5607
Flan-alpaca 36.1613 84.1424 50.5837
mT0 17.0683 27.5081 21.0657
Llama-2 42.0382 85.4369 56.3501
Llama-2 13B 37.0656 93.2039 53.0387

4.2. English Datasets

In this section, we report the results for the English datasets on the identification of
hate speech.

The first experiments use the English splits of the EXIST 2021 and 2022 datasets. The
results are shown in the Table 7. Regarding the fine-tuning strategy, BERT is the model that
achieves the best results in both datasets, reaching an F1 score of 79.769% in 2021 and 79.682%
in 2022. In 2021, BERT also achieves the best precision, but not the best recall, while TwHIN
achieves the best precision in 2022. In both cases, the best recall is obtained by the multilingual
model DeBERTa, but the low precision obtained indicates that the multilingual DeBERTa
always predicts the positive class, making this model useless compared to the others. The
lightweight models ALBERT and DistilBERT achieve very competitive results, as well as the
multilingual model TwHIN. Looking at the results of ZSL and FSL, we notice that these results
are much better than those obtained with the Spanish splits of EXISTS (see Table 2). In fact,
Llama-2 (13B) achieves 74.240% of the F1 score in 2021 and 73.962% in 2022 with ZSL. These
results are 5.529% below BERT in 2021 and 5.72% in 2022. The performance of FSL is slightly
worse in most of the evaluated models, except in the case of mT0.

The next evaluated comparison is with the HASOC 2019 dataset, the results of which
are shown in Table 8. Regarding the fine-tuning model strategy, the best performance is
achieved by the multilingual model TwHIN, with an F1 score of 86.760% and an almost
perfect recall of 93.609%; however, TwHIN is not the model with the best precision, as
DistilBERT achieves a precision of 84.754%. All the fine-tuned LLMs achieve similar
performance, but as observed with the Spanish datasets (see Section 4.1), the most limited
result is obtained with multilingual BERT. From the results obtained in ZSL, we can see
that the models perform better in classifying hate speech in English, achieving an F1 score
above 70% in all models. Regarding FSL, the performance of Flan-Alpaca has improved,
surpassing the best ZSL result with an F1 score of 84.602%.
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Table 7. Benchmark of the fine-tuning, zero, and few-shot learning of English datasets of EXIST 2021
(left) and 2022 (right) with the positive class. The results are calculated with a custom validation split.
The best results for each metric are shown in bold.

2021 2022

LLM Precision Recall F1 Score Precision Recall F1 Score

Fi
ne

-t
un

in
g

ALBERT 73.0337 78.7879 75.8017 73.9726 82.1109 77.8296
BERT 76.24309 83.6364 79.7688 74.8038 85.2415 79.6823
DistilBERT 74.4505 82.1212 78.0980 74.6479 80.5903 77.5054
mBERT 70.0831 76.6667 73.2272 73.8731 79.1592 76.4249
mDeBERTa 48.0349 100.0 64.8968 49.4681 99.8211 66.1529
RoBERTa 71.9895 83.3334 77.2472 74.7026 84.2576 79.1929
TwHIN 73.9612 80.9091 77.2793 75.6869 81.3059 78.3959

Z
er

o-
sh

ot

Flan-T5 67.1642 81.8182 66.7643 81.5742 73.4300 73.7705
Flan-alpaca 61.2159 88.4848 72.3668 61.0234 86.4043 71.5291
mT0 55.3672 29.6970 38.6588 61.7094 32.2898 42.3958
Llama-2 64.3373 80.9091 71.6779 56.2698 95.5277 70.8223
Llama-2 13B 65.8080 85.1515 74.2404 65.3187 85.2415 73.9620

Fe
w

-s
ho

t Flan-T5 73.6059 60.0000 66.1102 70.4825 66.6369 68.5057
Flan-alpaca 54.1176 97.5758 69.6216 54.7379 97.1377 70.0193
mT0 47.9279 80.6061 60.1130 49.0061 57.3345 52.8442
Llama-2 67.1598 68.7879 67.9641 66.5081 62.5224 64.4537
Llama-2 13B 67.5978 73.3333 70.3488 64.2755 80.1431 71.3376

Table 8. Benchmark of the fine-tuning, zero, and few-shot learning of English datasets of HASOC
2021 with the positive class. The results are calculated with the test split. The best results for each
metric are shown in bold.

