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1. Introduction and Statement of the Problem

For every i ∈ N, di × di matrices Ai are given with 2 ≤ di ≤ d, where d ≥ 2 is a fixed
integer. We consider a differential game described by the following countable system of
differential equations

ẋi = Aixi + ui − vi, xi(0) = xi0 ∈ Rdi , i = 1, 2, . . . , (1)

where ui is a control parameter of the pursuer, vi is a control parameter of the evader,
both assumed to be locally integrable functions with values in Rdi for all i ∈ N satis-
fying certain constraints (see Definition 2). For convenience, we form column vector
x = (x∗1 , x∗2 , . . . )∗, where x∗i is the transpose of xi ∈ Rdi , for i = 1, 2, . . . (Actually, we are
just concatenating vectors x1, x2, . . . one below another to obtain an infinite vector. Below
we adopt this point of view, which simplifies the notation considerably). Assume that
x0 = (x10, x20, . . . , ) ∈ ℓ2, i.e., ∥x∥2 = ∑∞

i=0 ∥xi0∥2 < +∞, where ∥xi0∥ is the Euclidean
norm of xi0 ∈ Rdi . Let A = diag(A1, A2, . . . ) be an operator on R∞ whose action is defined
as Ax = diag([A1x1]

∗, [A2x2]
∗, . . . ) for x ∈ R∞. We would like to define etA for suitable

classes of matrices Ai. The problem here is that A is not necessarily defined on ℓ2 or even
on ℓ∞ (i.e., Ax is not necessarily in ℓ∞ for x ∈ ℓ∞ since |Aixi| may go to infinity as n → ∞).
Therefore, we have to justify the existence of solutions to the above Cauchy problem for
initial points in ℓ2.

We consider a pursuit-evasion differential game which consists of two separate prob-
lems as usual. The pursuit game can be completed in time T > 0 provided there exists
a control function of the pursuer u : R → ℓ2 such that for any control of v : R → ℓ2 the
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solution of x : R → ℓ2 of (2) for any x0 satisfies x(T) = 0. In this case, T is called the
guaranteed pursuit time. Below we state precise conditions that are imposed on u, v.

Motivation for the setup comes from control problems for evolutionary PDEs, where
using suitable decomposition of the control problem (see, for example, [1–5]) xi would
be a Fourier coefficient of an unknown function, while ui and vi would be that of control
parameters. Also, the setup is of independent interest as a controlled system in a Banach
space (for works in this spirit see for example [6–13]). Differential games for infinite
dimensional systems are also well studied, for example, when the evolution of the system
is governed by parabolic equations pursuit-evasion problems are considered in [14–16],
where the problem for the partial differential equations is reduced to an infinite system of
ordinary differential equations. Pursuit and evasion games with many players considered
in [17–20].

For us, the system (1) is a toy model of a system consisting of countably many point
masses moving in Rn with simple motions which are not interacting with each other. It is
the first step in understanding the system of weakly interacting controllable particles in a
more natural setting, e.g., for considering control problems for systems considered in [21].

2. Main Results

As we pointed out earlier, we have to justify the existence of solutions of the following
Cauchy problem

ẋi = Aixi + wi, xi(0) = xi0 ∈ Rdi , i = 1, 2, . . . , (2)

with wi : R → Rdi locally integrable. We look for solutions of (2) from the space of continu-
ous functions C([0, T]; ℓ2) for some T > 0, such that the coordinates xi(·) of x : [0, T] → ℓ2

are almost everywhere differentiable.

Definition 1. We say that a family of matrices {Ai}i∈N is uniformly normalizable if there exists a
family {Pi}i∈N of non-singular matrices and a constant C ≥ 1 such that ∥Pi∥ · ∥P−1

i ∥ ≤ C and
Pi AiP−1

i is a matrix in the Jordan normal form for all i ∈ N.

Notice that there exist uniformly normalizable families of matrices, i.e., if all elements
are already in Jordan’s normal form, then we may take Pi = Id for all i ∈ N. On the other
hand, one can construct families, which aren’t uniformly normalizable. In this work we will
assume that the family of matrices in (2) and (1) are uniformly normalizable and control
parameters of the players satisfy the following constraint.

Definition 2. Fix θ > 0 and let B(θ) be the set of all functions w(·) = (w1(·), w2(·), . . . ),
w : [0, T] → ℓ2, with measurable coordinates wi(·) ∈ Rdi , 0 ≤ t ≤ T, i = 1, 2, . . . , that satisfy
the constraint

∞

∑
i=1

T∫
0

∥wi(s)∥2ds ≤ θ2. (3)

B(θ) is called the set of admissible control functions.