LLM Precision Recall F1 Score

Fi
ne

-t
un

in
g

ALBERT 81.0872 89.7243 85.1874
BERT 82.6037 89.8496 86.0744
DistilBETO 84.7539 88.4712 86.5726
mBERT 80.7474 89.3484 84.8305
mDeBERTa 82.4074 89.2231 85.6799
RoBERTa 83.4313 88.9724 86.1128
TwHIN 80.8442 93.6090 86.7596

Z
er

o-
sh

ot

Flan-T5 81.1180 81.8296 81.4722
Flan-alpaca 74.3665 95.6140 83.6623
mT0 64.6825 81.7043 72.2038
Llama-2 70.6767 94.2356 80.7734
Llama-2 13B 72.4521 89.9749 80.2683

Fe
w

-s
ho

t Flan-T5 90.2527 31.3283 46.5116
Flan-alpaca 76.9231 93.9850 84.6024
mT0 59.7484 83.3333 69.5971
Llama-2 74.2553 87.4687 80.3222
Llama-2 13B 72.5198 91.6040 80.9524

The results with the EDOS 2023 dataset are shown in Table 9, where monolingual BERT
achieves the best performance for the fine-tuning strategy, with an F1 score of 73.795%.
It also achieves the best recall (75.773%), but not the best precision, which is achieved
by DistilBERT (77.203%). The most limited result is achieved by ALBERT (70.049% of
the F1 score), followed by multilingual BERT (70.192% of the F1 score). Compared to
BERT, RoBERTa also achieves a good performance with an F1 score of 71.680%, but the
multilingual TwHIN surpasses this result with an F1 score of 72.083%. The text generation
models for classifying sexist text in the EDOS dataset performed best in the ZSL scenario,
with Flan-T5 achieving an F1 score of 53.12%. In the FSL scenario, it improved this result
by about 8%, achieving an F1 score of 61.57%.

Table 10 shows the results of HatEval 2019 with the English dataset. Regarding the
fine-tuning strategy, the best result is obtained with the multilingual TwHIN, with an F1
score of 67.977% over the positive class. However, the precision of all the LLMs is very
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limited for the positive class since the recall is almost perfect in every case. This behavior is
not observed in the Spanish part of the HatEval 2019 dataset, where the recall is around
75% and 83%. However, the maximum result obtained in the official ranking for the English
dataset was a macro average F1 score of 65.10% [11]. Regarding the ZSL and FSL strategies,
the performance of the models is very similar, as almost all models achieve limited precision
but high recall, but this suggests that these models also always predict the positive class.
However, Llama-2 is the best performer for both ZSL and FSL. Specifically, the best overall
result is achieved with Llama-2 for FSL, when the highest overall performance is achieved
(F1 score of 67.083%).

Table 9. Benchmark of the fine-tuning, zero, and few-shot learning of English datasets of EDOS 2023
with the positive class. The results are calculated with test split. The best results for each metric are
shown in bold.

LLM Precision Recall F1 Score

Fi
ne

-t
un

in
g

ALBERT 74.3917 66.1856 70.0491
BERT 71.9178 75.7732 73.7952
DistilBERT 77.2033 67.7320 72.1581
mBERT 72.8381 67.732 70.1923
mDeBERTa 75.1412 68.5567 71.6981
RoBERTa 74.2541 69.2783 71.68
TwHIN 72.8421 71.3402 72.0833

Z
er

o-
sh

ot

Flan-T5 37.2007 92.8866 53.1250
Flan-alpaca 31.7258 94.9485 47.5600
mT0 31.1571 49.6907 38.2996
Llama-2 28.5887 97.3196 44.1948
Llama-2 13B 33.0914 93.8272 48.9270