We have the following

Theorem 1. Let {Ai} be a family of uniformly normalizable matrices. If the real parts of eigenvalues
of matrices A1, A2, .. are negative, then for any w ∈ B(θ), θ > 0 system (2) has a unique solution
for any z0 ∈ ℓ2. Moreover, the corresponding components of the solution x(t) = (x1(t), x2(t), . . . )
are given by

xi(t) = etAi xi0 +

t∫
0

e(t−s)Ai wi(s)ds, i ∈ N. (4)
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Definition 3. System (2) is called globally asymptotically stable if limt→+∞ x(t) = 0 for
a solution x(t) of (2) with any initial condition x0 ∈ ℓ2 and wi ≡ 0 for all i ∈ N. Further,
system (2) is null-controllable from x0 ∈ ℓ2 if there exists an admissible control u ∈ B(θ)
and T = T(u) ∈ R+ such that the solution of (2) starting from x0 satisfies x(T) = 0. We
say that system (2) is null-controllable in large if it is null-controllable from any x0 ∈ ℓ2. Also,
infu∈B(θ) T(u) is called optimal time of translation and u ∈ B(θ) realizing the minimum is
called time optimal control.

Theorem 2. Under the assumptions of Theorem 1 system (2) is globally asymptotically stable and
null controllable in large. Time optimal control exists and can be constructed explicitly.

Notice that the explicit form of the time optimal control requires some preliminary
contraction and it is given in Section 4.

Further, we consider a pursuit-evasion differential game (1). Fix ρ, σ > 0. A function
u(·) ∈ B(ρ) (v(·) ∈ B(ρ)) is called an admissible control of the pursuer (evader).

Definition 4. A function u : [0, T]× ℓ2 → ℓ2 with coordinates uk(t) = vk(t) + ωk(t), ω ∈
B(ρ − σ), which is an admissible control of the pursuer for every v ∈ ℓ2 is called a strategy of
the pursuer.

Theorem 3. Suppose that ρ > σ and the assumptions of Theorem 1 are satisfied. Then, for any
admissible control of the evader v there exists a strategy of the pursuer u and ϑ1 > 0 such that the
solution of (1) satisfies z(τ) = 0 for some 0 ≤ τ ≤ ϑ1, i.e., the game (1) can be completed within
time ϑ1.

3. Existence and Uniqueness

Notice that if we define x(t) = (x1(t), x2(t), . . . ) by setting every component xi as
in (4), then x(t) satisfies the equation and initial conditions in (2). This also implies the
uniqueness of a solution. Thus it is sufficient to prove that x(·) ∈ C([0, T], ℓ2) for any T > 0.
Now we will show that x(t) ∈ ℓ2 for all t ≥ 0.

3.1. Estimate for ∥etA∥
Since A = {A1, A2, }we have etA = {etA1 , etA2 , . . . }. Recall that for every i there exists a

non-singular transformation Pi : Rdi → Rdi such that Ai = Pi JiP−1
i , where Ji is the Jordan

normal form of Ai.
Thus,

∥etAi∥ ≤ ∥Pi∥ · ∥etJi∥ · ∥P−1
i ∥ ≤ C∥etJi∥.

By the assumption all eigenvalues λi1, . . . , λidi
of matrices have negative real part,

letting 2αi = −max1≤j≤di
Re(λjdi

) > 0, we can find a polynomial Qi(t) of degree at most
di ≤ d (see §13 in [22]) such that

∥etAi∥ ≤ C|Qi(t)|e−2tαi ≤ C̄e−tαi . (5)

Thus, for any x ∈ ℓ2 and t ∈ [0,+∞) we have

∥etAx∥2 =
∞

∑
i=1

∥etAi xi∥2 ≤
∞

∑
i=1

∥etAi∥2∥xi∥2 ≤ C̄2∥x∥2. (6)

This implies that etA : ℓ2 → ℓ2 is a bounded linear operator for every t ∈ [0,+∞).
Also, it is standard to check that etA is a semigroup, i.e., e(t+s)A = etAesA.
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3.2. Proof of Theorem 1

We start by showing that x(t) ∈ ℓ2 for all x0 ∈ ℓ2 and for all t ∈ [0, T]. Indeed,

∥x(t)∥2 ≤
∞

∑
i=1

∥etAi xi0 +

t∫
0

e(t−s)Ai wi(s)ds∥2

≤ 2∥etAx0∥2 + 2
∞

∑
i=1

∥
t∫

0

e(t−s)Ai wi(s)ds∥2. (7)

Let us estimate the last term of the above inequality. We have

∥
∫ t

0
e(t−s)Ai wi(s)ds∥2 ≤ C̄2

(∫ T

0
∥wi(s)∥ds

)2

≤ C̄2T
(∫ T

0
∥wi(s)∥2ds

)
(8)

where in the last step we have used the Cauchy–Schwartz inequality for 1 against ∥wi(s)∥.
First substituting (8) into (7) and then using (6), (5) and constraint (3) we obtain

∥x(t)∥2 ≤ 2C̄2∥x0∥2 + 2C̄2Tθ2,

which proves the claim.
We are now ready to prove that x(t) = (x1(t), x2(t), . . . ) ∈ C([0, T], ℓ2) for any

T > 0. Since ∥x(t)∥2 is bounded by a constant independent of t, for any ε > 0 there
exists N = N(ε, t, t0) ∈ N such that

∞

∑
i=N+1

∥xi(t)− xi(t0)∥2 ≤ ε

2
. (9)

For any t, t0 ∈ [0, T] with t0 ≤ t we have

N

∑
i=1

∥xi(t)− xi(t0)∥2 ≤
N

∑
i=1

∥etAi − et0 Ai∥2 · ∥xi0∥2+

+
N

∑
i=1

∥∥∥∥etAi

∫ t

0
e−sAi wi(s)ds − et0 Ai

∫ t0

0
e−sAi wi(s)ds

∥∥∥∥2
= (I) + (I I).

We start by estimating (I). Notice that

∥etAi − et0 Ai∥ ≤ ∥Pi∥ · ∥P−1
i ∥ · ∥etJi − et0 Ji∥ ≤ C̄∥et0 Ji∥ · |Qi(t − t0)|e−|t−t0|αi . (10)

Recall that Qi(t − t0) is a polynomial of degree at most d with coefficients depending
only on the dimension di of Ji. Thus, we can find δ independent of i such that

C̄3|Qi(t − t0)| · ∥x0∥2 <
ε

4
and C̄3|Qi(t − t0)| <

ε

8T
(11)

for all t ∈ (t0 − δ, t0 + δ). Thus, by (5) and (11) we have the following estimate for (I):

N

∑
i=0

∥etAi − et0 Ai∥2 · ∥x0∥2 ≤
N

∑
i=0

∥etAi∥2 · ∥e(t−t0)Ai − ∥2 · ∥x0∥2

≤
N

∑
i=0

C̄3|Qi(t − t0)|e−|t−t0|αi · ∥x0∥2 <
ε

4
.

(12)
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For (I I) we write

N

∑
i=1

∥∥∥∥(etAi − et0 Ai )
∫ t

0
e−sAi wi(s)ds − et0 Ai

(∫ t

t0

e−sAi wi(s)ds
)∥∥∥∥2

.

Thus, for every i every sum and of the above sum is bound by(∫ t

0
∥e(t−s)Ai − e(t0−s)Ai∥ · ∥wi(s)∥ds +

∫ t

t0

∥e(t0−s)Ai∥ · ∥wi(s)∥ds
)2

.

Applying inequality (10) and (11) to the first summand and inequality (5) to the second
we obtain

N

∑
i=1

(
ε

8T

∫ T

0
1[0,t] · ∥wi(s)∥ds +

∫ T

0
1[t0,t] · C̄e−tαi · ∥wi(s)∥ds

)2

,

which is bound by
N

∑
i=1

(∫ T

0

( ε

8T
1[0,t] + 1[t0,t] · C̄

)
∥wi(s)∥ds

)2

.

Now, using Cauchy–Schwartz inequality we obtain

( ε

8
+ |t0 − t| · C̄

)2 N

∑
i=1

∫ T

0
∥wi(s)∥2ds.

Since |t − t0| < δ choosing δ > 0 sufficiently small and using (3) we bound the
latter expression by ε

4 for all ε < 4θ2. Therefore, we conclude (I I) < ε
4 . Combining this,

estimate (12) and (9) implies that we obtain that x(·) ∈ C([0, 1], 1), hence finishes the proof.