Fe
w

-s
ho

t Flan-T5 50.1622 79.6907 61.5691
Flan-alpaca 27.3882 97.8351 42.7959
mT0 24.1716 91.7526 38.2631
Llama-2 39.9890 74.7423 52.1020
Llama-2 13B 40.0659 75.1029 52.2548

Table 10. Benchmark of the fine-tuning, zero, and few-shot learning of English dataset of HatEval
2019 with the positive class. The results are calculated with test split. The results are calculated with
test split. The best results for each metric are shown in bold.

LLM Precision Recall F1 Score

Fi
ne

-t
un

in
g

ALBERT 42.7975 97.6190 59.5065
BERT 47.0161 97.5397 63.4486
DistilBERT 45.6329 97.8571 62.2413
mBERT 45.3933 96.1905 61.6794
mDeBERTa 45.9650 98.0952 62.598
RoBERTa 46.1831 96.5079 62.4711
TwHIN 47.5988 97.5397 63.9771

Z
er

o-
sh

ot

Flan-T5 45.0873 98.3333 61.8263
Flan-alpaca 42.8523 99.6825 59.9380
mT0 44.6973 91.9841 60.1609
Llama-2 44.8768 99.7619 61.9059
Llama-2 13B 44.2918 99.7619 61.3470

Fe
w

-s
ho

t Flan-T5 50.8132 91.7460 65.4031
Flan-alpaca 42.1546 1.000000 59.3081
mT0 42.1414 97.4603 58.8404
Llama-2 62.3891 72.5397 67.0826
Llama-2 13B 48.4294 96.6667 64.5298

5. Discussion

Tables 11 and 12 present a comparison showing the best results obtained by different
datasets and approaches for the Spanish and English datasets, respectively. In general,
we can observe that the fine-tuning approach for transformer models in classification
has achieved better performance than ZSL and FSL, but at a higher computational cost.
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These results answer RQ1, which asks whether zero and few-shot improve the results of
fine-tuning for hate speech detection. In the ZSL approach to hate speech classification
in Spanish, the models achieved competent results even though they were not explicitly
trained for it, as in the case of the fine-tuning approach. The best model for ZSL was
Llama-2 in its 7B and 13B versions.

Regarding FSL, we experimented with a prompt-based FSL using five random examples
for each label, and we inserted them into the prompts of the text generation models to guide
the model towards better performance. However, based on the results obtained, we can see
that the FSL approach did not improve the performance of ZSL, and this is largely due to the
quality of the selected few-shot dataset and its relationship with the pre-trained data of the
models. Furthermore, finding a set of examples that generalize the concept of hate speech is
quite challenging [44]. In this paper [45], an additional retrieval module based on sentence
transformers was used to maximize the few-shot performance in clinical and biomedical tasks.
However, there are still cases where few-shot learning has worsened the performance of ZSL.
Therefore, it would be convenient to select the examples using some kind of heuristic or a
method to search for phrases that are more related to a certain class.

If we compare the results obtained for the Spanish and English datasets, we can see
that the results obtained by the three strategies evaluated (fine-tuning, ZSL, FSL) are more
similar for the English datasets, but greater for the Spanish ones. For example, in EXISTS
2021, there is a 12.402% decrease in performance between the fine-tuning and ZSL strategies
in Spanish. However, this difference is only 5.529% in English. Moreover, if we look at
the results comparing monolingual and multilingual approaches to fine-tuning, we see
that there is a tie in Spanish, as DistilBETO and MarIA are the best performing models
in three datasets, while TwHIN and DeBERTa, two multilingual LLMS, achieve the best
results in the other three Spanish datasets. In the case of the English datasets, English BERT
performed best in both EXISTS 2021 and 2022 and in EDOS, and TwHIN performed best in
HatEval and HASOC. In the case of ZSL and FSL, all evaluated models are multilingual.
It was therefore expected that the difference in performance would be the same in both
languages. Since the results show the opposite, we answer RQ2 (are current ZSL and FSL
models equally good at detecting hate speech in English and Spanish?) that ZSL and FSL
are better at detecting hate speech in English than in Spanish. However, this comparison
must be made with caution, as English and Spanish are typologically different languages
with different roots.

With regard to RQ3, which asks about the best generative LLMs for performing ZSL
and FSL classification in hate speech detection, we observed that Llama-2 13B is the model
that obtained a better result in five of the evaluated datasets for ZSL: three Spanish and
two English. In the case of Spanish, the other evaluated version of Llama achieved the best
performance in the rest of the evaluated datasets and only one other dataset in English. For
the rest of the evaluated English datasets, Flan T5 and Alpaca performed best for EDOS
and HASOC. In the case of FSL, Llama-2 13B also achieved the best results in three of
the Spanish datasets (HatEval, Football and MisoCorpus), tying with ZSL in two of them
(Football and MisoCorpus). Flan-alpaca achieved the best results for the two Spanish EXIST
datasets, and Llama-2 for HaterNET. In the case of English, the same models that performed
best on ZSL also performed best on FSL. This behavior was not observed for the Spanish
datasets. Given these results, we can conclude that Llama-2 13B is the best performing
model for zero and few-shot classification in hate speech detection, but this model is not a
silver bullet, as there are six datasets where this model did not achieve the best results.

Finally, RQ4 asks whether the same generative LLMs are equally good for zero and few
shots. The results show that only two of the Spanish datasets agree (Llama-2 13B in soccer
and the MisoCorpus). In English, however, the same models are the best for both ZSL
and FSL. So, in this case, the results suggest that the answer to this RQ4 is that it depends
on the language. However, if we look at the results individually across all the datasets
and generative models evaluated, the difference between ZSL and FSL is usually small,
with ZSL performing better. There are exceptions. For example, mT0 shows a difference
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of 46.832% between FSL and ZSL in the Spanish EXIST 2021 dataset and a difference of
27.998% in 2022 (see Table 2). In other cases, there are strong differences between ZSL and
FSL, both in Spanish and in English. This fact suggests that experiments are needed to
evaluate which strategy is better depending on the dataset.

Table 11. Resume of the results of fine-tuning, zero, and few-shot learning for the Spanish datasets.

Fine-Tuning ZSL FSL

Dataset F1 Score Model F1 Score Model F1 Score Model

EXIST-2021-es 82.2581 TwHIN 69.8827 Llama-2 67.8194 Flan-alpaca
EXIST-2021-es 80.7579 DistilBETO 69.8718 Llama-2 69.2236 Flan-alpaca

HatEval 76.2369 DistilBETO 65.3687 Llama-2 66.2831 Llama-2 13B
HaterNET 68.8576 mDeBERTa 50.7407 Llama-2 13B 56.3501 Llama-2
Football 85.1752 MarIA 72.3256 Llama-2 13B 71.5663 Llama-2 13B

MisoCorpus 90.4990 mDeBERTa 69.6026 Llama-2 13B 70.6988 Llama-2 13B

Table 12. Resume of the results of fine-tuning, zero, and few-shot learning for the English datasets.

Fine-Tuning ZSL FSL

Dataset F1 Score Model F1 Score Model F1 Score Model

EXIST-2021-en 79.7688 BERT 74.2404 Llama-2 13B 70.3488 Llama-2 13B
EXIST-2022-en 79.6823 BERT 73.9620 Llama-2 13B 71.3376 Llama-2 13B

HatEval 63.9771 TwHIN 61.9059 Llama-2 67.0826 Llama-2
EDOS 73.7952 BERT 53.1250 Flan-T5 61.5691 Flan-T5