4. Proof of Theorem 2
4.1. Asymptotic Stability

We will show that ∥x(t)∥ → 0 as t → ∞. Since x0 ∈ ℓ2 for any ε there exists N = N(ε)
such that ∑∞

i=N+1 ∥xi0∥2 < ε
2C̄ . By (4) and (5) we have

∥x(t)∥2 =
∞

∑
i=1

∥xi(t)∥2 =
∞

∑
i=1

∥etAi xi0∥2

≤
N

∑
i=1

C̄e−tαi∥xi0∥2 + C̄
∞

∑
i=N+1

∥xi0∥2.

Letting αmin = min1≤i≤N αi > 0, from the above inequality we obtain

∥x(t)∥2 ≤
N

∑
i=1

C̄e−tαi∥xi0∥2 + C̄
∞

∑
i=N

∥xi0∥2

≤ C̄e−tαmin∥x0∥+
ε

2
.

There exists tε such that C̄e−tαmin∥x0∥ ≤ ε
2 for all t < tε. This finishes the proof.

Notice that if αinf = infi≥1 αi > 0, then the system is exponentially stable. Since in this
case we do not have to cut at N and can write

∥x(t)∥2 ≤
∞

∑
i=1

C̄e−tαi∥xi0∥2 ≤ C̄e−tαinf
∞

∑
i=1

∥xi0∥2 ≤ C̄e−tαinf∥x0∥2.
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4.2. Gramians

In this subsection, we prove null controllability of (1) and hence the proof of Theorem 2.
Our approach relies on Gramian operators and observability inequalities. Set

W(τ) =
∫ τ

0
e−sA · e−sA∗

ds, τ ∈ R

where A∗ is the adjoint of A in ℓ2. The definition implies

W(τ) = {W1(τ), W2(τ), W3(τ) . . . }, with Wi(τ) =
∫ τ

0
e−sAi · e−sA∗

i ds, i ≥ 1.

Since Ai is a finite matrix for every i we have that Wi(τ) is a positive definite, symmet-
ric and invertible operator (Notice, that W(τ) is not necessarily a bounded operator for
fixed τ ∈ R.) for every i and τ ∈ R, i.e., W−1

i (τ) exists and bounded. Define

W−1(τ) = {W−1
1 (τ), W−1

2 (τ), W−1
3 (τ) . . . }

It is clear that W−1
1 (τ) is inverse to W1(τ) for each τ ∈ R. We will show that W−1(τ) :

ℓ2 → ℓ2 is a bounded linear operator. For every s ∈ R, i ∈ N and xi ∈ Rdi we have

⟨Wi(τ)xi, xi⟩ =
∫ τ

0
∥e−sA∗

i xi∥2ds ≥
∫ τ

0
(m(Pi)eβism(P−1

i )∥xi∥)2ds

=
∫ τ

0

e2βis∥xi∥2

∥Pi∥2 · ∥P−1
i ∥2

ds.

where m(Pi) is the minimum seminorm of Pi and βi = −min1≤j≤di
Re(λj). Since the

eigenvalues of Ai assumed to have strictly negative real part bounded away from zero, we
have β = infi βi > 0. Therefore, we have

∥Wi(τ)∥ ≥ ⟨Wi(τ)xi, xi⟩
∥x∥2 ≥ 1

C2

∫ τ

0
e2βisds ≥ 1

C2βi

(
e2βiτ − 1

)
,

which implies

∥W−1
i (τ)∥ ≤ 2C2βi

(
e2βiτ − 1

)−1
≤ C2/τ. (13)

Further, for any x = (x1, x2, . . . ) ∈ ℓ2 with ∥x∥ = 1 we have

∥W−1(τ)x∥2 =
∞

∑
i=1

∥W−1
i (τ)xi∥2 ≤

∞

∑
i=1

∥W−1
i (τ)∥2 · ∥xi∥2 ≤ C2/τ. (14)

4.3. Null Controllability in Large

Below we assume that θ > 0 and the set of admissible control is defined as in Section 2.
Recall that x(t) = etAx0 + etA ∫ t

0 e−sAw(s)ds is the unique solution of system (2) with an
initial state x(0) = x0. It is standard to check that the function

u0(t) = −e−tA∗ · W−1(τ)x0 for every x0 ∈ ℓ2, τ ∈ R+ (15)

solves the control problem if it is admissible, i.e.,
∫ τ

0 e−sAu0(s)ds = −x0 for every fixed
τ ∈ R+. Indeed, by (15) we have

−
∫ τ

0
e−tAi u0dt =

∫ τ

0
e−tAi e−tA∗

i dt · W−1
i (τ)xi0 = xi0, for all i ∈ N. (16)