HASOC 86.7596 TwHIN 83.6623 Flan-alpaca 84.6024 Flan-alpaca

6. Conclusions and Outlook

In this research, we compare and contrast different strategies for detecting hate speech.
In particular, we evaluate two alternatives based on prompting, known as zero and few-
shot, against a fine-tuning strategy. Our main goal is to test the generalization ability of
these models to detect hate speech in texts written in English or Spanish. Through rigorous
evaluation on diverse hate speech detection datasets spanning different domains and
languages, we uncovered key insights. The evaluation highlighted the robust generalization
capabilities of generative models such as T5, BLOOMZ, and Llama-2, underscoring their
potential to bridge the gap between data scarcity and model performance. However,
the results are still more limited in performance compared to fine-tuning strategies, but
with less time and hardware resources. Our research not only contributes to the evolving
landscape of hate speech detection, but also underscores the ability of generative models to
advance the fight against online intolerance and discrimination.

In order to unravel the potential of zero and few-shot learning strategies in the field of
hate speech detection, a number of core research questions were defined. First and foremost,
we investigated the impact of these strategies on fine-tuning language models (LLMs) to
improve performance (RQ1). In addition, our research ventured into the cross-lingual
landscape by investigating whether these strategies are equally effective for hate speech
detection in English and Spanish (RQ2). We delved into the intricacies of generative LLMs
to identify the best models for zero and few-shot classification in hate speech detection
(RQ3). Finally, we questioned the versatility of these models by exploring whether they are
equally valid in the context of zero- and few-shot learning for hate speech detection (RQ4).
Our research efforts have been driven by these questions and have provided valuable
insights into the evolving field of hate speech detection strategies.

The results show that the performance of models based on T5, BLOOMZ, and Llama-2
is still more limited than the fine-tuning of an LLM for hate speech detection, but the results
are more stable with English datasets compared to Spanish. The results also show the
potential of Llama-2 13B, which achieved the best performance in most of the datasets.
Moreover, we observe a large variability in terms of precision and recall, which suggests
that a deep experimentation is still needed for each case to determine which is the best per-
forming model to perform ZSL and FSL. Another interesting finding is that FSL strategies
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usually do not outperform ZSL. These results may be due to a poor selection of examples
used as input to the FSL models.

These results also suggest that the selection of the best strategy for hate speech detec-
tion is highly dependent on the dataset and the model. Therefore, further research should
be conducted to find the similarities and differences of the evaluated linguistic models
and strategies. In this sense, we propose to combine the use of linguistic features [46] and
explicable machine learning tools, such as SHAP and LIME, [47] to analyze the results
across datasets. In particular, we propose to compare the results in similar datasets, such as
those of EXIST, which published a Spanish and an English variant in the same competition.

As a promising line of research, we propose to build a retrieval module based on
Sentence Transformers to identify the subset that generalizes the concept of hate speech
from the training set. The idea would be to fine-tune a Sentence Transformers model
through contrastive learning [48] for extracting examples for prompt-based FSL, thus
maximizing its performance. In this sense, we also propose to improve the quality of
the prompts used and to evaluate different strategies for selecting the examples for FSL.
Another line we propose is the use of hyperparameter optimization for text generation
models. It is also worth noting that, due to hardware limitations, the 7B version of the
Llama-2 model was loaded into the GPU with 8-bit precision, and the 13B version with
4-bit precision. In this sense, the comparison between the two models is unfair (although
Llama v2 achieved better performance in most experiments). Therefore, we recommend
evaluating both models with 8-bit and 4-bit precision.

Finally, we will also propose to evaluate FSL and ZSL capabilities in other domains. We
propose two domains. The first one is author profiling, where the number of publications
per author is quite large, so the capabilities of ZSL and FSL models will imply a large time
saving of resources if the results have the same performance. In this sense, we will evaluate
the generative models with the dataset published in [49], which contains demographic
and psychographic traits of politicians and journalists from Spain. The second domain is
subjective language. Therefore, we will evaluate these models with the Spanish SatiCorpus
2021 [50], which contains pairs of satirical and real digital news, in order to check which
models are better suited to discriminate between them. We also propose to evaluate
standard reference datasets for model evaluation, such as GLUE [28] and those similar.
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