Therefore, it remains to show that u0 is admissible, i.e., there exists τ > 0 such that

∥u0∥2 =
∞
∑

i=1

τ∫
0
∥u0

i (s)∥
2ds ≤ θ2, u0

i (s) ∈ Rdi .
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By definition of W(τ) and Chauchy–Schwarz inequality we have∫ τ

0
∥u0(t)∥2dt =

∫ τ

0
∥e−tA∗

W−1(τ)u0∥2dt

=
∫ τ

0

〈
e−tA · e−tA∗

W−1(τ)x0, W−1(τ)x0

〉
dt

= ⟨x0, W−1(τ)x0⟩ ≤ ∥x0∥2 · ∥W−1(τ)∥.

(17)

This together with inequality (14) and (15) implies that u0 is admissible if

C∥x0∥2/
√

τ ≤ θ2. (18)

This finishes the proof, since the left hand side of (18) decays as τ grows.

4.4. Time Optimal Control

Equation (14) shows that ⟨x0, W−1(τ)x0⟩ is decreasing as τ for every x0 ∈ ℓ2. Thus,
for every x0 ∈ ℓ2 there exists a unique ϑ ∈ R+ such that

⟨x0, W−1(τ)x0⟩ > θ2, for τ > ϑ, and ⟨x0, W−1(ϑ)x0⟩ = θ2. (19)

We claim that ϑ is the optimal time. We use the following result from [23].

Proposition 1. Let B(t), t ∈ [0, ϑ0] be a continuous matrix-function of the order d with a
determinant not identically 0 on [0, ϑ0]. Then among the measurable functions w : [0, ϑ0] → Rd,
satisfying the condition

∫ ϑ0
0 B(s)w(s)ds = w0 ∈ Rd the function defined almost everywhere on

[0, ϑ] by the formula w(s) = B∗F−1(ϑ0)x0, F(ϑ0) =
∫ ϑ0

0 B(s)B∗(s)ds gives a minimum to the
functional

∫ ϑ0
0 |w(s)|2ds.

Assume that there is an admissible control u(·) defined on [0, ϑ) such that x(τ) = 0
for some τ < ϑ. By definition we have

eτAi x0i +
∫ τ

0
e(τ−s)Ai ui(s)ds = 0 for all i ∈ N.

Since e(τ−s)Ai is a continuous matrix function we can apply the above proposition for
every i ∈ N and conclude that the functional J(u) =

∫ τ
0 ∑∞

k=1 ∥ui(s)∥2ds is minimized by
u0 defined in (15). Thus we have

J(u) ≥ J(u0) =
∫ τ

0

∞

∑
k=1

∥u0
i (s)∥ds = ⟨x0, W−1(τ)x0⟩ > ⟨x0, W−1(ϑ)x0⟩ = θ2.

This shows that u(·) is not admissible. This contradiction implies that ϑ is the optimal
time of translation to the origin and u0(t) = −e−tA∗ · W−1(ϑ)x0 is the time optimal control.

5. Differential Game Problem: Proof of Theorem 3

We now consider the game problem (1). Recall that the equation

⟨x0, W−1(τ)x0⟩ = (ρ − θ)2

has a unique solution ϑ1. Fix T > ϑ. We define

u(t, v) = v − e−tA∗ · W−1(ϑ1)x0 (20)

Let v(·) be any admissible control of the evader. We show that (20) is admissible.

∥u(t, v)∥ = ∥v∥+ ∥e−tA∗
W−1(ϑ1)x0∥ ≤ σ + ⟨x0, W−1(ϑ1)x0⟩1/2 = ρ.
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Also, it is easy to show that x(ϑ1) = 0. This completes the proof.

6. Conclusions

In this paper, we studied an infinite controllable system consisting of independent
finite dimensional blocks. We solved the optimal zero control problem and constructed a
guaranteed strategy for pursuer to complete the pursuit game. We use Gramians in order to
construct optimal control. It would be more desirable to consider a more general equation
than (1), But we left this for further investigation. Since, our results don’t generalize to this
setting, and also one needs to find an analog of the Kalmann condition on controllability.

We proved that the pursuit game can be completed if ρ < σ. Since in our setting the
system is globally asymptotically stable and we expect that it is possible to complete the
pursuit game for any ρ, σ > 0. However, it turned out to be a challenging problem to define
the strategy for 0 < ρ < σ. Also, we didn’t attempt here evasion problem. We think that in
the interval (0, ϑ1) evasion is possible. However, we leave this for future work.
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